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1 Introduction

Many problems of social choice take the following form. There are n voters and
a set K = {1,...,k} of objects. These objects may be bills considered by a
legislature, candidates to some set of positions, or the collection of characteristics
which distinguish a social alternative from another. The voters must choose a
subset of the set of objects.

Sometimes, any combination of objects is feasible: for example, if we con-
sider the election of candidates to join a club which is ready to admit as many
of them as the voters choose, or if we are modelling the global results of a leg-
islature, which may pass or reject any number of bills. It is for these cases that
Barbera, Sonnenschein, and Zhou (1991) provided characterizations of all voting
procedures which are strategy-proof and respect voter’s sovereignty (all subsets
of object may be chosen) when voters’ preferences are additively representable,
and also when these are separable. For both of these restricted domains, voting
by committees turns out to be the family of all rules satisfying the above require-
ments. Rules in this class are defined by a family of winning coalitions, one for
each object; agents vote for sets of objects; to be elected, an object must get
the vote of all members of some coalition among those that are winning for that
object.

Most often, though, some combinations of objects are not feasible, while oth-
ers are: if there are more candidates than positions to be filled, only sets of size
less than or equal to the available number of slots are feasible; if objects are the
characteristics of an alternative, some collections of characteristics may be mu-
tually incompatible, and others not. Our purpose in this paper is to characterize
the families of strategy-proof voting procedures when not all possible subsets
of objects are feasible, and voters’ preferences are separable or additively repre-
sentable. Our main conclusions are the following. First: all rules that satisfy
strategy-proofness must still be voting by committees, but now voters must vote
for feasible sets of objects. Second: the committees for different objects must
be interrelated, in precise ways which depend on what families of sets of objects
are feasible. Third: unlike in Barbera, Sonnenschein, and Zhou (1991), the class
of strategy-proof rules when preferences are additively representable can be sub-
stantially larger that the set of rules satisfying the same requirement when voter’
preferences are separable.

Specifically, let R be the range of alternatives voters can choose from. Based
on the form of this range, we propose a decomposition of the set K of objects into
cylindric sections and define certain subsets of each section to be active. Then
we prove that, when preferences are additively representable, the committees for
all objects in the same cylindric section must be the same, that these commit-
tees can take any form if the corresponding section only contains two sets, and
that these committees must be dictatorial otherwise, with (possibly) different
dictators for different sections. One cannot describe this characterization result



as either positive or negative, because it has different consequences depending
on the exact shape of the range of feasible choices. We shall provide examples
which are quite negative, as well as positive ones. At any rate, the results in
Barbera, Sonnenschein, and Zhou (1991) refer to a particular case which lies on
the positive side, while the Gibbard-Satterthwaite theorem can also be obtained
as a corollary of our result, and would certainly lie on the negative side. On the
other hand, we also obtain a characterization result for separable preferences.
Here, unfeasibilities quickly turn any non-dictatorial rule into a manipulable one,
except for very limited ranges. The contrast between these two characterization
results is a striking conclusion of our research, because until now the results re-
garding strategy-proof mechanisms for these two domains went hand to hand,
even if they are, of course, logically independent.

Other than Barbera, Sonnenschein, and Zhou (1991), the closest reference to
the present paper is our preceding article on Voting under Constraints (Barbera,
Mass6, and Neme (1997)). As far as the set of alternatives is concerned, the
setting there is more general. In the present paper we can identify sets of objects
with their characteristic function, and our objects of choice as (some of) the
vertices of a k-dimensional hypercube. Thus our framework here is restricted
(like in Barbera, Sonnenschein, and Zhou (1991)), to allow for only two values
in each dimension. In Barbera, Massé, and Neme (1997) we study situations
where the objects of choice are subsets of a cartesian product of any interger
intervals, not only binary ones. On the other hand, our present paper analyses
the question of voting under constraints for a richer and more natural set of
admissible preferences. Here, we consider all additively representable preferences
(respectively, all separable preferences) on the power set of K. In particular, we
allow for preferences whose bliss point is not feasible, even if then voters must vote
for feasible alternatives. This is a considerable improvement over the assumption
made in our preceding work, which was marred by the restrictive assumption
that all agents’ most preferred set was a feasible one.

