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ABSTRACT. I present a simple and fast algorithm that finds all the pure-
strategy Nash equilibria in games with strategic complementarities. This is
the first non-trivial algorithm for finding all pure-strategy Nash equilibria.
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1. INTRODUCTION

I present an algorithm that finds all the pure-strategy equilibria in n-player
games with strategic complementarities (GSC). This is the first non-trivial algo-
rithm for finding all equilibria in some general class of games.

GSC were first formalized by Topkis [20], and were introduced by Vives [22]
to economics. GSC are important in many areas in economics. For example,
both price- and quantity-competition oligopoly models can be modeled as GSC,
arguably covering most static market models one may wish to consider. See
Milgrom and Roberts [14], Milgrom and Shannon [15], Topkis [21], and Vives
[23] for economic examples of GSC.

Many models in operations research have recently been analyzed as GSC. Ex-
amples are Lippman and McCardle [12], Bernstein and Federgruen [3], Bernstein
and Federgruen [4], Netessine and Rudi [17], Netessine and Shumsky [18], Cachon
and Lariviere [6], and Cachon [5]. See Cachon and Netessine [7] for a survey.

I wish to emphasize three features of the algorithm:

(1) It finds all pure-strategy equilibria, but no mixed-strategy equilibria. The
omission is justified because mixed-strategy equilibria are not good pre-
dictions in GSC [10]. Further, pure-strategy equilibria always exist in
GSC [20, 22].

(2) It is generally very fast. For example, it needs less than 10 seconds to
find all equilibria in a game with 3.6 x 10° strategy profiles.

(3) It is simple. I use the algorithm “by hand” on some bimatrix games to
show that the algorithm is very simple to apply.

There are many algorithms for finding one equilibrium, called a “sample”
equilibrium (see the surveys by McKelvey and McLennan [13] and von Sten-
gel [24]). But there is currently only one method for finding all pure equilibria:
the “underlining” method one teaches undergraduates—fix one player, for each
strategy-profile of the player’s opponents, find her best-response, and then check
if some opponent wants to deviate. The method is close to testing all the game’s
strategy-profiles to see if they are equilibria; I shall call this method the “trivial
algorithm.” Not surprisingly, the trivial algorithm is typically very slow, and, in
practice, useless for large games.

Some algorithms find a sample equilibrium that survives an equilibrium refinement—
typically perfection (a recent example is von Stengel, van den Elzen, and Talman
[25]; see McKelvey and McLennan [13] and von Stengel [24] for other examples).
This is some times adequate, but it is in general restrictive: there is normally no
guarantee that only one equilibrium survives the refinement, and the refinements
do not always have bite. (An exception is Judd, Yeltekin, and Conklin [11]; their
algorithm finds all perfect-equilibrium payoffs in repeated games.)

The algorithm I present is based on Topkis’s (1979) results that 'Robinson’s
(1951) method of “iterating best-responses” finds an equilibrium in GSC (see also
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Vives [22]), so the algorithm uses different—and simpler—ideas than the more
recent literature on finding equilibria. Topkis shows that GSC possess “extremal”
(smallest and largest) pure-strategy equilibria, and that iterating best-responses
results in monotone sequences that approach an extremal equilibrium. My algo-
rithm is to, essentially, restart the iterations after the extremal equilibria have
been found, and force new monotone sequences that find additional equilibria.
The iterations restart by removing certain strategies from the game in a way that
ensures that all equilibria will be found.

I shall not apply the algorithm to economic, or operations research, examples.
The paper presents a method, and it argues that the method works well. So
the chosen applications either illustrate how the algorithm works, or show that
it is fast. Nevertheless, there are many applications in operations research and
economics. | give two examples:

e Supply-chain analysis. Cachon [5] studies inventory competition in a sup-
ply chain with retailers that face stochastic demands. The resulting game
is a GSC. Cachon compares numerically the system-optimal solution to
the Nash equilibria of the game. He uses exhaustive search (after identi-
fying the extremal equilibria—see Section |_§D to find all Nash equilibria.
The algorithm I introduce can be used instead of exhaustive search; it
will be more efficient. 'l

e Oligopoly models. Under mild conditions, Bertrand oligopoly with differ-
entiated products is a GSC [16]. In turn, Bertrand oligopoly with differ-
entiated products is a very common market structure. The algorithm has
then natural applications in the empirical analysis of markets.

