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Abstract

Agents partition deterministic outcomes into good or
bad. A direct revelation mechanism selects a lottery over
outcomes — also interpreted as time-shares. Under such
dichotomous preferences, the probability that the lottery
outcome be a good one is a canonical utility representa-
tion.
The utilitarian mechanism averages over all determinis-

tic outcomes “approved” by the largest number of agents.
It is efficient, strategyproof and treats equally agents and
outcomes.
We reach the impossibility frontier if we also place the

lower bound 1
n
on each agent’s utility, where n is the num-

ber of agents; or if this lower bound is the fraction of good
outcomes to feasible outcomes.
We conjecture that no ex-ante efficient and strategyproof

mechanism guarantees a strictly positive utility to all agents
at all profiles, and prove a weaker version of this conjec-
ture.
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Collective choice under
dichotomous preferences

1 Introduction and overview of the results

Randomization is surely the oldest and most practical tool to achieve equity in
collective decision making. A lottery chooses one of several mutually exclusive
outcomes: the weights of the lottery (the probability distribution over the de-
terministic outcomes) are adjusted to achieve a ”fair” compromise. Say that we
have three outcomes a, b, c, and ten concerned agents split into 2 supporters of
a, 5 of b and 3 of c : a prima facie fair compromise is the lottery pa = .2, pb = .5,
pc = .3.
An alternative interpretation of the convex combination of outcomes is time-

sharing. Think of our agents sharing a “source” such as a TV or radio in a public
space (a gym, the living room of the house they share), and allocating timeshares
to the available channels.
In this paper we revisit the classic negative result on collective choice using

randomization/time-sharing under the assumption that the preferences are di-
chotomous. That is, each agent sorts the outcomes as either “good” or “bad”
(possibly “all good” or “all bad”); her preferences over deterministic outcomes
have at most two indifference classes.
This is a considerable restriction of the standard domain of rational pref-

erences (complete and transitive). Yet dichotomous preferences arise naturally
in a number of time-sharing problems. In the TV example, the channels may
broadcast the same news program in a variety of languages, and each agent
understands a certain subset of these languages. Or think of an antenna broad-
casting to geographically dispersed agents; for each orientation of the antenna,
only a certain subset of agents receive an adequate signal, hence their prefer-
ences over the feasible set of orientations are dichotomous.1 Or the source may
be choosing the software to communicate with a number of machines, and each
machine is only endowed with some of the softwares available to the source.
Scheduling problems provide another natural example where preferences are

dichotomous. We must schedule a meeting at one of several possible times, and
each potential participant can only attend at a certain subset of those times.
Everyone wishes to maximize the probability that he can attend the meeting.2

We investigate the compatibility, in the dichotomous domain, of the three
perennial goals of mechanism design: efficiency, incentive compatibility and
fairness.
Incentive compatibility takes the standard form of strategyproofness: truthtelling

is a dominant strategy in the direct mechanism where agents report their pref-
erences.

1This example was suggested by Scott Shenker.
2We thank the Associate Editor for suggesting this example.
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Efficiency is the usual Pareto optimality of the lottery/time-sharing. In the
lottery interpretation, a weaker property is also of interest: it only requires that
each deterministic outcome chosen with positive probability be Pareto optimal.
To distinguish these two properties, we speak of ex-post efficiency for the latter,
and of ex-ante efficiency for the former. We stress that ex-post efficiency has
no convincing interpretation in the time-sharing context.
The familiar notion of fairness known as horizontal equity is captured by

the two properties of anonymity and neutrality, expressing the symmetric treat-
ment of, respectively, agents and outcomes. Our first observation - Proposition
1 in Section 4.1 - is a positive result. Under dichotomous preferences, the four
requirements of ex-ante efficiency, strategyproofness, anonymity and neutrality
are compatible. A simple example is the mechanism we call utilitarian, rem-
iniscent of approval voting; that randomizes uniformly over all outcomes with
the largest ”approval” (i.e., outcomes viewed as ”good” for the greatest number
of agents).
Two normative shortcomings of the utilitarian mechanism are that it may be

vulnerable to misrepresentation by groups (coalitions) of agents, and it exhibits
the classic ”tyranny of the majority.” We take these two criticisms in turn.
Consider a situation with three agents A,B,C and three outcomes a, b, c

where for agent X, outcome x is the only good one. The utilitarian mechanism
chooses each outcome with probability 1

3 . However, if both agents A and B
pretend that they like both a and b - and dislike c - whereas agent C remains
truthful, the utilitarian lottery picks a and b each with probability 1

2 , and the
joint misreport by A and B benefits them both. Propositions 2 and 3 in Section
4.2 generalize this observation: they show that the requirement of groupstrate-
gyproofness is simply too demanding in our problem: it is not even compatible
with ex-post efficiency.
The second objection to the utilitarian mechanism is more serious. An agent

who dislikes all utilitarian outcomes (i.e., all outcomes with largest approval)
gets no share at all of the collective benefits, his own preferences are entirely
ignored. To avoid this ”tyranny of the majority,” we can impose one of two
natural lower bounds on individual benefits.
The first lower bound, that we call fair outcome share, views the uniform

lottery over all outcomes as a disagreement option that each agent has the right
to enforce. This rewards agents who like a relatively large subset of feasible
outcomes: if q among the p outcomes are good for me, the probability that one
of my good outcomes is eventually selected is at least q

p .
The second lower bound, called fair welfare share uses the random dictator

mechanism as the disagreement option that each participant is entitled to en-
force. In other words, we give a fair share of control over the final outcome
to each participant. Formally, this lottery guarantees, for each one of the n
agents, that one of her good outcomes is chosen with probability at least 1

n .
These two bounds are obviously incompatible: suppose n = 2 and Ann likes
only outcomes a, b whereas Bob only likes c; we can’t simultaneously choose one
of a, b with probability at least 23 , and c with probability at least 12 .
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Suppose3 two colleagues have lunch together every day of the week at one of
five feasible restaurants, serving respectively Indian, Greek, Italian, French and
Chinese food. Ann strongly prefers Indian food, and finds the other four equally
dull, whereas Bob is equally happy in all but the Indian restaurant, where the
spicy food does not appeal to him. The fair outcome share suggests to visit the
Indian restaurant exactly one day per week, a reasonable compromise given that
preferences reflect tastes. But suppose instead that preferences reflect needs:
Ann is religiously vegetarian, and the Indian place is the only one offering a
vegetarian menu; Bob is allergic to Indian spices. Then the fair welfare share
makes more sense: it suggests that our two colleagues should visit the Indian
restaurant every other day (and every day one of them will bring a lunch bag ).
Our main results describe the compatibility, or lack thereof, of efficiency and