The paper is organized as follows. In Section 2 we present the preliminary
notation and definitions. In Section 3 we define voting by committees and give
its main partial characterizations. The characterization with additive preferences
is given in Section 4, while Section 5 contains the characterization with separable
preferences.

2 Preliminary notation and definitions

Agents are the elements of a finite set N = {1,2,...,n}. The set of objects is
K ={1,...,k}. We assume that n and k are at least 2. Generic elements of N
will be denoted by 7 and j and generic elements of K will be denoted by z, v,
and z. Alternatives are subsets of K which will be denoted by X, Y, and Z.
Subsets of N will be represented by I and J. Calligraphic letters will represent



families of subsets; for instance, X, ), and Z will represent families of subsets of
alternatives and W, 7, and 7 families of subsets of agents (coalitions).

Preferences are binary relations on alternatives. Let P be the set of complete,
transitive, and asymmetric preferences on 2K. We will always consider the empty
set as belonging to the power set of any set. Preferences in P are denoted by P;,
Pj, P/, and Pj. For P; €P and X C 2K we denote the alternative in X most-
preferred accordlng to P; as 7x (P;), and we call it the top of P; on X'. We will
use 7 (P;) to denote the top of P, on 2%. Generic subsets of preferences will be
denoted by P and given a family X C 2K P|X will denote the set of preferences
on A obtained by restricting each preference P, in P with the property that
T (P,L) cX.

Preference profiles are n-tuples of preferences. They will be represented by
P=(P~,..,P,) or by P= (P, P_;) if we want to stress the role of agents i’s
preference.

A social choice function on P is a function F :P" — 2K,

Definition 1 The social choice function F . P" — 2K respects voter’s sovereignty
on X of for every X € X there exists P € P* such thalt F (P) = X.

The range of a social choice function F P — 2K is denoted by Rp; that is,
Rp = {X ¢ 2K | there exists P € P" such that F (P) = X} .

Denote by Rp the set of chosen objects; namely,

Rrp={zx € K|z e X for some X € Rp}.

Definition 2 A social choice function F P — 2K s manipulable if there exist
P=(P,..,P,) €P", i € N, and P} €P such thal F'(F;, P_;) BF (P). A social
choice function on P s strategy-proof if it is not manipulable.

Definition 3 A social choice function F :P" - 2K s dictatorial if there exists
i € N such that F (P) = Tr, (F;) for all P € P".

The Gibbard-Satterthwaite theorem states that any social choice function on
P will be either dictatorial or its range will have only two elements. However,
there are many situations were agents’ preferences have specific structure due to
the nature of the set of objects. This will impose a particular structure on the
way agents extend preferences on objects to preferences on subsets of objects.
We will be interested in the following two natural domains of preferences.

Definition 4 A preference P; on 2% is additive if there exists a function u; :
2K — R such that u; (0) = 0 and for all X, Y C K

XPY if and only if Z u; (x) > Zuz ()

zeX yey



The set of additive preferences will be denoted by A. An agent ¢ has separable
preferences if the division between good objects (xzP;)) and bad objects (0 P;x)
guides the ordering of subsets in the sense that adding a good object leads to a
better set, while adding a bad object leads to a worse set. Formally,

Definition 5 A preference P; on 2¥ is separable if for all X C K and ally ¢ X
X U {y} P.X if and only if yPil.

Let S be the set of all separable preferences on 2X. Additivity implies sep-
arability but the converse is false with more than two objects. We can give a
geometric interpretation to the set of separable preferences by identifying each
object with a coordenate and the set of objects as the vertices of a k-dimensional
cube where each subset of objects X corresponds to the k-dimensional vector of
zeros and ones where x belongs to X if and only if the vector has a one in the
coordinate that corresponds to object z. Sometimes we will make use of this
geometric interpretation. For instance, given X,Y C K the mimimal box on X
and Y is the smallest subcube containing the vectors corresponding to X and Y
namely,

MB(X,)Y)={Ze2X | (XNnY)CZC(XUY)}.