One important example is the evaluation of mergers by the US De-
partment of Justice. The Department of Justice needs to predict the
consequences of mergers between firms. They postulate a model of a
market—they often use Bertrand models with differentiated products, see
for example Werden, Froeb, and Tschantz [26] or Crooke, Froeb, Tschantz,
and Werden [8]—and compute a Nash equilibrium before and after the
merger of some firms in the market. 2

But their conclusions might of course change if they could find all equi-
libria before and after the merger. For example, the merger could have no
effect on price if one looks at some equilibria, but a large price increase if
you compare most equilibria.

Besides Bertrand oligopoly, the algorithm can also be applied to Cournot
oligopoly. By exploiting: Amir and Lambson’s (2000) ideas for using GSC-
techniques in Cournot oligopoly, one can easily adapt the algorithm to find

1 Other applications to supply-chain analysis include discretized versions of Lippman and
McCardle [12].
2 The software they use is in http://mba.vanderbildt.edu/luke.froeb/software/
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all symmetric equilibria in Cournot models as well. Arguably, the algo-
rithm is applicable to most static models of a market one may wish to
consider in applied work.

The paper is organized as follows. Section 2 presents some preliminary defini-
tions and results. Section 3 shows informally how the algorithm works. Section /4
defines the algorithm and presents the main results of the paper. Section ;5 de-
velops two simple examples. Section (6 outlines the argument that the algorithm
is typically fast, and explains the benchmark algorithm. Section 7, presents com-
putational results for simulations of GSC. Section § discusses issues related to
the speed of the algorithm. Section 9, discusses an algorithm for a special class

of GSC.

2. PRELIMINARY DEFINITIONS AND RESULTS

2.1. Basic Definitions and Notation. Let X C R", and x,y € R". Denote
the vector (max {z;,v;}) by  Vy, and the vector (min {z;,y;}) by x Ay. Say that
X is a lattice if, whenever x,y € X, x ANy, xVy € X.

If X is a lattice, a function f : X — R is quasi-supermodular if for any
z,y € X, f(x) = f(z Ay) implies f(zVy) = f(y) and f(z) > f(z Ay) implies
f(zVvy) > f(y). Quasi-supermodularity is an ordinal notion of complementarities;
it was introduced by Milgrom and Shannon [16]. Let 77 C R™. A function
f X xT — R satisfies the single-crossing condition in (z,t) if whenever x < 2’
and t <t', f(z,t) < f(2',t) implies that f(z,t') < f(2/,t') and f(z,t) < f(2',1)
implies that f(z,t') < f(a',t').

For two subsets A, B of X, say that A is smaller than B in the strong set order
ifa € A, be BimpliesaNbe A,aVvbe B. Let ¢ : X — X be a correspondence.
Say that ¢ is increasing in the strong set order if, whenever z < y, ¢(z) is smaller
in the strong set order than ¢(y). A detailed discussion of these concepts is in
Topkis [21].

An n-player normal-form game (a game, for short) is a collection I' = {(.S;, u;)
:i=1,...n}, where each player i is characterized by a set of possible strategies,
Si, and a payoff function u; : S — R, where S = x7_;S;. Say that players
have strict preferences if, for all i and s_; € S_;, the function s; — u;(s;, s_;) is
one-to-one.

For each player ¢, let 3;r denote i’s best-response correspondence in I'—the
correspondence defined by

Bir(s) = argmaxgiesiui(gi, S_i).

