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Abstract

We examine local strong rationality (LSR) in multivariate models
with both forward-looking expectations and predetermined variables.
Given hypothetical common knowledge restrictions that the dynamics
will be close to those of a specified minimal state variable solution,
we obtain eductive stability conditions for the solution to be LSR.
In the saddlepoint stable case the saddle-path solution is LSR pro-
vided the model is structurally homogeneous across agents. However,
the eductive stability conditions are strictly more demanding when
heterogeneity is present, as can be expected in multisectoral models.
Heterogeneity is thus a potentially important source of instability even
in the saddlepoint stable case.
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1 Introduction

This paper comes as a continuation of a previous paper entitled “Coordi-
nation on saddle path solutions : the eductive viewpoint — linear univariate
models”, by G. Evans and R. Guesnerie (2003). The purpose of both papers
is to revisit the justifications of the saddle path stable solution by taking
the somewhat more basic perspective of “eductive learning,” which refers to
considerations that have a game-theoretical flavour and explicitly refer to
Common Knowledge considerations.1

Specifically, the viewpoint we take, the “Strong Rationality viewpoint”2,
proceeds as follows. We start from restrictions on the possible paths of the
system, which themselves reflect restrictions on individual strategies. These
restrictions, tentatively supposed to be Common Knowledge (from now on
CK) trigger a mental process, which, when rationality is itself “commonly
known,” mimics the process of determination of rationalizable strategies
(from the initial set of restricted strategies). When such a process converges
to the candidate equilibrium, the equilibrium is said to be Strongly Rational.
Actually, as in the following, the CK initial restrictions will always be taken
locally, so that we shall only be concerned with a weaker variant of the test
that selects Locally Strongly Rational Equilibria. The question treated in
this paper, as well as in the companion paper, can then be more compactly
reformulated: when is it the case that the saddle path stable solution of a
dynamical system is a good candidate for expectational coordination, in the
sense just introduced of being Locally Strongly Rational, for restrictions to
be made precise?

At this stage, two different points are in order.
First, it is useful to stress the relevance of the question: economic mod-

elling routinely assumes that saddle-path like stable solutions, or stable man-
ifold solutions provide the appropriate “rational expectations solutions” even
when they compete with many others. Convenience pleads in favour of such
a practice but it is not as such a fully convincing intellectual argument. De-
terminacy considerations, which point out that such solutions are “locally
isolated” rational expectations equilibria, even when the broader concept of

1A related but distinct approach is “adaptive learning,” e.g. Evans and Honkapohja
(2001). For a comparison of eductive and adaptive learning see Evans (2001).

2This could be called the “local unique rationalizability” viewpoint, in the terminology
of Bernheim (1984) or Pearce (1984), or the “local dominance solvability”viewpoint in the
terminology of Farqhason (1969) and Moulin (1979).
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sunspot equilibria is envisaged, provide better intellectual arguments for se-
rious foundations but do not exhaust the question. The present approach
proposes an alternative, and in our view more basic, view on the problem.

As the reader will easily guess, our methodology to approach the question,
as briefly sketched above, is almost meaningless if we refer to standard re-
duced forms of dynamical systems. In order to make sense of the question we
raise concerning Common Knowledge, we must, as we did in Evans-Guesnerie
(1993) in a different context, imbed the model in a framework where agents
and their strategies are well defined. This is indeed what we did in the
previous paper and we repeat this set-up here in next Section.

2 The framework.

2.1 Dynamic expectations models

We are interested in models of the following kind:

Q(yt−1, yt, y
e
t+1) = O,

where t is a time index, y is a finite dimensional vector, and Q is a temporary
equilibrium map that relates yt to its lagged values and to expectations. The
quantity yet+1 denotes the expectation of yt+1 formed by agents at time t. In
this formulation we assume that agents are able to observe yt when forming
their expectations or, if not, that they can condition their actions on the
values yt that are realized.

We need to be more precise on the strategic aspects of the coordination
problem. To do so we will adopt a very simple strategic interpretation of the
model which makes explicit the decision theoretic aspects of the model and
the aggregation of these decisions into a temporary equilibrium map.

2.2 Strategic expectations model.

2.2.1 The basic structure

We thus embed the dynamic model in a dynamic game, along lines that are
somewhat similar to those of Evans-Guesnerie (1993). We assume that, at
each period t, there exists a continuum of agents, a part of whose strategies
are not reactive to expectations (in an OLG context, these are the agents,
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who are at the last period of their lives), and a part of which “react to expec-
tations”. The latter agents are denoted ωt and belong to a convex segment
of R, endowed with Lebesgue measure dωt. It is assumed that an agent of
period t is different from any other agent of period t

′

, t
′

�= t. 3 More precisely,
agent ωt has a (possibly indirect) utility function that depends upon

1) his own strategy s(ωt),
2) sufficient statistics of the strategies played by others i.e. on yt =

F (Πωt
{s(ωt)} , ∗), where F in turn depends first, upon the strategies of all

agents who at time t react to expectations, and second, upon (∗), which
is here supposed to be sufficient statistics of the strategies played by those
who do not react to expectations, and that includes but is not necessarily
identified with — see below — yt−1,

3) finally upon the sufficient statistics for time t+1, as perceived at time t:
i.e. on yt+1(ωt), which may be random and, now directly, upon the sufficient
statistics yt−1.

We assume that the strategies played at time t can be made conditional
on the equilibrium value of the of the t sufficient statistics yt. Now, let (•)
denotes both (the product of) yt−1and the probability distribution of the
random variable yt+1(ωt), (the random expectation held by ωt of yt+1). Let
then G(ωt, yt, •) be the best response function of agent ωt. Under these as-
sumptions, the sufficient statistics for the strategies of agents who do not
react to expectations is (∗) = (yt−1, yt).

The equilibrium equations at time t are written:

yt = F [Πωt
{G(ωt, yt, yt−1, ỹt+1(ωt))} , yt−1, yt] . (1)

Note that when all agents have the same point expectations denoted yet+1,
the equilibrium equations determine what we called earlier the temporary
equilibrium mapping

Q(yt−1, yt, y
e
t+1) = yt − F

[
Πωt

{
G(ωt, yt, yt−1, y

e
t+1)

}
, yt−1, yt

]
.

