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This paper presents a new non-cooperative approach to multilateral bargaining. We 
consider a demand game with the following additional ingredients: (i) There is an 
exogenous deadline, by which bargaining has to end; (ii) Prior to the deadline, players 
may sequentially change their demands as often as they like; (iii) Changing one's 
demand is costly, and this cost increases as the deadline gets closer. The game has a 
unique subgame perfect equilibrium prediction in which agreement is reached 
immediately and switching costs are avoided. Moreover, this equilibrium is invariant to 
the particular order and timing in which players make demands. This is important, as 
multilateral bargaining models are sometimes too sensitive to these particular details. 
In our context, players with higher concession costs obtain higher shares of the pie; 
their increased bargaining power stems from their ability to credibly commit to a 
demand earlier. We discuss how the setup and assumptions are a reasonable 
description for certain real bargaining situations. 
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1 Introduction

Non-cooperative analyses of bargaining are sometimes criticized for being sensitive to the

exact description of the extensive form. This concern is even more acute in the case of

multilateral bargaining. In general, one needs to precisely specify the rules and timing for

offers, counter-offers, vetoes, exit options, etc. All these details may have an impact on the

outcome of the bargaining process. But this is at odds with the perception that negotiations

are by nature very amorphous processes in which these details seem not to play such an

important role. The relevant aspects have more to do with the ability to credibly commit

to certain threats or promises.1 This paper tries to construct a model that abstracts from

the former technical aspects and focuses more on the latter commitment opportunities.

Bargaining is normally studied using either the axiomatic approach introduced by Nash

(1950),2 or the strategic approach, for which Rubinstein’s (1982) seminal model is prob-

ably the most influential one. Rubinstein’s alternating offer model is constructed for two

players and has a unique equilibrium which implements Nash’s axiomatic outcome in a

non-cooperative way. The uniqueness of the equilibrium prediction, however, is lost when

more players are introduced. Herrero (1985) and Haller (1986) show that any feasible agree-

ment can be obtained in a subgame perfect equilibrium of the most natural extension of

Rubinstein’s bargaining protocol to three players.3 This is due to the veto power that each

player possesses in those extensions: each player can void any agreement made by other

players.

Krishna and Serrano (1996) illustrate that multilateral versions of Rubinstein’s model

can get around this problem and restore uniqueness by introducing an “exit option.” After

a proposal has been made, the exit option allows any player to accept his offered share,

leave the bargaining table, and let the remaining N − 1 players bargain over the rest of
the pie.4 Such an exit option is a realistic description of some, but not all, bargaining

1See the Introduction of Perry and Reny (1993) for more on this issue.
2See Lensberg (1988) for a modern treatment of the multilateral case.
3See Sutton (1986) for a more general review.
4A similar result is obtained by Chae and Yang (1988, 1994) and Yang (1992). These papers achieve

uniqueness by modeling multilateral bargaining as a sequence of bilateral agreements.

1



situations. In legislative budget negotiations, for example, no party can secure funding

until the entire budget is approved. Another feature of Krishna and Serrano’s model (and

of many other models of multilateral bargaining) is that when a player makes a proposal,

he specifies the exact division of the pie among all parties. We will refer to this as an offer.

An alternative approach, and the one used in this paper, is that parties can only express

how much they demand for themselves, without stipulating the division among the others.

In many situations this seems more realistic, as for example in the financing of public

goods.5 Selten (1992) and Winter (1994a, 1994b) use the demand approach for the study

of multilateral bargaining, but their outcomes depend on the exogenously pre-specified

order of play.6

The model we present builds on the framework proposed in Caruana and Einav (2004).7

Bargaining must end before a fixed deadline, and players make demands sequentially in

nearly continuous time. They can revise their demands as often as they like, but this is

costly, and this cost increases as the deadline gets closer. The result of the bargaining

process is successful only if the final demands are compatible with each other. Earlier

demands, however, serve as a commitment mechanism, as reducing one’s demand becomes

increasingly expensive. This assumption imposes some aspect of irreversibility to past

actions. This is similar to Admati and Perry’s (1991) contribution game and to other

papers that consider irreversible actions.8 All these papers, however, impose a very drastic

switching cost structure: from the very beginning players are fully committed not to increase

their demands from previously demanded levels (they face infinite costs of doing so), but are

always free to decrease their demands. Meanwhile, our paper deals with finite concession

costs that increase in a smooth way. In this manner, we can focus on the gradual process

by which players achieve commitment. Moreover, as we show later on, all that is needed

in the model is that the costs of conceding (reducing one’s demand) increase over time;

no structure is imposed on the costs of increasing one’s demand. Thus, one can use our

5This distinction has no bite in bilateral situations, where a demand uniquely determines the offer to
the other party.

6Morelli (1999) extends their framework to allow for an endogenously determined order, but still within
a particularly defined protocol.

7Their framework is constructed to study commitment opportunities in two-player finite-action games.
8See, for example, Saloner (1987), Gale (2001), and Lockwood and Thomas (2002).
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setting to analyze both the case in which players cannot back out of previous promises,

as in the case of irreversible actions; and the case in which one is always free to withdraw

from previous promises. At first this latter case may seem striking: it is not obvious how

commitment is achieved when players are not bound by previous offers. Note, however, that

while demanding more appears to be costless, dynamically it is not. If one party fancifully

makes an extremely high demand, he will later have to concede, incurring a cost.

