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1 Introduction

Since the seminal work of Downs (1957), followed by Davis and Hinich’s (1966) introduction

of the mathematics of Euclidean preferences, by Plott’s (1967) investigation of symmetry

conditions for core points, and by Kramer’s (1972) adaptation of Farquharson’s (1969)

analysis of strategic voting in committees, the spatial theory of elections and committees

has occupied a prominent theoretical status in the analysis of political decision-making. As

pointed out by Ordeshook (1993), “The idea of spatial preferences, of representing the set

of feasible alternatives as a subset of an m-dimensional Euclidean space, of labelling the

dimensions ‘issues,’ of assuming that people (legislators or voters) have an ideal policy on

each issue, and of supposing that each person’s preference (utility) decreases as we move

away from his or her m-dimensional ideal policy, is now commonplace and broadly accepted

as a legitimate basis for modelling electorates and parliaments.”1 The classical approach to

the analysis of the spatial model takes as given the set of alternatives and voter preferences

over them, and it formalizes the decisions of coalitions of voters in terms of a dominance,

or “social preference,” relation, which captures the incentives of groups to form and move

from one alternative to another. This relation reflects not only voter preferences, but also

institutional features that may favor some groups over others, such as voting rights laws,

laws governing campaign contributions, or the partitioning of voters into districts. Thus,

implicit in this level of abstraction is the assumption that it is not necessary to model the

precise details of such political institutions.

The maximal elements of the dominance relation, known as the “core,” occupy the

special position of being socially at least as good as all other alternatives, but it is well

known that the majority core may be empty. Indeed, building on the work of Plott (1967),

a number of authors have established that emptiness of the core is a generic property in

multidimensional settings, where “generic” is defined formally in various ways.2 Further-

more, McKelvey’s (1976,1979) “chaos” results showed that emptiness of the core typically

leads to a social preference cycle throughout the space of alternatives. Some scholars (e.g.,

Riker (1980)) have concluded from this that political decisions represent arbitrary outcomes

highly dependent upon the specific details of the particular institutions under considera-

tion, and, therefore, that a general theory of political decision-making is impossible. This

point of view has been challenged by others searching for “institution-free” properties of

social choice to provide bounds on equilibrium predictions and to circumscribe the extent

of instability. The problem, abstractly formulated, is to construct a compelling theory of

choice that is consistent with maximality when the core is nonempty but yields nonempty

choice sets even when the core does not.

In that vein of research, the notion of the uncovered set is central. The uncovered set was

defined originally by Fishburn (1977) and Miller (1980) and axiomatized by Moulin (1986)

in the context of tournaments, i.e., majority preferences over a finite set of alternatives

1See Austen-Smith and Banks (1999) for background on the spatial model of social choice.
2These include Rubinstein (1979), Schofield (1983), Cox (1984), Le Breton (1987), Banks (1995), and

Saari (1997).
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with no ties.3 In that setting, one of several equivalent definitions of the uncovered set is as

follows: an alternative x belongs to the uncovered set if and only if, for every alternative z,

there is some y such that x is socially preferred to y, which is socially preferred to z. The

comparison with the core is clear: rather than requiring that x be directly preferred to every

other alternative, we allow it to be indirectly preferred in two steps. The uncovered set can

also be viewed as the maximal elements of a transitive “covering relation,” and it follows

immediately that the uncovered set is nonempty when the set of alternatives is finite. In

the corresponding model of two-party electoral competition, based on Downs (1957), two

parties independently adopt policy positions in the space of alternatives, with the winner

being the party adopting the socially preferred position. It is well known that a pair of

policy positions form a pure strategy Nash equilibrium if and only if the parties both locate

at core points. In case the core is empty, existence of a mixed strategy equilibrium is not

problematic in the finite model. Fisher and Ryan (1992) and Laffond, Laslier, and Le Breton

(1993) independently proved that the Downsian electoral game has a unique mixed strategy

equilibrium, and that the support of the parties’ strategies lies in the uncovered set. In the

context of weak tournaments, where majority ties are allowed, distinctions emerge between

previously equivalent definitions of the uncovered set. We focus on the uncovered set, as

defined by McKelvey (1986) and several later authors,4 and on the smaller “undominated

set.” While the undominated set is too small to bound mixed strategy equilibria in the

Downsian electoral game, Dutta and Laslier (1999) show that the uncovered set still contains

the support of all equilibrium mixed strategies.

Shepsle and Weingast (1984) and McKelvey (1986) were the first to consider the un-

covered set in the standard spatial model, where policy alternatives are modelled as points

in a convex subset of Euclidean space and majority preferences over social policies are de-

termined by the continuous, strictly convex preferences of a finite electorate. Under these

assumptions, the covering relation is still transitive, but its continuity properties are poor,

complicating the problem of existence of an uncovered alternative. Nevertheless, McKelvey

demonstrates that the uncovered set (indeed, the undominated set as well) is nonempty

and, under the stronger assumption that preferences are Euclidean, he shows that this set

lies in a centrally located region of the policy space, one that collapses to the core as voter

preferences are aligned to make the core nonempty. This result is generalized by Cox (1987)

to strictly convex voter preferences exhibiting “limited asymmetry.”5 A more general re-

sult on the nonemptiness of the uncovered set is derived by Bordes, Le Breton, and Salles

(1992), with a yet more general result proved by Banks, Duggan, and Le Breton (2002).

An important contribution of McKelvey’s (1986) is the observation that the uncovered set

bounds equilibrium outcomes in several different institutional settings, including sophis-

ticated voting outcomes for a class of binary trees and mixed strategy equilibria of the

3See Laslier (1997) for a comprehensive reference on tournaments.
4See Dutta and Laslier (1999), Peris and Subiza (1999), Duggan, and Le Breton (2001), and Banks,

Duggan and Le Breton (2002).
5The precise calculation of the uncovered set, or, more modestly, the search for bounds sharpening those

discovered by McKelvey in some specific situations, is the subject of Feld, Grofman, Hartley, Kilgour, and
Miller (1987) and Hartley and Kilgour (1987).
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associated Downsian electoral game. His claim for the latter setting is formally proved and

extended by Banks, Duggan, and Le Breton (2002).

The main objective of this paper is to contribute further to this research program by de-

veloping the theory of the core, the uncovered set, and the undominated set in very general

environments. We begin in an abstract choice theory setting with a topological space of

alternatives and an arbitrary preference relation; we establish weak sufficient conditions for

nonemptiness of the uncovered set and the undominated set; and we examine other proper-

ties of these sets, such as external stability and the possibility of a “two-step” principle. We

then explicitly model an electorate as a measure space of voters and a profile of preferences

assigning each voter a continuous weak order on the space of alternatives. Thus, we discard

the usual assumptions on the set of alternatives and voter preferences and instead impose

general topological conditions on these primitives, allowing us to capture, for example, the

choice of an income tax function or the choice of a probability measure over an infinite set.

In doing so, we unify the cases of a finite set of alternatives and the spatial model, previously

treated only separately. Further, by dropping the common assumption of strictly convex

preferences, we capture a number of common models in economics and political science:

we obtain as special cases private good and mixed economies, with or without production,

as well as the “divide-the-dollar” model, where voters must allocate a fixed amount of a

resource among themselves and care only about their own consumption.6

Our assumption of an arbitrary measure space of voters captures a finite electorate and

a continuous distribution of voters as special cases. For example, in the spatial model with

preferences parameterized by “ideal points,” say in ℜn, we may describe the electorate ei-

ther by a finite number of points in ℜn, as in the simplest model, or by a density with

respect to the Lebesgue measure. In the context of an exchange economy, we may assume

a finite number of consumers or, as in Hildenbrand (1974), allow for arbitrary distributions

of preferences over net consumption bundles. In fact, though empirical preference distri-

butions are discrete, a substantial literature on voting models them as continuous. For

example, Downs (1957) and Tullock (1967) have discussed, in very unformalized terms, the

existence of equilibria for continuous voter distributions. In the Euclidean setting, Davis,

Degroot, and Hinich (1972) allowed for a continuum of voters and found that the existence

of majority equilibrium was equivalent to the existence of a total median in the distribution

of ideal points. Kramer (1978) proved the existence of mixed strategy Nash equilibria in

the multidimensional Downsian model, assuming a continuous distribution of voters and

vote-maximizing parties.7 McKelvey, Ordeshook, and Ungar (1980) have extended Plott’s

necessary symmetry condition for core points to the case of a measure space of voters. My-

erson (1993) examines Nash equilibria in electoral competition between parties that must

compete for votes by, essentially, dividing a dollar across a continuous electorate.

There are several reasons why it is desirable to model electorates at this level of general-

6In these environments, an agent’s preferences may be strictly convex in his own consumption but not in
others’. Since an alternative must specify the consumption of all consumers, strict convexity is not satisfied.

7Duggan (2002) provides a simplified proof. Duggan (2002) and Duggan and Jackson (2004) analyze the
issue of existence of mixed strategy equilibrium with a finite number of voters.
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ity. First, regularity conditions across voter preferences may be more easily formalized and

analyzed. This type of concern is evident in the work of Grandmont (1978) on intermediate

preferences and in the work of Caplin and Nalebuff (1988), who have shown in the Euclidean

setting that, if a continuous voter distribution is described by a log-concave density and

we increase the majority quota to 64% or more, then there exists an undefeated policy.

Second, the continuous setting is an important step toward our understanding of finite but

large electorates. When we deal with a finite electorate, we do not usually explain how the

diversity of preferences among the electorate is generated, i.e., we simply consider as given

a finite list of points in the relevant space of preferences. But suppose that the finite list

of preferences in the electorate is a sample of independent draws from an underlying con-

tinuous distribution on preferences. Then, if the electorate is large, the Glivenko-Cantelli

Theorem implies that the continuous distribution is a good “approximation” of the finite

one. Consequently, if continuity results can be established on some sets, e.g., the uncovered

set, then the sets defined for the limit distribution will “approximate” the sets for large,

finite electorates. Third, if elections, rather than committees, are the main object of study,

then it is desirable that results not be too sensitive to specific assumptions about whether

the number of voters is odd or even. This means that adding or deleting one voter should

not matter, so that each voter is essentially massless, which leads us to the continuum

model. Finally, in case alternatives are ultimately chosen as the result of Downsian com-

petition between two parties, we have existence of mixed strategy equilibrium in models

with a continuum of voters, as in Kramer (1978), whereas the problem of existence remains

unsolved for finite electorates: the presence of a continuum of voters helps to “smooth out”

the parties’ payoffs, eliminating certain discontinuities that are extremely problematic in

the finite case.

While the above authors consider majority rule only or restrict attention to anonymous

voting rules, we build on the concept of a simple game to describe the distribution of power in

a large electorate. Our definition extends Shapley’s (1962) notion of simple game, defined

for a finite set of players, to a measure space of voters, but we add the restriction that

measure zero sets of voters “don’t count,” an intuitive idea in a model of political decision-

making in a democratic society. We explore the implications of this new structure, and we

define several new continuity properties of simple games that generalize majority rule and

play an important role subsequently. We then analyze the properties of social preferences

induced by simple games. Notably, we introduce a dispersion condition on voter preferences

that plays a role analogous to that of an odd number of voters in the finite context: our

condition essentially demands that, given any three non-collinear alternatives and any of

the six possible rankings of them, the set of voters whose preferences conform to that

ranking has positive measure. We use this condition, which holds, for example, if voters

have Euclidean preferences and ideal points are distributed according to a density function

with full support, to prove that social “indifference curves” are nowhere dense. Finally,

we consider the core, the uncovered set, and the undominated set generated by arbitrary

electorates. We first prove the generic emptiness of the core, extending earlier results for

finite electorates, and we then exploit our choice-theoretic results on the uncovered set and
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undominated set. We show, for example, that if voters have continuous preferences with

compact upper sections, and if the simple game satisfies a minimal continuity property,

then the uncovered set is nonempty. We also establish, under slightly stronger conditions

involving the lower hemicontinuity of upper sections of the social preference relation, the

nonemptiness of the undominated set. We show that these sets are upper hemicontinuous

at preference profiles where the core is nonempty and externally stable, generalizing Cox’s

(1987) continuity result. Finally, we give conditions under which the undominated set

is lower hemicontinuous, a key condition for the existence of continuous selections, via

Michael’s Selection Theorem.

Returning to the Downsian electoral model, a policy position is not weakly dominated

for a party if and only if it lies in the undominated set, so our result on nonemptiness

of the undominated set implies the existence of undominated strategies for the parties,

despite the substantial discontinuities in the parties’ payoff functions. An implication of

our result on the generic emptiness of the core, however, is that, even with a continuum

of voters, almost all assignments of preferences to voters lead to the non-existence of pure

strategy equilibrium. If there is a mixed strategy equilibrium with probability-of-winning

maximizing parties, then Banks, Duggan, and Le Breton (2002) show that the support of

all such mixed strategy equilibria must lie in the uncovered set. Our continuity results

then have the following implications. Suppose that there is a continuum of voters, and

consider a preference profile for which the core is nonempty and externally stable. For

example, in the Euclidean setting, suppose voter ideal points are distributed according to a

radially symmetric density function. There is then a pure strategy equilibrium, the unique

core point, which coincides with the undominated set and uncovered set. Now perturb

the distribution of ideal points to violate symmetry, so that the core is empty and pure

strategy equilibria no longer exist. By upper hemicontinuity, the uncovered set cannot

expand discontinuously to contain points far away from the core of the original profile, and,

since the undominated strategies form a subset of the uncovered set, the same is true for

them. Mixed strategy equilibria, if any, will have supports contained in the uncovered set,

and it follows that these equilibrium strategies must put probability close to one on points

nearby the pure strategy equilibria of the original game. Thus, we obtain a robustness

result for Downsian elections.

Furthermore, our upper hemicontinuity result can be applied to investigate the prop-

erties of the uncovered set for large but finite electorates. Suppose, for example, that the

set of alternatives is multidimensional and voter preferences are Euclidean, and consider

a distribution over the set of alternatives possessing a unique median in all directions. If

we randomly draw voter ideal points from this distribution, then with probability one the

core will be empty after any finite number of draws, but the uncovered sets of these finite

electorates will be nonempty. Moreover, by the Glivenko-Cantelli Theorem, the empirical

distribution of preferences in the finite electorates will approximate the underlying distri-

bution with probability one. After mapping these finite electorates into a model with a

fixed, infinite set of voters, our continuity result implies that the corresponding uncovered

sets must become arbitrarily close to the core of the underlying distribution, which is the
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median in all directions. It follows that the undominated strategies and the mixed strat-

egy equilibrium outcomes of Downsian competition also converge to this underlying core

point. Thus, we confirm a longstanding conjecture by Nicholas Miller that the uncovered

set collapses to a centrally located area as the number of voters increases.8

The problems we take up in this paper are quite different from another literature on

social choice with infinite electorates, which takes an axiomatic approach in the spirit of

Arrow (1963). Fishburn (1970), Kirman and Sondermann (1972), and Armstrong (1980),

for example, extend Arrow’s Theorem to infinite sets of voters without the added structure

of a measure on the set of voters. Recently, Gomberg, Martinelli, and Torres (2002) and

Fey (2002) have considered the implications of anonymity for a measure space of voters.

These authors begin with axioms on aggregation rules defined on a domain of preferences

and characterize the rules satisfying these axioms. In contrast, we begin with a restricted

class of aggregations rules, and we deduce properties of social preferences generated by a

fixed profile of preferences or we deduce properties of certain sets of preference profiles.