And let fr(s) = x!_,8ir(s) denote the game’s best-response correspondence.
When I' is understood I shall write 3; for 3;r and 3 for fr.

A point s € S is a Nash equilibrium if s € 3(s). Let £(T") be the set of all Nash
equilibria of I'. When T is understood, I shall write £ for £(T").
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2.2. The Model. Say that a game I' = {(S;,u;) : i = 1,...n} is a finite game of
strategic complementarities (GSC) if, for each 1,

e 5; C R% is a finite lattice,

o s; — u;(s;,5_;) is quasi-supermodular for all s_;,

e and (s;,5_;) — wu;(s;, s_;) satisfies the single-crossing property.
The positive integer d; is the number of dimensions of player ¢’s strategies. I shall
assume, in addition, that

[ ] S@ = {1,2, c e Kl}dl
The assumption that S; = {1,2,... K;}* simplifies notation, but I should stress

that all my results hold for arbitrary finite GSC.
The set of Nash equilibria of a GSC is a complete lattice [27].

Remark 1. One can think of the model as a discretized version of a game with
continuous strategy spaces, where each S; is an interval in some Euclidean space
of dimension d;. For an example, see Section |7,

2.3. Auxiliary results. First, GSC have monotone best-response correspon-
dences:

Lemma 2. [16] For alli, 3; is increasing in the strong set order, and inf 3;(s), sup (;(s) €
ﬁz(S)

See Milgrom and Shannon [16] for a proof.

Second, I need some results and notation for games where we restrict the strate-
gies that players can choose: For each s; € S;, let S(s;) = {5; € S; : s; < §;} be
the strategy space obtained by letting 7 choose any strategy in S;, as long as it is
larger than s;. Note that I use “larger than” short for “larger than or equal to.”
For each strategy profile s = (s1,...s,) € S, let S"(s) = x!_,57(s;). Denote by
['"(s) the game where each player i is constrained to choosing a strategy larger
than s;. Then,

I (s1,. .. s0) = {(S](si), wilsr(sy) 1 =1,...n}.
The following lemmas are trivial.
Lemma 3. If T is a GSC, then so is I (s), for any strategy profile s € S.

Lemma 4. If s is a Nash equilibrium of I', and z < s, then s is a Nash equilibrium
of I'(2).

Lemma 3, and Lemma /4, follow immediately from the definitions of GSC and
of Nash equilibrium.

Third, I shall exploit some previous results on finding equilibria in GSC. The
method of iterating § until an equilibrium is found is normally attributed to
Robinson [19]. Topkis [20] proved that the method works in GSC. I call this
method the “Robinson-Topkis algorithm,” or RT algorithm.
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Algorithm 1. The following are three variants of the RT algorithm.
o T(s): Start with s° = s. Given s* € S, let s*™1 = inf Br(s*). Stop when

kL ktl
sk = gk+l,

o T(s): Start with s° = 5. Given s* € S, let s**1 = sup Br(s*). Stop when
k. oktl
sk = gk+l,

e T7(s): Do algorithm T(s) in I'"(s).

Lemma 5. T(inf S) stops at the smallest Nash equilibrium of T, and T (sup S)
stops at the largest Nash equilibrium of I.

Topkis [20] proved Lemma |_5: for supermodular games. For the extension to
GSC, see Milgrom and Shannon [16] or Topkis [21].

Remark 6. Note that T'(inf S) is faster than “iterating inf 8 (s*)” suggests. When
the algorithm has to find inf Bp(s¥), it knows that searching in the interval
[sk,sup S] is enough. The sequence {s;} is monotone increasing, so each iter-
ation of T'(inf S) is faster than the previous iteration. A similar thing happens
to T(s) and 17 (s).

A “round-robin” version of RT—where players take turns in best-responding
instead of jointly best-responding in each iteration—is faster than the version
above (see Topkis [20]). All results in the paper hold if “round-robin” RT is
used. The results reported in Section 7, use round-robin RT.