The game has a unique equilibrium in which agreement is reached immediately and

switching costs are avoided. Theorem 2 presents our main result: if players can revise their

demands as often as they want, or more precisely, as the time between consecutive moves

goes to zero, this unique equilibrium converges to a unique prediction of the split of the

pie. It is in this sense that we claim that the model abstracts from the specific order and

timing in which players get to play. In the case of symmetric players the model predicts

equal shares for all players. In the case of asymmetric concession costs, players with higher

concession costs obtain a higher share of the pie, as they are able to commit faster to a

particular demand.9 Thus, in our setting higher concession costs imply higher bargaining

power. While the capability of an organization to be flexible is generally considered a

positive feature, in this setting it results in a loss of bargaining power. This suggests a

rationale for rigid structures as bargaining devices. The difficulty of organizing a board of

directors meeting, complex bureaucratic structures, posted prices, or having a clerk with

no discretion at the shop counter are only some examples.

To gain intuition for the equilibrium outcome, consider two symmetric players bargain-

ing over a dollar. We argue that it is perfectly credible for a player to hold firm to a demand

of 50 cents. Just after the point in time at which concession costs increase above 50 cents,

this player is committed to never reduce his demand below 50 cents. Thereby, just before

this critical point in time, if the other player had started by asking “too much,” he is better

off conceding and scaling down his demand to 50 cents as well. In this manner, he will

obtain positive payoffs, compared to payoffs of zero if no adjustment is made (resulting in

no agreement). This argument can be made for both players, and thus, in equilibrium, each

9Muthoo (1996) presents a different two-player two-period bargaining model with commitment in which
he obtains a similar qualitative result.
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starts by demanding 50 cents and never changes thereafter, avoiding any switching costs.

The same logic extends to situations with more than two players, and when players are not

symmetric.

We are aware, of course, that our dynamic structure does not adequately describe all

bargaining situations. If the reader imagines a series of rounds at a bargaining table, it

is difficult to have a general justification for the presence of increasing switching costs.

Nevertheless, in our view, there are many relevant situations which are characterized by

both an exogenous deadline and an increasing switching cost structure. Consider, for

example, New York’s bid to host the 2012 Olympic Games. The deadline is provided by

the schedule set forth by the International Olympic Committee, which will select the host

in July 2005. Towards this deadline, multiple interested parties in the U.S. — for example,

New York City, New York State, the U.S. Federal Government, and various representatives

of the private sector — will bargain over their relative contributions to improve New York’s

bid. Such bargaining may involve specific investments which cannot be fully recouped

should the bid fail. To the extent that adding or subtracting from such investments is

more costly as the July 2005 deadline gets closer, this situation may fit our framework.

More generally, switching costs could represent actual costs of revising contracts (financial

or legal), inconvenience, or reputational concerns. These are discussed in more detail in

Section 5.

In Section 4 we present a different bargaining model with flow payoffs and constant

(but small) switching costs, which is based on the game structure proposed by Lipman

and Wang (2000).10 Such a situation better describes an ongoing bargaining relationship.

For example, one can think of the daily division of labor within a household among its

members, or of the decision on how to share the flow of profits among different members of

a patent pool. While this model is of a distinct nature from the main model of the paper,

it shares a similar equilibrium structure, which justifies its inclusion.

The rest of the paper proceeds as follows. Section 2 introduces the formal model. Section

10See also Marx and Matthews (2000), who analyze a finite-horizon public good game situation with flow
payoffs.
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3 analyzes equilibrium play, proves the main result, and extends it to an asymmetric public

good game. Section 4 discusses the extension of the basic model to the case of flow payoffs.

Section 5 concludes by discussing in more detail how our setup and assumptions may relate

to actual economic situations.

2 The Model

The model is an application of the framework proposed by Caruana and Einav (2004).

Consider N players who bargain over a pie of size 1. Time is discrete. The game starts

at t = 0 and ends at a predetermined deadline t = T . Each player i acts at a large

but finite time grid gi = {ti1, ti2, ..., tiLi} where til ∈ [0, T ] for all l and til < tim if l < m.

Players play sequentially, so gi ∩ gj = ∅ for any i 6= j. When player i acts at t ∈ gi,

he states some demand ai(t) ∈ Ai = [0, 1]. At every point in time all previous actions

are common knowledge. For any point in time t ∈ [0, T ], denote the time of player i’s
next move by nexti(t) = min{t0 ∈ gi|t0 ≥ t}, and the time of player i’s last move by
previ(t) = max{t0 ∈ gi|t0 < t}. Let also next(t) = min{t0 ∈ Si gi|t0 > t} be the time of the
next move after t.

The first move by player i, taken at ti1 = nexti(0), is costless. However, if he later (at

t > ti1) changes his action, he has to pay a switching cost. If he concedes by changing

his demand downwards, he pays a concession cost ci(t). If he demands more by changing

his demand upwards, he pays demand costs di(t). We place no restriction on demand

costs, except that di(t) > 0 for any t.11 We impose the following assumptions on the

concession cost function: ci(t) is strictly increasing in t with ci(0) = 0 and ci(T ) > 1.

These assumptions capture the idea that conceding is very cheap early in the process, but

prohibitively expensive just before the deadline.

Finally, we specify payoffs. Denote player i’s actions by ai = (ai(t))t∈gi, all actions of

all players by a = (ai)i∈N , and the final actions by all players by a∗ = (ai(tiLi))i∈N . Player

11The assumption that demand costs, di(t), are strictly positive is only made for convenience. Assum-
ing weak inequality, i.e. di(t) ≥ 0, does not change the equilibrium outcome and payoffs, but slightly
complicates the analysis.
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i’s payoffs are

ui(a) = πi(a
∗)−

X
{t∈gi−{ti1}:ai(t)<ai(previ(t))}

ci(t)−
X

{t∈gi−{ti1}:ai(t)>ai(previ(t))}
di(t) (1)

where πi(a∗) is the usual demand game payoff

πi(a
∗) =

½
a∗i if

P
a∗j ≤ 1

0 if
P

a∗j > 1
(2)

evaluated at the players’ final demands.