Following with this interpretation, it is easy to see that a preference P, is separable
if it is multidimensional single-peaked; that is, Y P,Z forall Y € MB (7 (F;), Z) \{Y}.

3 Voting by Committees and its Characteriza-
tions

To define voting by committees as in Barbera, Sonnenschein, and Zhou (1991)
we need the concept of a committee.

Definition 6 A committee is a pair C = (N, W), where N = {1, ...,n} is the set
of agents, W is a nonempty family of nonempty coalitions of N, which satisfies
coalition monotonicity in the sense that if I € W and I C J, then J € W.
Coalitions in W are called winning. A coalition I € VW 15 a minimal winning
coalition if for all J & I we have that J ¢ W.

Given a committee C' = (N, W), we will denote by W™ the set of minimal
winning coalitions. A committee C' = (N, W) is dictatorial if there exists i € N
such that W™ = {{i}}. Now, we can define a special subclass of social choice
functions.



Definition 7 A social choice function F P 2K g voting by committees,
if for each x € K, there exists a committee Cp = (N, W,) such that for all
P=(P,.., P, eP",

ze F(P)ifand only if {i € N |z € Tr,(F)} € W,.

We state, as Proposition 1 below, Barbera, Sonnenschein, and Zhou (1991)’s
characterization of voting by committees as the class of strategy-proof social
choice functions on S satisfying voter’s sovereignty on 2X.

Proposition 1 A social choice function F :S™ — 2K s strategy-proof and
satisfies voter’s sovereignty on 2K if and only if it is voting by committees.!

To cover social choice problems with constraints we have to drop the voter’s
sovereignty condition of Proposition 1. Below, we state, as Proposition 2, a
result in Barbera, Mass6, and Neme (1997) which says that committees are also
a consequence of strategy-proofness.

Proposition 2 Assume F :S™ — 2K is strategy-proof. Then, F is voting by
committees.?

4 A characterization with additive preferences

4.1 The statement and one example

To state Theorem 1 below we need the following notation and definitions. Given
two families of subsets of objects X and ) we denote by X’ + ) the sum of the
two; namely, X + YV ={XUY c2¥ | X c X and Y € )}.

Given a social choice function F :P™ — 2K and B’ C B C K define the range
complement of B' relative to B as

CE(B)={C CRpF\B|B UCEcRr}.

Given a subset B of Rp define the active components of B in the range as
AC(B) = {XCB|XUY € Rp for some Y € CE (B)} . Notice that AC (B)
can also be written as {X C B| X =Y N B for some Y € Rp}.

Definition 8 A subset of objects B C K is a section of Rp if for all active
components B', B" € AC (B) we have CE (B') = CE(B").

! Barbera, Sonnenschein, and Zhou (1991) also showed that Proposition 1 still holds when
the domain of separable preferences is replaced by the smaller domain of additive preferences.
As we will see, the introduction of constraints will yield significant differences between both
domains.

21t is easy to check that the proof of Proposition 2 in Barbera, Mass6, and Neme (1997) also
aplies to the smaller domain of additive preferences.



Remark 1 Rp is a section of Rp.

Lemma 9 If B is a section of Rp, B = By U By, BiN By =, and By is a
section of Rp then By is also a section of Rp.

Definition 10 A partition { B, ..., By} of Rr is a cylindric decomposition of the
range if for all p = 1,...,q, By s a section of Rp. A cylindric decomposition is
called minimal if there is no finer cylindric decomposition of the range.

Lemma 11 A range has a unique minimal cylindric decomposition.

Theorem 1 A social choice function F :A™ — 2% is strategy-proof if and only
if it is voting by committees with the following properties: (1) W, = W, for all
x and y in the same section with two active components of the minimal cylindric
decomposition of the range of F and (2) W, is dictatorial for all x’s belonging to
sections in the minimal cylindric decomposition which contain strictly more than
lwo active components.