incentive-compatibility with either one of the two lower bounds. Proposition
4 in Section 5.2 shows that the fair outcome share is not feasible for any strat-
egyproof and ex-post efficient mechanism. By contrast, it is easy to design
a strategyproof and ex-post efficient mechanism guaranteeing the fair welfare
share (and horizontal equity as well): Proposition 5 in Section 5.3. A simple
example obtains by adapting the familiar random dictator mechanism in the
presence of indifferences: the random priority mechanism selects with uniform
probability an ordering of the agents, then maximizes lexicographically their
preferences. See Section 5.3 for details.
Theorem 1 in Section 5.4 reveals an important tradeoff among strategyproof

mechanisms between the fair welfare share and ex-ante efficiency. It shows
that no strategyproof and ex-ante efficient mechanism can meet the fair welfare
share and be horizontally equitable. We suspect that horizontal equity is in
fact redundant in this statement.
A considerably weaker version of the lower bound on individual utilities is

sufficient to rule out the tyranny of the majority. The property that we call
positive shares merely requires that for any participant, the probability that
one of his good outcomes be selected is strictly positive. In other words, every
one gets some share of the collective benefits. We submit as a challenging con-
jecture the following statement: there is no strategyproof and ex-ante efficient
mechanism guaranteeing positive shares.
We have been able to prove a weaker version of this statement, where strat-

egyproofness is strengthened into preference monotonicity. Consider a shift in
preferences where the status of a certain outcome for a certain agent goes from
bad to good: preference monotonicity requires that the probability of each and
every other outcome should not increase. This property is akin to gross substi-
tutability in demand theory. Theorem 2 in Section 6 shows the incompatibility
of ex-ante efficiency, preference monotonicity and positive shares.
We relate our work to the literature in the next section. The model is

defined in Section 3, and our first results on strategyproofness and groupstrat-
egyproofness are in Section 4. The two lower bounds on individual welfares
are the subject of Section 5, whereas positive shares is discussed in Section 6.

3We thank an anonymous referee for suggesting this example.
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Section 7 briefly discusses a natural family of ex-ante efficient solutions. All
non-trivial proofs are gathered in the Appendix.

2 Relation to the literature

Recall first the central “negative” result of the literature on collective choice
with lotteries/time-sharing in the standard preference domain, i.e., when agents
have complete and transitive preferences over deterministic outcomes, and Von
Neumann-Morgenstern utilities over lotteries.
Consider the random dictator mechanism: an agent is randomly selected,

with equal probability for each agent, and chooses freely the final outcome. This
mechanism is horizontally equitable and strategyproof (we ignore tie-breaking
issues for brevity). It is also ex-post efficient, namely every (deterministic)
outcome selected with a positive probability is Pareto optimal. However, it
may not be ex-ante efficient: the resulting lottery over outcomes may be Pareto
inferior. In the example with 10 agents at the beginning of Section 1, imagine a
fourth outcome d that is a good compromise between a, b, and c. For instance,
VNM utilities are:

# of agents u(a) u(b) u(c) u(d)
2 11 0 0 10
5 0 11 0 10
3 0 0 11 10
The utility of the random priority lottery is 2.2, 5.5, and 3.3 for the three

types of agents respectively, well below the 10 utils from choosing d.
Conversely, the random dictator mechanism is essentially characterized by

anonymity (equal treatment of agents), strategyproofness, and ex-post effi-
ciency4,5. But an ex-ante efficient and strategyproof mechanism must involve
a full time dictator, namely an agent such that, for any utility profile, any out-
come chosen with positive probability is among the dictator’s top outcomes.
These results originate in Gibbard [1977], the seminal paper on collective choice
with lotteries as outcomes, that however restricts attention to mechanisms elic-
iting only ordinal preferences over deterministic outcomes; the same is true
of Barbera [1979], who describes the fair and strategyproof — yet inefficient —
mechanisms in this class. The tiny literature on mechanisms eliciting complete
Von Neumann-Morgenstern utilities consists of Gibbard [1978], Hylland [1980],
Freixas [1984], Barbera, Bogomolnaia and Van der Stel [1998], and Nandeibam
[2001].
When preferences are dichotomous over deterministic outcomes, first order

stochastic dominance is a complete preference ordering of the lotteries. A canon-
ical utility representation is the probability that a given lottery assigns to the

4Nandeibam [2001] shows that a much weaker form of efficiency is sufficient for the result:
when a certain outcome is the top for every agent, it must be chosen with probability one.
Moreover, if we drop the anonymity requirement, the only new mechanisms choose a dictator
according to an arbitrary fixed probability distribution.

5When preferences over lotteries (or any other convex set of outcomes) are strictly convex,
a similar characterization result obtains: Dutta, Peters and Sen [1999].
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set of good outcomes. Thus the VNM axiomatic construction is pointless in
this preference domain, and the mechanisms eliciting ordinal preferences are
the only ones we need to consider.
In our model the random dictator idea leads to the random priority mech-

anism, that remains a fair, strategyproof and ex-post efficient mechanism (see
Section 5.3); however, these properties no longer characterize the mechanism.
Another new fact in the dichotomous domain is the compatibility of ex-ante
efficiency, strategyproofness and horizontal equity; as explained above, these
three properties are incompatible in the classic domain.
The companion piece Bogomolnaia and Moulin [2001] develops a related

model of random assignment, under the same assumptions of dichotomous pref-
erences. The problem is to assign to each agent at most one from a set of het-
erogeneous objects, when each agent partitions the objects as “good” or “bad”.
Randomization (time-sharing) restores fairness. The main simplification of the
assignment problem, relative to the general decision problem discussed here, is
that a random assignment is efficient if and only if it is utilitarian (maximizes
the sum of utilities); in particular ex-post and ex-ante efficiency coincide. It
is then easy to find an efficient and strategyproof mechanism guaranteeing a
“fair” share to every participant: the random priority mechanism is an exam-
ple, the revelation mechanism selecting the Nash solution is another. Moreover
the latter mechanism is group-strategyproof as well.