3. HOw IT WORKS

“In the authors’ experience, an important idea in organizing the
analysis of a game by hand is to find one equilibrium, then ask
how other equilibria might differ from this one; there is currently
no substantiation of this wisdom in theory or computational ex-
perience.” [13| p. 28]

I use an example to explain how the algorithm works; the algorithm is one
possible substantiation of McKelvey and McLennan’s wisdom.

Consider a two-player GSC, I'. Suppose that player 1 has strategy set S; =
{1,2,...15}, and player 2 has Sy = {1,2,...11}. The players’ joint strategy
space, S; X Sa, is in Figure ;I, Suppose that we have calculated the players’
best-response functions—assume best-responses are everywhere unique—/; and
B2. The game’s best-response function is (s1, s2) = (81(s2), F2(s1)). Because T’
is a GSC, f31, B2 and [ are monotone increasing functions (Lemma |_2,')

First we need to understand how the RT algorithm works. RT starts at the
smallest strategy profile, (1, 1), and iterates the game’s best-response function un-
til two iterations are the same. Since (1, 1) is smaller than 5(1,1), and 3 is mono-
tone, we have that 3(1,1) is smaller than 8(3(1,1)) = 3%(1,1); 3(1,1) is smaller
than 33(1,1), and so on—iterating 3 we get a monotone increasing sequence in S.
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® —> Equilibria ® @ —> States of the algorithm

FiGURE 1. The algorithm in a two-player game.

Now, S is finite, so there must be an iteration k such that 3%(1,1) = g*~1(1,1).
But then of course 3%(1,1) = B(3%71(1,1)), so s = B571(1,1) is a Nash equilib-
rium.

It turns out that s is the smallest Nash equilibrium in I': Let s* be any
other equilibrium, and note that (1,1) < s*. Monotonicity of § implies that
B(1,1) < B(s*) = s*. Then, iterating  we get

s = ﬂk_l(la 1) < ﬁk_l(s*) = g*.

In a similar way, RT finds the game’s largest Nash equilibrium s by iterating the
game’s best-response function starting from the largest strategy profile, (15,11).

I now describe my algorithm informally. A general description and proof is in
Section 4.

The algorithm consists of the following steps:

(1) Find the smallest (s) and largest (5) Nash equilibrium using RT—note s
and 5 in Figure 1,

(2) Consider I'"(s;, s, + 1), the game where player 1 is restricted to choosing
a strategy larger than s;, and player 2 is restricted to choosing a strategy
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larger than s,+1. The strategy profile (s;, s,+1) is indicated in the figure
with a circle O) above (sq, s,), and the strategy space in I'"(s;, s,+1) is the
interval [(sy, s, + 1), (15,11)] shown with non-dotted lines in the figure.
Now use RT to find s', the smallest Nash equilibrium in I'"(s;, s, + 1).
Each iteration of 3 is shown with an arrow in the figure, and s' is the
black disk reached after three iterations.

Similarly, consider I'"(s; + 1, s,), the game where player 1 is restricted
to choosing a strategy larger than s; + 1, and player 2 is restricted to
choosing a strategy larger than s,. The strategy profile (s; + 1,s,) is
indicated in the figure with a circle () to the right of (s;,s,). Use RT
to find s?, the smallest Nash equilibrium in I'"(s; + 1, s,); s* should be a
black disk at this point, I explain in the next step why it is gray.

(3) Check if s' and s? are Nash equilibria of T'. First consider s'. Because s
is an equilibrium of I'"(s;, s, + 1), and 3 is monotone increasing, we only
need to check that s, is not a profitable deviation for player 2. Similarly,
to check if s? is an equilibrium we only need to check that s, is not a
profitable deviation for player 1; right after step (5) I explain why these
checks are sufficient. Let us assume that s' passes the check while s? fails,
this is indicated in the figure by drawing s? as a gray circle.