The solution concept that we use is subgame perfect equilibrium (spe). While much

of the analysis is carried for arbitrary grids, our main interest lies in games with fine

grids, approximating continuous time. Thus, we define the fineness of the grid as ϕ(gi) =

max{ti1, ti2 − ti1, t
i
3 − ti2, ..., T − tiLi}, denote the game grid by g = {gi}Ni=1, and its fineness

by ϕ(g) = maxi {ϕ(gi)}. Our main result (Theorem 2) is a limiting result, when ϕ(g) goes

to zero.

3 Results and Discussion

3.1 Subgame Perfect Equilibrium

In this section we first solve for the equilibrium path of the game given a specific grid

g.12 We show that on the equilibrium path an agreement is reached immediately and

therefore switching never occurs. Each player’s share of the surplus is uniquely determined

by the game grid and the switching cost structure. Later we will focus on the limit of

the equilibrium outcomes as the fineness of the grid tends to zero. In this manner we will

be able to abstract from the grid and show that the equilibrium does not depend on the

particular order in which players get to play.

Given a game with cost structure {ci(·), di(·)}Ni=1 and grid g, define

t∗ ≡ max
(
t ∈ Si gi|

X
j

cj(nextj(t)) ≤ 1
)

(3)

12Strictly speaking, the equilibrium is not unique, due to the fact that players are sometimes indifferent
between two actions. Still, as we show below, the important elements of the equilibrium, namely, actions
on the equilibrium path and payoffs, are indeed unique.
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and

θi ≡
(

ci(nexti(t
∗)) if t∗ /∈ gi

1−P
j 6=i

cj(nextj(t
∗)) if t∗ ∈ gi (4)

Note that by construction
P

j θj = 1 and that ci(t
∗) ≤ θi < ci(nexti(next(t

∗))) for player i

who moves at t∗ ∈ gi.

Our main result is that the equilibrium path of the bargaining game involves player i

demanding θi the first time he plays and never switching thereafter. Since the path of play

does not depend on the costs of increasing one’s demand, di(t), we largely ignore these cost

functions.

Much of our result is proved in the appendix. However, a few definitions and results

which aid in the proof are instructive. Throughout, we abuse notation by describing each

subgame by (a, t), where t ∈ Si gi is the point in time and a ∈ [0, 1]N are the most recent
demands made by each player. Strictly speaking, when a player is indifferent, his strategy

may also depend on the history of play. We ignore this as all our statements about a

subgame (a, t) will hold for any history.

Definition 1 Player i is flexible at (a, t) if and only if ci(nexti(t)) < 1 −P
j 6=i
min(aj, cj(nextj(t))).

In essence, a player is flexible if he could potentially earn a positive continuation payoff

by revising his demand downwards.13 Note from these definitions that whether player i is

flexible depends on t and a−i, but not on ai. At t < t∗ all players are flexible (this follows

from the definition of t∗). Further, late in the game (after time t ≡ maxj(c
−1
j (1))), no

player is flexible.

Definition 2 A demand profile a is compatible if and only if
P

j aj ≤ 1.

Clearly, an agreement is reached when final demands are compatible. We now give the

following result, which will lead us to the equilibrium play.

13Once a switch is done, its costs are sunk; throughout the paper, we frequently consider players’ payoffs
net of previous switching costs, since at any point in the game, each player in equilibrium acts to maximize
his continuation payoffs.
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Proposition 1 Consider a subgame (a, t), in which there exists a player i such that ai ≤
ci(nexti(t)). If a is compatible or some player is flexible at (a, t), then if player i never

switches and the other players play their equilibrium strategies, an agreement will be reached.

The proof is in the appendix. Proposition 1 implies that under the conditions stated

above player i is guaranteed a continuation value of at least ai. This leads to the following

result, and its subsequent implication.

Proposition 2 In any spe, every player i must get a payoff of at least θi.

Proof For any given player i, let t̃ = next(t∗) if t∗ ∈ gi, and t̃ = t∗ otherwise. Note that

in either case, θi +
P

j 6=i cj(nextj(t̃)) ≤ 1. Thus, if player i demands any ai < θi at time

t̃ then all players j 6= i will be flexible. Since ai < θi ≤ ci(nexti(t̃)), Proposition 1 holds,

so player i is guaranteed agreement without switching. Thus, for any � > 0, the strategy

“Demand θi − � at the beginning and never switch” earns a payoff of θi − �. Now, if in

equilibrium player i earned less than θi then, for � sufficiently small, the previous strategy

would represent a profitable deviation.

Theorem 1 In any spe of this game, every player demands θi in the first round and never

switches on the equilibrium path.

Proof Since
P

j θj = 1, any other equilibrium play would result in a payoff of less than θi

for some player i, violating Proposition 2.

The main qualitative features of the equilibrium are the following: (i) In order to avoid

switching costs, an agreement is achieved immediately; (ii) The higher the concession costs

of one player, the higher the share of the pie he obtains. Having higher costs allows a

player to commit not to lower his demand any longer while other players are still flexible

to do it. Thus, the source of bargaining power in this model stems from the ability to

commit to certain demands, which is achieved through a higher concession cost technology;

(iii) Even though the value of t∗ is determined endogenously, once it is known and fixed
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one can realize that the solution of the game is invariant to changes to the concession cost

functions ci(·) at any t 6= nexti(t
∗), as well as to changes in the players’ costs of increasing

their demands. Thus, the relative flexibility of different players does not matter but on the

neighborhood of t∗.