3This means either that each agent is “physically” different or that the agents have
strategies that are independent from period to period. In an OLG interpretation of the
model, each agent lives for two periods but only reacts to expectations in the first period
of his life.
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2.2.2 Linearization

The right hand side of (1) is a rather complex term, but under regularity
assumptions4, it has, through two different channels, derivatives with respect
to yt, and with respect to yt−1. Also assuming that all ỹt+1 have a very small
common support “around” some given yet+1, decision theory suggests that
G, to the first order, depends on the expectation5 of the random variable
ỹt+1(ωt) that is denoted yet+1(ωt) (and is close to ye

t+1)
Taking into account the previous remark, the heterogeneity of expecta-

tions across agents, and assuming again the existence of adequate derivatives,
it is reasonable to linearize (1), around any initially given situation, denoted
(0), as follows6:

yt = U(0)yt + V (0)yt−1 +

∫
W (0, ωt)y

e
t+1(ωt)dωt,

where yt, yt−1, y
e
t+1(ωt) now denote small deviations from the initial values of

yt, yt−1, y
e
t+1, and U(0), V (0),W (0, ωt) are n× n square matrices.

Such a linearization is valid everywhere, but we will consider it only
around a steady state of the system. Hereafter, yt, yt−1, etc denote devia-
tions from the steady state and U(0), V (0),W (0, ωt) are simply U, V,W (ωt).

Supposing I − U is invertible, we have

yt = ((I − U)−1V )yt−1 + (I − U)−1
∫

W (ωt)y
e
t+1(ωt)dωt.

When expectations are homogenous, yet+1(ωt) = ye
t+1, the system becomes

yt = Byet+1 +Dyt−1, with B = (I − U)−1W , where W =

∫
W (ωt)dωt. (2)

With the new notation, assuming W invertible, the initial system can
also be written

yt = Dyt−1 +BW−1

∫
W (ωt)y

e
t+1(ωt)dωt.

4For a less sketchy discussion, see Evans-Guesnerie (1993), p.637.
5This could be formalized along lines similar to those taken in Chiappori-Guesnerie

(1989), who also argue that the property is general in economic models that adopt the
Bayesian view of uncertainty.

6As in Guesnerie (2002), this can be viewed as an “axiom”, whose field of validity is
very large.
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Putting Z(ωt) = W−1W (ωt), we rewrite this as

yt = Dyt−1 +B

∫
Z(ωt)y

e
t+1(ωt)dωt, (3)

where
∫
Z(ωt)dωt = I. This will be the basic equation of our study. We

assume that (3) holds for t = 1, 2, 3, . . ., and that initial conditions y0 are
given.

3 An Economic Example

To illustrate our results we develop a two-sector version of the overlapping
generations model with production that was introduced and analyzed by Re-
ichlin (1986). In Reichlin’s model there is a single perishable output (“corn”),
which can either be consumed or set aside as capital (“seed corn”) for use in
production the following period. Capital is combined with labor according
to a Leontief fixed coefficients technology to produce output and the capital
is fully used up in production. We develop a two-sector competitive version
of this model in which there is trade in goods but no labor or capital flow
permitted between sectors. That is, in the version we set forth here (other
formulations would of course be possible), labor is immobile and agents can
only invest in capital in their own sector. However, there is trade in goods,
and households in both sectors consume both goods.

For ease of presentation we begin with the perfect foresight version. Pop-
ulation, which is normalized to one in each sector, is stationary and composed
of identical consumers living for two periods. Households work when young
and consume when old. For convenience we assume that all agents in both
sectors have the same utility functions. In each sector i = 1, 2, the household
problem is thus

max u(c1t+1, c
2

t+1)− v(lit),

subject to N i
t = W i

t l
i
t and c1t+1 + pt+1c

2
t+1 = N i

tR
i
t+1,

where lit is labor supply, cit+1 is the consumption of sector i goods, N i
t is

investment in sector i capital carried into the following period, W i
t is the

wage rate in sector i units, Ri
t+1 is the real interest factor in sector i units,

and pt+1 is the relative price of sector 2 goods in terms of sector 1 goods in
period t + 1. We make the standard assumptions that v′(l) > 0, v′′(l) > 0
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with liml→∞ v′(l) = +∞ and liml→0 v
′(l) = 0, and u(c1, c2) is assumed to

be concave with positive first partial derivatives. We additionally require
that u(c1, c2) is homogeneous of degree λ ≤ 1; thus its partial derivatives are

homogeneous of degree 1− λ and ∂
∂ci

u(c1, c2) = (c2)
λ−1 ∂

∂ci
u(c1/c2, 1).

The first-order conditions for the household include the Euler equations

v′(lit) = W i
tR

i
t+1ui

(
c1t+1, c

2

t+1

)
or

litv
′(lit) = W i

t l
i
tR

i
t+1

(
c2t+1

)λ−1
ui

(
c1t+1/c

2

t+1, 1
)

where ui (c
1, c2) ≡ ∂

∂ci
u(c1, c2). In addition we have the static condition

pt+1 = u2
(
c1t+1/c

2
t+1

)
/u1

(
c1t+1/c

2
t+1

)
≡ φ

(
c1t+1/c

2
t+1

)
.

Inserting into the budget constraints yields(
c1t+1/c

2
t+1 + φ(c1t+1/c

2
t+1)

)
c2t+1 = W i

t l
i
tR

i
t+1,

which, when combined with the Euler equations, leads to

litv
′(lit) =

(
W i

t l
i
tR

i
t+1

)λ
ζi(c

1

t+1/c
2

t+1), (4)

where
ζi(z) = (z + φ(z))1−λ ui(z, 1).