(4) Do steps 2 and 3 for I'"(si,ss + 1), T"(s} + 1,s}), T"(s?,s2 + 1), and
[7(s? 4 1,53).

(5) Generally, continue repeating steps 2 and 3 for each potential Nash equi-
librium s* found, unless s* is equal to 5. The picture shows what the
algorithm does for a selection of s*s; note that the algorithm starts at
larger and larger ()-circles, and that it approaches 3.

I phrased item 3—the “check”-phase—in terms of the first iteration of the
algorithm. More generally, let s* be a candidate equilibrium obtained as the
smallest equilibrium in some I'"(5 + (1,0)). To check if s* is an equilibrium we
need to see if s¥ equals 3;(s*). Now, 5;(8) < B;(s*), and we know that there is
no better response to s* than s¥, among strategies in game I'"(3 + (1,0)).

So we only need to check if there is some strategy in the interval [3;($), §;] that is
better than s¥ against s*. In the example, § is an equilibrium, so [3;(3), 5;] = {5;},
and we only need to check if §; is a profitable deviation. More generally, though,
the algorithm will need to retain the value of ;(8) in order to make subsequent
checks.

I now explain why the algorithm finds all the Nash equilibria of I". Suppose
that s is an equilibrium, so s < s < 5. If s = s or s =5, then the algorithm finds
s in step 1. Suppose that s < s < 3, then either (s;,s,+1) < sor(s;+1,8) <s
(or both). Suppose that (s;,s, +1) < s, so s is a strategy in I'"(s;,s, + 1).
Note that s is also an equilibrium of I'"(s;, s, + 1): if a player ¢ does not want to
deviate from s when allowed to choose any strategy in S;, she will not want to
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deviate when only allowed to choose the subset of strategies in I'"(s;, s, +1). The
algorithm finds ', the smallest equilibrium in I (s, s, +1)—=s0 §! <s. If §' = s
the algorithm has found s. If 5! < s then either (51,5} +1) < sor (5] +1,58)) <s
(or both). Suppose that (51,53 + 1) < s, then repeating the argument above we
will arrive at a new 32 < s. There will be other strategies found by the algorithm
starting from other points, but we can always find one that is smaller than s.
Generally, for each 5*~! we have found, we find the smallest equilibrium 5% of
I7(8% 1 41,8571 or I(581 85=1 1+ 1), whichever contains s, and it must satisfy
1 < 58 < s; it satisfies 5 < s because §* is the smallest equilibrium in the
game that contains s, and it satisfies 57! < 5* by definition of the I'" games.
The sequence of strictly increasing §%s would eventually reach 3, so s < 5 implies
that there must be a §¥ = s. Since s is an equilibrium, 5% = s passes the test in
item 3; hence the algorithm finds s.

4. THE ALGORITHM

Let e?" be the [-th unit vector in R%, i.e. e?i =(0,...1,0...0) € R%, where 1
is the [-th element of efi.

Algorithm 2. Find s = inf & using T(inf S), and 3 = sup& using T(sup S).
Let & = {5,5}. The set of possible states of the algorithm is 25*%; start at state
{(s,5)}.
Let the state of the algorithm be M. While M # {(5,inf fr(3))}, repeat the
following sub-routine to obtain a new state M’.
SUBROUTINE Let M’ = (). For each (s,s*) € M, i € {1,...n} and | with
1 <1< d;, if (si + e?i,s_i) <3S, then do steps 1-3:
(1) Run T"(s; + €, s_;); let & be the strategy profile at which it stops.
(2) Check that no player j wants to deviate from $; to a strategy in the set

{z€8;:s; <z and (s +el s ) % z}.

If no player wants to deviate, add s to E. lrf’:

(3) Add (8,inf Br(8)) to M.
Theorem 7. The set & produced by Algorithm::?, coincides with the set & of Nash
equilibria of T'.

Proof. First I shall prove that the algorithm stops after a finite number of it-
erations, and that it stops when M = {(5,inf 5r(5))}, not before (step “well-

behaved”). Then I shall prove that £ C &, and then that £ C €.