Example 1 Let K = {a,b,¢,z,y, z,w,r,s,t} be the set of objects and assume
that the set of feasible alternatives is

{{bc}, {bct} ,{bers} ,{bctrs},{bcz}, {bezt}, {beczrs}, {beztrs}, {bczw},
{bezwt} , {bczwrs} , {bczwtrs} ,{bcx} ,{bcxt}, {bcxrs},{bextrs},{bcrz},
{bexzt} , {bexzrs}, {bcxztrs}, {bexzw} , {bcxzwt} , {bcxzwrs} , {bexzwtrs},

{bey}, {beyt}, {beyrs}, {beytrs} ,{bcyz} , {beyzt},{bcyzrs}, {bcyztrs},
{beyzw} , {bcyzwt} ,{bcyzwrs} , {bcyzwtrs}}.

Namely, (1) object a cannot be chosen, (2) objects b and ¢ have to be chosen
always, (3) objects z and y are never chosen simultaneously, (4) object w is
only chosen together with object z, and (5) objects r and s can only be chosen
together. Therefore, we are interested in strategy-proof social choice functions
F :A"™ — 2K whose range is equal to

Rr = {{b;ct} + {0, {} ,{y}} + {0, {z} {2 w}} + {0, {t}} + {0, {r,s}}.

Notice that the partition {{a} {b,c} {z,y} {2z, w} {t} {r, s}} of K is the minimal
cylindric decomposition of Rr. To see that we have to check that all of its
elements are minimal sections.

First, {a} is a minimal section trivially because {a} has no active components;
ie., AC ({a}) = 0.

Second, {b,c} is also a minimal section trivially because only has itself as
active component; i.e., AC ({b,c}) = {b,c}.



Third, {z,y} is a section because AC ({z,y}) = {0, {z},{y}} (notice that the
subset {z,y} is not an active component of itself) and C}f’y} D), C}f’y} ({z}), and
C}f’y} ({y}) are all equal to

{b,cby + {0, {2}, {z, w}i} + {0, {t}} + {0, {r,s}}.

Moreover, this section is minimal since neither {z} nor {y} are sections because,

for instance, AC ({z}) = {0, {z}} but
CE(0) = {{b,c}} + {0, {y}} + {0, {2}, {z,w}} + {0, {t}} + {0, {r,s}}

and
CE ({z}) = {{b,c}} + {0, {2}, {2, w}} + {0, {t}} + {0, {r,s}},

and hence, C& (0) # & ({z}).

Fourth, {2, w} is a section because AC ({z,w}) = {0, {2}, {2, w}} (notice that
the subset {w} is not an active component of {z, w}) and C&*? (0), ™ ({z}),
and C}z’w} ({z,w}) are all equal to

{b, by + {0, {2} {y}} + {0, {}} + {0, {r, s}}.

Moreover, this section is minimal since neither {z} nor {w} are sections because,

for instance, AC ({w}) = {0, {w}} but
CE (0) = {{b,c}} + {0, {z}, {y}} + {0, {=}} + {0, {t}} + {0, {r, s}}

and

CE ({w}) = {{b, e} + {0, {z}, {y}} + {2} + {0, {£}} + {0, {r,s}},

and hence, C5F (0) # ¢ ({w}).
Fifth, {t} is a minimal section because AC ({t}) = {0, {¢}} and

Ci (0) = ¢ ({1}) = {{b:c}} + {0, {}, {u}} + {0, {2} = w}} + {0, {r s}}
Sixth, {r,s} is a section because AC ({r,s}) = {0, {r,s}} and C"*} (0) and
C};’S} ({r,s}) are both equal to

{b, by + {0, {2}, {93} + {0, {2}, {z w}} + {0, {t}}.

Moreover, it is a minimal section because neither {r} nor {s} are sections since,

for instance, AC ({r}) = {0, {r}} but
CEY(0) = {{b,e}} + {0, {z}, {u}} + {0, {z}, {z,w}} + {0, {t}}
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and
CEt({r}) = [, e} + {0, {a}, {9} } + {0, {=}, {z,w}} + {0, {t}} + {s},

and hence, CIF (0) # ¢l ({r}).