In Section 2, we analyze the core, uncovered set, and undominated set in the abstract

choice theory setting. In Section 3, we introduce a measure space of voters and define our

concept of a simple game. In Section 4, we examine the properties of social preferences

derived from an electorate. In Section 5, we present our genericity and continuity results

on the core, uncovered set, and undominated set. An appendix contains a general analysis

of binary relations, proofs of lemmas, and proofs of the propositions omitted from the text.

2 Choice Sets

We consider an abstract setting in this section, letting P be a strict preference relation and

R a weak preference relation over a topological space A of alternatives. When we discuss

the case of finite A, we will always assume the discrete topology. We assume here that P is

irreflexive, that R is reflexive, and that the relations are dual: aRb if and only if not bPa.

Note that P is asymmetric if and only if R is complete, in which case P is the asymmetric

part of R.9 We say P is a tournament if it is also connected, in the sense that a 6= b implies

aPb or bPa. Given an arbitrary relation Q on A, we denote by Q(a) the set {b ∈ A : bQa}

and by Q−1(a) the set {b ∈ A : aQb}. Note that, by duality, P−1(a) is open if and only

if R(a) is closed. An alternative a is Q-maximal if, for all b ∈ A, bQa implies aQb. If

Q is asymmetric, this is equivalent to Q(a) = ∅; if Q is complete, this is equivalent to

Q−1(a) = X. For now, we abstract from the details of P , R, and A, though later A will

be given the interpretation of a policy space and P and R will represent social preferences,

derived from an explicit collection of “winning coalitions.”

A central concept in what follows is the core, denoted K, which is defined as the set of

8See Shepsle and Weingast’s (1984) footnote 15. This result is also related to work on convergence of
the yolk by Feld, Grofman, and Miller (1988), Koehler (1990), and Tovey (1992) in the spatial model with
Euclidean preferences.

9The conditions of asymmetry and completeness are standard, but they are used in this section for only
two results. We state our other results without those conditions, to maximize their generality.
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P -maximal (equivalently, R-maximal) alternatives. That is, an alternative lies in the core

if and only if there is no other alternative strictly preferred to it (equivalently, it is weakly

preferred to all other alternatives). When P is asymmetric, as in most applications, we

have

K = {a ∈ A : P (a) = ∅}.

We define the dominance relation, denoted D, as follows: aDb if and only if P (a) ⊆ P (b)

and R(a) ⊆ R(b), at least one inclusion strict. The undominated set, denoted UD, consists

of the D-maximal alternatives. Since D is asymmetric, this can be written as

UD = {a ∈ A : D(a) = ∅}.

Define the covering relation, denoted C, as follows: aCb if and only if aPb, P (a) ⊆ P (b),

and R(a) ⊆ R(b). Equivalently, aCb if and only if aPb and aDb. The uncovered set, denoted

UC, consists of the C-maximal alternatives. Since C is asymmetric, this can be written as

UC = {a ∈ A : C(a) = ∅}.

It is clear from these definitions that K ∪ UD ⊆ UC.10

The next proposition gives a condition on preferences sufficient for external stability

of the core and for the nesting of the core and undominated set. This condition, that

R(a) = P (a)∪ {a} for every alternative,11 formalizes the idea that the “indifference curve”

through a is “thin.” Indeed, define the relation I as follows: aIb if and only if aRb and

bRa. An implication of our condition is that, if P (a) is open, then I(a) is nowhere dense.

We append the singleton {a} to P (a) to capture the case in which A is finite and P is a

tournament.

Proposition 1 Assume R(a) = P (a)∪{a} for all a ∈ A. For all a ∈ K and all b ∈ A\{a},

aPb. If K is nonempty, then it is a singleton, and K = UD = UC.

Proof: Take any a ∈ K and any distinct b ∈ A. If not aPb, then b ∈ R(a) = P (a) ∪ {a}.

Since b 6= a, we have P (a) 6= ∅, contradicting a ∈ K. Thus, aPb. It follows that aCb for all

b ∈ A \ {a}, and since C is asymmetric, this implies K = UD = UC.

Though K can be empty in the absence of acyclicity or semi-convexity of P ,12 asymmetry

and transitivity of C and D immediately imply nonemptiness of the sets UD and UC when

A is finite. Our general results on nonemptiness and external stability of the above sets

follow from the analysis of maximal elements in the appendix.

10Some authors define covering without P (a) ⊆ P (b), and others drop R(a) ⊆ R(b). We show that, in
some environments, these omissions are inconsequential. In general, however, both inclusions are needed for
the logical nesting of the undominated and uncovered sets.

11Given a set X, X denotes the closure of X, X◦ denotes the interior, and Xc denotes the complement.
12We say P is semi-convex if, for all a ∈ A, a is not contained in the convex hull of P (a). See Austen-Smith

and Banks (1999) for a reference on existence of maximal elements under semi-convexity.
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Proposition 2 Assume R(a) is compact for some a ∈ A, and R(b) is closed for all b ∈ A.

Then UC 6= ∅.

The nonemptiness of the undominated set is obtained under stronger assumptions on

preferences.

Proposition 3 Assume R(a) is compact for some a ∈ A, R(b) is closed for all b ∈ A, and

R(·) is lower hemicontinuous as a correspondence. Then UD 6= ∅.

We now establish that, under the assumptions of Proposition 3, the undominated and

uncovered sets are externally stable.

Proposition 4 Assume R(a) is compact for all a ∈ A and R(·) is lower hemicontinuous

as a correspondence.

1. If a /∈ UD, then there exists b ∈ UD such that bDa.

2. If a /∈ UC, then there exists b ∈ UC such that bCa.

We next give conditions that can be used to simplify the definitions of the dominance

and covering relations. One condition is “thin indifference curves,” i.e., R(a) = P (a)∪ {a},

and the other requires that sections of the strict preference relation “fill” sections of weak

preference: P (a) ∪ {a} = R(a)◦ ∪ {a}. Again, we append the singleton {a} to capture the

case where A is finite and P is a tournament. The next lemma, which generalizes Shepsle

and Weingast’s (1984) Lemma 1, does the bulk of the work for us.

Lemma 1

1. If R(a) = P (a) ∪ {a} and R(b) = P (b) ∪ {b}, then P (a) ⊆ P (b) implies R(a) ⊆ R(b).

2. If P (a) ∪ {a} = R(a)◦ ∪ {a} and P (b) ∪ {b} = R(b)◦ ∪ {b}, then R(a) ⊆ R(b) implies

P (a) ⊆ P (b).

Before continuing, we note an alternative formulation of the “full weak sections” condi-

tion in the second part of Lemma 1. It is used in several results to follow.

Lemma 2 Assume A is Hausdorff. Then P (a) ∪ {a} = R(a)◦ ∪ {a} for all a ∈ A if and

only if R−1(a) = P−1(a) ∪ {a} for all a ∈ A.

We now consider some equivalent formulations of the covering and dominance relations.

A version of the following proposition can be found in McKelvey’s (1986) Proposition 3.3,

where he assumes conditions on voter preferences to obtain needed conditions on social

preferences, namely, thin indifference curves and full weak sections. His assumptions are
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indeed sufficient for thin indifference curves, used in part 1 of Proposition 5, below, and

so the two equivalences there do hold in his model. McKelvey’s assumptions on voter

preferences do not, however, entail full weak sections, used in part 2 of the proposition: the

condition will hold under his other assumptions if the set A of alternatives is an open subset

of ℜn, but not generally. The condition is crucial, for without it, the implication

aPb and R(a) ⊆ R(b) ⇒ aCb

may fail. In Section 4, we give two examples of social choice environments, including the

divide-the-dollar environment, where this failure occurs. Thus, violations of the full weak

sections condition necessitate care in the definition of covering and raise the possibility of

multiple “uncovered sets.” Note that the conditions of our proposition hold if A is finite

and P is a tournament, though the equivalences are well-known in that environment.

Proposition 5

1. If R(a) = P (a) ∪ {a} for all a ∈ A, then

aCb ⇔ aPb and P (a) ⊆ P (b)

aDb ⇔ P (a) ⊂⊂ P (b).

2. Assume A is Hausdorff. If R−1(a) = P−1(a) ∪ {a} for all a ∈ A, then

aCb ⇔ aPb and R(a) ⊆ R(b)

aDb ⇔ R(a) ⊂⊂ R(b).

Proof: To prove the first part of the proposition, suppose R(a) = P (a)∪{a} for all a ∈ A.

Clearly, aCb implies aPb and P (a) ⊆ P (b). For the opposite direction, note that, by Lemma

1, P (a) ⊆ P (b) implies R(a) ⊆ R(b), as required. Clearly, aDb implies P (a) ⊆ P (b).

If this inclusion is not strict, then P (a) = P (b), and Lemma 1 implies R(a) = R(b), a

contradiction. Therefore, P (a) ⊂⊂ P (b). For the opposite direction, note that, by Lemma

1, P (a) ⊂⊂ P (b) implies R(a) ⊆ R(b). To prove the second part of the proposition, suppose

R−1(a) = P−1(a) ∪ {a} for all a ∈ A. By Lemma 2, we have P (a) ∪ {a} = R(a)◦ ∪ {a}

for all a ∈ A. Clearly, aCb implies aPb and R(a) ⊆ R(b). For the opposite direction,

note that, by Lemma 1, R(a) ⊆ R(b) implies P (a) ⊆ P (b), as required. Clearly, aDb

implies R(a) ⊆ R(b). If this inclusion is not strict, then R(a) = R(b), and Lemma 1 implies

P (a) = P (b), a contradiction. Therefore, R(a) ⊂⊂ R(b). For the opposite direction, note

that, by Lemma 1, R(a) ⊂⊂ R(b) implies P (a) ⊆ P (b).

We end this section by considering the possibility of deriving a version of the “two-step”

principle (Miller (1980)) in our abstract setting. We first prove a simple lemma, a version

of which can be found in McKelvey’s (1986) Proposition 3.4.13 For a binary relation Q on

A, we denote by Q2(a) the set Q(a) ∪ {b ∈ A : ∃c ∈ A, bQcQa}.

13Part 1 of Lemma 3 generalizes Shepsle and Weingast’s (1984) lemma 2(b); part 2 of Lemma 3 generalizes
their Lemma 5; and part 3 of Lemma 3 generalizes their Lemma 2(a). In the latter result, however, the
authors omit the antecedent condition of part 3, which, as we show in Section 4, is needed for the result.
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Lemma 3 Assume R is complete and P is asymmetric.

1. If a ∈ P 2(b), then P (b) 6⊆ P (a) and R(b) 6⊆ R(a).

2. If P (b) 6⊆ P (a) or R(b) 6⊆ R(a), then a ∈ R2(b).

3. If R−1(a) = P−1(a) ∪ {a} for all a ∈ A, then a ∈ P 2(b) if and only if P (b) 6⊆ P (a).

4. If R(a) = P (a) ∪ {a} for all a ∈ A, then a ∈ P 2(b) if and only if R(b) 6⊆ R(a).

We now state a form of the two-step principle. The first part of Proposition 6 is as

in Shepsle and Weingast’s (1984) Proposition 2 and McKelvey’s (1986) Proposition 4.1.

In the latter paper, however, McKelvey also states that UC is contained in the closure of⋂
a∈A(P 2(a)∪{a}),14 but his proof contains an error,15 and we have not been able to verify

the result. Thus, the size of the gap between the uncovered and undominated sets, despite

the similarities in their definitions, remains open. The next result does establish, under a

richness condition on the strict preference relation, a strong version of the two-step property

for the undominated set: given any undominated alternative a and any other b, either a

is strictly preferred to b, or it is strictly preferred to some alternative that is itself strictly

preferred to b.

Proposition 6 Assume R is complete and P is asymmetric.

1.
⋂

a∈A(P 2(a) ∪ {a}) ⊆ UD ⊆ UC ⊆
⋂

a∈A R2(a).

2. Assume R−1(a) = P−1(a)∪ {a} and R(a) = P (a)∪ {a} for all a ∈ A, and P is open.

If a ∈ UD and b /∈ UD, then a ∈ P 2(b). If a ∈ UC and b /∈ UC, then a ∈ P 2(b).

3. Moreover, under the latter assumptions, if a ∈ UD and b ∈ A \ {a}, then either

a ∈ P 2(b) or P (a) = P (b).

Proof: That
⋂

a∈A(P 2(a) ∪ {a}) ⊆ UD follows from the first part of Lemma 3. That

UC ⊆
⋂

a∈A R2(a) follows from the second part of Lemma 3. To prove the second part of

the proposition, take a ∈ UD and b /∈ UD. Let cDb. Since not cDa, either P (c) 6⊆ P (a),

or R(c) 6⊆ R(a), or both P (c) = P (a) and R(c) = R(a). In the first two cases, the third

and fourth parts of Lemma 3 yield a ∈ P 2(c) and, therefore, a ∈ P 2(b). In the last case,

aDb, and at least one of P (a) ⊆ P (b) and R(a) ⊆ R(b) holds strictly, and Lemma 3 again

implies a ∈ P 2(b). Now take a ∈ UC and b /∈ UC. Let cCb. Since not cCa, there are four

possible cases: the three above, which proceed as before, and aRc. If a = c, then, since

cPb, we are done. If a 6= c, then c ∈ P−1(a). Since c ∈ P (b), an open set, there exists

d ∈ P−1(a)∩P (b), which means a ∈ P 2(b). To prove the third part of the proposition, take

a ∈ UD and b 6= a. Then either P (b) 6⊆ P (a) or R(b) 6⊆ R(a) or P (b) = P (b). By parts 3

and 4 of Lemma 3, each of the first two cases imply a ∈ P 2(b).

14After correcting a typo: the set
⋂

a∈A
P 2(a) considered by McKelvey is necessarily empty, by asymmetry

of P . Shepsle and Weingast consider the same set.
15In the last line on p.309, McKelvey claims that “

⋂
y∈X

P 2(y) ⊆
⋂

y∈X
P 2(y),” which need not hold.
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The results of this section have been presented in the framework of abstract choice

theory, but their main application concerns collective choice situations, where P and R

aggregate the preferences of a group of voters. The next section provides a general model

of the set of voters and the decision-making power of coalitions.

3 Electorates

The purpose of this section is to introduce a general framework, describing an electorate

as a measurable mapping from an abstract set of voters into the set of continuous weak

orderings of alternatives. The framework is general enough to accommodate a finite number

or a continuous distribution of voters. An electorate consists of a probability space (Ω, Σ, λ),

where Ω is a set of voters (or voter “types”), a σ-algebra Σ on Ω, and a probability measure

λ, together with a preference profile ρ, formalized as follows. Let A denote a topological

space of alternatives, and let R denote the set of closed weak orders on A (complete,

transitive relations, closed in A × A), endowed with the topology of closed convergence

(Hildenbrand (1974)). Endowing R with the Borel σ-algebra, a profile is a measurable

mapping ρ: Ω → R, where ρ(ω) is the weak preference relation of voter ω. Let π(ω) denote

the asymmetric part of ρ(ω), the strict preference relation of voter ω. If A is a Hausdorff,

locally compact space, then, given any a, b ∈ A, the set {R ∈ R : aRb} is closed in the

topology of closed convergence, and, since ρ is measurable, the coalitions {ω ∈ Ω : aρ(ω)b}

and {ω ∈ Ω : aπ(ω)b} are Σ-measurable. If Ω is a topological space, in which case we assume

that Σ consists of the Borel sets, and if ρ is continuous, then these coalitions of voters are

closed and open, respectively. Except for the regularity imposed by measurability, the

notion of electorate is simply the direct extension of the notion of profile used when there

is a finite number of voters.

We now turn to our formal representation of the distribution of power in the electorate,

a concept that underlies our analysis of social preferences in the next section.