3This check, an improvement over a previous version of Algorithm :2.:, was suggested by a
referee.
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STEP “WELL-BEHAVED.” Let M C 2%%° be the collection of states visited by
Algorithm 2, For M, M' € M, say that M " M' if M’ was obtained from state
M in an application of the subroutine. Let C': M — R be the function

First note that M M’ implies that for each (s, s*) € M’ there is (8, §*) € M
with (8; + e}ii, 5_;) < s for some i and [, namely the § € M, i and [ from which s
was found in the subroutine. Hence M M’ implies that C(M) < C(M’), so
that 7 is a transitive binary relation.

By the statement of Algorithm 2, for each M € M, M # {(5, inf 3r(5))}, there
is a unique M’ such that M ~ M’. Hence " is a total order on M, and C' is
strictly monotonically increasing with respect to .

Now, since C' can take a finite number of values (as strategy sets are finite)
M must be a finite set. And {(5,inf 5r(35))} must be the largest element in M
according to ', as for each M € M, M # {(5,inf Gr(3))}, there is M’ such that
M S M. Thus the algorithm stops after a finite number of steps, and only
when it reaches state {(3,inf 5r(3))}.

STEP £ C &. Let § € &; we shall prove § € £. Suppose § # s, or there is
nothing to prove. Then § was obtained by T7(s; + 67", s_;), for some i, [, and
(s,s*) € M, for some state M of the algorithm.

Fix a player j. We have s < §, so 3, r(s_;) is smaller in the strong set order than
Bir(5-;) (Lemma 2); hence s} < z, for all z € §;r(5_;). Since § survives step (3)
in the algorithm, and § is a Nash equilibrium of I (s;+ef", s_;), u;(2, §_;) < u;(8)
for all z € S; such that s} < 2. In particular, this is true for all z € 3;r(5_;).
Then s € €. R

STEP £ C €. Let s € £. Suppose, by way of contradiction, that s ¢ £. For
each M, let M; be the set of s such that (s, s*) € M for some s*.

CrAM: Let Algorithm 2, transit from state M to state M. If there is z € M,
with z < s then there is 2’ € M/ with 2’ < s.

PROOF OF THE CLAIM: Since z < s, there is ¢ and [ such that z; < s;;. Then
s is a strategy profile in I'"(z; + 67", z_;). If § is the strategy profile found by
T7 (2 + e?i, z_;), then Lemma '|_5: implies that § < s, as s is a Nash equilibrium of
(2 + 671, z_;). If § = s then s would pass the test of step 4 and be added to
&, but we assumed s ¢ € so it must be that § < s. Set 2/ = §, then 2’ € M by
step 3, and the proof of the claim is complete.

Now, s ¢ & implies that s # s. Initially M = {(s, inf B(s))} so there is z in
My with z; < s. Using the Claim above inductively, it must be that all stages
of Algorithm 2] contain a z with z < s. But the final state of the algorithm is
M = {(5,inf Br(3))}; a contradiction, since s < 3. O



12 F. ECHENIQUE

The following will make Algorithm 2 faster: Only do step 2 of the subroutine
if there is no ' € £ such that § < &', and 5 € S(s; + €, s_;), for the s, 7 and [
at which s was found. For, if there is such an §’, then we know that s ¢ &, as
§ € € would imply that § is an equilibrium of I'"(s; + efli, s_;), which contradicts
that & is the smallest equilibrium of T"(s; + ¢/, s_;).

Theorem |7, says that Algorithm 2 works. In the rest of the paper I show that
it is generally fast.

5. EXAMPLE

The following example shows that the algorithm can be slow; I then argue that
it will generally be very fast.

Consider the two-player game in Figure 2. Both players have identical strategy
sets, {1,2,3,4}. The game is a game with strategic complementarities.