Now, given a set of agents N, any voting by committees F :A” — 2K with
the properties that: (1) W, ,Ws, and W, are non-empty families of non-empty
subsets of N; (2) W = Wi* = {{i1}} and W = Wi = {{iz}} for some
i1,i2 € N; and (3) Wy, W, and W; are any committees such that W, = W, it
will be strategy-proof because by Theorem 1.

| Insert Figure 1, here |

4.2 The proof
4.2.1 Necessity

The key step in this proof is Proposition 3 below which says that if the minimal
cylindric decomposition of the range contains only one section with three or more
active components, then all committees of the objects in the section are not only
equal but also dictatorial.

Proposition 3  Assume that the following properties of Rp hold: (1) its mini-
mal cylindric decomposition has a unique section, (2) #Rr > 3, and (3) Rp = K.
Then, there exists i € N such that for all k € K, Wy = {{i}}.

Proof of Proposition 3. By condition (1) there exists Z € 2K such that
7 ¢ Rp. Without loss of generality assume that Z = 0 and {z} € Rp. Lety € K
be arbitrary. We will show that there exists : € N such that W, = W, = {{i}}.
We will distinguish between two cases.

Case 1: There exists D € Rp such that y € D and MB(D,0) "R = D.

Subcase 1.1: Assume M B (D U {z},0) # {{z},D}.Since MB{D,0}NRr =D
there exists BU{z} € MB (DU {z},0) NRrF.

Subcase 1.1.1: Assume B & D. Without loss of generality assume that M B (B U {z}, {z})N
Rr = {BU{z},{z}}. Then we can generate, by an additive preference with

top on (), the orderings D =! {z} =' BU {z}, {2} =? D =% B U {z}, and

{z} =3 BU{z} =3 D, by an additive preference with top on B, the orderings

D =* BU{z} =* {z}, BU{z} =5 {z} »® D, and BU {z} =% D =5 {z}.
Therefore, we have a free-triple on the elements of the range D, {z} and BU {z},

implying that there exists ¢ € N such that W, = W, = {{i}}.

Subcase 1.1.2: Assume B = D. Because MB (D U {z},0) # {{z}, D} then DU
{z} € Rp. Then MB (DU {z},{z}) = {{z},DU{z}}, MB(DU{z},D) =
{D,DU{z}}. Notice that M B (D,{) = D. Therefore we have a free triple on



elements of the range D, {z} and D U {z}, implying that there exists i € N such
that W, =W, = {{i}}.

Subcase 1.2: Assume M B (DU {z},0) = {{z},D}.

Subcase 1.2.1: There exists C' € Rp, such that C N (DU {z}) ¢ {{z},D}. Let
C = CNDU{z} and w.l.o.g. assume MB {C,C}NRr = C. Since MB {C, {z} }n
Rp = {z}and MB{C,D} NRr = D we have a free triple on elements of the
range D, {z} and C, implying that there exists ¢ € N such that W, = W, =
{{i}}, because y € D.

Subcase 1.2.2: For all C € Rp, CN D U{z} € {{z}, D}.

CrLAm 1 Assume that for all C' € Rp either {z} C C or D C C. Then, there
exists A, B € Rr and Z € {{z}, D} such that:

(1.1 MB(A,B)NRr = {A, B}.

(1.2 ZC AN B.

(1.3) MB (A,B) N Rp = 4,

where A = (AU ({z} UD))\Z and B = (BU ({2} U D))\ Z

ProOF OF CLAIM 1: Since Rp has the property that its minimal cylindric
decomposition has a unique section there exits G € Rr and Z € {{z}, D} such
that Z C G and G = (GU ({z} U D)) \Z ¢ Rp. Define

MBI, Z)={Ee€2¥ |E=(EU({z}UD)\Z for E€ MB(H,Z)NRp}.