Definition 1 A simple game is a collection W ⊆ Σ of coalitions such that ∅ /∈ W, Ω ∈ W,

and, for all S ∈ W and all T ∈ Σ, λ(S \ T ) = 0 implies T ∈ W.

The coalitions in W are winning coalitions. Note that, by our definition, winning coali-

tions can be thought of as equivalence classes: two sets that differ only on a set of λ-measure

zero have the same status as winning or not winning. An implication is that the collec-

tion of winning coalitions cannot be defined without reference to the distribution of voter

types. Furthermore, we incorporate a monotonicity condition into our definition: if S ∈ W

and T ∈ Σ satisfies S ⊆ T , then T ∈ W. We say a coalition S is blocking for W if its

complement is not winning, and we let B denote the collection of blocking coalitions, i.e.,

B = {S ∈ Σ : Sc /∈ W}. Note that B is itself a simple game, and that W and B are dual, in

the sense that W consists of the coalitions blocking for B.

The following properties of simple games will be used in the sequel.
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Definition 2 A simple game W satisfies the following conditions if it possesses the corre-

sponding properties.

1. proper: W ⊆ B.

2. open from below: for all sequences {Sn} in Σ and all S ∈ W, if Sn ↑ S, then there

exists m such that, for all n ≥ m, Sn ∈ W.

3. closed from above: for all sequences {Sn} in W and all S ∈ Σ, if Sn ↓ S, then S ∈ W.

4. liminf-open: for all sequences {Sn} in Σ with lim inf Sn ∈ W, there exists m such

that, for all n ≥ m, Sn ∈ W.

5. limsup-closed: for all sequences {Sn} in W, lim sup Sn ∈ W.

6. λ-open: for all S ∈ W, there exists ǫ > 0 such that, for all T ∈ Σ, if λ(S \ T ) ≤ ǫ,

then T ∈ W.

7. λ-closed: for all S ∈ Σ, if for all ǫ > 0 there exists T ∈ W such that λ(T \ S) ≤ ǫ,

then S ∈ W.

8. anonymous: for all S ∈ W and all T ∈ Σ, if λ(T ) = λ(S) then T ∈ W.

9. semi-strong: for all S ∈ B and all T ∈ Σ, if S ⊆ T and λ(T \ S) > 0, then T ∈ W.

10. strong: B ⊆ W.

Note that W is proper if and only if S, T ∈ W implies λ(S ∩ T ) > 0. The next propo-

sition establishes some connections between continuity properties of winning and blocking

coalitions. Note that, by duality, the proposition implies that W is closed from above if and

only if B is open from below, with similar dual results for liminf-open and limsup-closed

simple games and for λ-open and λ-closed simple games.

Proposition 7

1. W is open from below if and only if B is closed from above.

2. W is liminf-open if and only if B is limsup-closed.

3. W is λ-open if and only if B is λ-closed.

Proof: To prove the first part of the proposition, note that W is open from below if and

only if, for all sequences {Sn} in Σ and all S ∈ W, Sn ↑ S implies there exists m such that,

for all n ≥ m, Sn ∈ W. Equivalently: if Sn ↑ S and there is some subsequence of {Sn}

(also indexed by n) such that, for all n, Sn /∈ W, then S /∈ W. Equivalently: if Sc
n ↓ Sc

and there is some subsequence of {Sc
n} such that, for all n, Sc

n ∈ B, then Sc ∈ B. And

the latter means that B is closed from above. To prove the second part, note that W is
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liminf-open if and only if, for all sequences {Sn} in Σ with lim inf Sn ∈ W, there exists

m such that, for all n ≥ m, Sn ∈ W. Equivalently: if there is some subsequence of {Sn}

(also indexed by n) such that, for all n, Sn /∈ W, then lim inf Sn /∈ W. Equivalently: if

there is some subsequence of {Sc
n} (also indexed by n) such that, for all n, Sc

n ∈ B, then

lim sup Sc
n = (lim inf Sn)c ∈ B. And the latter means that B is limsup-closed. To prove the

third part, note that W is λ-open if and only if, for all S ∈ Σ, if for all ǫ > 0 there exists

T /∈ W such that λ(S \ T ) ≤ ǫ, then S /∈ W. Equivalently: for all S ∈ Σ, if for all ǫ > 0

there exists T ∈ Σ with T c ∈ B such that λ(T c \ Sc) ≤ ǫ, then Sc ∈ B. And the latter

means that B is λ-closed.

If Ω is finite, then every simple game is clearly λ-open, liminf-open, open from below,

λ-closed, limsup-closed, and closed from above. The next proposition illustrates a general

nesting of the first three of these concepts. By duality, of course, the next proposition

immediately implies that, if B is λ-closed, then it is limsup-closed; and if B is limsup-closed,

then it is closed from above.

Proposition 8

1. If W is λ-open, then it is liminf-open.

2. If W is liminf-open, then it is open from below.

Proof: Suppose W is λ-open, and take a sequence {Sn} in Σ such that lim inf Sn ∈ W, i.e.,⋃∞
n=1

⋂∞
k=n Sn ∈ W. Letting Tn =

⋂∞
k=n Sn and T =

⋃∞
n=1 Tn, we have Tn ↑ T , implying

T \ Tn ↓ ∅. Therefore, λ(T \ Tn) → 0. Since W is λ-open, there exists m such that, for all

n ≥ m, Tn ∈ W. Then, since Tn ⊆ Sn, we have Sn ∈ W for all n ≥ m, as required. Now

suppose W is liminf-open, and take a sequence {Sn} in Σ and S ∈ Σ such that Sn ↑ S.

Clearly, S = lim inf Sn, so there exists m such that, for all n ≥ m, Sn ∈ W, as required.

The next proposition establishes an implication of openness from below when voters

are continuously distributed, namely, that we cannot have the collections of winning and

blocking coalitions both open from below. Note the immediate implication, with Proposition

8, that W and B cannot both be liminf-open or λ-open. By duality, these simple games

cannot both be closed from above, limsup-closed, or λ-closed. The result also illustrates the

restrictiveness of W being proper and strong: if both of those conditions hold, then W = B,

so that W cannot be open from below. Though these conditions are relatively innocuous

in finite electorates, in continuous electorates they are inconsistent with a basic continuity

property of simple games.

Proposition 9 Assume λ is non-atomic. If W is open from below, then B is not open from

below.

Proof: Assume W is open from below, and suppose B is also open from below. Let S1 ∈ W,

and note that λ(S1) > 0, for otherwise ∅ ∈ W. Since λ is non-atomic, for each natural
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number n, Lyapunov’s Convexity Theorem (Aliprantis and Border (1999), Theorem 12.33)

yields Sn
1 ∈ Σ such that Sn

1 ⊆ S1 and λ(Sn
1 ) = 1/n. Without loss of generality, we may

assume Sn
1 ↑ S1. Therefore, since W is open from below, the set

E1 = {ǫ > 0 : ∃T ∈ W : T ⊆ S1, λ(S1 \ T ) ≥ ǫ}

is nonempty. Let ǫ1 = supE1 > 0, and take S2 ∈ W such that S2 ⊆ S1 and λ(S1\S2) ≥ ǫ1/2.

Since W is open from below and λ is non-atomic,

E2 = {ǫ > 0 : ∃T ∈ W : T ⊆ S2, λ(S2 \ T ) ≥ ǫ}

is nonempty. Let ǫ2 = supE2 > 0, and take S3 ∈ W such that S3 ⊆ S2 and λ(S2\S3) ≥ ǫ2/2,

and so on. Note that ǫn → 0. Define S =
⋂∞

n=1 Sn, so that Sn ↓ S. If S /∈ W, then Sc ∈ B.

Because B is open from below and Sc
n ↑ Sc, we then have Sc

n ∈ B for high enough n,

contradicting Sn ∈ W. Thus, S ∈ W. Note that λ(S) > 0, for otherwise ∅ ∈ W. By the

above arguments, however, there exists T ∈ W such that T ⊆ S and λ(S \ T ) > 0. Take n

high enough that ǫn < λ(S \ T ), and note that λ(Sn \ T ) ≥ λ(S \ T ) > ǫn, a contradiction.

Therefore, B is not open from below, as claimed.

If W is open from below and anonymous, then it is easy to see that it is simply defined

by a quota q ∈ [0, 1], as follows:

S ∈ W if and only if λ(S) > q,

where q ≥ 1/2 if W is proper. In fact, all quota rules of this form are actually λ-open.

Majority rule, which is the special case with quota q = 1/2, is always semi-strong: if S ∈ B,

then λ(S) ≥ 1/2; then S ⊆ T and λ(T \S) > 0 implies λ(T ) > 1/2, i.e., T ∈ W. Of course,

strong implies semi-strong. That the implication is strict can be seen in the important case

of Ω finite: majority rule is always semi-strong but is not always strong, e.g., when λ is

the uniform measure and the number of voters is even. Note that W is strong if and only

if B is proper; and W is proper if and only if B is strong. In models with a finite number

n of voters, majority rule with n odd and dictatorship (i.e., W = {S ∈ Σ : ω′ ∈ S} for

some ω′ ∈ Ω) are examples of proper, strong simple games. If λ is non-atomic, however,

then majority rule is not strong and dictatorship is not proper. One way to see this is

to note that both simple games are open from below, while majority rule is proper and

dictatorship is strong, so the claim follows from Proposition 9. It is also straightforward to

verify directly. In the case of majority rule, by Lyapunov’s Convexity Theorem, there exists

a coalition S ∈ Σ such that λ(S) = 1/2, so that S, Sc ∈ B, so majority rule is not strong.

Dictatorship is not even a well-defined simple game when {ω′} has λ-measure zero, as the

empty set would then also be winning, contrary to our definition.16

16For an example of an alternative to pure dictatorship, let Ω = [0, 1], and define W to consist of the
coalitions containing an open set around ω′. As long as λ has a positive density, so that every open set has
positive λ-measure, this simple game is proper. Moreover, given any continuous profile ρ, voter ω′ is, in fact,
a dictator: if aπ(ω′)b, then, by continuity, an open set around ω′ will share that strict preference, so a is
socially preferred to b. The collection of winning coalitions in this example is still not strong, however.
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Do proper, strong simple games exist when the electorate is a continuum and voters

are continuously distributed? As the next proposition shows, the answer is affirmative.

In fact, there exists a proper and strong simple game such that, for all S, T ∈ W, we

have S ∩ T ∈ W. The proof is a direct implication of Sikorski’s (1964) Theorem 6.1 and

surrounding discussion in his Section 6.

Proposition 10 There exists W that is proper and strong and such that, for all S, T ∈ W,

S ∩ T ∈ W.

Given the above model of an electorate, the next section analyzes the properties of social

preferences generated by a simple game. Of note, we show that the proper and strong

simple games established in the previous proposition are “rare” when the preferences of

voters are sufficiently heterogeneous: such simple games are inconsistent with a fundamental

continuity property of social preferences.

4 Social Preferences

Given an electorate and a simple game, social preferences over the set A of alternatives are

determined as follows. For S ∈ Σ, let

PS =
⋂

ω∈S

π(ω) and RS =
⋂

ω∈S

ρ(ω),

and define strict social preference, P , and weak social preference, R, as

P =
⋃

S∈W

PS and R =
⋃

S∈B

RS .

That is, aPb if and only if the set of voters who strictly prefer a to b is a winning coalition.

Equivalently, aRb if and only if the set of voters who weakly prefer a to b is blocking. Note

that ∅ /∈ W implies that P is irreflexive, and Ω ∈ B implies R is reflexive.

The next proposition gives weak conditions under which weak social preference R is

complete and strict social preference P is the asymmetric part of R, i.e., aPb if and only if

aRb and not bRa.

Proposition 11 Assume A is Hausdorff and locally compact. If W is proper, then R is

complete and P is the asymmetric part of R.

Proof: Take any a, b ∈ A, and suppose that neither aRb nor bRa. Then, by definition,

S = {ω ∈ Ω : aρ(ω)b} /∈ B and T = {ω ∈ Ω : bρ(ω)a} /∈ B. Since A is Hausdorff and locally

compact, it follows from Aliprantis and Border’s (1999) Theorem 2.63 that {R ∈ R : aRb}

and {R ∈ R : bRa} are measurable. Since ρ is measurable, it follows that S and T are

measurable, and, therefore, we have Sc, T c ∈ Σ. Then, by definition, we have Sc, T c ∈ W.

But since each π(ω) is asymmetric, it follows that Sc and T c are disjoint, contradicting the

assumption that W is proper. Thus, R is complete. That P is the asymmetric part then

follows by construction.
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Our main objective in this section is to give primitive conditions on the underlying

electorate sufficient for the continuity properties of preferences used in Section 2, as well as

for the “thin indifference” properties of Propositions 5 and 6. Our first result, on continuity

of social preferences, is proved by McKelvey (1986) in his Lemma 2 for a finite number of

voters: we extend the result to general electorates under our weakest continuity condition

for simple games.17

Proposition 12 Assume A is first countable. If W is open from below, then P is open and

R is closed.

Proof: Suppose aPb, or equivalently, (a, b) ∈ P . Thus, there exists S ∈ W such that

(a, b) ∈
⋂

ω∈S π(ω). Let {Gn} be a countable neighborhood base of (a, b) in A × A, and

assume without loss of generality that it is decreasing. Since ρ(ω) is closed for each ω, π(ω)

is open for each ω. Therefore, letting Sn = {ω ∈ S : Gn ⊆ π(ω)}, we have Sn ↑ S. Since W

is open from below, there exists m such that, for all n ≥ m, Sn ∈ W. Therefore, Gn ⊆ P

for high enough n, so P is open. That R is closed then follows by definition.

From Proposition 7, if B is closed from above, then P is open and R is closed. If A is a

compact Hausdorff space, then R(·) is upper hemicontinuous as a correspondence. Though

Proposition 12 yields openness of P, it cannot in general be simultaneously be applied to⋃
S∈B PS , the social preference generated by blocking coalitions: Proposition 9 has shown

that, with a continuum of voters, W and B cannot both be open from below. We can,

however, derive continuity properties of strict social preferences in simple games that are

not open from below, if we impose topological conditions on the electorate and a condition

restricting shared weak preferences across voters. Assuming Ω is a topological space, we

denote by S∗ the support of λ, i.e., the smallest closed set with λ-measure one.

Definition 3 Limited shared weak preference (LSWP) holds if, for all a, b ∈ A with a 6= b,

and for all S ∈ Σ, aRSb implies a ∈ PT (b) \ {a}, where T = S ∩ S∗.

Thus, if every member of S weakly prefers a to b 6= a, then we can approximate a

by alternatives strictly preferred to b by λ-almost every member of S. One condition

sufficient for LSWP is evident. Assuming A is a vector space, we say voter ω’s preferences

are strictly convex if, for all a ∈ A, all b ∈ ρ(ω)(a) \ {a}, and all α ∈ (0, 1), we have

αa + (1 − α)b ∈ π(ω)(a). LSWP holds if λ puts measure one on some closed subset of the

voters with strictly convex preferences. Banks and Duggan (1999,2000) give a number of

examples of other environments satisfying LSWP in the finite-voter framework, including

divide-the-dollar environments, private good economies, and mixed economies. As discussed

in these papers, strict convexity does not hold in these environments, so that LSWP offers

17Shepsle and Weingast (1984) use McKelvey’s result, but they consider “relative” majority rule (a is
majority-preferred to b if and only if more voters strictly prefer a to b than prefer b to a), which does not
possess this continuity property. Their results go through for “simple” majority rule, as defined in this
paper.
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considerably more generality than the stronger condition. Note that LSWP implies that A

is infinite — in fact, it is inconsistent with the discrete topology.