3 The model

The set N of agents is finite, and so is the set A of (deterministic) outcomes.
These two sets are fixed throughout.
A dichotomous preference on A is described by a row vector v ∈ {0, 1}A with

the interpretation that outcome a is good if va = 1 and bad if va = 0. We also
say that an agent likes a if va = 1 and dislikes it if va = 0. Note that va = 0 for
all a, and va = 1 for all a, represent the same preference: agents who are thus
indifferent will not matter in any of the mechanisms discussed below.
A N -profile of dichotomous preferences is a N × A matrix U with entry

uai = 0 or 1 : U ∈ {0, 1}N×A. The i-row Ui is agent i’s preference, and the a-
column Ua is the set of agents who like outcome a. Abusing notations slightly,
we also use Ui to represent the set of outcomes that agent i likes.
A problem is a triple (N,A,U) and a lottery (vector of time-shares) is a

column vector p in the A-simplex: pa ≥ 0 for all a and
P

A pa = 1. The canonical
utility of agent i for the lottery p is thus written as ui(p) = Ui • p =

P
A uai .pa.

A solution to the problem (N,A,U) is a lottery p deemed desirable according
to certain properties of efficiency and fairness (defined below). When we discuss
properties relating the solutions of different problems, we speak of a mechanism.
Given N and A, a mechanism is a mapping π selecting for each problem

(N,A,U) a solution p = π(U). The following three properties of a mechanism
are standard, and require no further comments:
Anonymity: for any profile U, and permutation σ of N
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π(U) = π(σU) where σUi = Uσ(i)
Neutrality: for any profile U , and permutation τ of A

π(
τ
U) =

τ
π(U) where τpa = pτ(a) and

τUa = Uτ(a)

Strategyproofness (SP): for any i ∈ N, and profiles U, U 0

{Uj = U 0j for all j 6= i}⇒ {Ui • π(U) ≥ Ui • π(U 0)}
An outcome a, a ∈ A, is efficient at profile U if, for every other outcome b

{Ua ≤ Ub}⇒ {Ua = U b}.We distinguish two notions of efficiency for a lottery
p :
Ex-Post Efficiency (EXP): for all a in A {pa > 0}⇒ {a is efficient}
Ex-Ante Efficiency (EXA): for all lotteries p0 {U • p ≤ U • p0} ⇒ {U • p =

U • p0}
Ex-ante efficiency coincides with ex-post efficiency for a deterministic out-

come a, but for lotteries the latter is a strictly weaker requirement than the
former. The simplest example involves five outcomes and six agents: see Figure
1. All five outcomes are efficient, thus any lottery is ex-post efficient. However
p, pc = pd = pe =

1
3 , is strictly Pareto inferior to q, qa = qb =

1
2 .

4 Strategyproofness and groupstrategyproofness

4.1 The utilitarian solution

Our first result shows that ex-ante efficiency, strategyproofness and horizontal
equity are compatible in our model. Its obvious proof is omitted. Given a
problem (N,A,U) we denote by A1 the subset of outcomes liked by the largest
number of agents:

a ∈ A1 ⇔ |Ua| ≥
¯̄
U b
¯̄
for all b ∈ A

Definition 1 The utilitarian solution for problem (N,A,U) is the uniform lot-
tery pu over A1 :

pua =
1

|A1|
if a ∈ A1; p

u
a = 0 otherwise

Proposition 1 The utilitarian mechanism is anonymous, neutral, strategyproof
and ex-ante efficient.

We note that the four properties listed in Proposition 1 are by no means
sufficient to characterize the utilitarian mechanism.
Consider first the simple variant of the utilitarian solution in which two

outcomes a, a0 in A1 with identical support are conventionally identified. Given
(N,A,U), define the equivalence relation ∼ on A : a ∼ a0 ⇔ Ua = Ua0 , and
choose a single outcome a∗ in each equivalence class. The new solution is the
uniform lottery over the set of all outcomes a∗: the corresponding utility profile
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is unique (if the lottery itself is not) and generally differ from the utilitarian
profile if the indifference classes are of different sizes. It is easy to check that
the corresponding direct revelation mechanism(s) meets the four properties in
Proposition 1.
Our next example is a solution that gives positive weight to non-utilitarian

outcomes at many profiles. This solution gives most of the weight to utilitarian
outcomes, who are each liked by exactly m agents; it gives also a smaller weight
to an outcome a liked by exactly m− 1 agents if none of the agents who like a
also likes some utilitarian outcome. If there are no such outcomes, our solution
coincides with the utilitarian one.
We fix (N,A) and we choose a positive weight w such that w ≥ |A| − 1.

Given a problem (N,A,U), we define m = maxA |Ua|, the maximal support,
A1 = argmaxA |Ua| the set of utilitarian outcomes, and

N1 = ∪A1
Ua; B = {a ∈ A : |Ua| = m− 1 and Ua ∩N1 = ∅}.

The lottery p is now

pa =
w

|A1|w+|B| if a ∈ A1; pa =
1

|A1|w+|B| if a ∈ B; pa = 0 otherwise.

Lemma 1 The solution p defines an anonymous, neutral, strategyproof and ex-
ante efficient mechanism.

4.2 Groupstrategyproofness: impossibility results

The utilitarian mechanism is robust against strategic misreporting by a single
agent, but is eminently vulnerable to joint misreporting by several agents. Recall
the three agents/three outcomes example given in Section 1. We show in this
subsection that all efficient and horizontally equitable mechanisms are similarly
manipulable.
The familiar strengthening of strategyproofness to coalitions writes as follows

for an arbitrary mechanism π :
Group-Strategyproofness (GSP): for all S ⊆ N, and profiles U,U 0

{Uj = U 0j for all j ∈ NÂS, and Ui • π(U 0) ≥ Ui • π(U) for all i ∈ S} ⇒
Ui • π(U 0) = Ui • π(U) for all i ∈ S.
The next result shows that this property is not even compatible with the

weak version of efficiency.

Proposition 2 Assume |N | ≥ 3 and |A| ≥ 3. No mechanism is both ex-post
efficient and group-strategyproof.

A weaker requirement than GSP only rules out misreporting that strictly
improves the utility of each member of the deviating coalition.
Weak Group-Strategyproofness for all S ⊆ N,and profiles U,U 0 :
{Uj = U 0j for all j ∈ NÂS}⇒ {Ui • π(U 0) ≤ Ui • π(U) for some i ∈ S}
Weak Group-Strategyproofness is not incompatible with efficiency, even in

the ex-ante sense. To prove this claim, we introduce a family of mechanisms
playing an important role in the next section as well.
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Definition 2 Fix an arbitrary ordering σ of N, say i1 > i2 > ... > in, and
a preference profile U . Say that outcome a is a σ-priority outcome at U if Ua

is a lexicographic maximum for the ordering σ: for any b ∈ A, there exists an
integer m, 0 ≤ m ≤ n, such that:

uaik = ubik for k = 1, ...,m and uaik+1 > ubik+1 (where m = 0 if uai1 > ubi1and

m = n if Ua = U b).
A mechanism π is a σ-priority mechanism if it selects at every profile U a

lottery over the set of σ-priority outcomes.