Firms produce output under conditions of perfect competition. In each
sector output is given by xi

t = min(αiN
i
t−1, βil

i
t), where αi, βi > 0. Profit

maximization gives
xi
t = αiN

i
t−1 = βil

i
t,

and goods market implies that xi
t = cit +N i

t . It follows that

lit = (αi/βi)N
i
t−1 and cit+1 = αiN

i
t −N i

t+1

Finally, from the zero profit condition

W i
t l

i
t +Ri

tN
i
t−1 = xi

t,

together with N i
t = W i

t l
i
t and xi

t = αiN
i
t−1, we obtain

Ri
t+1 = αi −

N i
t+1

N i
t

.
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Substituting the preceding relationships into the Euler equation we arrive
at the equation that specifies the perfect foresight dynamics, namely

V

(
αi

βi

N i
t−1

)
=

(
αiN

i
t −N i

t+1

)λ
ζi

(
α1N

1
t −N 1

t+1

α2N2
t −N 2

t+1

)
(5)

for i = 1, 2, where
V (z) ≡ zv′(z)

Note that V (z), V ′(z) > 0 for all z > 0. Existence of a steady state requires
α1, α2 > 1. When linearized this yields a perfect foresight dynamic equation
of the form yt = Byt+1+Dyt−1 where yt = (N1

t , N
2
t )
′ with variables expressed

as deviations from steady state values.
The strategic form of the model is obtained by dropping perfect fore-

sight and allowing for heterogeneous expectations across individual agents.
Equation (4) becomes

(lit(ω
i
t))

1−λv′(lit(ω
i
t)) =

(
W i

tR
i,e
t+1(ω

i
t)
)λ

ζi
(
c1,et+1(ω

i
t)/c

2,e
t+1(ω

i
t)
)
,

where ωi
t denotes an agent in sector i, lit(ω

i
t) is the agent’s labor supply

and a superscript e denotes the expectation of a variable. Because every
agent in every period will equate its marginal rate of substitution between
the two goods to the relative price, we have c1t+1(ω

i
t)/c

2
t+1(ω

i
t) = c1t+1/c

2
t+1,

where now variables without ωi
t denote aggregate quantities. Furthermore

the aggregate relationships N i
t = W i

t l
i
t, l

i
t = (αi/βi)N

i
t−1, c

i
t+1 = αiN

i
t −N i

t+1

and Ri
t+1 = αi − N i

t+1/N
i
t continue to hold. It follows that the individual’s

labor supply can be rewritten as

lit(ω
i
t) = Ṽ −1

{[
W i

t

(
αi −N i,e

t+1(ω
i
t)/N

i
t

)]λ
ζi

(
α1N

1
t −N1,e

t+1(ω
i
t)

α2N 2
t −N2,e

t+1(ω
i
t)

)}
,

where Ṽ (z) ≡ z1−λv′(z).

In equilibrium we have lit =

∫
lit(ω

i
t)dω

i
t, so that using again the above

aggregate relationships we arrive at

αi

βi

N i
t−1 =

∫
Ṽ −1

{(
βi

αiN i
t−1

)λ (
αiN

i
t −N i,e

t+1

)λ
ζ i

(
α1N

1
t −N 1,e

t+1(ω
i
t)

α2N 2
t −N 2,e

t+1(ω
i
t)

)}
dωi

t,
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for i = 1, 2, which fits the framework of Section 2 with

yt = (N 1

t , N
2

t )
′ and ye

t+1(ωt) = (N1,e
t+1(ω

i
t), N

2,e
t+1(ω

i
t))
′.

Linearization around a steady state then yields a reduced form that can be
written as (3).

The above formulation allows for heterogeneous expectations within each
sector, but it is revealing to consider the special case in which expectations
within each sector are homogeneous. In this case the linearization (3) reduces
to

yt = Dyt−1 +B
{
Z(1)yet+1(1) + Z(2)yet+1(2)

}
(6)

where now yet+1(i) = (N1,e
t+1(i), N

2,e
t+1(i))

′. Here N j,e
t+1(i) denotes the expec-

tations held at time t by agents in sector i concerning the future capital
expenditure in sector j. Despite the simplification of assuming homogeneous
within-sector expectations, this formulation of the model retains the key fea-
ture of intersectoral expectational heterogeneity combined with differential
impacts of these expectations. Furthermore, and this is a point we stress
below, it is apparent from the form of the nonlinear model that Z(1) and
Z(2) are not identical (or proportional), even in the symmetric case in which
α1 = α2 and β1 = β2.

4 Perfect Foresight.

We begin our analysis of the linearized model (3) with a discussion of the
perfect foresight solutions.

4.1 Perfect Foresight Paths.

A Perfect Foresight path is a sequence of n-dimensional vectors, yt, t =
1, .....+∞, starting from y0, and such that :

yt = Byt+1 +Dyt−1. (7)

We begin with a review of the standard methodology of the study of such
paths. We assume throughout that B is nonsingular.

Defining X(t) =

{
yt
yt−1

}
, we write

X(t+ 1) = ΦX(t),
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where Φ is the 2n× 2n matrix

Φ =

[
B−1 −B−1D
I O

]
.

Such a matrix has 2n eigenvalues, λi, i = 1, ....2n, associated with eigenvec-

tors of the form

{
λixi
xi

}
. We will now remind the reader of the solutions

to this dynamical system.
Associated with the equilibrium point 0 of the dynamical system is a

stable linear manifold, generated by all eigenvectors associated with eigen-
values of modulus strictly smaller than one and an unstable linear manifold
generated by all eigenvectors associated with eigenvalues of modulus strictly
greater than one. Throughout the paper we assume that Φ is diagonalizable
in the set of complex matrices and that it has no eigenvalue with modulus
equal to one.

We further assume that we are in the so-called “saddle-path” case in
which the stable manifold has dimension n and is in “general position.” It
follows that for any given initial y0 there is a unique y1 on the stable manifold
and a trajectory converging to the equilibrium. It also follows that any other
trajectory starting from y0 has at least one component going to infinity.