The next result is stated for an arbitrary simple game S. Under the assumptions of

the lemma, Proposition 12 already shows that P is open, giving us lower hemicontinuity of

strict social preferences, but the lemma also applies when S = B.

Lemma 4 Assume A is Hausdorff, second countable, and locally compact; Ω is a compact

topological space and ρ is continuous; and LSWP holds. Let S be an arbitrary simple game.

Then
⋃

S∈S PS(·) is lower hemicontinuous as a correspondence.

Lower hemicontinuity of weak social preferences, critical for the nonemptiness of the

undominated set, holds under the conditions of Lemma 4. Since those conditions are satis-

fied if the set of voters is finite with strictly convex preferences, the next result generalizes

McKelvey’s (1986) Lemma 4.

Proposition 13 Assume A is Hausdorff, second countable, and locally compact; Ω is a

compact topological space and ρ is continuous; and LSWP holds. Then P (·) and R(·) are

lower hemicontinuous as correspondences.

Proof: Lower hemicontinuity of P (·) follows directly from Lemma 4 by setting S = W.

Now take any a ∈ A and any b ∈ R(a). If b 6= a, let S ∈ B be such that b ∈ RS(a). By

LSWP, b ∈ PT (a) \ {b}, where T = S ∩ S∗ ∈ B. Therefore, b ∈ PT (a)∪ {a}. Since b ∈ R(a)

was arbitrary, we have

{a} ∪
⋃

S∈B

PS(a) ⊆ R(a) ⊆ {a} ∪
⋃

S∈B

PS(a) ⊆ {a} ∪
⋃

S∈B

PS(a).

The correspondence defined by a 7→ {a} is clearly lower hemicontinuous, as is
⋃

S∈B PS(·),

by Lemma 4. The union of these two correspondences is lower hemicontinuous, so R(·)

differs from a lower hemicontinuous correspondence only at points of closure, implying that

it is lower hemicontinuous.

The next result gives conditions under which upper sections of R are compact. The

assumptions on the set of alternatives are satisfied if A is compact or if all voters have

compact weak upper sections and A is a subset of finite-dimensional Euclidean space. More

precise sufficient conditions follow the proposition.

Proposition 14 Assume A is first countable; for all a ∈ A and all ǫ > 0, there exists a

compact set Yǫ ⊆ A such that λ({ω ∈ Ω : ρ(ω)(a) ⊆ Yǫ}) > 1−ǫ; and W is open from below.

Then, for all a ∈ A, R(a) is compact.

Proof: Let {Y1/n} be a sequence of compact sets as in the assumption of the proposition,

and without loss of generality assume the sequence is increasing. Take any a ∈ A, and
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suppose that, for each n, there exists an ∈ R(a) \ Y1/n. Let Sn satisfy Sn ∈ B and anRSna.

Note that Sn ⊆ Tn = {ω ∈ Ω : ρ(ω)(a) 6⊆ Y1/n}, implying Tn ∈ B, for all n. Note

also that {Tn} is a decreasing sequence and that λ(Tn) ≤ 1/n for each n. Since W is

open from below, it follows from Proposition 7 that B is closed from above, implying that

T =
⋂∞

n=1 Tn ∈ B. But λ(T ) = 0, implying ∅ ∈ B, which implies Ω /∈ W, a contradiction.

Therefore, R(a) ⊆ Y1/n for some n. Since R(a) is closed, by Proposition 12, it follows that

R(a) is compact.

The next proposition shows that compactness of voters’ weak upper sections is essentially

sufficient for the condition of Proposition 14, even in quite general spaces.

Proposition 15 Assume A is Hausdorff, second countable, and locally compact; and, for

all a ∈ A, λ({ω ∈ Ω : ρ(ω)(a) is compact}) = 1. Then, for all a ∈ A and all ǫ > 0, there

exists a compact set Yǫ ⊆ A such that λ({ω ∈ Ω : ρ(ω)(a) ⊆ Yǫ}) > 1 − ǫ.

Proof: By Aliprantis and Border’s (1999) Lemma 2.69, A is σ-compact. By Aliprantis and

Border’s (1999) Corollary 2.70, A is hemi-compact, i.e., there exist compact subsets Y1,

Y2, . . . , such that A =
⋃∞

n=1 Yn, and for every compact Y ⊆ A, there exists n such that

Y ⊆
⋃n

m=1 Ym. Now fix a ∈ A and ǫ > 0. Let

Sn = {ω ∈ Ω : ρ(ω)(a) ⊆
n⋃

m=1

Ym},

and note that λ(
⋃∞

n=1 Sn) = 1. Therefore, there exists n such that λ(Sn) > 1 − ǫ. Setting

Yǫ =
⋃n

m=1 Ym, the condition of the proposition is fulfilled.

We can strengthen the compactness results of Propositions 14 and 15 significantly, after

strengthening our continuity assumption on the simple game: if W is liminf-open, then the

image of every compact set, not just singletons, under the weak social preference correspon-

dence R(·) is compact.

Proposition 16 Assume that A is Hausdorff, second countable, and locally compact; for

all a ∈ A, λ({ω ∈ Ω : ρ(ω)(a) is compact}) = 1; and assume that W is liminf-open. Then,

for all compact Y ⊆ A, the image R(Y ) =
⋃

a∈Y R(a) is compact.

Proof: As in the proof of Proposition 15, there exist compact subsets Y1, Y2, . . . , such

that A =
⋃∞

n=1 Yn, and for every compact Y ⊆ A, there exists n such that Y ⊆
⋃n

m=1 Ym.

Without loss of generality, we assume {Yn} is increasing.

Now let Y be a compact subset of A. Suppose that, for every Yn ⊆ A, there exists

bn ∈ R(Y ) \ Yn. For each n, let an ∈ Y satisfy bn ∈ R(an). Since Y is compact, we may

consider a convergent subsequence, still indexed by n, with limit a ∈ Y . For each n, let

Sn = {ω ∈ Ω : bnρ(ω)an} ∈ B, and let S =
⋂∞

n=1

⋃∞
m=n Sm be the limsup of this sequence.

Since W is liminf-open, it follows from Proposition 7 that B is limsup-closed, so S ∈ B.
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By assumption, S′ = {ω ∈ Ω : ρ(ω)(an) is compact for all n} satisfies λ(S′) = 1, so that

T = S ∩ S′ ∈ B. Suppose that λ(T ) > 0, and let ǫ = λ(T ). From Proposition 8, it follows

that W is open from below, and Proposition 15 then yields a compact set Yǫ such that

λ({ω ∈ Ω : ρ(ω)(a) ⊆ Yǫ}) > 1 − ǫ. Take any ω ∈ T , so that ω belongs to infinitely many

Sn. Consider a subsequence, still indexed by n for convenience, such that ω ∈ Sn for all

n. Suppose ρ(ω)(a) ⊆ Yǫ. By Debreu’s (1964) Proposition 3, there is a continuous utility

representation u: A → ℜ of ρ(ω). Choosing n high enough that Yǫ ⊆ Yn, note that bn /∈ Yn

implies bn /∈ Yǫ, which implies bn /∈ ρ(ω)(a). Thus, u(a) > u(bn) ≥ u(an) for sufficiently

high n. By continuity, u(an) → u(a). Choosing any n satisfying u(a) > u(an), we therefore

have u(bn′) ≥ u(an), i.e., bn′ ∈ ρ(ω)(an), for infinitely many n′. But ρ(ω)(an) is compact,

and so ρ(ω)(an) ⊆ Ym for some m. By construction, we must have bn′ /∈ Ym for all n′ ≥ m,

implying bn′ /∈ ρ(ω)(an) for all n′ ≥ m, a contradiction. Therefore, we have ρ(ω)(a) 6⊆ Yǫ

for all ω ∈ T . But since λ(T ) ≥ ǫ, we conclude that λ({ω ∈ Ω : ρ(ω)(a) ⊆ Yǫ}) ≤ 1 − ǫ, a

contradiction. Therefore, λ(T ) = 0, and we conclude that ∅ ∈ B, which implies Ω /∈ W, a

contradiction.

Contrary to our initial supposition, there must exist n such that R(Y ) ⊆ Yn. By

Proposition 12, R is closed, so the correspondence R(·): Y →→ Yn, with domain restricted to

Y and range restricted to Yn, is then a closed correspondence with compact Hausdorff range

space. It is therefore upper hemicontinuous (Aliprantis and Border (1999), Theorem 16.12),

and R(Y ), as the image of a compact set under an upper hemicontinuous correspondence,

is compact (Aliprantis and Border (1999), Lemma 16.8).

We next turn to conditions under which social indifference curves are thin, i.e., R(a) =

P (a)∪{a} for all a. An easily verified sufficient condition is that W is strong and all but a λ-

measure zero set of voters have anti-symmetric weak preferences, meaning that aρ(ω)b and

bρ(ω)a imply a = b. While anti-symmetry may be reasonable when the set of alternatives

is finite, the assumption that no voter regards any two distinct alternatives as indifferent is

quite restrictive when A is infinite. Alternatively, McKelvey’s (1986) Lemma 7 establishes

that, if Ω is finite, if voters have strictly convex preferences over a subset of Euclidean space,

and if W is strong, then thin social indifference will hold. While this result relies on more

intuitive assumptions on voter preferences, it retains the assumption that W is strong, and

we show below that this is extremely restrictive when there is a continuum of voters. Thus,

we seek sufficient conditions for thin social indifference that relax that assumption to allow

for such rules as majority voting. We use a lemma that gives conditions under which PS(a)

is open for all compact coalitions S.

Lemma 5 Assume A is Hausdorff, second countable, and locally compact; Ω is a topological

space; and ρ is continuous. Let S ∈ Σ be compact. Then PS is open.

The next condition formalizes the notion that the preferences of voters are widely dis-

tributed.
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Definition 4 Dispersion holds if, for all distinct a, b ∈ A, for all c ∈ A \ {a, b}, and for

every neighborhood G of c, there exists d ∈ G such that λ({ω ∈ Ω: dπ(ω)aπ(ω)b}) > 0.

Dispersion is satisfied, for example, if voter preferences are Euclidean with ideal points

distributed over Euclidean space by a strictly positive density. In that case, take any distinct

a, b ∈ A, and take any other c. Given any neighborhood G of c, we can find d ∈ G such

that a, b, d are not collinear. Then there exists e such that ||e − d|| < ||e − a|| < ||e − b||,

and these strict inequalities will hold for some open set around e. The set of voters with

ideal points in this set has positive measure, fulfilling the condition. The next result shows

that, under weak background conditions, dispersion of preferences is sufficient for thin

social indifference curves, i.e., R(a) = P (a) ∪ {a} for all a ∈ A. Thus, our condition acts

much like the assumption that the number of voters is odd, in the finite framework. An

implication is that, under reasonably weak conditions, Proposition 5 yields a simplification

of the definition of covering in terms of social preferences: for a to cover b, it is necessary

and sufficient that both aPb and P (a) ⊆ P (b). Furthermore, for a to dominate b, it is

necessary and sufficient that P (a) be a proper subset of P (b).

Proposition 17 Assume that A is Hausdorff, second countable, and locally compact; Ω is

a compact topological space and ρ is continuous; LSWP holds; dispersion holds; and W is

proper, open from below, and semi-strong. Then R(a) = P (a) ∪ {a} for all a ∈ A.

Proof: By Proposition 11, because W is proper, P is the asymmetric part of R, so P (a) ⊆

R(a). Then, by Proposition 12, we have P (a) ∪ {a} ⊆ R(a). Now take any b ∈ R(a) with

b 6= a, and let S = {ω ∈ Ω : bρ(ω)a} ∈ B. Since ρ is continuous, S is closed, in fact

compact. Take any open set G around b. By LSWP, there is a sequence {cn} converging

to b such that cn 6= b for all n and cnPT a, where T = S ∩ S∗ ∈ B. Take any cn ∈ G. Since

T is compact, Lemma 5 implies that PT (a) is open. Thus, G′ = PT (a) ∩ G is an open set

around cn, so, by dispersion, there exists d ∈ G′ such that λ({ω ∈ Ω : dπ(ω)aπ(ω)b}) > 0.

Let T ′ = T ∪ {ω ∈ Ω : dπ(ω)aπ(ω)b}. Since {ω ∈ Ω : dπ(ω)aπ(ω)b} ∩ T = ∅, we have

λ(T ′) > λ(T ), and our assumption that W is semi-strong implies T ′ ∈ W. Therefore,

d ∈ P (a). Since G was arbitrary, we have b ∈ P (a).

Dispersion is also satisfied if A is finite and if all linear orders of A are present in the

preferences of the electorate, in the sense that the set of voters with any given ordering has

positive λ-measure. Because we use LSWP in the above proposition, however, we preclude

the finite A case. This is unavoidable, because we do not assume W is strong: if A has

the discrete topology, if W is majority rule, and if the number of voters is finite and even,

then R(a) = P (a)∪{a} (= P (a)∪{a}) will not hold generally, even if voter preferences are

dispersed.

McKelvey’s (1986) Lemma 7 on thin social indifference does indeed extend to the case

of an infinite electorate, but it relies on the assumption that W is strong. Proposition 10

establishes the existence of a strong, proper simple game, so this extension of McKelvey’s
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result is not vacuous, but its applicability is limited by Proposition 9, which shows that, with

a continuum of voters, W proper and strong is inconsistent with W open from below. The

latter is only a sufficient condition for continuous social preferences, so discontinuities are

not necessarily implied. The following result shows, however, that when voters’ preferences

over a connected set of alternatives are sufficiently rich, all proper and strong simple games

fail to generate continuous social preferences.

Proposition 18 Assume A is Hausdorff, locally compact, and path-connected; for all a, b ∈

A, λ({ω ∈ Ω : ρ(ω)(a) = ρ(ω)(b)}) = 0; and there exists a ∈ A with P (a) 6= ∅ and

P−1(a) 6= ∅. If R is closed, then W is not both proper and strong.

Proof: Let bPa and aPc. Let f : [0, 2] → A be a continuous function satisfying f(0) = a,

f(1) = c, and f(2) = b. Let s = sup{x ∈ [0, 2] : aPf(x)}. Since b ∈ P (a), an open set,

we have 1 ≤ s < 2. By construction, there exists an increasing sequence {rn} in [0, 2] such

that rn → s and, for all n, aPf(rn). By Proposition 11 and the assumption that W is

proper, we have aRf(rn) for all n. By continuity of f , f(rn) → f(s), and, since R is closed,

aRf(s). We may also take a decreasing sequence {tn} in [0, 2] such that tn → s and, for all

n, f(tn)Ra. Again, f(tn) → f(s), and, since R is closed, f(s)Ra. So there exist S, T ∈ B

such that aRSf(s) and f(s)RT a. By assumption, S′ = {ω ∈ S : aπ(ω)f(s)} is λ-equivalent

to S, so S′ ∈ B, and similarly T ′ = {ω ∈ T : f(s)π(ω)a} ∈ B. If W is strong, then B ⊆ W,

so S′, T ′ ∈ W. But then S′ ∩ T ′ = ∅, so W is not proper.

Proposition 5 yields an alternative characterization of covering and dominance under

the assumption of full social weak sections, i.e., R−1(a) = P−1(a) ∪ {a}. This condition

is satisfied in McKelvey’s (1986) model if voters have strictly convex preferences and W

is strong, as long as A is an open subset of ℜn, a qualification omitted by McKelvey. To

see that openness of A is needed in the latter claim, consider the example of Figure 1, in

which A is a closed rectangle in ℜ2 with the relative topology, the electorate Ω = {1, 2, 3}

consists of three voters, where λ is uniform, voters have indifference curves as indicated (we

draw “indifference curves” outside A to clarify preferences involving b), and W is majority

rule. Then b is socially indifferent to a, in particular b ∈ R−1(a), but it is isolated from

the alternatives to which a is strictly socially preferred. Thus, R−1(a) 6= P−1(a) ∪ {a}.