Notice that, for a given ordering σ, the utility profile of all σ-priority mech-
anisms is the same; abusing language, we speak of the σ-priority direct revela-
tion mechanism. This mechanism is obviously weakly groupstrategyproof and
ex-ante efficient. However, the average over σ of all such mechanisms (called
random priority mechanism in the next section: see Definition 3 in Section 5.3)
is not weakly groupstrategyproof. This is an instance of a general impossibility
result.

Proposition 3 Assume |N | ≥ 4 and |A| ≥ 6. An anonymous and neutral mech-
anism cannot be both ex-post efficient and weakly group-strategyproof.

Proposition 3 is a tight statement. A σ-priority mechanism shows that we
cannot drop anonymity. The following non neutral utilitarian mechanism shows
that we cannot drop neutrality either. Fix an arbitrary ordering of A and select
— with probability one — the smallest outcome in A1 according to this ordering:
this mechanism is efficient ex-ante, weakly groupstrategyproof and anonymous.

5 Fair share

5.1 Two definitions of fair share

We define formally the two individual rationality properties discussed in Section
1. Given a problem (N,A,U) we write p∗ for the uniform lottery on A, and we
consider two properties of a solution p:
Fair Outcome Share (FOS): for all i ∈ N {Ui 6= 0} =⇒ Ui • p ≥ Ui • p∗
Fair Welfare Share (FWS): for all i ∈ N {Ui 6= 0} =⇒ Ui • p ≥ 1

|N |
The fair outcome share rewards agents for whom more outcomes are good:

the lower bound on an agent utility is precisely the proportion of good outcomes
in his/her preferences. The fair welfare share, on the other hand, places the same
lower bound on the utility of all agents who are not completely indifferent over
A. In the terminology of bargaining theory, the disagreement point is p∗ under
FOS and is the random priority mechanism under FWS (Definition 3 below).
Recall that these two properties are mutually incompatible at many preference
profiles if we have at least two agents and three outcomes.
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5.2 Fair outcome share: a simple impossibility result

Consider the three agents/three outcomes problem in Figure 2: U1 = {a}, U2 =
{b}, U3 = {a, b}. Suppose we are given a mechanism π that is ex-post efficient
and meets FOS. Let p be the lottery selected by π at this profile. Assume first
pa <

2
3 . If agent 1 reports U

0
1 = {a, c} the lottery p0 = π(U 01, U2, U3) has p

0
c = 0

(by ex-post efficiency) and p0a+p
0
c ≥ 2

3 by (FOS). Therefore U1•p0 ≥
2
3 > U1•p,

and agent 1’s misreport is a profitable manipulation. If pa ≥ 2
3 , then pb <

2
3

and agent 2 can similarly manipulate. We have proven

Proposition 4 Assume |N | ≥ 3 and |A| ≥ 3. No mechanism is ex-post effi-
cient, strategyproof, and meets the fair outcome share.

Proposition 4 is a tight statement. We omit the obvious proof.

Remark 1 Consider the weaker variant of the FOS requiring only Ui • p ≥
ε · (Ui • p∗) for some fixed parameter ε, 0 < ε < 1. Although much weaker
than the FOS when ε is very small, when min{|N |, |A|} is large enough this
property cannot be met by an ex-post efficient and strategyproof mechanism.
The proof uses the following profile with m + 1 agents and m + l outcomes
a1, .., am, b1, ...bl:U0 = {a1, ..., am};Ui = {ai} for i = 1, ...,m.When agent i
reports U 0i = {ai, b1, ..., bl}, ex-post efficiency and FOS imply that the corre-
sponding lottery p0 must select ai with probability at least

l+1
m+l . When l,m are

large enough, this brings a contradiction of strategyproofness.

5.3 The random priority mechanism

In sharp contrast to the incompatibility stated in Proposition 4, the fair welfare
share is satisfied by some strategyproof and ex-post efficient mechanisms. The
simplest example is the following mechanism.

Definition 3 Given (N,A,U) a mechanism π is a random priority solution if
there exists, for all ordering σ of N , a σ-priority mechanism πσsuch that:

π =
1

|N |!
X
σ

πσ

All such mechanisms yield the same utility profile at all preference profiles.

Proposition 5 The random priority mechanism is anonymous, neutral and
meets the fair welfare share; it is strategyproof and ex-post efficient. It is not
ex-ante efficient.

Anonymity, neutrality and the fair welfare share are obvious. For any fixed
ordering σ, the σ-priority mechanism is strategyproof, and this property is pre-
served by convex combinations with fixed coefficients. Finally the example of
Figure 1 shows a failure of ex-ante efficiency. Here the σ-priority outcome is c
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if σ starts with agent 1 and agent 4 has a higher priority than 2 and 3, or if
σ starts with 4 and agent 1 is higher than 5 and 6. Thus pc = pd = pe =

1
9 ,

pa = pb =
1
3 , and ui =

4
9 for all i, whereas qa = qb =

1
2 yields ui =

1
2 for all i.

It is easy to generalize this example so that the random priority lottery
wastes an arbitrary large fraction of total surplus.
We note that the random priority mechanism is not the only one satisfy-

ing the properties listed in Proposition 5. We construct another example as
follows. Say that outcome a is i-utilitarian if a ∈ Ui and |Ua| ≥ |Ub| for all
b ∈ Ui. If i is indifferent between all outcomes, this is just the definition of
a utilitarian outcome. Define the i-utilitarian solution as the uniform lottery
over all i-utilitarian outcomes, and the ∗-utilitarian solution as the average of
the i-utilitarian solutions over all i.
We conclude this subsection with a natural family of scheduling problems

with dichotomous preferences where the difference between ex-ante and ex-post
efficiency is typically small, reinforcing the appeal of the random priority solu-
tion.

Example 1 A server is endowed with T units of resources. Serving agent i
requires xi units of resources. To fix ideas, think of xi as the time needed to
complete job i, and the server is alive for exactly T periods. Agent i’s utility
is 1 if her job is completed within these T periods, 0 otherwise (incomplete jobs
bring zero utility).
A vector a ∈ {0, 1}N is a feasible (deterministic) utility vector if and only if

x • a ≤ T where x = (xi). By efficiency we only need to consider the maximal
feasible vectors a, i.e., those for which the set of satisfied agents is inclusion-
maximal. Denote by A the set of these vectors, and simply take the column
vector a to be the corresponding column of U. All outcomes of A are efficient by
construction, but a lottery over A may well be ex-ante inefficient.
However, suppose that all outcomes a exhaust the T periods: x•a = T for all

a. This holds true for instance if there are at least T agents with a 1-period job.
Then every feasible utility vector u (every convex combination of the column
vectors a) has x • u = T as well, hence is ex-ante efficient: the two notions of
efficiency coincide6.
Another interesting case is when the length of the different jobs are not too

different. Then the efficiency loss incurred at any (ex-post efficient) lottery will
be small 7.