Thus we have exactly n eigenvalues of modulus strictly smaller than one.
We rank the eigenvalues in the order of increasing modulus, so that i ≤ j,⇔
|λi| ≤ |λj|. It is well known that when Φ is “semisimple”, i.e. diagonalizable
in the set of complex matrices, it has a real factorization of the form

Φ = PΛP−1,

where Λ is a 2n× 2n block diagonal matrix, in which each block is either a

single element λj, when λj is real, or is a 2×2 block

(
aj −bj
bj aj

)
correspond-

ing to non-real eigenvalues λj = aj ± ibj. We order the elements and blocks
in terms of increasing eigenvalue modulus. The nonsingular 2n× 2n matrix
P has columns given by the coordinates of the eigenvectors in the canonical
basis of R2n if the corresponding eigenvector is real. In the case of nonreal
eigenvalues the corresponding pair of columns of P are given by the coor-
dinates of the imaginary and real parts, respectively, of the corresponding
eigenvectors.

With this factorization we can obtain

X(t+ 1) = PΛtP−1X(1).
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Partitioning P , and calling P−1X(1) =

{
I1
I2

}
, the dynamics of the system

can be written, with straightforward notation,{
yt+1
yt

}
=

(
P11 P12
P21 P22

)(
Λt
1 0
0 Λt

2

){
I1
I2

}
.

Here the submatrices Pij and Λi are n × n and note that P11 = P21Λ1, and
P12 = P22Λ2. It follows, in particular, that

yt = P21Λ
t
1I1 + P22Λ

t
2I2. (8)

We assume that P21 is nonsingular.
Let XS denote the (n dimensional) subspace of R2n generated by the

eigenvectors associated with the n eigenvalues of smallest modulus, λ1, ....λn.
XS is a solution subspace, i.e. X(t− 1) ∈ XS and X(t) = ΦX(t− 1) implies
X(t) ∈ XS. A vector X(t) = (y′t, y

′

t−1)
′ belongs to XS if and only if, in the

basis of eigenvectors, it can be written as

{
η
0

}
, i.e. in the canonical basis it

is of the form

{
P11η
P21η

}
. Hence X(t) ∈ XS if and only if yt = P11(P21)

−1yt−1,

i.e.
yt = Syt−1, where S = P21Λ1(P21)

−1. (9)

This solution corresponds to (8) with I2 = 0, i.e. yt = P21Λ
t
1I1.

We have shown the following:

Proposition 1 A saddle-path solution (y0, y1, . . . , yt, . . .) satisfies yt = S∗yt−1,
where S∗ = P21Λ1(P21)

−1 and where P21 and Λ1 are the matrices just defined.

The Proposition describes the unique nonexplosive solution in the “saddle-
point stable case,” for given initial y0. Any other perfect foresight solution
satisfies (8) with P22Λ

t
2I2 �= 0, which implies that at least one component of

yt tends to ±∞ as t → ∞.
We now make a parenthetical digression. Economists have long been in-

terested in solutions of the dynamical system that are of the form yt = Syt−1.
These are called by McCallum (1983) “minimal state variable” solutions and
more recently by Gauthier “equilibrium extended growth rate” solutions. If
such a solution exists then from (7) we have

yt = Byt−1 +DS−1yt,
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provided S is nonsingular. Thus B−1(I −DS−1)yt = yt+1 and

S = B−1(I −DS−1), (10)

which can be rewritten as the matrix quadratic equation

S2 −B−1S +B−1D = O,

so that minimal state variable solutions are solutions of this equation. We
note that obviously, in our case, S∗ is a solution of this equation, but there
are others and we outline how these can be constructed.

Consider a set of n vectors of Rn,
(
. zi, . zj, .

)
where the n vectors

zi, zj, ... are associated with a subset K of n of the 2n eigenvalues of Φ, pro-
vided that if a nonreal eigenvalue is included in K then so is its complex
conjugate. If λj ∈ K is real then zj is taken to be the n-dimensional restric-

tion of the corresponding eigenvector

{
λjxj
xj

}
, i.e. zj = xj. If λj, λj+1 ∈ K

are not real and equal aj ± ibj the eigenvectors take the same form but with
xj, xj+1 = uj ± ivj. In this case the corresponding vectors zj, zj+1 are taken
to be vj and uj. Consider the case where the n vectors under consideration
form a basis of Rn. The matrix, denoted SK , which transforms zj to λjzj for
real λj ∈ K and analogously for nonreal conjugate members of K, is a fixed
point of (10). Indeed, in the basis consisting of the zj, for λj ∈ K, a vector{

yt
yt−1

}
=

{
Λα
α

}
is transformed into yt+1 = Λ2α , so that yt+1 = Λyt.

In the canonical basis of Rn,

SK = PKΛKP
−1

K ,

where we have now factored Φ = PΛP−1 as

P =

(
PKΛK PLΛL

PK PL

)
and Λ =

(
ΛK 0
0 ΛL

)

The solution of the previous section, S∗ = P21Λ1P
−1

21 , corresponds to the
choice ΛK = Λ1. We remark that there can be up to C2n

n distinct solutions
SK, with exactly C2n

n such solutions when all roots are real and all subsets
of n vectors

(
. zi, . zj, .

)
yield linearly independent sets.

It is straightforward to verify algebraically that, in the canonical basis
of Rn, SK = PKΛKP

−1

K satisfies the fixed point equation (10). This follows
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immediately from partitioned matrix multiplication of the equation ΦP =
PΛ, using the above partition. Therefore yt = SKyt−1 is a solution for any
initial condition y0. The converse can also be shown, i.e. every S that
provides a solution of the form yt = Syt−1 for every initial condition y0 can
be expressed as PKΛKP

−1

K .