To see the consequences for the definition of covering, note that R(c) ⊆ R(a), yet b ∈

P (c) \ P (a). Therefore, R(c) ⊆ R(a) does not imply P (c) ⊆ P (a), contrary to McKelvey’s

(1986) Proposition 3.3, demonstrating that the condition used in part 2 of Proposition 5 is

needed for the result.

For an even simpler example, where voter preferences are convex but not strictly so,

consider the divide-the-dollar model with a finite set of voters: assume Ω = {ω1, . . . , ωn}

consists of an odd number n ≥ 3 voters, where λ is uniform; the set of alternatives is

A = {a ∈ ℜn
+ :

∑n
i=1 ai = 1}, the unit simplex in ℜn; for each voter ωi, aiπ(ωi)bi if and

only if ai > bi; and W is majority rule. Then, letting a = (0, 2

n−1
, 0, . . . , 2

n−1
, 0), we have

R(a) = A. Note that b = (0, 1

n−1
, . . . , 1

n−1
) ∈ R−1(a), but b is isolated from the alternatives
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b

a

c

R(a) = R(c)

Figure 1: Violation of McKelvey’s implicit assumption

to which a is socially preferred — in fact, P−1(a) = ∅. Thus, R−1(a) 6= P−1(a)∪ {a}. As a

consequence, letting c = (1, 0, . . . , 0), we have R(c) ⊆ R(a) but b ∈ P (c) \ P (a). Therefore,

R(c) ⊆ R(a) does not imply P (c) ⊆ P (a), creating the possibility of multiple uncovered

sets, noted by Penn (2002) in this model.

As Propositions 9 and 18 show, the assumption that W is strong is quite restrictive

when there is a continuum of voters. Thus, its usefulness in obtaining the condition

R−1(a) = P−1(a) ∪ {a} is limited in our framework. The next result verifies that the

assumption that W is strong can be replaced by dispersion of preferences and the much

weaker assumption that W is semi-strong. Recall that the latter condition is satisfied, for

example, by majority rule. Under the conditions of Proposition 17 and the following result,

we obtain the alternative characterizations of covering in Proposition 5 and the two-step

principles of Proposition 6.

Proposition 19 Assume A is an open, convex subset of ℜn with the relative topology; Ω

is a compact topological space and ρ is continuous; S∗ ⊆ {ω ∈ Ω : ρ(ω) is strictly convex};

dispersion holds; and W is proper, open from below, and semi-strong. Then R−1(a) =

P−1(a) ∪ {a} for all a ∈ A.

Proof: By Proposition 11, because W is proper, it follows that P is the asymmetric part

of R, so P−1(a) ⊆ R−1(a). Then, by Proposition 12, we have P−1(a)∪{a} ⊆ R−1(a). Now

take any b ∈ R−1(a) with b 6= a, so S = {ω ∈ Ω : aρ(ω)b} ∈ B. Take any open set G around

b, and assume without loss of generality that G is convex. Since ρ is continuous, S is closed,

in fact compact. Therefore, T = S ∩ S∗ ∈ B is also compact, and Lemma 5 implies that

P−1
T (a) is open. Since A is open as a subset of ℜn, there exists a non-empty, convex, open set

G′ ⊆ ℜn such that b ∈ G′ ⊆ A. Let c ∈ G∩G′ satisfy c = (1−α)a+αb for some α > 1. Let
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d = (1/2)b+(1/2)c, which is an element of G∩G′. By strict convexity of voter preferences,

therefore, we have aπ(ω)dπ(ω)c for all ω ∈ T . In particular, c, d ∈ P−1
T (a). Since a, c, and d

are distinct, dispersion yields e ∈ G∩G′∩P−1
T (a) such that λ({ω ∈ Ω : eπ(ω)aπ(ω)c}) > 0.

Let T ′ = T ∪ {ω ∈ Ω : eπ(ω)bπ(ω)c}. Since {ω ∈ Ω : eπ(ω)aπ(ω)c} ∩ T = ∅, we have

λ(T ′) > λ(T ), and our assumption that W is semi-strong implies T ′ ∈ W. Therefore,

c ∈ P−1(a) ∩ G. Since G was arbitrary, we have b ∈ P−1(a).

We return to the issue of the two-step principle in the next section, where we tie together

our earlier results and examine the properties of the core, undominated set, and uncovered

set as the preferences of voters vary.

5 Electoral Competition

Given a policy space A and an electorate Ω with winning coalitions W, consider a com-

petition between two office-motivated parties, where each party strategically chooses its

platform in the set A in order to maximize its chances of winning the election. Precisely,

the two parties play a symmetric, zero-sum game, in which A is the common set of pure

strategies and the payoff of, say, party 1 from the strategy profile (a, b) is defined by

u(a, b) =





1 if aPb
−1 if bPa
0 else,

where here a denotes the platform of party 1 and b the platform of party 2. It is easy to

see that a∗ is an optimal play in this game if and only if a∗ is not defeated by a winning

coalition, i.e., a∗ ∈ K. This means that the existence of a Nash equilibrium in pure strate-

gies is equivalent to the nonemptiness of the core. On the other hand, the set of strategies

obtained after deletion of the weakly dominated strategies is precisely the undominated set.

The uncovered set, which is a superset (sometimes proper) of the undominated set, does

not have a direct game-theoretic interpretation. But as demonstrated by Banks, Duggan,

and Le Breton (2000) for a class of games including the two-party competition game de-

scribed above, the support of every Nash equilibrium in mixed strategies is contained in the

uncovered set.

In this section, we analyze properties of these choice sets as electoral preferences vary.

Fixing the winning coalitions W, we write P [ρ] and R[ρ] for the strict and weak social

preferences determined by profile ρ. We write K[ρ], UC[ρ], and UD[ρ] for the core, un-

covered set, and undominated set of the social preference relations P [ρ] and R[ρ]. We

extend previous results on generic emptiness of the core to the general spatial model, and

we establish nonemptiness of the uncovered and undominated sets in the general model. We

then show that the three above correspondences are upper hemicontinuous at profiles with a

non-empty and externally stable core. Thus, though small perturbations of preferences may

(and usually will) lead to an empty core, this result, with our above observations on electoral
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competition, suggests that electoral outcomes will change continuously. Finally, we provide

conditions under which the undominated set correspondence is lower hemicontinuous.

The next lemma on continuity of social preferences is essential to the analysis. Assume

that Ω is a Polish space, i.e., a complete and separable metric space, and that σ is the

corresponding Borel σ-algebra. Let d be the metric on Ω. Assuming A is a locally compact

Polish space, the closed convergence topology on R is metrizable (Aliprantis and Border

(1999), Corollary 3.81), and we let d̃ denote a metric that generates that topology. Let P

be the space of preference profiles, and define the semi-metric ∆ on P as follows:

∆(ρ, ρ′) =

∫

Ω

d̃(ρ(ω), ρ′(ω))λ(dω),

for ρ, ρ′ ∈ P. We will freely identify profiles that differ on a λ-measure zero set of voters, in

which case we may view ∆ as a metric. We then say a sequence {ρn} of profiles converges to

profile ρ, written ρn → ρ, if ∆(ρn, ρ) → 0. Under the strongest of our continuity conditions

on simple games, we obtain the following continuity result for social preferences.

Lemma 6 Assume A is a locally compact, complete, separable metric space; Ω is a complete

and separable metric space; and W is λ-open. Let ρn → ρ, let an → a, and let bn → b. If

anR[ρn]bn for all n, then aR[ρ]b.

When there is a finite number of voters, different formulations of the assertion that the

core is generically empty have been provided. Some authors, in the vein of Plott’s (1967)

seminal contribution, assume that voter preferences are differentiable and perhaps convex.

Their results provide characterizations of core points in terms of differentiability properties,

which are evidently quite difficult to satisfy when the dimensionality of the space of alter-

natives is sufficiently high (at least two, for the case of majority rule with an odd number

of voters). Other authors do not assume differentiability or convexity of voter preferences

and prove the generic emptiness of the core directly while imposing only continuity on voter

preferences (Rubinstein (1979), Cox (1984), Le Breton (1987)). In the latter work, because

the space of voter preferences is richer, no dimensionality restrictions are needed. McK-

elvey, Ordeshook, and Ungar (1980) have proved that Plott’s characterization in terms of

symmetry of voter gradients at core points holds true while allowing for a measure space

of voters. Our next result plays the complementary role for the above-cited literature on

generic emptiness of the core when voter preferences are restricted only by continuity. The

implication for electoral competition is that pure strategy equilibria of the electoral game

will almost never exist.

When Ω is finite, we say W is non-collegial if
⋂
W = ∅. When there is a continuum

of massless voters, however, every simple game is non-collegial according to this definition:

for each ω ∈ Ω, Ω \ {ω} ∈ W, so W has empty intersection. We extend the usual definition

as follows. We say W is non-collegial if, for every S ∈ Σ, there exists a finite measurable

partition, {S1, . . . , SM}, of S such that, for all m, Ω \ Sm ∈ W. Given a non-collegial

simple game, note that, if S ∈ Σ is an atom, then S /∈ B. On the other hand, if λ is
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atomless, then, by Aliprantis and Border’s (1999) Theorem 12.34, for all ǫ > 0, there exists

a finite measurable partition, {S1, . . . , SM}, of Ω such that λ(Sm) < ǫ for all m. Thus, if

λ is atomless and there exists ǫ > 0 such that λ(S) > 1 − ǫ implies S ∈ W, then W is

non-collegial.

Proposition 20 Assume A is a compact and convex subset of some Euclidean space with

|A| > 2; Ω is a complete and separable metric space; and W is proper, non-collegial, and

λ-open. Then the set

K = {ρ ∈ P : K[ρ] 6= ∅}

is closed and nowhere dense in P in the ∆ metric.

Proof: We first prove K is closed. Let ρn → ρ with ρn ∈ K for all n. Let an ∈ K[ρn] for

each n. Since A is compact, there is a subsequence {ank
} converging to some limit a. Take

any b ∈ A. Since R[ρnk
] is complete, by Proposition 11, we have ank

R[ρnk
]b for all k. Then

Lemma 6 implies aR[ρ]b. Since b is arbitrary here, we have a ∈ K[ρ] 6= ∅.

To prove that K has empty interior, take ρ ∈ K and ǫ > 0. We will show that there

exists ρǫ such that ∆(ρǫ, ρ) ≤ ǫ and ρǫ /∈ K. Let c = sup{d̃(R, R′) : R, R′ ∈ R} ∪ {1},

which is finite, since A is compact. From Lusin’s Theorem (Aliprantis and Border (1999),

Theorem 10.8), there exists a compact subset Yǫ of Ω such that λ(Yǫ) ≥ 1 − (ǫ/4c) and ρ,

restricted to Yǫ, is continuous. Since Yǫ is compact, ρ is uniformly continuous on Yǫ. Let

δ > 0 be such that d(ω, ω′) ≤ δ implies d̃(ρ(ω), ρ(ω′)) ≤ ǫ/4. Letting Bδ(ω) denote the open

d-ball with radius δ centered at ω, {Bδ(ω) : ω ∈ Yǫ} is an open cover of Yǫ. By compactness,

it has a finite subcover, say {B1, . . . , BM}. Let S1 = B1, let

Sm = Bm \
m−1⋃

j=1

Bj

for m = 2, . . . , M , and let SM+1 = Ω \ Yǫ. The family {Sm} is a measurable partition of

Ω. Since W is non-collegial, for each m there is a finite partition {Sj
m : j = 1, . . . , Jm} such

that, for all j, Sj
m /∈ B. Now let T be the finite partition

T = {Sj
m : j = 1, . . . , Jm, m = 1, . . . , M + 1},

and index the elements of T as Ti, i = 1, . . . , n. For each i, let R′
i be an arbitrary element

of {ρ(ω) : ω ∈ Ti}, and define the profile ρ′ǫ as ρ′ǫ(ω) = R′
i for all ω ∈ Ti. Since

∆(ρ, ρ′ǫ) =

∫

Ω\Yǫ

d̃(ρ(ω), ρ′ǫ(ω))λ(dω) +
n∑

i=1

∫

Ti∩Yǫ

d̃(ρ(ω), ρ′ǫ(ω))λ(dω)

≤ λ(Ω \ Yǫ)c + λ(Yǫ)ǫ/4,

it follows that ∆(ρ, ρ′ǫ) ≤ ǫ/2.
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Now define a finite simple game Wn on the set {1, . . . , n} as follows: for S ⊆ {1, . . . , n},

let

S ∈ Wn if and only if
⋃

i∈S

Ti ∈ W.

Thus, by choice of {Ti}, W
n is non-collegial. Given any finite profile (R1, . . . , Rn), let

Pn[R1, . . . , Rn] =
⋃

S∈Wn

⋂

i∈S

Pi,

and define the core for Wn as Kn[R1, . . . , Rn] = {a ∈ A : Pn[R1, . . . , Rn](a) = 0}. Since

Wn is non-collegial, it follows from Le Breton (1987) that there exists a finite profile

(R1, . . . , Rn) such that Kn[R1, . . . , Rn] = ∅ and d̃(Ri, R
′
i) ≤ ǫ/2 for all i = 1, . . . , n. De-

fine the profile ρǫ: Ω → R by ρǫ(ω) = Ri for all ω ∈ Ti and all i = 1, . . . , n. Clearly,

K[ρǫ] = Kn[R1, . . . , Rn] = ∅, so we have ρǫ /∈ K and ∆(ρ, ρǫ) ≤ ǫ, as required.

This negative result for pure strategy equilibria leads to interest in alternative solutions

for the electoral game: if parties eliminate weakly dominated strategies, for example, then

they will choose platforms in the undominated set; and if parties play mixed strategy

equilibria, then they will choose uncovered platforms. Thus, these choice sets may yield

useful bounds on electoral outcomes. The next results show that, in contrast to the core,

the uncovered and undominated sets are non-empty quite generally.

Proposition 21 Assume A is first countable; for all a ∈ A and all ǫ > 0, there exists a

compact set Yǫ such that λ({ω ∈ Ω : ρ(ω)(a) ⊆ Yǫ}) > 1 − ǫ; and W is open from below.

Then UC[ρ] 6= ∅.

Proof: By Proposition 14, each R[ρ](a) is compact. By Proposition 2, therefore, we have

UC[ρ] = UC(R[ρ]) 6= ∅.

Nonemptiness of the undominated set and external stability of these sets follow if we

impose topological conditions on the electorate. We write D[ρ] and C[ρ] for the dominance

and covering relations determined by R[ρ] and P [ρ].

Proposition 22 Assume A is Hausdorff, second countable, and locally compact; Ω is a

compact topological space and ρ is continuous; LSWP holds at ρ; for all a ∈ A and all

ǫ > 0, there exists a compact set Yǫ such that λ({ω ∈ Ω : ρ(ω)(a) ⊆ Yǫ}) > 1 − ǫ; and W is

open from below.

1. UD[ρ] 6= ∅.

2. If a /∈ UD[ρ], then there exists b ∈ UD[ρ] such that bD[ρ]a.

3. If a /∈ UC[ρ], then there exists b ∈ UC[ρ] such that bC[ρ]a.
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Proof: By Proposition 14, each R[ρ](a) is compact and therefore closed. By Proposition

13, R[ρ](·) is lower hemicontinuous as a correspondence, and then Proposition 3 yields

UD[ρ] 6= ∅. External stability of UD[ρ] and UC[ρ] then follows from Proposition 4.