5.4 Fair welfare share: an impossibility result

Theorem 2 Assume |N | ≥ 5 and |A| ≥ 17. An anonymous and neutral mecha-
nism cannot be ex-ante efficient, strategyproof, and meet the fair welfare share.

6Conversely, every preference profile U for which the two notions of efficiency coincide can
be obtained in this way ( X and Holzman [2003]).

7Set α = maxi xi and β = mini xi. Efficiency of the deterministic outcome a implies
T < x • a + α (ignoring the trivial case where all agents can be served at the same time).
Therefore T < x • u+α for any feasible utility vector. If u0 is feasible and Pareto superior to
u, inequalities x • u0 ≤ T < x • u+ α imply easily

P
i u

0
i −

P
i ui <

α
β
.
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In the above statement, we cannot dispense with either one of ex-ante effi-
ciency, strategyproofness, or fair welfare share. The random priority mechanism
meets all properties but ex-ante efficiency. The utilitarian one meets all but the
fair welfare share. Finally the Nash solution (maximizing the product of util-
ities Ui • p) defines a mechanism meeting all properties but strategyproofness:
see the discussion of this solution in Section 7.
However, we have not been able to determine if one of the anonymity or

neutrality property (or both) can be dropped.

6 Positive shares and more impossibility

In Section 4 we presented a few ex-ante efficient and strategyproof mechanisms:
see Proposition 1 and the discussion following it. All of them violate our two
”fair share” lower bounds, and, more radically, they give no benefit at all to
some agents in most problems. To rule out such ”tyranny of the majority” the
following very weak form of individual rationality is enough:

Positive Shares: for all i ∈ N {Ui 6= 0} =⇒ {Ui • p > 0}

Is there any ex-ante efficient and strategyproof mechanism meeting Positive
Shares as well? This is a challenging open question to which we suspect the
answer is negative when |N | and |A| are large enough.
Our intuition for this conjecture is based on a logically weaker result stated

below as Theorem 3. There we strengthen strategyproofness into a natural
monotonicity property reminiscent of the gross substitutability theory in de-
mand theory. The property is defined for a given pair N,A and a mechanism
π :

Preference Monotonicity (PM): for any profiles U, V and any outcome a:
{uai ≤ vai and ubi = vbi for all i, all b 6= a} =⇒ {πb(U) ≥ πb(V ) for all b 6= a}

Whenever a certain outcome a becomes more popular (in the sense that one
or more agents for whom a was bad, now see it as good) the probability/time-
share of every other outcome cannot increase. It is easy to check that the
utilitarian and random priority mechanisms are both preference monotonic.
Preference Monotonicity is interesting in its own right: it rules out cross-

subsidization between outcomes (lobbying to increase the support of a cannot
increase the time-share of b).

Lemma 2 Preference Monotonicity implies strategyproofness.

Proof. We consider the simple case where agent i with true utility Ui,
reports instead U 0i where U

0
iÂUi = {a} and UiÂU 0i = {b}. The general case

is just as easy. Set U 00i = UiÂ{b} and write U 0, U 00 for the profiles where Ui
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is replaced by U 0i and U 00i respectively. By PM and U 0i = U 00i ∪ {a} we have
successively:

πx(U) ≤ πx(U
00) for all x /∈ Ui ⇒ Ui • π(U 00) ≤ Ui • π(U)

πy(U
0) ≤ πy(U

00) for all y ∈ Ui ⇒ Ui • π(U 0) ≤ Ui • π(U 00)

and strategyproofness follows.

Theorem 3 Assume |N | ≥ 6 and |A| ≥ 6. There is no mechanism meeting
ex-ante efficiency, preference monotonicity, and positive shares.

Remark 2
In the statement of Theorem 2, we could replace Preference Monotonicity

by the Outcome Monotonicity (OM) property. OM compares two problems
(N,A,U) and (N,A0, U 0) where A ⊂

6=
A0 and U is the restriction of U 0 to A. It

requires πa(A
0, U 0) ≤ πa(A,U) for all a ∈ A: the appearance of new outcomes

in the feasible set cannot result in a larger time share for any old outcome.
The interpretations of PM and OM are similar. The two properties are closely

related logically as well. See the Appendix for details.

7 A family of ex-ante efficient solutions

The simplest way to define ex-ante efficient solutions to a given problem (N,A,U)
is to maximize a collective utility function. The additively separable collective
utility functions are especially relevant to our set of axioms.
Given an increasing and concave function f defined on [0, 1], any lottery p

maximizing the separably additive utility function
P

N f(ui) =
P

N f(Ui • p) is
ex-ante efficient. If f is strictly concave, the utility profile of any such lottery
is unique for all U . We can clearly define an anonymous and neutral selection
from the set of optimal lotteries. If f is not strictly concave, so that there may
be more than one optimal utility profile, it is again possible to select a solution
within the convex optimal set in such a way that the resulting mechanism is
anonymous and neutral. The utilitarian solution is an example.
We call an f -solution any lottery maximizing the f -collective utility, and

speak of an f -mechanism if an f -solution is chosen for any problem.
It turns out that many f -solutions meet the fair welfare share. This is

true if f takes the form f(u) = g(log u) where g is increasing and concave
(Bogomolnaia et al. [2003]). Two important examples are the Nash solution
corresponding to f(u) = log u, and, abusing language, the egalitarian solution
corresponding to the limit of f -mechanisms where f is increasingly concave,
e.g., f(u) = −| log u|t and t goes to infinity. The latter solution maximizes
the leximin ordering (the lexicographic ordering over utility profiles rearranged
increasingly).
On the other hand, f -mechanisms do not lead to any new example of strate-

gyproof mechanisms. Bogomolnaia et al [2003] show that if an f -mechanism is
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strategyproof, the function f must be linear, hence the mechanism is essentially
utilitarian.
We conclude with a three outcomes example where we compare the Nash and

egalitarian solutions with the two lead solutions of this paper, namely utilitarian
and random priority.
Example 2. Let A = {a, b, c} and n agents be partitioned in three groups:

nx agents like y, z and dislike x, where {x, y, z} = A. We set γx =
nx
n and

assume γa > γb > γc > 0.
The two extremist solutions are the utilitarian and egalitarian ones: the

latter picks πx =
1
3 for x = a, b, c, guaranteeing the utility 2

3 to every agent; the
former chooses c with probability 1, so that a majority of agents get full utility,
whereas the minority gets null utility.
The Nash solution is as follows:

1

2
≥ γa ⇒ {px = 1− 2γx and ui = 2γx if i ∈ Nx} for all x = a, b, c

γa ≥
1

2
≥ γb ⇒

½
pa = 0, ui = 1 if i ∈ Na

py =
γx

γb+γc
= ui for i ∈ Nx and {x, y} = {b, c}

Thus a majority of agents gets full utility if and only if they have identical
preferences.
The random priority solution offers another compromise between the utili-

tarian and egalitarian solutions. For all {x, y, z} = {a, b, c} :

px= γy·γz·(
1

γx+γy
+

1

γx+γz
); ui= γx·

1− γy·γz
(1− γy)·(1− γz)

for i ∈ N x

For instance, if pa = δ, pb = pc =
1−δ
2 , the corresponding utility profile is

ua =
δ(3− δ)

1 + δ
;ub = uc =

1

2
+
(1− δ)2

2(1 + δ)

Here the random priority solution yields a less egalitarian utility profile than
the Nash solution for 0 ≤ δ ≤ 1

3 , a more egalitarian one for
1
3 ≤ δ ≤ 1.
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APPENDIX: Proofs

1. Lemma 1
We fix a problem (N,A,U) and write p for the lottery just defined.
Horizontal equity is clear. To check ex-ante efficiency of p, defineN2 = ∪BUa

and consider W = 1
m

P
N1

Ui +
1

m−1
P

N2
Ui. By construction W (a) = 1 if a

is in A1 or B. If a /∈ A1, |Ua ∩ N1| = m − k for some k, 1 ≤ k ≤ m and
|Ua ∩N2| ≤ k − 1, therefore W (a) < 1. Thus W (p) > W (q) for any lottery q
that gives some positive weight to AÂ(A1 ∪B), and q is not Pareto superior to
p. Next if the support of q is contained in A1 ∪ B, we have W (p) = W (q) and
Ui · q = 0 for all i /∈ N1 ∪N2, therefore q is not Pareto superior to p either.
Now to strategyproofness. We pick an agent i, a profile U and a misreport

U∗i by this agent. We write A
∗
1, N

∗
1 , etc..., for the characteristics of the problem

(N,A,U∗) after this misreport. We assume below i ∈ N1 and analyze the impact
of this switch on the partition of A as A1, B,C = A\(A1 ∪B). The easier case
i /∈ N1 is omitted for brevity.
We will need the following finer partition:

X = A1 ∩ Ui ∩ U∗i ;X 0 = A1 ∩ Ui ∩ U∗ci , Z = A1 ∩ Uc
i ∩ U∗ci ;Z0 = A1 ∩ Uc

i ∩ U∗i

Y = B ∩ U∗ci ;Y 0 = B ∩ U∗i (recall B ⊆ U c
i )

The new partition A∗1, B
∗, C∗ depends much on whether m∗equals m, m− 1

or m + 1. The case m∗ = m is the most involved, so we explain it in detail,
leaving the other two similar cases to the reader.
Observe that Z0 = ∅, and X ∪ Z 6= ∅. It is easy to check that A∗1 =

X ∪ Z ∪ Y 0 ∪ D, where D ⊆ C ∩ Uc
i ∩ U∗i , whereas B∗ ⊆ X 0 ∪ Y ∪ C. DefinebX = B∗ ∩X 0, bY = B∗ ∩ Y and bC = B∗ ∩ C. We prove now the two following

properties

bY ⊂
6=
Y =⇒ Y 0 ∪D 6= ∅

bC ∩ Ui 6= ∅ =⇒ X = ∅

Indeed if a ∈ B∗∩C, then U∗a = m−1, so a ∈ Ui∩U∗ci would imply Ua = m,

contradicting a ∈ C. Thus a ∈ bC ∩ Ui implies a ∈ U∗i , and by definition of B
∗

we must have U∗i ∩A∗1 = ∅ in particular X = ∅.
To prove the former claim, pick a ∈ Y \bY , and note that a ∈ Uc

i ∩ U∗ci , so
that Ua = U∗a : the support of a is unchanged in the switch from Ui to U∗i .
Therefore a /∈ B∗ is possible only if A∗1 contains outcomes outside A1, namely
Y 0 ∪D is nonempty.
We compute now
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Ui • p∗ =
wX + bX + ( bC ∩ Ui)

w(X + Z + Y 0 +D) + bX + bY + bC
By bC ∩ Ui ≤ bC and bX ≤ X 0, we get

Ui • p∗ ≤
wX +X 0 + ( bC ∩ Ui)

w(X + Z + Y 0 +D) +X 0 + bY + ( bC ∩ Ui)
From our first observation and Y + Y 0 ≤ A− 1 ≤ w, we have

w(Y 0 +D) + bY ≥ Y 0 + Y = B

Therefore Ui • p∗ ≤ Ui • p reduces to

wX +X 0 + ( bC ∩ Ui)
w(X + Z) +X 0 +B + ( bC ∩ Ui) ≤ w(X +X 0)

w(X +X 0 + Z) +B
= Ui • p

If X > 0, we have bC∩Ui = 0 (second observation above). Then it is enough
to take B = 0, and we are done. If X = 0, recall Z > 0, and we also have
X 0 > 0. Setting E = bC∩Ui, we have now wX 0 ≥ A−1 ≥ X 0+E. Therefore it is
enough to show the inequality above for B = 0. It boils down to wX 0 ≥ X 0+E
and the proof is complete.
2. Proposition 2
We assume N = {1, 2, 3} and A = {a, b, c}. The generalization to more

agents or more outcomes is clear, by “neutralizing” all but three agents and
outcomes (i.e., neutral agents like no outcome and neutral outcomes are liked
by no one). We fix an ex-post efficient mechanism meeting GSP and derive a
contradiction.
Let, when agent 1 likes only a, agent 2 likes only b, and agent 3 likes only

c, the solution be p = (p1, p2, p3). Without loss of generality we can suppose
that p1 > 0. We now fix preferences of agents 2 and 3, and consider changes in
preferences of agent 1 only.
When agent 1 likes all three outcomes, EXP implies that a gets zero prob-