5 Eductive Learning.

5.1 Iterative Expectational Stability.

In developing the Strong Rationality conditions we will examine their connec-
tion to the conditions for Iterative Expectational Stability (or IE-Stability).
The analysis focuses on minimal state variables solutions, i.e. perfect fore-
sight solutions of the form yt = Syt−1 for all t. IE-Stability can be viewed
as a process, taking place in virtual or notional time τ , that works as follows
(see, for example, Evans (1985)). Economic agents posit a conjectured or
“perceived” law of motion, consistent with a minimal state variable solution,
in which yt evolves in accordance with some arbitrary fixed coefficient matrix
Sτ . That is, all agents believe that yt = Sτyt−1 for all t, where Sτ is some
fixed matrix. From this PLM (perceived law of motion) Sτ , one can obtain
the actual law of motion and show that the actual dynamics take the same
form, but with a fixed coefficient matrix T (Sτ), which is in general different
from Sτ . IE-stability then considers the iterative revision, in notional time τ ,
given by Sτ+1 = T (Sτ). If this sequence converges to a fixed point S̄ = T (S̄),
from all initial S in a neighborhood of S̄, then we say that S̄ is locally IE-
stable (or LIE-stable). The sequence Sτ+1 = T (Sτ) can be thought of as a
stylized notional time learning rule in which the PLM coefficient matrices
used to make forecasts are updated to the actual coefficient matrices implied
by those forecasts.

More specifically, for the case at hand, consider forecasts

yet+1 = Sτyt, ∀t.

Inserting these (homogeneous) expectations into the model (2) the actual
dynamics between t− 1 and t will be yt = Dyt−1 +BSτyt, so that

yt = (I −BSτ)
−1Dyt−1, ∀t,
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provided I − BSτ is invertible. Thus constant PLM coefficients Sτ would
lead to constant actual coefficients T (Sτ) = (I −BSτ)

−1D. The IE-Stability
(or “IE-learning”) dynamics are therefore given by

Sτ+1 = (I −BSτ)
−1D. (11)

Fixed points of the IE learning process S = (I −BS)−1D satisfy (10).
We are now going to prove the following:

Proposition 2 Assume that we are in the saddle-point case |λn| < 1 <
|λn+1| with solution yt = S∗yt−1, where S∗ = P21Λ1P

−1

21 . Then this solution
is LIE-Stable.

One possible proof of this is would be to show that all eigenvalues of the
linear mapping tangent ( at S∗) to the mapping S → (I−BS)−1D are smaller
that one in modulus. However, a more interesting proof obtains by making
use of the concept of perfect foresight extended growth rates proposed by
Gauthier (2002, 2003), which is defined as follows.

Suppose that
yt = Styt−1

for some given n × n invertible matrix St. Then the perfect foresight “fol-
lower” of yt is the yt+1 that satisfies, assuming B invertible,

yt+1 = B−1(I −DS−1

t )yt.

Writing yt+1 = St+1yt it follows that

St+1 = B−1(I −DS−1

t ). (12)

Choosing S1 arbitrarily, (12) generates an infinite sequence of matrices, St,
t = 1, 2, 3, . . . with the property that for arbitrary y0 the sequence y1 =
S1y0, . . . , yt = Styt−1, . . . is a perfect foresight path. Following Gauthier, one
may call the sequence St a sequence of “extended growth rates,”7 or an
“EGR sequence.” A limit point S of a sequence of extended growth rates
must satisfy 10).

Comparing the dynamics (11) of IE-stability with the EGR dynamics
(12) we immediately see that they are governed by inverse mappings. A
fixed point is therefore locally a sink under IE dynamics if and only if it is a
source under EGR dynamics. This observation immediately yields:

7cf the one dimensional case for the terminology
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Lemma 3 S∗ is LIE stable if and only if it is locally determinate under EGR
dynamics.

Note that this fact, here obvious, obtains under more general models and is
stressed by Gauthier as a general “equivalence principle.” We are now in a
position to complete the proof of Proposition 2.

Proof. From the Lemma it is enough to show that the equilibrium S∗ is
locally determinate, i.e. locally divergent, under the EGR dynamics. Assume
the contrary. Then in every neighborhood of S∗ there exists initial S2 �= S∗

such that St → S∗ under the perfect foresight dynamics (12). Then take y0 �=
0 and y1 �= S∗y0, so that (y′1, y

′

0)
′ does not belong to the stable subspace. The

sequence y2 = S2y1, . . . , yt =
(∏t

i=2 Si

)
y1, . . . is a perfect foresight sequence

in states yt. But
∏t

i=2 Si → 0 as t → ∞, since St → S∗ and all eigenvalues of
S∗ are smaller than one in modulus. Hence yt → 0. This is a contradiction
since we know that there does not exist a perfect foresight sequence in states
that starts outside the stable subspace and converges to zero. Q.E.D.

LIE-stability plays a role in the theory of strong rationality, to which we
now turn.

5.2 Strong Rationality.

5.2.1 Preliminaries on “eductive learning”

We now develop the eductive learning argument and the criterion, called in
Guesnerie (1992) Strong Rationality, under which eductive learning will lead
to coordination on an equilibrium path. We therefore return to the “strategic
reduced form” of the model (3) developed in Section 2.2.2 and reproduced
here for convenience:

yt = Dyt−1 +B

∫
Z(ωt)y

e
t+1(ωt)dωt.

We apply the strong rationality test to the saddle-point solution S∗, but it
could also be applied to any S̄ that satisfies S̄ = (I −BS̄)−1D.

We develop the argument as follows.
We first note that the subjective expected value yet+1(ωt) of agent ωt can

be viewed as S(ωt)yt where S(ωt) is the “expected” matrix S that agent ωt’s
subjective probability distribution on V (S̄) generates. Then, for this state
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of beliefs the value of yt is given by

yt = Dyt−1 +

(
B

∫
Z(ωt)S(ωt)dωt

)
yt.

This is our basic relationship, which we rewrite :

yt =

(
I −B

∫
Z(ωt)S(ωt)dωt

)
−1

Dyt−1

We will consider a neighborhood V (S̄) of the form:∥∥S − S̄
∥∥ ≤ ε,

where ‖.‖ is a Euclidean vector norm (discussed further below) on Rn2, which
is identified with the space of n× n matrices.