Using Propositions 5, 17, and 19, it is straightforward to provide assumptions on primi-

tives of the social choice model that yield equivalent formulations of covering and dominance.

We omit those applications of our results and proceed to the two-step principle, the subject

of Proposition 6. The next proposition ties together our results on this issue. In parts 2 and

3, we are able to relax openness of A, from Proposition 19, by focusing on undominated or

uncovered alternatives satisfying an interiority requirement: we require that all alternatives

weakly socially preferred to a given a lie in the interior of A.

Proposition 23 Assume A is Hausdorff and locally compact; and W is proper.

1.
⋂

a∈A(P [ρ]2(a) ∪ {a}) ⊆ UD[ρ] ⊆ UC[ρ] ⊆
⋂

a∈A R[ρ]2(a).

In addition, assume A is a convex subset of ℜn with the relative topology; Ω is a compact

topological space and ρ is continuous; S∗ ⊆ {ω ∈ Ω : ρ(ω) is strictly convex}; dispersion

holds; and W is open from below and semi-strong. Let a ∈ A be such that R[ρ](a) is

contained in the interior of A in ℜn.

2. If a ∈ UD[ρ] and b /∈ UD[ρ], then a ∈ P [ρ]2(b). If a ∈ UC[ρ] and b /∈ UC[ρ], then

a ∈ P [ρ]2(b).

Moreover, assume that, for all a, b ∈ A, P [ρ](a) = P [ρ](b) implies a = b.

3. If a ∈ UD[ρ] and b ∈ A \ {a}, then a ∈ P [ρ]2(b).

Proof: The first part follows directly from Propositions 6 and 11. For the second part,

let a be as in the proposition. Since R[ρ](a) is nonempty, it follows that A has nonempty

interior in ℜn, which we denote Â. Since A is convex, this implies that A is contained in

the closure of Â. Suppose a ∈ UD[ρ] and b /∈ UD[ρ]. Let ρ̂(ω) be the restriction of ρ(ω)

to Â; let P̂ and R̂ be the social preferences induced by the profile ρ̂; define the dominance

relation D̂ with respect to these social preferences; and let ÛD denote the corresponding

undominated set. Note that ρ̂ is continuous, satisfies LSWP, and satisfies dispersion. To

see that a ∈ ÛD, suppose cD̂a for some c ∈ Â, so P̂ (c) ⊆ P̂ (a) and R̂(c) ⊆ R̂(a), at least

one inclusion strict. Take any d ∈ P [ρ](c). If aP [ρ]d, then d ∈ P [ρ]−1(a) ∩ P [ρ](c), an

open set in the relative topology on A, by Proposition 12. Then there exists some e ∈

P [ρ]−1(a)∩P [ρ](c)∩ Â, which implies aP̂ eP̂ c. But then cD̂a implies eP̂ a, a contradiction.

Thus, dR[ρ]a. Then, by assumption, we have d ∈ Â, and from dP [ρ]c we have dP̂ c. With

cD̂a, this implies dP̂a, which implies dP [ρ]a. Since d was an arbitrary element of P [ρ](c), we

see that P [ρ](c) ⊆ P [ρ](a). Take any d ∈ R[ρ](c). If aP [ρ]d, then, by Proposition 17, either

aP [ρ]c or P [ρ]−1(a)∩P [ρ](c) 6= ∅. In the former case, we then have aP̂ c, which contradicts
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cD̂a. In the latter case, there exists some e ∈ P [ρ]−1(a) ∩ P [ρ](c) ∩ Â. Then, by the above

argument, we again find dR[ρ]a, and we see that R[ρ](c) ⊆ R[ρ](a). Moreover, at least

one of these inclusions is strict. Therefore, cDa, contradicting a ∈ UD. We conclude that

a ∈ ÛD, as claimed. If b ∈ A \ Â, then we have aP [ρ]b, by assumption. Otherwise, b ∈ Â,

and then Propositions 6, 17, and 19 yield c ∈ Â such that aP̂ cP̂ b, implying aP [ρ]cP [ρ]b.

If a ∈ UC[ρ], then a similar argument establishes a ∈ P [ρ]2(b). For the third part of the

proposition, suppose a ∈ UD[ρ], and let b 6= a. If b /∈ UD[ρ], the result follows from

part 2, so suppose b ∈ UD[ρ]. Then either P [ρ](b) 6⊆ P [ρ](a) or R[ρ](b) 6⊆ R[ρ](a), or

P [ρ](a) = P [ρ](b). The first two cases proceed as in part 2, while the last case is ruled out

by assumption.

Of interest, then, is the approximate location of these sets. Miller (1980) and Shepsle and

Weingast (1984) have shown, for the case of tournaments and the spatial model in Euclidean

space, that the uncovered set is contained in the set of Pareto optimal alternatives. The

result follows from the same logic in the general model. Here, given an electorate with

preference profile ρ, we define the Pareto dominance relation, denoted P̃ [ρ], as follows:

aP̃ [ρ]b if and only if λ({ω ∈ Ω : aπ(ω)b}) = 1, i.e., almost all voters strictly prefer a to b.

The Pareto optimal alternatives consist of the P̃ [ρ]-maximal elements:

PO[ρ] = {a ∈ A : P̃ [ρ](a) = ∅}.

The next result establishes, in the framework of general electorates, that the uncovered set,

and therefore the undominated set, is contained in the Pareto optimals.

Proposition 24 Assume W 6= ∅. Then UC[ρ] ⊆ PO[ρ].

Proof: Take any a ∈ UC[ρ], and suppose bP̃ [ρ]a for some b ∈ A. We claim that bC[ρ]a.

First, note that there exists S ∈ W, and that T = {ω ∈ S : bπ(ω)a} satisfies λ(T ) = λ(S).

Therefore, T ∈ W, and bP [ρ]a. Second, take any c ∈ R(b), and consider S ∈ B such that

cRSb. Defining T = {ω ∈ S : bπ(ω)a}, we have λ(T ) = λ(S), so T ∈ B. Moreover, since

each ρ(ω) is a weak order, we have cPSa, which implies c ∈ R(a). Therefore, R(b) ⊆ R(a).

Finally, take any c ∈ P (b), and consider S ∈ W such that cPSb. Then the argument of the

previous case yields T ∈ W such that cPSa, i.e., c ∈ P (a). Therefore, P (b) ⊆ P (a), and we

conclude that bC[ρ]a, a contradiction. Therefore, we have a ∈ PO[ρ], as claimed.

We now examine the continuity properties of the uncovered set correspondence. The

next result demonstrates that, at profiles ρ such that K[ρ] is nonempty and is strongly

externally stable, the correspondence UC[·] is upper hemicontinuous at ρ. It generalizes

Cox’s (1987) Theorem 4 in several respects: notably among them, we use a weaker topology

on the space of preference profiles, and we drop his “limited asymmetry” assumption. With

the result of Banks, Duggan, and Le Breton (2002) that the support of mixed strategy

equilibria of the electoral game lie in the uncovered set, we have upper hemicontinuity of

the mixed strategy equilibrium correspondence at profiles where the set of pure strategy

equilibria is non-empty, i.e., K[ρ] 6= ∅.
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Proposition 25 Assume A is a compact metric space; Ω is a complete and separable metric

space; W is λ-open; K[ρ] 6= ∅; and, for all a ∈ K[ρ] and all b /∈ K[ρ], aP [ρ]b. Then

UC[ρ] = UD[ρ] = K[ρ] and UC[·] is upper hemicontinuous at ρ.

Proof: That UC[ρ] = K[ρ] is immediate. Suppose that UC[·] is not upper hemicontinuous

at ρ, so that there exists an open set V ⊇ UC[ρ] such that, for all open neighborhoods U

of ρ, there exists some ρU ∈ U such that UC[ρU ] \ V 6= ∅. Since the space of profiles is

a metric space, we may define Un as the open ball around ρ with radius 1/n, and we let

ρn = ρUn . Of course, {ρn} → ρ. For each ρn, let an ∈ UC[ρn] \ V . Since A is compact,

we may assume with loss of generality that {an} converges to some a ∈ A \ V . Therefore,

a /∈ UC[ρ] = K[ρ]. By assumption, for any b∗ ∈ K[ρ], we have b∗P [ρ]a. We claim that

there is some m such that b∗C[ρm]am, a contradiction.

By Lemma 6, there exists m such that for all n ≥ m, b∗P [ρn]an. Suppose that, for all m,

there exists n ≥ m and bn ∈ P [ρn](b∗) \ P [ρn](an). Let {bnk
} be a convergent subsequence,

with limit b. Since aR[ρnk
]bnk

for all k, Lemma 6 implies aR[ρ]b. By our assumption of

external stability, b /∈ K[ρ] and b∗P [ρ]b. By Lemma 6 again, b∗P [ρnk
]bnk

for k large enough,

a contradiction. Therefore, there exists m such that, for all n ≥ m, P [ρn](b∗) ⊆ P [ρn](an).

Suppose now that, for all m, there exists n ≥ m and cn ∈ R[ρn](b∗)\R[ρn](an). Let {cnk
}

be a convergent subsequence, with limit c. By Lemma 6, cR[ρ]b∗ which implies c ∈ K[ρ] and

cP [ρ]a. By Lemma 6 again, cnk
P [ρnk

]ank
for k large enough, a contradiction. Therefore,

there exists m such that, for all n ≥ m, R[ρn](b∗) ⊆ R[ρn](an). Therefore, b∗C[ρm]am for

high enough, completing the proof.

Conditions for external stability of the core used here are given in Propositions 1 and

17. Under these conditions, UC[ρ] coincides with K[ρ] and is actually a singleton. Because

the uncovered set is non-empty for all profiles under the assumptions of Proposition 25, the

proposition implies that UC[·] is actually continuous at such profiles.

Proposition 25 bears on the analysis of the uncovered set for large, finite electorates,

examined in the spatial modelling literature,18 where the uncovered set is conjectured to

“shrink” with probability one to a centrally located point under majority voting. Indeed,

suppose that a countably infinite set of voters i = 1, 2, . . . have preferences given by a

continuous mapping r:ℜk → R, where A is assumed to be a compact metric space and ℜk is

a space of preference parameters, denoted γ. Here, r(γ) is a voter’s weak preference relation

at γ, with p(γ) the corresponding strict preference. Let F be a continuous distribution over

ℜk, and for now assume that admits a “central” alternative: there exists a∗ ∈ A such that,

for all b ∈ A, we have µF ({γ : a∗p(γ)b}) > 1/2, where µF is the Borel probability measure

generated by F .19 Thus, assuming W is majority rule, a∗ would be an externally stable core

point if the distribution of preferences were given by F . Suppose that the preferences of

voters i = 1, 2, . . . are drawn independently from the distribution F , and let UC[γ1, . . . , γn]

18See Feld, Grofman, and Miller (1988) and Tovey (1992).
19If each r(γ) were Euclidean, then a∗ would be a median of F in all directions.
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be the uncovered set generated by majority rule applied to any finite draw of preference

parameters.

We claim that, with probability one, UC[γ1, . . . , γn] converges in a strong sense (the

Hausdorff metric) to a∗ as the number of voters goes to infinity. This can be proved

as follows. Taking any sequence of draws γ1, γ2, . . . for which the empirical distribution

converges weakly to F , Skorokhod’s Theorem (see Hildenbrand’s (1974) result 37) yields

a measure space (Ω, Σ, λ) and measurable mappings φn, φ: Ω → ℜk such that (i) for each

n, λ ◦ φ−1
n matches the empirical distribution of preference parameters for the electorate of

size n, (ii) λ ◦φ−1 = µF , and (iii) for λ-almost every ω, φn(ω) → φ(ω). Therefore, majority

preferences and the uncovered set for this electorate at profile ρn = rn ◦ φn are identical to

those of the finite electorate. Furthermore, a∗ is the core at profile ρ = r◦φ and ∆(ρn, ρ) →

0, and convergence of UC[γ1, . . . , γn] to a∗ then follows by applying Proposition 25 to the

sequence {ρn}. By the Glivenko-Cantelli Theorem (Billingsley (1995), Theorem 20.6), the

preceding observations hold for almost every sequence of parameters, as claimed. In fact,

Proposition 25 delivers more: the same qualitative conclusion holds if the distribution of

characteristics is close, in the weak* topology, to admitting a central alternative.

The assumption that A is compact in Proposition 25 is needed, unless voter preferences

are restricted. To see this, suppose X = ℜ and there is just one voter, whose preferences

are represented by the utility function u(a) = −|a|. Consider a sequence of preferences

represented by the utility function

un(a) =

{
−|a| if a ≤ n

2
n
2
− 2|a − n| if a > n

2
.

At the original preference relation, the core and uncovered set are {0}, while the core and

uncovered set are {n} along the sequence: closed convergence is not strong enough to rule

out such approximations. This example obviously violates convexity of voter preferences.

In fact, the upper hemicontinuity result of Proposition 25 can be proved without com-

pactness of A, if we restrict attention to the space of profiles of convex voter preferences.

The proof of the proposition, with that restriction, is easily modified using the following

lemma, which provides a compact bound on the uncovered set in a neighborhood of profiles

of convex voter preferences. We omit the statement and proof of this variant of Proposition

25. When A is a subset of a vector space, we let Pc denote the set of profiles ρ such that

λ({ω ∈ Ω : ρ(ω) is convex}) = 1.

Lemma 7 Assume A is a convex subset of ℜn with the relative topology; Ω is a complete

and separable metric space; for all a ∈ A, λ({ω ∈ Ω : ρ(ω)(a) is compact}) = 1; and W

is proper and λ-open. Let ρ ∈ Pc. There exist an open subset U ⊆ P with ρ ∈ U and a

compact subset Y ⊆ A such that, for all ρ′ ∈ U ∩ Pc, UC[ρ′] ⊆ Y .

Proposition 25 states that upper hemicontinuity of UC[·] holds at ρ whenever, among

other things, the core at ρ is non-empty. The correspondence UC[·] is not generally upper

hemicontinuous when the core is empty, as demonstrated by the following example. Let A
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b
a

Figure 2: Alternative a covers b

be a subset of ℜ2; let Ω = {1, 2, 3}, where λ is uniform; assume preferences (R1, R2, R3) are

strictly convex, with indifference contours depicted in Figure 2; and assume W is majority

rule. For this electorate, aCb and b /∈ UC. Perturbing preferences as depicted in Figure

3, a now fails to cover b, and we can specify preferences so that, for arbitrarily small

perturbations, b is uncovered, violating upper hemicontinuity.

Finally, we turn to lower hemicontinuity of the undominated set. For the next proposi-

tion, assume Ω is a topological space, and let P∗ be the subset of profiles ρ such that

• ρ is continuous,

• for all a ∈ A, λ({ω ∈ Ω : ρ(ω)(a) is compact}) = 1,

• λ({ω ∈ Ω : ρ(ω) is convex}) = 1,

• LSWP holds at ρ,

• for all a ∈ A, R[ρ](a) = P [ρ](a) ∪ {a},

• for all a ∈ A, R−1[ρ](a) = P−1[ρ](a) ∪ {a},

• for all a, b ∈ A, if P [ρ](a) = P [ρ](b) and R[ρ](a) = R[ρ](b), then a = b.

Note that Proposition 17 gives sufficient conditions, involving dispersion of voter preferences,

for the fifth requirement above, and Proposition 19 gives sufficient conditions for the sixth.