Denote ~ Z =z if Z=Dor~Z =D if Z = z. Because G € MB(G,Z) N
Rp, then G € MB(G,Z). Since G ¢ MB(G,~ Z) N Ryp then MB(G,Z) ¢
MB (@, ~ 7 ) NRp. Let B be the element in the range with minimal I,; —distance
to Z with the property that MB (B,Z) ¢ MB (E, ~ Z) NRp. This implies that

MB (B,Z)\B= MB (B,{~ Z}) N Rp. (1)

Let A€ MB (B, Z)\B be such that M B (A, B) = {A, B}. Condition (1) implies
that A € Rr and MB (A,B) NRrp=A4. m

Let A,B € Rp and Z € {{z}, D} be such that conditions (1.1), (1.2), and
(1.3) of Claim 1 hold. Then we can generate, by an additive preference with top
on AU {~ Z}, the orderings A =! B =1 A, A =2 A ~2 B, and A » 34 -3 B,
by an additive preference with top on B U {~ z}, the orderings B ~* A =% A
and B ~% A »5 A, and by an additive preference with top on B, the ordering
A =8 B =6 A. Therefore, we have a free-triple on the elements of the range A,
B, and A, implying that here exists i € N such that W, = W, = {{i}}.

Case 2: Assume that for every D € Rp such that y € D, there exists B €
MB(D,0) N Rp.

Let D be such that MB(D,{y}) "N Rr = D and let B # D be such that
MB (B,0) N Rp = B. If y € B then we are back to case 1. Therefore, assume
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that y ¢ B. For each z € B we can apply case 1 and obtain that there exists
i € N such that W, =W, = {{i}}.

Subcase 2.1: Assume that {z,y} € Rp. By hypothesis (1) saying that the mini-
mal cylindric decomposition of R p has a unique section we have that M B ({y}, B)N
Rr = B. Moreover, since MB ({y},D)NRr =D and MB ({y},{z,y}) " Rr =
{z,y} we can generate all orderings on D, B, {z,y} and therefore there exists
i € N such that W, = W, = {{i}}.

Subcase 2.2: Assume that {z,y} ¢ Rp. First suppose that M B ({y},B)NRFr =
B. Since MB({y},D)NRr = D and MB ({y},{z}) "N Rr = {2} we can
generate all orderings on D, B, and {x} and therefore there exists i € N such
that W, = W, = {{i}}. Now, if MB({y},B) N Rr = {B,D} we can also
generate all orderings on D, B, and {z} with two preferences: one with top on y
(orderings D =! B =1 2, D =2 z =2 B, and =3 D >3 B) and the other with
top on () (orderings z =* B =* D, B=5D =5z and B =2 ~°5D). m

Once Proposition 3 is established, to finish this part of the proof of Theorem
1 we only have to show that by additivity of the their preferences, voters care
on the outcomes of each section independently on what happens in the other
sections. Hence, by Proposition 3, to must have dictators in each section with
strictly more than two active components, but these dictators may be different
voters across sections.

4.2.2 Sufficiency

The easiest part. To be written.

5 A characterization with separable preferences

5.1 The statement

To state Theorem 2 below we need the following definition

Definition 12 Given a social choice function F P — 2K e say that its range
is a subcube if there exists {Qo, 1} a partition of K and A C Qo such that
Rp=A+ 2Q1 .

Theorem 2 Let F :S™ — 2K be a non-dictatorial social choice function with
H#Rp > 3. Then, F 1is strategy-proof if and only if F s voting by committees
and its range 1s a subcube.

10



5.2 The proof

Let F :S™ — 2% be a non-dictatorial social choice function with #Ry > 3. The
proof that all voting by committees whose range is a subcube are strategy-proof is
trivial. Therefore, assume that F' is strategy-proof. By Proposition 2, F' is voting
by committees. Therefore, we only have to prove that R is a subcube. Since
all additive preferences are separable, Theorem 1 applies to the subdomain of
additive preferences. Therefore, the committees associated to F' satisfy properties
(1) and (2) of Theorem 1. However, because F' is non-dictatorial the minimal
cylindric decomposition of the range can not consists of just one section with
strictly more than two active components. Moreover, the ordering of the active
components of a section, under separable preferences, depends on the choice
of objects in the other sections, therefore we can not have either two or more
sections with strictly more than two active components. Now, using separable
but non-additive profiles it is easy to verify that all sections have either only one
active components (the objects that are always selected) or they just two active
components and they are of the form {(), {z}}. Hence, the partition of a subset
of Rr has sections consisting on singleton elements, implying that the range is a
subcube. ®
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