Next consider the map

G :
∏

ωt

(∆(S(ωt))) → ∆(

[
I −B

∫
Z(ωt)S(ωt)dωt

]
−1

D),

where ∆ denotes deviations from S̄, e.g. ∆(S(ωt)) = S(ωt)− S̄.
We can now introduce our definition of local strong rationality.

Definition 4 S̄ is said to be LSR (Locally Strongly Rational) if there exists
η > 0, 0 < µ < 1 and a Euclidean vector norm ‖.‖ on Rn

2

such that for all
0 < ε < η, ‖∆(S(ωt))‖ ≤ ε for all ωt implies∥∥∥G(∏

ωt

∆(S(ωt))
)∥∥∥ < µε.

We remark that each choice of basis for Rn
2

yields a different vector norm,
namely the Euclidean norm computed using the coordinates of the vector in
that basis.

Applied to S
∗
, the definition of LSR states that if beliefs of the agents,

concerning the law of motion of the system, are close enough to the saddle
path beliefs, then the actual law of motion is even closer. We also say then
that the equilibrium is “eductively stable.”

Alternatively, we can refer to the standard procedure of starting from a
Common Knowledge restriction, i.e. to assume first:

CK Assumption: It is CK that, for all t, yt = Styt−1 with St ∈ V (S̄),
where V is a small (enough) neighborhood of S̄.

Then:
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Lemma 5 If S
∗
is LSR in the sense of the previous definition, and if the

above CK assumption holds for V (S
∗
) = [S/ ‖S − S

∗
‖ ≤ ε], for some ε < η,

then it is CK that S = S
∗

Proof. Given the CK assumption ‖∆St‖ = ‖St − S
∗
‖ ≤ ε the expectations

of all agents ωtmust satisfy ‖∆(S(ωt)‖ ≤ ε for all t. LSR according to our
definition implies that it is CK, after a first step of ”mental process” that
‖∆St‖ ≤ µε for all t, which tightens the CK assumption The above process
can then be iterated and, after n stages it is CK that ‖∆St‖ ≤ µnε for all
t. Since this holds for all positive integers n it follows that it is CK that
‖∆St‖ = 0 for all t and hence that yt = S

∗
yt−1

Hence the definition of LSR given here is closely connected to previous
definitions that directly refer to a CK restriction. It is indeed quite similar,
although not exactly identical: for further discussion, the reader will refer to
Guesnerie (2002)

5.2.2 Characterizing Local Strong Rationality

The next step of our investigation relies on the study of the linear approxi-
mation to the above map G. We call this linear map Γ, and write it:

Γ :
∏

ωt

(∆(S(ωt))) →

∫
L(ωt)∆(S(ωt))dωt

where L(ωt) is a linear mapping from Rn
2

into Rn
2

, given explicitly later
below.

Hence
∥∥∥∆(

[
I −B

∫
Z(ωt)S(ωt)dωt

]
−1

D)
∥∥∥ is approximately equal to

∥∥∥∥
∫

L(ωt)∆(S(ωt))dωt

∥∥∥∥ ≤

∫
‖L(ωt)∆(S(ωt)‖ dωt.

Let ρ(ωt) = ‖L(ωt)‖ be the norm induced8 (on linear mappings from Rn
2

to
Rn

2

) by the initial vector norm (on Rn
2

). Then

‖∆(S(ωt))‖ =
∥∥(S(ωt))− S̄

∥∥ ≤ ε ∀ωt

8For the theory of matrix norms, see Horn and Johnson (1985). We shall refer here
only to induced matrix norms.
Given a vector norm |.| , the matrix norm ‖.‖ induced by the vector norm is defined as

follows: ‖A‖ = max|x|=1 |Ax|
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implies that to a first approximation∥∥∥∥∥∆(

[
I −B

∫
Z(ωt)S(ωt)dωt

]−1
D)

∥∥∥∥∥ ≤ (

∫
ρ(ωt)dωt)ε.

We can also define ‖Γ‖ as the norm of the linear mapping Γ (Πωt
(∆(S(ωt))))

induced by the norm onΠωt
(∆(S(ωt))) , which we take to be supωt

‖∆(S(ωt))‖.
Then

‖Γ‖ ≤

∫
ρ(ωt)dωt.

Consider now the homogenous expectations case and introduce the map
g (from Rn2 to Rn2)

g : S → (I −BS)−1D.

Call γ the linear map tangent, at S̄, to the map g.
Note, that, since

∫
Z(ωt)dωt = I whenever (S(ωt) − S̄) = ∆S indepen-

dently of ωt, the map Γ, acting on Πωt
(∆S ), takes the same value as the

map γ acting on ∆S.
In other words,

γ =

∫
L(ωt)dωt

Hence, it must be the case that

‖γ‖ ≤ ‖Γ‖ ,

where ‖γ‖ is the norm induced by the vector norm in Rn2 previously intro-
duced.

Finally, this implies, to a first order approximation, that

‖γ‖ ε ≤ sup
‖∆(S(ωt)‖≤ε

∥∥∥∥∥∆(

[
I −B

∫
Z(ωt)S(ωt)dωt

]−1
D)

∥∥∥∥∥ ≤

(∫
ρ(ωt)dωt

)
ε

It follows that the condition
∫
ρ(ωt)dωt < 1 is sufficient for LSR of S̄.

We can translate this analysis into a formal proposition that will provide
a basic reference for further reflection.
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Theorem 6 i) LSR =⇒ LIE-Stability
ii) If agents are homogeneous, LSR is identical to LIE-Stability
iii) A sufficient condition for LSR is∫

ρ(ωt)dωt < 1,

where ρ(ωt) is the norm of L(ωt), induced by a vector norm on Rn2, and where
L(ωt) describes the approximate change on the aggregate state variable, trig-
gered by a change in expected EGR of agent ωt.

Proof. i) ‖γ‖ is greater than the modulus of the eigenvalue of maximal
modulus of γ, and ‖γ‖ ≤ ‖Γ‖, which is smaller than one because of LSR.
That is enough for LIE-Stability, which requires that the maximal modulus
of γ be less than one.9

ii) Take Z(ωt) = σ(ωt)I, σ(ωt) ≥ 0, and
∫
σ(ωt)dωt = 1. Then Γ “coin-

cides” with γ, and ‖γ‖ can be made arbitrarily close to the maximal modulus
of γ, for an appropriate choice of norms, (See Horn and Johnson (1991)).

iii) already shown. Q.E.D.