3.2 The Main Result and Its Implications

We can now abstract from the specific grid chosen and think generally on situations in

which players can revise their demands as often as they want. We study this case by taking

limits on the fineness of the grid. In other words, we consider the distance between any two

consecutive decisions by the same player going to zero. As one can notice, we only need

to add the requirement that the concession cost functions are continuous for the result to

hold.

Theorem 2 If ci(t) is continuous for all i, then taking ϕ(g) → 0, the limit of the equi-

librium path exists and converges to players demanding θi = ci(t
∗) throughout the game,

where t∗ solves
P

j cj(t
∗) = 1.

Note that this outcome is independent of the order in which the players get to play. It

is in this sense that we argue that this multilateral bargaining model is robust to changes

in the protocol. For the rest of this section, we ignore the grid and focus on the limit case,

when ϕ(g)→ 0.

Next we consider a few special cases which lead to simple comparative statics and

provide intuition for the forces at play. First, we consider the family of cost functions

ci(t) = λic(t). That is, all players share the same concession cost technology, up to a

multiplicative constant. In this case θi =
λiP
j λj
. Thus, the vector of λ’s is a sufficient

statistic for the equilibrium allocation, and the players receive shares of the pie proportional

to their λi’s. That is, the higher the (relative) concession costs, the bigger the share of the

pie obtained. Moreover, in this case the allocation is independent of the choice of the cost

function c(t) and of the actual size of the pie. Interestingly, this invariance with respect to

the size of the pie does not hold if one considers more general cost functions. Recall that
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the solution depends only on the relative value of the cost functions at a particular point,

t∗. If the size of the pie is k, then t∗ would be defined by
P
j

cj(t
∗) = k. Thus changes in

the size of the pie result in a different t∗, which in principle could result in different relative

costs.

Consider next the case in which all players share the same concession cost technology

but differ in their marginal valuation for the pie. That is, if there is an agreement and the

shares are a, player i values it πi(a) = γiai . In other words, what we are considering now

are (linear) changes in the utility bargaining sets. It is easy to see that this is equivalent

to the case in which all players value the pie equally but have cost functions ci(t) =

c(t)/γi. Thus, the outcome of the bargaining process would deliver a higher share of the

pie to those who value the object less, as these are the ones who will get committed more

quickly. Graphically, the solution of the game would be the point on the Pareto frontier

that intersects with the ray with direction θ. If players have the same cost technology, the

solution would be the egalitarian one,14 independent of the values of the γi’s.

Finally, we consider the impact of introducing a discount factor into the model. Suppose

that each player discounts the future at a discount rate of δi; that is, costs incurred at time

t are discounted by δti, and the agreement by δ
T
i . By dividing each player’s utility function

ui by δTi , it is clear that this model is equivalent to one without discounting where each

player’s concession costs are c̃i(t) = δt−Ti ci(t). Thus, introducing discounting is equivalent

to a change in the cost function. Since δt−Ti is decreasing in δi, more patient players

have less bargaining power. Since players at any point in time compare their switching

costs (incurred now) to their eventual payoff gains (received later), a lower valuation of the

latter makes switching costs effectively higher, giving less patient players more commitment

power. Since bargaining shares depend on the relative sizes of δt
∗−T
i ci(t

∗), this effect is more

pronounced for earlier t∗, corresponding to a smaller surplus being divided. Of course, since

less-patient players discount their consumption more steeply, their bargaining advantage

does not lead them to a higher utility level.

14That is, all the players receiving the same utility, not the same share of the pie.
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3.3 The Public Good Game

In the introduction we used the leading example of different parties trying to jointly fund

New York’s bid to host the 2012 Olympic Games. Below we show how our previous result

is useful in analyzing this sort of public good problem as well.

Public good games are strategically very similar to bargaining games. Consider the

following payoff structure. N players have to simultaneously decide how much to contribute

towards a public good. The public good is provided only if a minimal amount, which we

normalize to 1, is collected. If each player contributes bi ∈ [0, 1], payoffs are

πi(b) =

½
vi − bi if

P
bj ≥ 1

0 if
P

bj < 1
(5)

where vi is player i’s valuation of the public good.

We can reinterpret this model as a bargaining one in which demands are ai = vi − bi

and the size of the pie is
P

vi−1. The only difference is that now demands are constrained
to lie in the interval ai ∈ [vi − 1, vi] because contributions cannot be negative. As before,
higher concession costs result in a higher share of the pie, which corresponds to lower

contributions. Since equilibrium demands a∗i = vi − b∗i are derived directly from the cost

structure, a player’s contribution is increasing in his own valuation of the public good.

One new feature is that when asymmetries among players become sufficiently acute the

equilibrium results in a corner solution. This happens when the solution to the analogous

bargaining game involves a demand a∗i which is greater than vi. Since we restrict contri-

butions to be non-negative, player i would demand in equilibrium vi, which corresponds

to a contribution of bi = 0. If a player’s relative interest in the public good is sufficiently

low, or his concession costs sufficiently high, he can commit not to contribute at all, forcing

others to do all the funding. The actual division among the active contributors could be

computed by analyzing the reduced game in which the free riders are ignored.

11



4 Flow Payoffs with Constant Switching Costs

In this section, we extend our analysis to a different bargaining model. While its underlying

economic structure is very different from the one studied before, its analysis is quite similar.

The model builds on the framework studied by Lipman and Wang (2000). There are two

key differences from the previous model. First, rather than a one-shot payoff in the end

of the game, players collect a flow of payoffs from their bargaining interaction. Second,

switching costs are small and constant over time.