ability and hence the solution is q = (0, q2, q3), where q2 + q3 = 1. Note that
when agent 1 likes all outcomes she always gets utility 1. Therefore she can
deny liking some outcomes without decreasing her utility. GSP implies then
that such a lie by agent 1 cannot benefit any other agent. Hence, if agent 1
announces to like a and one of b, c and the preferences of agents 2 and 3 remain
fixed, the solution must still be q = (0, q2, q3).
Thus, if agent 1 likes {a, b}, then she gets 1−q3. However in this case, if she

lies and denies b, she receives utility 1 − p3. Hence, strategyproofness requires
p3 ≥ q3. Analogously, we obtain p2 ≥ q2. Therefore, p2 + p3 ≥ q2 + q3 = 1, and
so p1 = 0, a desired contradiction.
3. Proposition 3
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We assume |A| = 6, N = {1, 2, 3, 4}, and fix a mechanism satisfying the four
properties listed in the statement. We use the following notations: an outcome
a is identified (by neutrality) with the coalition of agents who like a, and a
profile is written as a list of at most six coalitions, with the understanding that
the list is completed by empty coalitions.
We compute the lotteries selected at a handful of simple profiles, and write

each statement as [12, 34] → ( 12 ,
1
2), where the right-hand side lists the prob-

abilities of all the efficient outcomes in the order in which they appear in the
profile on the left-hand side. The above statement follows from anonymity.
Consider [12, 34, 3, 3, 4]→ (p, 1−p), where the shares are for the two efficient

outcomes 12 and 34. Notice that p < 1
2 allows a profitable misreport by coalition

{3, 4} at [12, 34], whereas p > 1
2 allows such a move by {3, 4} at [12, 34, 3, 3, 4].

Therefore [12, 34, 3, 3, 4] → (12 ,
1
2). Next, agent 3 denying alternative “34” at

this profile leads to the profile [12, 3, 3, 4, 4] → (z, t, t, t, t) (by anonymity and
neutrality). By strategyproofness we obtain that t ≤ 1

6 and so z + t ≥ 1
2 .

Further, anonymity and neutrality give [12, 23, 13, 14, 24, 34]→ ( 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

and [12, 23, 13, 4, 4, 4]→ (u, u, u, v, v, v). Joint misreport at the first of these pro-
files by the coalition {1, 2, 3}, denying the alternatives liked by agent 4, leads
to the second one, and would give each its member 2u+ v. Weak GSP implies
then 2u + v ≤ 1

2 , and hence v ≥ 1
6 . Compare now the second profile with

[12, 23, 13, 4, 4] → (x, x, x, y, y). If at this last profile agent 4 pretends to like
the remaining 6-th alternative, she gets 2v. By strategyproofness we have that
y ≥ v ≥ 1

6 and so x ≤
2
9 .

Finally, assume that at [12, 23, 13, 4, 4] agents 1 and 2 deny alternatives agent
3 likes. It results in the profile [12, 3, 3, 4, 4] and each of 1,2 gets z+ t ≥ 1

2 , while
by annnoncing their true preferences they would only get 2x ≤ 4

9 each. This
last observation contradicts weak GSP.

4. Theorem 1
Assume to the contrary that there exists a mechanism π, satisfying the

premises of the theorem. We will need the following two lemmas.

Lemma 3 Suppose that p = π(U), pa = 0, and an agent i likes the outcome a.
If i changes her message by denying liking a, her utility remains unchanged and
the outcome a still gets zero probability.

Proof. Let ui and u0i be agent’s i utility, respectively under her true and
falsified preferences, and p0a be the probability of a under the latter. SP at the
two corresponding profiles U, U 0 implies ui ≥ p0a+u0i ≥ p0a+(ui−pa) = p0a+ui.
Hence, ui = u0i and p0a = 0.

Lemma 4 Suppose that an outcome a is the only one liked by all agents from
M, Ua = M = {i1, ..., im}, for any ik ∈ M there exists an outcome bk liked by
ik only, and there is no outcome liked by some agents from M and some from
N −M. Then pa ≥ m/n.
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Proof. We proceed by induction on m. The case m = 1 is a special case of
FS. Assume m > 1. Note that EXP implies ui = pa for all i ∈M .
Suppose that there is no outcome liked by all agents in M − im. If agent

im claims to only like outcome bm (with resulting solution p0), then by FS
p0bm ≥ 1/n, and by induction p0a ≥ (m − 1)/n. Hence by SP, pa = uim ≥
p0bm + p0a ≥ m/n.
Suppose now that there are some outcomes liked by all agents in M − im.

By EXP they all must get zero probability. Hence by the previous lemma agent
i1 can lie and deny liking those outcomes without changing her utility ui1 = pa.
The above argument applied to the new preference profile gives pa ≥ m/n again.

From here on assume N = {i, j, k, l,m}. For any outcome α call the set
Uα a “coalition”. By EXP, only outcomes liked by inclusion maximal coalitions
receive positive probability. We will concentrate on the preference profiles under
which there is an outcome α, such that Uα = {i, j, k}, and all other coalitions
are of size at most 2. We will represent such profiles graphically, with vertices for
the agents, a shaded triangle to denote outcome α and edges to denote maximal
coalitions of size 2. The six instances of interest are shown on Figure 5.
We will assume that all non-empty non-maximal coalitions are singletons,

i.e. coming from outcomes liked by only one agent. We will further insist that
each agent likes exactly 4 outcomes. Thus each diagram on the Figure 5 fully
specifies the non-maximal coalitions as well. In the argument below we will often
imagine an agent lying, claiming to like or dislike a certain outcome. In each of
those cases we will also assume the agent who lies to keep a total of 4 outcomes of
which she likes, either by denying one of the outcomes only she likes or claiming
to like an outcome no one likes. We will not explicitly specify these fixes below.
Our assumption |A| ≥ 17 allows in each case to construct a preference profile
with the above features. For instance for the profile corresponding to the case
B we need 11 singleton-liked outcomes in addition to the 4 outcomes liked by at
least two agents; two of the remaining “empty” outcomes will be used when we
consider below a possibility that the agent 1 denies outcomes [1, 13] and [1, 3]
(and thus implicitly assume he claims to like instead another two outcomes,
previously not liked by anybody).
In Figure 5 each maximal coalition is labelled by the probability it receives

under our mechanism π. We will derive relations between those probabilities
below. Note that we have used anonymity and neutrality assumptions to label
certain edges with the same variable. To reference certain agents we have la-
belled some vertices by circled positive integers. We will denote the outcome
liked by coalition (x, y) as [x, y].
Note also that certain edges were labelled by zero. This follows from neu-

trality and EXA as follows. Consider case F. By neutrality the four outcomes
[9, 11], [9, 12], [10, 11], and [10, 12] must all have the same probability. However
if [9, 11], and [10, 12] have positive probability, then we can obtain a Pareto
superior solution by splitting this probability equally between the outcomes α
and [11, 12]. A similar remark gives zeroes in case D and shows that in case E
either i or k is zero.