4 [0,0]0,0]0,0]0,0
3 1,3[1,2/1,1]0,0
2 12,312,2]2,1]0,0
1[3,3]3,2]3,1/0,0

FIGURE 2. A slow example.

RT yields (1,1) as the smallest equilibrium, and (4,4) as the largest equilib-
rium. The initial state of the algorithm is thus {(1,1)}. We start the subroutine
at (2,1) = (1,1)+(1,0) and get back (2,1) as the smallest equilibrium of I'"(2, 1).
But player 1 prefers strategy 1 over strategy 2, so (2,1) does not survive step
2. We start the subroutine at (1,2) = (1,1) + (0,1) and get back (1,2) as the
smallest equilibrium of T"(1,2). But player 1 prefers strategy 1 over strategy 2,
so (1,2) does not survive step 2.

If one completes all iterations (shown in Table ) it is clear that the algorithm
stops at all strategy profiles, and discards all profiles but the largest and the
smallest equilibria of the game.

The example presents a pathological situation; the algorithm is forced to check
all strategy profiles of the game. The root of the problem is that, after each
iteration, it is optimal for the players to choose their smallest allowed strategies.
[ argue in Section 6, that the situation will typically not occur in the games that
one encounters in applications.
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TABLE I. Iterations in Example 2

O U W N~
—
—~
J";
—
SN—
—~

6. HOW FAST 1S ALGORITHM 277

6.1. Outline. The rest of the paper establishes that Algorithm ;2 is generally
very fastf: Here is an outline:

e Section 7. I simulate a large class of games, and show that Algorithm 2
finds all equilibria very quickly. The class of games was chosen trying to
bias the test against Algorithm 2,

e Section 8, I show that Algorithm ;2| is faster when best-responses in each
iteration have large increases—I then argue that this will occur for many
natural applications of the algorithm.

e Section 9, I present a version of the algorithm that applies to two-player
games with strict preferences. This version is faster than Algorithm 2,

In the worst case, Algorithm 2 is slow (see Section i5). But the worst case
is—not surprisingly—usually irrelevant for actual applications.

I identify the performance of Algorithm 2 with its running-time. In practice,
though, the data the algorithm needs to store is also an important consideration,
as the need to store large amounts of data may affect the algorithm’s performance.
One source of storage problems is the input data, i.e. the players’ payoffs. But in
economic applications these are usually given by a parametric payoff function, not
by a payoff matrix. So this source of storage problems is probably not important
for users of Algorithm 2, A more serious problem is the need to store large states,
see Section 7.3 on how the implementation I wrote handles the problem.

6.2. The Benchmark. I now describe the trivial algorithm, the benchmark
against which Algorithm 2 is compared in terms of speed.

Let I' = {(S;,u;) : i = 1,...n} be an n-player game. Fix a player, say i. First,
for each s_;, find the set of best-responses by 7. Second, check if any player

4T mean speed in a loose sense, not in terms of polynomial vs. exponential time.
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J # 1 wants to deviate from her strategy in s_; when ¢ chooses one of her best-
responses. This algorithm is essentially the “underlining” method for finding the
Nash equilibria that one teaches first-year students.

Suppose that all players have K strategies, and that best-responses are every-
where unique. Let r be the time required to make a payoff-function evaluation.
Note that r is independent of K. The trivial algorithm turns out to require
O(rK™) time: The algorithm performs K payoff-function evaluations to find the
best-responses, K™ ! times. Thus the algorithm performs K™ payoff-function
evaluations. By the accounting procedure in Aho, Hopcroft, and Ullman [I], the
running-time of the algorithm is O(rK™).

If best-responses are not unique, the algorithm needs to check if any player
Jj # 1 wants to deviate from her strategy in s_;, for all of ¢’s best-responses.
In the worst case, the set of best responses grows at rate K, so the algorithm
is O(rKm™t1).

Note that the O(rK™) calculation is not an unrealistic worst-case bound. It is
the time the trivial algorithm must use, as long as best-responses are unique.