While we do not give sufficient conditions for the last requirement, we conjecture that it is

fairly unrestrictive in multidimensional spaces. Thus, P∗ should not be too “sparse.”20

20The last restriction in the definition of P
∗ is not vacuous, however. It is violated for majority rule with

an odd number of voters with Euclidean preferences that admit a nonempty core: then majority preferences
are transitive and coincide with the core voter’s. We suspect that violations of our condition, as with this
example, are non-generic in multiple dimensions.
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a

Figure 3: Alternative b is uncovered

Proposition 26 Assume A is a convex subset of ℜn with the relative topology; Ω is a

compact metric space; and W is proper and λ-open. Then UD[·] is lower hemicontinuous

on P∗.

The proof of this result is contained in the appendix. As a metric space, the set of

alternatives in the last proposition is paracompact (Aliprantis and Border (1999), Theorem

2.86), so Michael’s Selection Theorem (Aliprantis and Border (1999), Theorem 16.61) yields

a continuous selection from the correspondence with values equal to the closed, convex hull

of UD[ρ]. Thus, the closed, convex hull of UC[ρ] also admits a continuous selection. Such a

selection result may be of interest if this correspondence is being used to predict outcomes

in the second stage of a decision process: it may be, for example, that party members

nominate candidates based on outcomes in a later general election stage, and that they use

the closed, convex hull of the uncovered set as a solution for the second stage. In such

examples, the existence of a continuous selection would be desirable for analyzing equilibria

in the first stage.

If voters in the first stage have probabilistic beliefs about second-stage outcomes, then

it may be appropriate to use the set of probability measures over undominated alternatives

as a solution for the second stage, in which case convexity is automatic. Let UD∗[ρ] denote

the closure of the set of Borel probability measures µ on A such that µ(UD[ρ]) = 1. If

UD[·] is lower hemicontinuous, then, with the weak* topology on the space of probability

measures, UD∗[·] is also lower hemicontinuous. The latter correspondence clearly has closed,

convex values. While the space of probability measures is not a Banach space, so Michael’s

Selection Theorem cannot be applied, the selection result relies only on a metric vector space

structure, local convexity, and completeness. By Repovš and Semenov’s (1998) Theorem

(1.5)*, the “probabilistic undominated set” UD∗[·] does indeed have a continuous selection,

as would the “probabilistic” version of the uncovered set.
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6 Conclusion

We have analyzed social choice in a general version of the spatial model, encompassing

the usual Euclidean setting, but also environments with a finite set of alternatives (as

in the literature on tournaments) and environments with infinite-dimensional spaces of

alternatives. Because we have replaced the typical strict convexity assumption with a

weaker restriction on shared weak preferences, we also capture most economic environments,

where agents’ preferences are strictly convex in their own consumption only. We have

proposed a generalization of simple games to infinite electorates, allowing us to describe

the structure of power in society quite generally. Our results synthesize and generalize a

number of existing results, and they extend the “institution-free” analysis of social choice

to infinite electorates. We give a primitive analysis of properties of social preferences,

providing sufficient conditions for continuity of social preferences and a new dispersion

condition on voter preferences that delivers thin social indifference curves. We establish the

generic emptiness of the core. We provide general conditions for existence of uncovered and

undominated alternatives, and we examine the continuity properties of those sets.

A Appendix

A.1 Maximal Elements

Given a set X, with elements x, y, z, etc., an element x is Q-maximal in Y ⊆ X if x ∈ Y

and, for all y ∈ Y , yQx implies xQy. We say x is Q-maximal if it is Q-maximal in X. We

define upper and lower sections of Q as above. We say Q is upper semicontinuous if Q(x)

is closed for all x. The next proposition gives conditions under which the set of Q-maximal

elements is non-empty.

Proposition A1 If Q is transitive and upper semicontinuous, and if Q(x) is nonempty

and compact for some x, then Q(x) contains a Q-maximal element.

Proof: Take any Q-chain, E, in Q(x). If Q(y) = ∅ for any y ∈ E, then y is Q-maximal.

Otherwise, by transitivity and upper semicontintuity, {Q(y) : y ∈ E} is a collection of

compact subsets of Q(x) with the finite intersection property, so there exists z ∈
⋂

y∈E Q(y).

Thus, z is a Q-upper bound for E in Q(x). By Zorn’s lemma, Q has a maximal element,

say x∗, in Q(x). If x∗ is not maximal in X, then there exists w ∈ X such that wQx∗ and

not x∗Qw. By transitivity, wQx∗Qy implies w ∈ Q(y), however, a contradiction.

If we strengthen our compactness assumption in Proposition A1, we can deduce the

external stability of the Q-maximal elements.

Proposition A2 Assume Q is transitive and upper semicontinuous, and Q(x) is compact

for all x. If x is not Q-maximal, then there exists Q-maximal x∗ such that x∗Qx and not

xQx∗.
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Proof: Take any x that is not Q-maximal, so Q(x) 6= ∅. Since Q(x) is compact, it contains

a Q-maximal element, say x∗. Thus, x∗Qx. Suppose xQx∗. Since x is not Q-maximal, there

exists y such that yQx and not xQy. By transitivity, yQxQx∗ implies yQx∗. Since x∗ is

Q-maximal, we have x∗Qy. By transitivity, however, xQx∗Qy implies xQy, a contradiction.

Therefore, not xQx∗.

Define the relation Q∗ as follows: xQ∗y if and only if Q(x) ⊆ Q(y). Note that Q∗

is reflexive and transitive. The next proposition shows that upper semicontinuity of Q is

inherited by Q∗, when the initial relation Q has lower hemicontinuous upper sections.

Proposition A3 If Q is upper semicontinuous, and if Q(·) is lower hemicontinuous as a

correspondence, then Q∗ is upper semicontinuous.

Proof: Take any x and any net {xα} in Q∗(x) converging to some y. Take any z ∈ Q(y),

and suppose z /∈ Q(x). By upper semicontinuity, G = X \ Q(x) is open. Of course,

Q(y) ∩ G 6= ∅. By lower hemicontinuity, there exists α such that Q(xα) ∩ G 6= ∅, but

then Q(xα) 6⊆ Q(x), a contradiction. Therefore, z ∈ Q(x), and we conclude y ∈ Q∗(x), as

desired.

Another sufficient condition for upper semicontinuity of Q∗ is open lower sections of the

initial relation.

Proposition A4 If Q−1(x) is open for all x, then Q∗ is upper semicontinuous.

Proof: Take any x and a net {xα} in Q∗(x) with xα → y. We need to show yQ∗x, i.e.,

Q(y) ⊆ Q(x). Take any z ∈ Q(y), i.e., y ∈ Q−1(z). Since Q−1(z) is open, there exists α′

such that, for all α ≥ α′, xα ∈ Q−1(z), i.e., z ∈ Q(xα). Since xαQ∗x, we have z ∈ Q(x), as

desired.

Let Q denote the set of closed relations on X, endowed with the topology of closed

convergence. Let Θ be a topological space, and consider a mapping Q: Θ → Q, and values

Q[θ]. We say the mapping Q[·] is outer continuous if, for all nets {θα} in Θ converging to

some θ and {(xα, yα)} in X×X converging to some (x, y), xαQ[θα]yα for all α implies xQ[θ]y.

Let UQ[θ] denote the Q[θ]-maximal elements. We say the correspondence UQ[·]: Θ →→

X has locally relatively compact range if, for every θ ∈ Θ, there exists an open subset

U ⊆ Θ with θ ∈ U and a compact subset Y ⊆ X such that, for all θ′ ∈ U , UQ[θ′] ⊆ Y .

The next proposition provides conditions for lower hemi-continuity of the maximal element

correspondence.

Proposition A5 Assume that, for all θ ∈ Θ, Q[θ] is anti-symmetric, UQ[θ] 6= ∅, and, for

all x /∈ UQ[θ], there exists y ∈ UQ[θ] such that yQx; Q[·] is outer continuous; and UQ[·]

has locally relatively compact range. Then UQ[·] is lower hemi-continuous.
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Proof: Take any θ ∈ Θ, and let G be any open subset G ⊆ X such that G ∩ UQ[θ] 6= ∅.

Let x ∈ G ∩ UQ[θ]. Let {θα} be a net converging to θ, and suppose that, for each α,

UQ[θα] ∩ G = ∅. Thus, for each α, x /∈ UQ[θα]. By external stability, there exists yα ∈

UQ[θα] such that yαQ[θα]x. Moreover, yα /∈ G for each α. Since UQ[·] has locally relatively

compact range, {yα} has a convergent subnet with limit, say, y. By outer continuity, yQ[θ]x.

Because yα /∈ G for all α, we have y 6= x, and then anti-symmetry implies not xQ[θ]y, which

implies x /∈ UQ[θ], a contradiction.

Now consider a mapping R: Θ → Q with values R[θ]. Following the above convention,

write R[θ](x) for the upper section of R[θ] at x, and say xR∗[θ]y if and only if R[θ](x) ⊆

R[θ](y). Write xP [θ]y if and only if not xR[θ]y.

Proposition A6 Assume that, for all θ ∈ Θ, R[θ] is complete and, for all x ∈ X,

R[θ](x) = P [θ](x) ∪ {x}; and R[·] is outer continuous. Then R∗[·] is outer continuous.

Proof: Take any nets {θα} converging to θ and {(xα, yα)} converging to (x, y) such that,

for each α, xαR∗[θα]yα. Take any z ∈ R[θ](x). Suppose z /∈ R[θ](y). Then, because R[θ](y)

is closed, G = P−1[θ](y) is an open set containing z. Case 1: z = x. Since yP [θ]x, outer

continuity implies that, for some subnet, also indexed by α, yαP [θα]xα. But, by reflexivity

of R[θα] and xαR∗[θα]yα, we have xα ∈ R[θα](xα) ⊆ R[θα](yα), a contradiction. Case 2:

z 6= x. Since z ∈ P [θ](x), there exists w ∈ P [θ](x) ∩ G, so yP [θ]w. It then follows from

outer continuity that, for some subnet, also indexed by α, yαP [θα]w for all α. Then, by

xαR∗[θα]yα, we have xαP [θα]w for all α. By completeness of R[θα], this implies xαR[θα]w

for all α, and outer continuity implies xR[θ]w, a contradiction. Therefore, z ∈ R[θ](y), and

we conclude that xR∗[θ]y.

A.2 Omitted Proofs of Propositions

We use the terminology and results from the previous subsection to provide proofs for

propositions where they were omitted from the text.

Proposition 2 Assume R(a) is compact for some a ∈ A, and R(b) is closed for all b ∈ A.

Then UC 6= ∅.

Proof: Since R(b) is closed, it follows that P−1(b) = X \ R(b) is open for all b ∈ A, and

Proposition A4 implies that P ∗ is upper semicontinuous. By irreflexivity of P , we have

P ∗(a) ⊆ R(a), and it follows that P ∗(a) is compact. Applying Proposition A1, there exists

a P ∗-maximal element, which must belong to UC. Therefore, UC 6= ∅.

Proposition 3 Assume R(a) is compact for some a ∈ A, R(b) is closed for all b ∈ A, and

R(·) is lower hemicontinuous as a correspondence. Then UD 6= ∅.
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Proof: As in the proof of Proposition 2, P−1(b) is open for all b ∈ A, and Proposition A4

implies that P ∗ is upper semicontinuous. By Proposition A3, R∗ is upper semicontinuous

as well. Thus, P ∗ ∩ R∗ is upper semicontinuous and is clearly transitive. Furthermore,

R∗(a) ⊆ R(a) by reflexivity of R, so R∗(a) is compact. Applying Proposition A1 yields a

(P ∗ ∩ R∗)-maximal element, which must belong to UD. Therefore, UD 6= ∅.

Proposition 4 Assume R(a) is compact for all a ∈ A and R(·) is lower hemicontinuous

as a correspondence.

1. If a /∈ UD, then there exists b ∈ UD such that bDa.

2. If a /∈ UC, then there exists b ∈ UC such that bCa.

Proof: By the argument in the proof of Proposition 3, it follows that R∗(a), and therefore

(P ∗ ∩R∗)(a), is compact for all a ∈ A. Take a and c such that cDa, implying c(P ∗ ∩R∗)a.

If c ∈ UD, then we set b = c. If c /∈ UD, then, by Proposition A2, there exists a (P ∗ ∩R∗)-

maximal element b, therefore belonging to UD, such that b(P ∗ ∩ R∗)c. Therefore, P (b) ⊆

P (c) ⊆ P (a) and R(b) ⊆ R(c) ⊆ R(a). Since cDa, we have bDa, and external stability of

UD follows. Now let c ∈ A be such that cCa. If c ∈ UD, then c ∈ UC, and we are done.

If c /∈ UD, then, by the first part of the proposition, there is some undominated, hence

uncovered, b such that bDc. Then bDcCa implies bCa.

Proposition 26 Assume A is a convex subset of ℜn with the relative topology; Ω is a

compact metric space; and W is proper and λ-open. Then UD[·] is lower hemicontinuous

on P∗.

Proof: To use Proposition A6, let Θ = P∗. By Proposition 11, since W is proper, it

follows that R[ρ] is complete. The condition R[ρ](a) = P [ρ](a) ∪ {a} for all ρ ∈ P∗,

holds by assumption. By Lemma 6, R[·] is outer continuous on P∗, so, by Proposition

A6, R∗[·] is outer continuous. To see that R∗[ρ] is anti-symmetric for all ρ ∈ P∗, suppose

aR∗[ρ]b, i.e., R(a) ⊆ R(b). By assumption, we have R−1[ρ](a) = P−1[ρ](a) ∪ {a} and

R−1[ρ](b) = P−1[ρ](b)∪{b}. From Lemma 2, this implies P [ρ](a)∪{a} = R[ρ](a)◦∪{a} and

P [ρ](b)∪{b} = R[ρ](b)◦ ∪{b}, so Lemma 1 yields P [ρ](a) ⊆ P [ρ](b). Then our assumptions

on P∗ imply a = b, as claimed. By Proposition 12, R[ρ] is upper semicontinuous, and R[ρ](·)

is lower hemicontinuous by Proposition 13, so Proposition A3 implies that R∗[ρ] is upper

semicontinuous. Propositions 14 and 15 imply that R[ρ](a) is compact for all a ∈ A, and

since R∗(a) ⊆ R(a), it follows that R∗(a) is compact for all a ∈ A. Propositions A1 and A2

then imply non-emptiness and external stability of the R∗[ρ]-maximal elements, denoted

UR∗[ρ].

To see that UR∗[·] has locally relatively compact range, note that, for every ρ ∈ P∗,

Lemma 7 yields an open set U ⊆ P∗ with ρ ∈ U and a compact set Y such that, for all ρ′ ∈ U ,
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UC[ρ′] ⊆ Y . We claim that, for all ρ ∈ P∗, UR∗[ρ] ⊆ UD[ρ], which implies UR∗[ρ] ⊆ UC[ρ].

Take a ∈ UR∗[ρ], and suppose there exists b ∈ A such that bD[ρ]a, i.e., R[ρ](b) ⊆ R[ρ](a)

and P [ρ](b) ⊆ P [ρ](a), at least one inclusion strict. In fact, because ρ ∈ P∗, the first must

be strict, but then a /∈ UR∗[ρ], a contradiction. Therefore, UR∗[ρ] ⊆ UD[ρ], and it follows

that UR∗[·] has locally relatively compact range. Proposition A5 then implies that UR∗[·]

is lower hemicontinuous on P∗.

Finally, we claim that UD[ρ] ⊆ UR∗[ρ] for all ρ ∈ P∗. Suppose a /∈ UR∗[ρ], so there is

some b ∈ A such that bR∗[ρ]a and not aR∗[ρ]b. Note that b 6= a. By definition, R[ρ](b) ⊆

R[ρ](a). By Lemmas 1 and 2, we also have P [ρ](b) ⊆ P [ρ](a). At least one inclusion must

be strict, for otherwise ρ ∈ P∗ implies a = b. Therefore, bD[ρ]a, implying a /∈ UD[ρ], a

contradiction. This establishes the claim, and it follows that UD[·] = UR∗[·] on P∗. Thus,

UD[·] is lower hemicontinuous on P∗.