20



Since certain edges have zero probability, we can now apply Lemma 3.
Looking at 10 denying [10, 11], we see m = h+ k.
Looking at 11 denying [10, 11], we see 1−m = 1−h−j−k, or m = h+j+k,

hence j = 0.
Looking at 10 denying [10, 11] and [10, 12], we see m = b.
Looking at 12 denying [9, 12] and [10, 12], we see 1 − m = 1 − e − 2f , or

m = e+ 2f .
Looking at 7 denying [7, 8], we see g = h+ i (since j = 0).
Now suppose 3 denies [1, 3] and simultaneously claims to approve an outcome

[2, 3]. In this case 3 gets 1− g, hence by SP we must have 1− b− c ≥ 1− g or
g ≥ b + c. Next suppose 4 denies [4, 5] and simultaneously claims to approve
an outcome [4, 6]. In this case 4 gets g, hence by SP we must have e + f ≥ g.
Combining these we see that e+f ≥ h+i = g ≥ b+c ≥ b = m = h+k = e+2f.
Thus c = f = 0 and i = k, but since either i or k must be zero, this says

i = k = 0. Hence b = e = g = h = m. Applying Lemma 1 to 1 denying [1, 13]
and [1, 3], we see a = b. Applying Lemma 2 to case A twice we see that a ≥ 3/5
and 1− a ≥ 2/5, hence a = b = e = g = h = m = 3/5.
Consider now what happens if the true preferences are given by case B

from Figure 5. An agent 1 will have utility b = 2/5. Suppose he lies, denying
the outcome α, liked by three agents coalition. The resulting profile is shown
on Figure 6. By Lemma 4, α will receive at least 2/5 and by neutrality the
remaining outcomes liked by maximal coalitions of size 2 will each receive a
third of whatever is left, i.e. at most 1/5. But that means that agent 1 will have
utility at least 4/5. Thus SP is violated and no proposed mechanism exists.

5. Theorem 2
Suppose we have a mechanism meeting PM, EXA and PS. We will look for

outcomes that get zero probability. By PM if an outcome gets zero probability
and we increase the popularity of any other outcomes, then that outcome still
gets zero probability. We will use this remark to find an instance in which all
outcomes approved by a particular agent get zero probability, contradicting PS.
Consider 6 agents {0, 1, 2, 3, 4, 5}. Suppose (i, j, k,m) is an (ordered) quadru-

ple of distinct elements of {1, 2, 3, 4, 5}. We will first look at sets of 4 outcomes.
These four outcomes will be liked respectively by coalitions {i, j}, {j, k}, {k,m},
and {m, i} (forming a “square”). Suppose we add that agent 0 likes one of these
four outcomes. For example, if we add agent 0 liking {m, i}, then we obtain
coalitions {i, j}, {j, k}, {k,m}, and {0,m, i}. For this example EXA requires
either {i, j} or {k,m} to get zero probability. If {i, j} gets zero probability then
we will say {m, i} zeroes {i, j} and write {m, i} −→ {i, j}. Note that each edge
of the square zeroes at least one of its “neighbors”.
Suppose {m, i} −→ {i, j} and {k,m} −→ {j, k} Then it follows from PM

that if we add agent 0 liking both {m, i} and {k,m} (resulting in coalitions
{i, j}, {j, k}, {0, k,m}, and {0,m, i}) both {i, j} and {j, k} get zero probability
and hence uj = 0, contradicting PS. Thus the square must be “oriented”, either
{m, i} −→ {i, j} −→ {j, k} −→ {k,m} −→ {m, i}, or the reverse. In particular,
each edge zeroes only one of its neighbors.
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Consider 6 outcomes with respective coalitions {1, 2}, {2, 3}, {3, 4}, {4, 1},
{1, 5}, and {5, 3}. These 6 outcomes form 3 squares (1, 2, 3, 4), (1, 2, 3, 5), and
(1, 5, 3, 4). It is impossible to orient all 3 squares in such a way that the orienta-
tions of any two squares coincide on their two common ages. Therefore without
loss of generality we may assume (1, 2, 3, 4) is oriented {4, 1} −→ {1, 2} −→
{2, 3} −→ {3, 4} −→ {4, 1} and (1, 2, 3, 5) is oriented {1, 5} −→ {5, 3} −→
{3, 2} −→ {2, 1} −→ {1, 5}. Suppose we add that agent 0 likes outcomes {1, 4}
and {3, 5}. From the square (1, 2, 3, 4) and 0 liking {1, 4} we see {1, 2} gets zero
probability. From the square (1, 2, 3, 5) and 0 liking {3, 5} we see that {2, 3}
gets zero probability. Therefore u2 = 0 contradicting PS.

6. Remark 2
The above proof can be easily adapted to show that if |N | ≥ 6, then there is

no mechanism meeting ex-ante efficiency, Outcome Monotonicity, and Positive
Shares. Rather than adding the fact that agent 0 likes an outcome {m, i} we
add a new outcome liked by the coalition {0,m, i}.
We note that the two properties PM and OM are closely related. First, if

we make the assumption that adding “empty” outcomes does not change the
solution, then PM clearly implies OM. Conversely, if the mechanism is neutral
and EXP, then OM implies PM.
Indeed, suppose an agent i does not like an outcome a. Add a new outcome

b, such that Ub = Ua ∪ {i}. By OM, the probabilities for all outcomes except b
do not increase. By EXP outcome a now gets zero probability. Again by OM,
deleting outcome a will not decrease the probabilities of other outcomes. Since
these probabilities sum to one, deleting a will not change the probabilities. Thus
we can replace a by b, which is equivalent to changing agent’s i preferences in
favor of a, and the probability of other outcomes will not increase. By neutrality
outcomes are interchangeable, and PM follows.

a b c d e
1 1
1 1
1 1

1 1
1 1
1 1

Figure 1

a b c
1

1
1 1

Figure 2
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1 1
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Figure 3

a b c d e f
1,2 1 1 1 1
3 1 1
4 1 1 1
5,6 1 1
7 1
8,9 1 1 1
10,11 1
12,13,14 1

Figure 4
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