Patent pools may provide a good application for this setup. Suppose that two firms

held complementary patents which could only be used together. Should they agree on a

way to share revenues, they can collect a flow of revenues as the technology is used; as long

as they disagree, nobody can use the patents, so potential revenues are lost. In this context,

switching costs can be arbitrarily small, so the additional lawyers’ fees of re-drafting an

agreement would suffice.

As before, players make demands on a finite grid g in the interval [0, T ], and we are

mainly interested in grids that are sufficiently fine. When player i plays he decides on

his demand ai ∈ [0, 1]. If he changes his demand from his previous level, he pays a small

switching cost �i > 0.15 In between two decision periods demands are fixed. Thus, flow

payoffs are the standard payoffs of the demand game with respect to the most recent

announcements made. With some abuse of notation, we denote ai(t) = a(previ(t)) for

t /∈ gi and obtain the final payoffs as

ui(ai, aj) =
TR
0

πi(ai(τ), aj(τ))dτ −
X

{t∈gi−{ti1}:ai(t)6=ai(previ(t))}
�i (6)

where πi(a) is given by equation (2).16

This setup is closely related to our main model. Loosely speaking, here one compares

the constant switching costs, �i, to the remaining future payoffs, (T − t)πi. Meanwhile, in

15To simplify notation, we assume throughout this section that switching demand upwards and down-
wards has the same cost. This is not important. As before, only concession costs will matter, so we could
assume any arbitrary non-negative structure on the cost of switching the demand upwards.
16For completeness, one may assume that πi = πj = 0 before both players make their very first an-

nouncements (i.e. for all t < max(ti1, t
i
2)).
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the main model the relevant comparison is made between the final payoffs of πi and the

increasing switching costs of ci(t) = �i
T−t . This explains why the analysis is similar. There is

an important difference, however, between the two models. In the main model each player

only cares about his own actions and his opponents’ final actions. Here, each player’s

payoffs depend on the whole sequence of his opponents’ interim actions, as these determine

the flow-payoffs. This makes the analysis of the flow-payoff case more complicated. For

this reason, we restrict our attention to the case of two players.

As the proof is quite similar to the one of Theorem 2, we state below only the main

result and relegate all the intermediate results to the appendix.

Theorem 3 Given switching costs �i, �j, the limit of the equilibrium path of the flow-payoff

game, taking ϕ(g) → 0, exists and converges to players constantly demanding ai =
�i

�i+�j

throughout the game.

The first step of the proof is similar to the two-player version of our main model. The

critical point in time, t∗, is now equal (in the limit) to T − �i − �j. After this point, the

remaining continuation payoffs of the game are less than �i+�j, so in equilibrium we cannot

expect both players to switch after t∗. This allows each player to obtain his share of the pie,

ai =
�i

�i+�j
, from then on. Unlike our original model, however, this is not enough to finish

the proof. Because of the flow payoffs, we need to argue that these shares are obtained

throughout the game, and not only in the end. To do so, we use induction on the game

tree, and show that by demanding �i
�i+�j

at any point, player i can guarantee an agreement

almost immediately.

As before, higher switching costs imply higher commitment and higher bargaining

power. Therefore, it allows a player to obtain a higher share of the pie. One should

note that these results hold even when switching costs are arbitrarily small. As long as the

players can change their demands sufficiently often, the absolute level of switching costs

does not matter; only the relative costs do.

Finally, let us point out why the result of Theorem 3 does not extend to N players.

The key point at which the proof fails is when one argues that a flexible player finds it
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profitable to switch down and lock himself into a compatible demand profile.17 With flow

payoffs this may not be profitable anymore. In principle, such a switch can induce other

opponents to change their own demands as well. This may temporarily result in a period

of disagreement. This amount of time, even though short, may be enough to make the

original switch not profitable.

5 Concluding Remarks

We have presented a new bargaining model in which an arbitrary number of players negoti-

ate in nearly continuous time, subject to an exogenous deadline and increasing concession

costs. We find that as the time between “rounds” decreases toward zero, our model gives a

unique equilibrium prediction which is invariant to the order and exact timing of the play-

ers’ moves. Delay or disagreement never occur on the equilibrium path, and higher shares

go to players with higher concession costs, as they are able to credibly commit to higher

demands. As already emphasized, only concession costs matter. Whether concessions are

fully reversible or completely irreversible has no impact on the results.

As we highlighted before, there are three key features that describe our model: (i)

Players must reach an agreement by some external deadline or forfeit the entire prize; (ii)

Players, in a sequential manner, have many opportunities to change their minds; (iii) The

costs of conceding and switching to a lower demand, even a nearby one, are significant, and

increase over time.

The second feature is of a more technical nature. We are simply imposing a particular

set of rules on how players are allowed to express their demands. As was our goal, we

show that these assumptions on the timing and order of moves have no real implications.

The important aspect is to ensure the ability of players to react quickly to other players’

moves. The other two assumptions are more economic in nature, and deserve a more careful

discussion of their applicability.

Examples of bargaining with a fixed deadline are common. During bankruptcy pro-

17This happens, for example, in the last paragraph of the proof of Proposition 1.
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ceedings, management may face a court-assigned deadline by which they must reach new

wage agreements with multiple unions or face liquidation. In the Olympic bid example

discussed above, multiple parties must agree to provide costly services in order to submit

a potentially winning bid. This process is clearly subject to an external deadline. Another

example in which these deadlines are ubiquitous is in major sports. Multi-team trades are

frequent and there are rules imposing specific deadlines to player trades.