We remark that this proposition implies the corollary that, in the saddle
point case, if agents are homogeneous then the equilibrium S∗ is LSR since it
is LIE-Stable by Proposition 2. In fact, as can be seen from the proof of ii),
some (mild) deviations from complete homogeneity leave this result intact.

5.2.3 Further characterization

In the Proposition, iii) captures the idea of heterogeneity: it is powerful
but abstract. In order to make it more intuitive, we have to specialize the
statement by choosing some special vector norms in Rn2.

First Specialization:
Consider the mapping γ, the derivative of (I −BS)−1D, at S∗. This can

be written, in matrix form10:

γ : ∆S → (I −BS∗)
−1B(∆S)(I −BS∗)

−1D = S∗D
−1B(∆S)S∗.

9The result is a priori obvious, but it is worth deriving from our inequalities.
10Taking the differential of (I − BS)−1(I − BS) = I it follows that the differential of

(I − BS)−1 is given by d(I − BS)−1 = (I − BS)−1B(dS)(I − BS)−1. See Magnus and
Neudecker (1988) for these and related matrix results.
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or, after “vectorization,”

γ : vec∆S → (S′

∗
⊗ S∗D

−1B)(vec∆S)

where ⊗ designates the Kronecker product11, S′ is the transpose of S and
vec(∆S) denotes the vector obtained by stacking in order the columns of∆S.
We have here used the relationship vec(ABC) = (C ′ ⊗ A) vec(B).

Similarly the mappings L(ωt) can be written in matrix form as12

L(ωt) : ∆S → S∗D
−1BZ(ωt)(∆S)S∗, or

L(ωt) : vec∆S →
(
S ′

∗
⊗
(
S∗D

−1BZ(ωt)
))

(vec∆S).

Again, one can check that :

γ =

∫
L(ωt)dωt

Now, take as vector norm for Rn
2

, the Euclidean norm in the eigenvector
basis of γ.13 For this vector norm, the induced matrix norm for S ′

∗
⊗S∗D

−1B
is the modulus of its eigenvalue of highest modulus.

Now ρ(ωt) is the norm of the matrix S ′

∗
⊗ (S∗D

−1BZ(ωt)) induced by the
just defined Euclidean norm.(It must be at least as large as the modulus of
the eigenvalue of highest modulus of the considered matrix).

Hence, the next Theorem specializes conditions i) and iii) of Theorem 6 :

Theorem 7 A sufficient condition for the saddle path solution, S∗, to be
LSR is that: ∫

ρ(ωt)dωt < 1

where ρ(ωt) is the norm of the matrix S′

∗
⊗ (S∗D

−1B)(Z(ωt)) induced by the
Euclidean norm of the eigenvector basis of the matrix (S ′

∗
⊗ S∗D

−1B).

11If A is an m×n matrix with elements aij and B is a p× q matrix, then the Kronecker

product A ⊗ B is the mp × nq matrix obtained by replacing each element aij of A with

the p× q block aijB.
12The differential of the map

(
I −B

∫
Z(ωt)S(ωt)dωt

)
−1

D at S(ωt) = S̄ ∀ωt is

d
(
I −B

∫
Z(ωt)S(ωt)dωt

)
−1

D = (I −BS̄)−1B
(
d
(∫

Z(ωt)S(ωt)dωt

))
(I −BS̄)−1D

= S̄D−1B
(
d
(∫

Z(ωt)S(ωt)dωt

))
S̄ =

∫
S̄D−1BZ(ωt)(dS(ωt))S̄dωt

=
∫
L(ωt)(dS(ωt))dωt, with L(ωt) given as stated and S̄ = S∗.

13which exists if γ is semisimple, as we are assuming.
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A necessary condition is that

α ≤ 1,

where α is the modulus of the eigenvalue of highest modulus of the matrix
(S ′

∗
⊗ S∗D

−1B)

Note that what has been done applies to saddle path solution, but may
also apply to other “minimal state variables,” (or to equilibrium “extended
growth rates”) solutions.

The next Theorem gives alternative sufficient conditions (the proof is
similar):

Theorem 8 A sufficient condition for the saddle path stable solution S∗, to
be LSR is that: ∫

ρ(ωt)dωt < 1

where ρ(ωt) is the norm of the matrix S′

∗
⊗ (S∗D

−1B)(Z(ωt)) induced by any
vector norm, and in particular the standard Euclidean norm, on Rn

2

.

In other words, alternative sufficient conditions may be obtained by al-
ternative choices of norms. This may prove useful in applications.

We show, in particular that the just stated theorem, applied to the one
dimensional case that we have studied earlier (Evans-Guesnerie (2003)), gives
the sharpest14 statement that can be then obtained :

Corollary 9 Let us consider the one dimensional version of our problem
(n=1). Then a sufficient condition for the saddle path solution to be LSR is

−1/[2(Ω− 1)] < BD < 1/[2(Ω + 1)]

where Ω = Z+−Z−, with Z+ =
∫
ωt/Z(ωt)>0

Z(ωt)dωt, Z
− =

∫
ωt/Z(ωt)<0

Z(ωt)dωt

Proof. The norm of the (now one dimensional ) matrix of Theorem 4 is∫
(S∗)2 |D|−1 |B| |Z(ωt)| dωt. But, here S∗ satisfies B(S∗)2 − S∗ +D = 0, so

that the condition becomes |D| |B| (1−BS∗)−2Ω < 1. This is the intermediate
inequality from which we obtain the above condition (see Evans-Guesnerie
(2003), footnote 14).