A.3 Proofs of Lemmas

Lemma 1

1. If R(a) = P (a) ∪ {a} and R(b) = P (b) ∪ {b}, then P (a) ⊆ P (b) implies R(a) ⊆ R(b).

2. If P (a) ∪ {a} = R(a)◦ ∪ {a} and P (b) ∪ {b} = R(b)◦ ∪ {b}, then R(a) ⊆ R(b) implies

P (a) ⊆ P (b).

Proof: To prove the first part of the proposition, suppose P (a) ⊆ P (b). Clearly, P (a) ∪

{a} ⊆ P (b) ∪ {a}. Note that b /∈ P (a) by irreflexivity of P , so a ∈ R(b). Therefore,

R(a) = P (a) ∪ {a} ⊆ P (b) ∪ {a} ⊆ R(b),

as required. To prove the second part, suppose R(a) ⊆ R(b). Then

P (a) ∪ {a} = R(a)◦ ∪ {a} ⊆ R(b)◦ ∪ {a, b} = P (b) ∪ {a}.

Since a /∈ P (a) by irreflexivity of P , P (a) ⊆ P (b), as required.

Lemma 2 Assume A is Hausdorff. Then P (a) ∪ {a} = R(a)◦ ∪ {a} for all a ∈ A if and

only if R−1(a) = P−1(a) ∪ {a} for all a ∈ A.

Proof: First assume P (a) ∪ {a} = R(a)◦ ∪ {a} for all a ∈ A. Since A is Hausdorff, the

singleton {a} is closed, and since a /∈ P (a), by irreflexivity, we see that

P (a) = [P (a) ∪ {a}] \ {a} = [R(a)◦ ∪ {a}] \ {a}

is open: if a /∈ R(a)◦, then [R(a)◦ ∪ {a}] \ {a} = R(a)◦ is open; if a ∈ R(a)◦, then

[R(a)◦∪{a}]\{a} = R(a)◦ \{a} is the intersection of two open sets and is open. Therefore,
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R−1(a) is closed. Note that b ∈ P−1(a) is equivalent to a ∈ P (b), which holds only if

a ∈ R(b)◦, which implies b ∈ R−1(a). Thus, P−1(a) ⊆ R−1(a). Since R is reflexive and

R−1(a) is closed, we then have P−1(a) ∪ {a} ⊆ R−1(a). Now take any b ∈ R−1(a) such

that b 6= a. Suppose that b /∈ P−1(a), i.e., b ∈ R(a)◦. Since b 6= a, we then have b ∈ P (a),

a contradiction. Therefore, b ∈ P−1(a), and we have shown R−1(a) ⊆ P−1(a) ∪ {a}, as

required.

Now assume R−1(a) = P−1(a) ∪ {a} for all a ∈ A. Since {a} is closed, it follows that

R−1(a) is closed, and therefore P (a) is open. Note that b ∈ P (a) implies a ∈ P−1(b) ⊆

R−1(b), so b ∈ R(a). Thus, P (a) ⊆ R(a). Since P (a) is open, we then have P (a) ∪ {a} ⊆

R(a)◦ ∪ {a}. Now take any b ∈ R(a)◦ such that b 6= a. Suppose b /∈ P (a), i.e., b ∈ R−1(a).

We then have b ∈ P−1(a), contradicting b ∈ R(a)◦. Therefore, b ∈ P (a), and we have shown

R(a)◦ ∪ {a} ⊆ P (a) ∪ {a}, as required.

Lemma 3 Assume R is complete and P is asymmetric.

1. If a ∈ P 2(b), then P (b) 6⊆ P (a) and R(b) 6⊆ R(a).

2. If P (b) 6⊆ P (a) or R(b) 6⊆ R(a), then a ∈ R2(b).

3. If R−1(a) = P−1(a) ∪ {a} for all a ∈ A, then a ∈ P 2(b) if and only if P (b) 6⊆ P (a).

4. If R(a) = P (a) ∪ {a} for all a ∈ A, then a ∈ P 2(b) if and only if R(b) 6⊆ R(a).

Proof: To prove the first part of the lemma, suppose a ∈ P 2(b), so either aPb or there

exists c ∈ A such that aPcPb. In the first case, b ∈ R(b) \ R(a). In the second case, by

completeness, we have c ∈ R(b)\R(a). In both cases, R(b) 6⊆ R(a) and, by asymmetry of P ,

P (b) 6⊆ P (a). To prove the second part of the lemma, note that P (b) 6⊆ P (a) means aRcPb

for some c ∈ A, and that R(b) 6⊆ R(a) means aPcRb. In both cases, by completeness,

a ∈ R2(b). To prove the third part of the lemma, note that one direction follows from

part 1. For the other direction, suppose P (b) 6⊆ P (a), so that there exists c ∈ A such that

aRcPb. If c = a, then the argument is finished. Otherwise, c ∈ P−1(a). Since c ∈ P (b), an

open set, there exists d ∈ P−1(a)∩P (b), as required. To prove the fourth part of the lemma,

note that one direction follows from part 1. For the other direction, suppose R(b) 6⊆ R(a),

so there exists c ∈ A such that aPcRb. If c = b, then the argument is finished. Otherwise,

c ∈ P (b). Since c ∈ P−1(a), an open set, there exists d ∈ P−1(a) ∩ P (b), as required.

Lemma 4 Assume A is Hausdorff, second countable, and locally compact; Ω is a compact

topological space and ρ is continuous; and LSWP holds. Let S be an arbitrary simple game.

Then
⋃

S∈S PS(·) is lower hemicontinuous as a correspondence.

Proof: Take any a ∈ A and any open set G ⊆ A such that G ∩
⋃

S∈S PS(a) 6= ∅, i.e.,

b ∈ G ∩
⋃

S∈S PS(a) for some b ∈ A. Thus, {ω ∈ Ω : bπ(ω)a} ∈ S, and therefore S =
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{ω ∈ Ω : bρ(ω)a} ∈ S. Since ρ is continuous, S is closed. Since S∗ has λ-measure one,

T = S ∩ S∗ ∈ S. Since Ω is compact, and since S and S∗ are closed, T is compact. By

LSWP, there exists a sequence {cn} in PT (a) such that cn → b. Mas-Colell (1977) establishes

the existence of a jointly continuous function U :R × A → ℜ such that, for all R ∈ R,

U(R, ·) is a utility representation of R. By construction, U(ρ(ω), cn) − U(ρ(ω), a) > 0

for all ω ∈ T . Since this function is continuous in ω and T is compact, it follows that

minω∈T U(ρ(ω), cn) − U(ρ(ω), a) > 0. By continuity, there is an open set Xn ⊆ A with

a ∈ Xn such that minω∈T U(ρ(ω), cn) − U(ρ(ω), x) > 0 for all x ∈ Xn. Picking n high

enough, we have cn ∈ G and, by the preceding discussion, cn ∈
⋃

S∈S PS(x) for all x ∈ Xn,

implying G ∩
⋃

S∈S PS(x) 6= ∅ over an open set around a, as required.

Lemma 5 Assume A is Hausdorff, second countable, and locally compact; Ω is a topological

space; and ρ is continuous. Let S ∈ Σ be compact. Then PS is open.

Proof: Let U :R × A → ℜ be a jointly continuous function such that, for all R ∈ R,

U(R, ·) is a utility representation of R. Take (a, b) ∈ PS , so U(ρ(ω), a) > U(ρ(ω), b) for all

ω ∈ S. By continuity and compactness, minω∈S U(ρ(ω), a)−U(ρ(ω), b) > 0. By continuity,

there exists an open set G ⊆ A × A such that minω∈S U(ρ(ω), c) − U(ρ(ω), d) > 0 for all

(c, d) ∈ G.

Lemma 6 Assume A is a locally compact, complete, separable metric space; Ω is a complete

and separable metric space; and W is λ-open. Let ρn → ρ, let an → a, and let bn → b. If

anR[ρn]bn for all n, then aR[ρ]b.

Proof: From the Polish version of Lusin’s Theorem (Aliprantis and Border (1999), Theorem

10.8), for all ǫ > 0, there exists a compact subset Yǫ of Ω such that λ(Yǫ) ≥ 1 − ǫ and the

profile ρ, restricted to Yǫ, is continuous. Since d̃(ρn, ρ) → 0 in the L1-norm, Aliprantis and

Border’s (1999) Theorem 12.6 yields a subsequence {ρnk
} such that d̃(ρnk

, ρ) → 0 λ-almost

surely. Now let U :R × A → ℜ be a jointly continuous mapping such that, for all R ∈ R,

U(R, ·) is a utility representation of R. For all ω ∈ Ω and all k, define

Φa
k(ω) = U(ρnk

(ω), ank
)

Φb
k(ω) = U(ρnk

(ω), bnk
)

and
Φa(ω) = U(ρ(ω), a)
Φb(ω) = U(ρ(ω), b).

Since U is jointly continuous, we deduce that Φa
k → Φa and Φb

k → Φb λ-almost surely.

From Egoroff’s Theorem (Aliprantis and Border (1999), Theorem 9.37), there are compact

subsets Y a
ǫ and Y b

ǫ of Ω such that

• λ(Y a
ǫ ) ≥ 1 − ǫ and λ(Y b

ǫ ) ≥ 1 − ǫ

• Φa
k → Φa uniformly on Y a

ǫ

• Φb
k → Φb uniformly on Y b

ǫ .

39



Now let S = {ω ∈ Ω : bπ(ω)a}, and suppose that S ∈ W. Since Ω is Polish, Aliprantis and

Border’s (1999) Theorem 10.7 implies the existence of a compact subset Y ′
ǫ ⊆ S such that

λ(Y ′
ǫ ) ≥ λ(S) − ǫ. Let Y ′′

ǫ = Yǫ ∩ Y ′
ǫ ∩ Y a

ǫ ∩ Y b
ǫ . Since λ(Y ′′

ǫ ) ≥ λ(S) − 4ǫ and W is λ-open,

we have Y ′′
ǫ ∈ W for small enough ǫ. Furthermore, since ρ is continuous on Y ′′

ǫ , it follows

that Φb − Φa is continuous on Y ′′
ǫ . And since Y ′′

ǫ is compact and Φb(ω) − Φa(ω) > 0 for all

ω ∈ Y ′′
ǫ , there exists δ > 0 such that,

Φb(ω) − Φa(ω) > δ for all ω ∈ Y ′′
ǫ .

But by uniform convergence on Y a
ǫ and Y b

ǫ , we deduce that, for k large enough,

|Φa
k(ω) − Φa(ω)| ≤

δ

2
for all ω ∈ Y ′′

ǫ

and

∣∣∣Φb
k(ω) − Φb(ω)

∣∣∣ ≤
δ

2
for all ω ∈ Y ′′

ǫ .

Therefore, for k large enough,

Φb
k(ω) − Φa

k(ω) > 0 for all ω ∈ Y ′′
ǫ .

Since Y ′′
ǫ ∈ W, this implies that, for k large enough, bnk

P [ρnk
]ank

, a contradiction. There-

fore, S /∈ W, implying aR[ρ]b, as required.

Lemma 7 Assume A is a convex subset of ℜn with the relative topology; Ω is a complete

and separable metric space; for all a ∈ A, λ({ω ∈ Ω : ρ(ω)(a) is compact}) = 1; and W

is proper and λ-open. Let ρ ∈ Pc. There exist an open subset U ⊆ P with ρ ∈ U and a

compact subset Y ⊆ A such that, for all ρ′ ∈ U ∩ Pc, UC[ρ′] ⊆ Y .

Proof: Take any a ∈ A. By Proposition 16, R[ρ](a) is compact. We use the notation

Br(a) ⊆ N to denote the closed ball of radius r centered at a. Let r1 satisfy R[ρ](a) ⊆

Br1
(a). By Proposition 16, then Y1 = R[ρ](B2r1

(a)) is also compact. Let r2 satisfy Y1 ⊆

Br2
(a), and define the compact set Y2 = B2r2

(a). Suppose there does not exist an open

subset U of P such that, for all ρ′ ∈ U ∩ Pc, UC[ρ′] ⊆ Y2. Since the space of profiles is a

metric space, we may define Un as the open ball around ρ with radius 1/n. For each n, let

ρn ∈ Un ∩ Pc and bn ∈ UC[ρn] \ Y2. Of course, ρn → ρ. Since W is proper, Proposition

11 implies that P [ρn] is asymmetric, and by Proposition 6, there exists cn ∈ A satisfying

bnR[ρn]cnR[ρn]a. In particular, cn ∈ R[ρn](a).

We claim that, for high enough n, we have cn ∈ Y1. If not, then there is a subsequence

{cnk
} such that cnk

/∈ Y1 for all k. Define dk as

dk = a +
2r1

||cnk
− a||

(cnk
− a),
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so that ||dk − a|| = 2r1 for all k. Let Sk = {ω ∈ Ω : cnk
ρnk

(ω)a} ∈ B be the set of

voters who weakly prefer cnk
to a at ρnk

, let S′
k = {ω ∈ Ω : ρnk

(ω) is convex}, and let

Tk = Sk∩S′
k. By assumption, Tk ∈ B. By convexity, we have dkρnk

(ω)a for all ω ∈ Tk, which

implies dkR[ρnk
]a. Since dk ∈ B2r1

(a) for all k, compactness of B2r1
(a) yields a convergent

subsequence, also indexed by k, with limit, say, d. By continuity of the Euclidean norm,

we have ||d − a|| = 2r1, which implies d /∈ Br1
(a), which implies d /∈ R[ρ](a). By Lemma

6, however, ρnk
→ ρ, dk → d, and dkR[ρnk

]a for all k imply that dR[ρ]a, a contradiction.

Therefore, for high enough n, we have cn ∈ Y1.

We now claim that, for high enough n, we also have bn ∈ Y2. If not, then there is a

subsequence {bnk
} such that bnk

/∈ Y2 for all k. Assume k sufficiently high that cnk
∈ Y1,

and define ek = cnk
+ αk(bnk

− cnk
), where

αk = max{α ∈ [0, 1] : cnk
+ α(bnk

− cnk
) ∈ Y2}.

Note that this is well-defined, since cnk
∈ Y1 ⊆ Br2

(a) ⊆ Y2, and note that ||ek − a|| = 2r2

for all k. Let Sk = {ω ∈ Ω : bnk
ρnk

(ω)cnk
} ∈ B be the set of voters who weakly prefer bnk

to

cnk
at ρnk

,let S′
k = {ω ∈ Ω : ρnk

(ω) is convex}, and let Tk = Sk ∩S′
k. By convexity, we have

ekρnk
(ω)cnk

for all ω ∈ Tk, which implies dkR[ρnk
]cnk

. Since (cnk
, ek) ∈ Y1 × Y2 for all k,

there is a convergent subsequence, also indexed by k, with limit, say, (c, e). Then, of course,

c ∈ Y1. By continuity of the norm, we have ||e− a|| = 2r2, which implies e /∈ Br2
(a), which

implies e /∈ R[ρ](B2r1
(a)), which implies e /∈ R[ρ](c). By Lemma 6, however, ρnk

→ ρ,

ek → e, cnk
→ c, and ekR[ρnk

]cnk
for all k imply that eR[ρ]c, a contradiction. Therefore,

for high enough n, we have bn ∈ Y2, a contradiction. We conclude that there exists an open

subset U of P such that, for all ρ′ ∈ U ∩ Pc, UC[ρ′] ⊆ Y2.
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