Crawford (1982) presents a theory of impasse in bargaining which assumes that switch-

ing costs are not only substantial, but also stochastic and unknown at the time the demand

is made. Thus, parties may attempt to commit to incompatible demands, and in the event

that the realization of both sides’ switching costs are high, neither side can back down and

an impasse occurs. In our model, switching costs are substantial, but known ahead of time,

so impasses do not occur on the equilibrium path.

Real-world examples of bargaining with literal switching costs may not seem as natural.

But, without any commitment, demands or offers can be seen as simple cheap talk, or

be subject to future renegotiation. Thus, an offer only becomes credible once it becomes

costly to change it. In the Olympic bid example, parties may begin spending money (hiring

architects or planners, scheduling contractors, even beginning construction) to show the

seriousness of their offers. Once these steps are taken, changing plans would likely incur

additional costs. In the presence of a deadline, such costs are likely to be higher as the

deadline approaches. In addition, in many complex situations, there are various frictional

costs (lawyers’ fees, court fees, costs of preparing a new proposal) associated with each new

offer submitted.

One can also interpret switching costs in a more metaphoric way, or in the context

of an (unmodeled) larger game. In a wage negotiation setting, each side may be aware

that by retreating from their demands, they sacrifice their reputation for being a tough

negotiator, hurting them in future negotiations and thus imposing a cost to switching. This

interpretation is especially appealing in negotiations in which parties choose to make public

statements in the media as a way to tie their hands to future concessions. Union leaders,

for instance, may advertise their demands publicly, essentially staking their credibility on
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achieving the outcome they have promised. In a situation where sports teams try to arrange

a multi-team trade, noisy communication could lead to a situation where changing one’s

demand leads to a positive probability that the deal falls through. Many of these features

are likely to become more salient when changes-of-mind happen late in the game, justifying

our assumption that switching costs increase.

Thus, aside from giving a unique robust prediction in a multilateral bargaining game,

we feel that the proposed model is based on assumptions which may provide a reasonable

approximation of certain real-world bargaining situations.
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Appendix

A Proof of Proposition 1

We now build up a proof of Proposition 1 through a series of lemmas.

First, similar to the definition of flexible in the text (Definition 1), we define the follow-

ing:

Definition 3 Player i is locked at (a, t) if and only if ci(nexti(t)) > 1 −P
j 6=i
min(aj, cj(nextj(t))).

As we will establish in Lemma 3, a player is locked when, subject to other players

playing equilibrium strategies, he prefers disagreement to further concessions. At t ≤ t∗,

no player is locked, and late in the game, after time t ≡ maxj(c
−1
j (1)), all players are locked.

Lemma 1 Given any (a, t), the final demands arising in any equilibrium of the continua-

tion game starting at (a, t), a∗, satisfy a∗i ≥ min(ai, ci(nexti(t))) for all i. Moreover, if a is
compatible or at least one player switches, then a∗ is compatible.

Proof If a player switches downward then he must at least recoup his switching costs

(ai ≥ ci(nexti(t))), otherwise he would have been better off not switching and receiving at

least a continuation value of zero (net of switching costs incurred prior to t).18 If a player

switches only upward then a∗i ≥ ai. Since switching costs are positive in either direction,

a switch is rationalized only if a∗ is compatible. If a is compatible and nobody switches,

then a∗ = a is compatible.

Lemma 2 Let a∗ be the spe outcome of the subgame beginning at (a, t). If a∗ is compatible

then a∗i ≤ 1−
P
j 6=i
min(aj, cj(nextj(t))) for all i.

18Given that once a switch is done, its costs are sunk, all the calculations are made net of those costs.
Even though we do not mention again, all coming arguments are performed in net terms.
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Proof This follows directly from the fact that if a∗ is compatible then a∗i ≤ 1 −
P

j 6=i a
∗
j ,

and Lemma 1. .

Lemma 3 If player i is locked at (a, t), in equilibrium he will not switch downwards there-

after.

Proof If i switched on equilibrium, the final demand profile a∗ would be compatible (Lemma

1), implying that a∗i ≤ 1 −P
j 6=i
min(aj, cj(nextj(t))) < ci(nexti(t)) (Lemma 2). But this

would imply that player i’s continuation payoff is negative.

Lemma 4 If there exists a player who is flexible at (a, t) then any player who is not flexible

must have ak < ck(nextk(t)).

Proof Let i be a player who is flexible and k the player who is not flexible. Then

min{ai, ci(nexti(t))} ≤ ci(nexti(t)) < 1−
X
j 6=i
min{aj, cj(nextj(t))} (7)

and rearranging,

min{ak, ck(nextk(t))} < 1−
X
j 6=k

min{aj, cj(nextj(t))} (8)

If ak ≥ ck(nextk(t)) then the left-hand side above is ck(nextk(t)) and the assumption that

k was not flexible is violated.

Lemma 5 If none of the players is flexible at (a, t) then any upward switch leaves demands

compatible.

Proof Suppose player j moves at t. Then cj(nextj(next(t))) > cj(nextj(t)). If aj also

increases at time t (to a0j) then min(a
0
j, cj(nextj(next(t)))) > min(aj, cj(nextj(t))). In that

case, all players i 6= j who were not flexible become locked. Since cj(nextj(next(t))) >

cj(nextj(t)), player j also becomes locked. Thus, if player j increases his demand when no

players are flexible, all players are locked after his move, so by Lemma 3, nobody switches

down in the future; if he leaves a incompatible then no agreement is reached, giving j

negative continuation value.
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Lemma 6 Consider the continuation game (a, t) where player i moves at t. If ai ≤ ci(t),

a is not compatible, and no player is flexible then in equilibrium, player i does not switch

at t.