14It is sharpest in the sense that it is then a necessary and sufficient condition.
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5.3 Discussion

The results of the previous section provide a defense, from basic principles,
of the saddle path solution in the “saddle-point stable” case. When there are
homogeneous agents, or if the degree of structural heterogeneity is not too
large, we have shown that the saddle-path solution is always LSR, so that
a process of eductive reasoning, beginning with a local CK restriction leads
ineluctably to coordination on this solution. Theorems 6 and 7 show that
when there is sufficient heterogeneity the saddle-point solution will no longer
invariably be LSR, and we provide convenient sufficient conditions for LSR
of the saddle-point solution. Thus these results highlight the importance
of heterogeneity, which might be overlooked in “representative agent” or
reduced form models.

In fact, coming back on the differences between LIE stability and LSR,
which coincide in the “representative agent” case, we see now that in the
case of heterogeneity they differ strictly. More precisely, considering the
linear map Γ :

∏
ωt
(∆(S(ωt))) →

∫
L(ωt)∆(S(ωt))dω, which allows us to

check LSR, and the map γ that is obtained by replacing ∆(S(ωt) with ∆(S)
and which determines LIE, and assuming that both γ =

∫
L(ωt)dωt and

(almost) all L(ωt) have full rank, we can state:

Proposition 10 LSR is always strictly more demanding than LIE, unless
(except for a subset of measure zero of ωt) all the linear maps L(ωt) are
proportional. In the latter case agents can be said to be “essentially identical”.

Proof. We will only give here an incomplete proof with only “two” agents ωt
(as in the case of the specific illustrative model introduced above). Extending
the argument to a finite number of agents is straightforward; going to the
continuum requires more formal care.

In the case being considered, the assertion will hold if one can prove that
if A and B are two linear maps, here from Rn2 into Rn2, and if S is a closed
convex set with smooth boundary, here containing zero, then:

AS+BS = [y/y = Ax1+Bx2, x1 ∈ S, x2 ∈ S] strictly contains (A+B)S =
[y/y = Ax+Bx, x ∈ S].

The fact that AS + BS ⊇ (A + B)S is obvious. Assume now that the
inclusion is not strict so that AS + BS = (A + B)S . Consider x ∈ FrS ,
where FrS denotes the frontier of S, and consider the tangent hyperplane
to S in x, denoted Tgx.
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Ax is on the (smooth) frontier of the (convex) set AS, with a tangent
hyperplaneATgx. Bx is on the (smooth) frontier of the (convex) set BS,
with a tangent hyperplaneBTgx. (A + B)x is on the (smooth) frontier of
the (convex) set (A +B)S.

Our assumption implies that Fr(AS + BS) = Fr((A + B)S), so that
(A + B)x is on the frontier of (AS + BS). However, from the standard
theory of addition of convex sets, we know that latter fact is possible only if
AS and BS are associated with the same tangent hyperplane in Ax and Bx,
i.e. if ATgx = BTgx.

The argument just made holds for all x on FrS. In order to conclude
it remains only to note that as x varies, Tgx can be any hyperplane of the
initial space, so that ATgx = BTgx is possible only if A = µB, µ �= 0. It
is finally easy to show, using the intuition of the one dimensional case, that
µ > 0. Q.E.D.

The above statement, together with the one dimensional result of the
previous Corollary, provides our sharpest abstract illustrations of the desta-
bilizing effect of heterogeneity.

The class of models we have considered, multivariate one-step ahead one-
step memory multivariate models, is quite general, but it is of course not fully
general.15 In particular, altering the information assumptions so that not all
time t information is available, when time t decisions are taken, can lead to
more restrictive LSR conditions that may not be met in the saddlepoint case,
even with homogeneous agents, as our earlier work has shown (Guesnerie
(1992), Evans and Guesnerie (1993, 2003)).

The multivariate framework of the current paper serves, however, to em-
phasize a crucial aspect of heterogeneity that can impede coordination of ex-
pectations. As our simple economic example illustrates, multisectoral models
will typically exhibit a dependence of the economic decisions in each sector
on expected future economic activity in both the same and in other sectors.
Furthermore, because of the interconnection of current economic variables,
the expectations of agents in other sectors will also matter. In consequence
economic activity in each sector will typically depend on the expectations of
agents in all sectors about future economic activity in all sectors.

We have seen that if expectations of agents are heterogenous in terms of
effects then this can impede coordination on rational expectations even in the
saddlepoint case. Our economic illustration shows how differential impacts

15An important generalization will be to consider the model (3) with B singular.
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are likely to arise even if the economic structure is symmetric. Intersectoral
and intrasectoral differences in production technologies and preferences can
be expected to magnify the structural heterogeneity, increasing further the
problem of rational agents coordinating on “rational expectations.”

6 Conclusions

In the saddle-path stable case, the unique non-explosive perfect foresight
solution provides a natural focus of attention for economic theorists, but there
remain deep questions about how this solution would attained by economic
agents. The eductive approach examines this issue from the viewpoint of full
rationality: would rational agents necessarily coordinate on the saddlepoint
solution if they knew the correct model, knew that other agents knew the
correct model and knew that other agents were rational?

In addressing this question we provide our agents with strong additional
common knowledge restrictions designed to facilitate this coordination: specif-
ically we assume that it is common knowledge that the state dynamics,
in every subsequent period, will be close to those followed by the perfect
foresight path. The economy is said to be Locally Strongly Rational, or
eductively stable, if these (hypothetical) restrictions are sufficient to imply
common knowledge of the perfect foresight path itself.

Our characterization provides alternative sufficient conditions for LSR of
a minimal state variable solution. Iterative expectational stability provides
simple necessary conditions, and these will be satisfied by the saddlepoint
solution in the saddlepoint stable case. However, we have shown that these
conditions are not in general sufficient. Our analysis has emphasized in par-
ticular the potential role of heterogeneity in destabilizing the economy. When
expectations of different agents have heterogeneous impacts on the economy,
as is natural even in symmetric multisectoral models, the required conditions
for eductive stability are tightened because of the potential interaction of this
structural heterogeneity with heterogeneous expectations. Sufficient struc-
tural heterogeneity can therefore render rational coordination of expectations
impossible even in the saddlepoint stable case.
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