Proof By Lemma 5, player i does not switch upwards. If i is not flexible, ci(t) ≥ 1 −P
j 6=imin(aj, cj(nextj(t))), so by Lemma 2, a

∗
i ≤ ci(t). Since ai ≤ ci(t), if i switches

downwards at t, he incurs a cost ci(t), and either receives a∗i < ci(t), or receives a∗i = ci(t)

but incurs a cost di(t0) of switching upwards later. In either case, the continuation payoff

is negative.

We are now ready to prove Proposition 1. The proof is by induction on t. Late in the

game, no players are flexible. At the latest point in the game grid, t = max(τ |τ ∈ ∪gi), if
a is incompatible, the proposition is vacuously true. Suppose a is compatible. If i moves

at t and does not switch, the game ends with compatible demands. If j 6= i moves at t, j

will not switch to incompatible demands (doing so would give him negative continuation

value), so the game ends in agreement with a∗i = ai.

Now suppose the proposition is proven for all t0 ≥ next(t); we prove it for t. There are

two cases:

1. First, suppose player i moves at t. If a is compatible then by not switching, i leaves

a compatible and the induction assumption proves the proposition. Suppose a is not

compatible but some player other than i is flexible. Since ai ≤ ci(nexti(t)), if i does

not switch, min(ai, ci(nexti(·))) does not change, so that player remains flexible so
the induction assumption proves the proposition. Finally, if only player i is flexible

then by Lemma 4 and the definition of flexible

ci(t) ≤ 1−
X
j 6=i
min(aj, cj(nextj(t))) = 1−

X
j 6=i

aj (9)

Then since ai ≤ ci(t) ≤ 1−
P

j 6=i aj, a is compatible, in which case we have already

proven the proposition.

2. Now suppose player j 6= i moves at t. If after j’s move, the new demands are

compatible or some player is flexible, the induction assumption proves the proposition.
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Thus, we only need consider the case where after j’s move, no player is flexible

and demands are incompatible. First, suppose j switches at time t. Assume that

thereafter player i does not switch and the other players play equilibrium strategies,

and consider all the times that player imoves after t. If a is compatible or some player

is flexible at any of these times, then the induction assumption proves the proposition.

If a is incompatible and no player is flexible at all of these times, then by Lemma 6,

player i is playing his equilibrium strategy by not switching. Then starting at (a, t),

player j switches and every player plays his equilibrium strategy after t; by Lemma

1, an agreement is reached.

We are left with the case where j does not switch at t but after j’s move, all players are

not flexible and a is not compatible. As we argued above, if these conditions do not

remain at each of player i’s subsequent moves, then the induction assumption proves

the proposition; if they do, then all players are playing equilibrium strategies, so

player j’s inaction led to a subgame where, in equilibrium, agreement is not reached,

giving a continuation payoff of 0 to player j. If j was the only player flexible at

t, then switching down to a∗j = 1 −Pk 6=j ak > cj(t) would have locked all players

and led to positive continuation payoff. If j was not flexible at t, then some other

player was; since by Lemma 4, aj < cj(t), not switching could not have changed

another player’s flexibility, so by the induction assumption, an agreement would have

been reached. Finally, if j and another player were flexible at t, then j switching

down to cj(t) + � would have left the other player flexible for � small enough; since

cj(t) + � < cj(nextj(next(t))), player j would have been ensured agreement without

switching again (by the induction assumption) for a continuation payoff of � > 0.

Thus, regardless of who moves at t, the proposition is proved.
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B Proof of Theorem 3

We use a similar approach to the one we use to prove Theorem 2. Given a grid g, we define

t∗ = max

(
t|
X
j

�j
T − nextj(t)

≤ 1
)

(10)

and

θi =

½ �i
T−nexti(t∗) if t∗ /∈ gi
1− θj if t∗ ∈ gi

(11)

As before, we will abstract from the grid and show through a series of lemmas and

propositions that in equilibrium players immediately demand θi and do not change these

demands thereafter. We need to introduce some more notation. We will refer to

a∗i =
1

T − t

Z T

t

ai(τ)dτ (12)

as the average continuation demand. This does not need to coincide with average payoffs,

as it may be the case that the demand profiles are not compatible, so at least temporarily

no agreement is reached.

Lemma 7 Given any (a, t), the average demands arising in any equilibrium of the contin-

uation game starting at (a, t), a∗, satisfy a∗i ≥ min(ai, �i
T−t) ∀i.

Proof Consider the equilibrium path of (a, t). If player i never switches on equilibrium

then a∗i = ai. If player i switches in equilibrium (at time t or after), he must obtain non-

negative payoffs. This can only be possible if �i ≤ (T − t)a∗i , otherwise he cannot hope to

cover his switching costs. Therefore, we obtain that a∗i ≥ min(ai, �i
T−t).

Proposition 3 Given (a, t) such that ai ≥ θi and t > nexti(t
∗), player j never switches in

any equilibrium of the continuation game (a, t).

Proof By Lemma 7 we know that player j’s continuation payoffs are at most (T − t)(1−
min(ai,

�i
T−t)). By switching he pays �j. Therefore, player j never switches if

�j
T−t > 1 −

min(ai,
�i
T−t). But it is easy to check that this inequality is now satisfied. Note that

for t > nexti(t
∗) we have that �i

T−t > θi and
�j
T−t > θj. With ai ≥ θi we have that

�j
T−t > θj = 1− θi ≥ 1−min(ai, �i

T−t).
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Lemma 8 Without loss of generality, let t∗ ∈ gi. In equilibrium, player j plays a0j ≤ θj at

((θi, aj), nextj(t
∗)).

Proof If player j plays a0j > θj then by Proposition 3 we know that none of the players

will switch thereafter, the demands are not compatible, so continuation values are at most

zero. By playing a0j = θj, we know by Proposition 3 that none of the players will switch

thereafter, the demands are now compatible, so continuation values are (T − nextj(t
∗))θj,

which are equal to �j. Thus, playing θj weakly dominates playing a0j > θj. Player j is

indifferent if he sets a0j = aj > θj, but then we can assume that in such a case he also

prefers to switch to θj. If he does not, then the lemma would be true for any ai < θi (but

not for ai = θi) which would imply non-existence of equilibrium. Thus, the only equilibrium

has player j setting a0j ≤ θj.

Corollary 1 Player i, by playing ai = θi at t∗ and never switching thereafter, can guarantee

himself an agreement from nextj(t
∗) on.

Proposition 4 Let the fineness of the grid satisfy ϕ(g) < min(�i, �j). Consider a subgame

((θi, aj), t) for t ≤ t∗ and t ∈ gi. Player i can guarantee himself continuation payoffs of

θi(T − nextj(t)) by never switching.

ProofWe prove it by induction on the game tree. The base is proved above for t∗ (Corollary

1). Suppose now that the proposition is true for next(t) and we need to show it for t. By

applying the induction assumption for player i’s subsequent move (at nexti(next(t))), we

already know that i can guarantee himself continuation value of θi(T − nexti(next(t))).

Therefore, all we need to show is that player j will accommodate immediately, namely that

at t0 = nextj(t) player j will play a0j ≤ θj. Note that if player j plays θj at t0, because of

the induction assumption, his continuation value would be at least θj(T − t0)− �j: player

i will immediately accommodate, and agreement will be achieved already at t0 because the

demands are compatible.

We will now show that for player j playing θj dominates not accommodating, namely

setting a0j > θj. Let t00 = nexti(t
0) and t000 = nextj(t

00). Let vi(s) be time s continuation
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values for player i on the equilibrium path of subgame ((θi, a0j), t
0). Using the induction

assumption (for player i at time t00), we have that vi(t000) ≥ θi(T − t000). For player i to get

this much, it must be that player j (at t000 or later) eventually changes his high demand of

a0j. Let AllCosts Denote all switching costs spent (by both players) on the equilibrium path

of ((θi, a0j), t
000). Because we know that player j will eventually change his high demand, we

can write AllCosts = �j + OtherCosts. Let also a0i and a00i denote player i’s equilibrium

play at ((θi, a0j), t
00) and at ((θi, θj), t00), respectively.

Now, note that

vi(t
000) + vj(t

000) ≤ (T − t000)−AllCosts = (T − t000)− �j −OtherCosts (13)

and thus

vj(t
0) = (t00 − t0)πj(θi, a0j) + (t

000 − t00)πj(a0i, a
0
j) + vj(t

000) ≤ (14)

≤ 0 + (t000 − t00)πj(a0i, a
0
j) + (T − t000)− vi(t

000)− �j −OtherCosts ≤
≤ (t000 − t00)πj(a0i, a

0
j) + (T − t000)− θi(T − t000)− �j −OtherCosts =

= (t000 − t00)πj(a0i, a
0
j) + θj(T − t000)− �j −OtherCosts

where the first inequality arises from equation (13) and the second from the induction

assumption. The last equality just uses the fact that θi + θj = 1.

Now, we can finally check that this continuation value of vj(t0) is lower than what j

would get by playing θj at t0. By playing a0j player j gets

vj(t
0) ≤ (t000 − t00)πj(a0i, a

0
j) + θj(T − t000)− �j −OtherCosts (15)

while by playing θj player j gets

θj(T − t0)− �j = θj(t
000 − t0) + θj(T − t000)− �j (16)

The latter is greater as long as

θj(t
000 − t0) ≥ (t000 − t00)πj(a0i, a

0
j)−OtherCosts (17)

Now, if πj(a0i, a
0
j) = 0 we are done. If πj(a

0
i, a

0
j) > 0, this implies that player i reduced his

demand in period t00 (from θi to a0i), and thus OtherCosts ≥ �i. For a sufficiently fine grid

(e.g. t000− t00 < ϕ(g) < �i), the inequality of equation (17) holds, which finishes the proof.
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Proposition 5 Let the fineness of the grid satisfy ϕ(g) < 1
2
min(�i, �j). On the equilibrium

path of the flow-payoff game each player i demands a∗i ∈
³
θi

T−2ϕ(g)
T

, 1− θj
T−2ϕ(g)

T

´
the first

time he plays and never switches thereafter.

Proof Without loss of generality, let nexti(0) < nextj(0). Let t1 = nextj(0) and t2 =

nexti(nextj(0)). As the first decisions do not involve switching costs, player i’s value of the

game vi satisfies vi ≥ θi(T − t1) and player j’s value of the game vj satisfies vj ≥ θj(T − t2).
Note that vi+ vj ≥ θi(T − t1)+ θj(T − t2) ≥ T − t2 > T − 2ϕ(g). It is now easy to see that
there are no switches on equilibrium path: a switch implies that vi + vj < T −min(�i, �j),
which is a contradiction. Without switching, it is clear that demands will be compatible

starting at nextj(0) = t1 (the first time at which both players have demands). Thus, each

player’s demand a∗i must satisfy (T − t1)a
∗
i = vi. This establishes the proof. Note that the

bounds on demands are tighter once we know which player moves first. The lower bound

for the first mover is θi, making the upper bound for the second mover 1− θi.

At this point, all we need is to take limits of the result in Proposition 5 in order to

finish the proof of Theorem 3.
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