For n-player games with n > 2, Bernhard von Stengel (personal communica~
tion) has suggested a recursive procedure that improves on the trivial algorithm:
for each s, € 5,, fix s,, as the strategy played by player n, and find all equilibria
of the resulting (n— 1)-player game. For each equilibrium found, check if player n
wishes to deviate from s,. In the worst-case calculation, this recursive procedure
does not improve on the simple trivial algorithm—but in many games of interest
it may speed up the trivial algorithm by saving on calculations of best-response
by player n. If T is a GSC, for any s, € S,, the resulting (n — 1)-player game
is also a GSC. So von Stengel’s suggestion can be applied to Algorithm 2 as
well. But I do not know if following his suggestion improves over the speed of
Algorithm 2 or not.

7. PERFORMANCE

I evaluate Algorithm 2, on a class of two-player games, where each player has
the interval [0,1] as her strategy space. The algorithm is fast; [ use Algorithm 2
with different discretizations of [0, 1], and show that, even when the resulting grid
is quite small, the algorithm is very fast. I compare Algorithm 2, to the trivial
algorithm.

7.1. Class of games. I use a class of games that tend to have a large number
of equilibria—Algorithm 2 is faster the smaller is the number of equilibria, and
I want to evaluate Algorithm ;2 using games where it does not have an apriori
advantage. The class of games is idiosyncratic, but that is unavoidable: the
functional forms that economists normally use give few—or unique—equilibria.
With those functional forms, Algorithm 2] is faster still.
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TABLE II. Simulations.

One game
Strat. Trivial  Alg. 2
20,000 2.8 min 2.96 sec.
40,000 12.1 min 10.0 sec.
60,000 26.1 min 10.8 sec.

2,000 games
Strat. Trivial Alg. 2
20,000 3.8 days 1.6 hours
40,000 16.8 days 5.5 hours
60,000 36.0 days 6.0 hours

The games have two-players, each player ¢ has strategy set S; = [0, 1], and
payoff function

ui(si,5-) = —(a;/10)(s; — s_;)* 4+ 2008; sin(100s;)
4+ (1/100) [(1 — ay)si(1 + s—;) — (1/2 — B;)s?/100] .

The parameters «; and ; are in [0, 1].

I arrived at the above functional form by trying to come up with games
that have a fairly large number of equilibria. The first summand is a “pure-
coordination term,” its role is to produce multiple equilibria. The role of the
second summand is to provoke multiple maxima (so that preferences are not
strict, see Section @,’), the second summand also helps in getting multiple equi-
libria. E: The third and fourth summand are variants of polynomial terms that I
found—by trial and error—often produce multiple equilibria.

Note that, for all o; and f;, ({1,2},{S1, So}, {ui,us}) is a GSC.

I discretized the players’ strategy spaces, so each player ¢ chooses a strategy
in S; ={k/K :0 <k < K}. Parameters o; and (3; are chosen at pseudo-random

from [0, 1] using a uniform distribution.

7.2. Results. The results are in Table II. T first compare the performance of
Algorithm 2 and the trivial algorithm. Then I discuss Algorithm ;2;in general.

I simulated a large number of games, and used the algorithms to find the
equilibria of each game. In each individual game, the parameters «; and [3; were
generated at pseudo-random from a uniform distribution on [0, 1]. The average
results are in the table on the left.

On average, when each player has 20,000 strategies, Algorithm 2 needed 2.96
seconds to find all equilibria. The trivial algorithm needed 2.8 minutes to do the
same work. The table reports the results for 40,000 and 60,000 strategies as well.

The table on the right reports how much each algorithm needs to find all the
equilibria of 2,000 games—presumably a task similar to calibrating an economic

SSimulations without the second summand are slightly faster, and the games have fewer
equilibria.
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Simulation of 2000 games, grid size 60.000 X 60.000
T

70 T

60 -

200 300 400 500
Number of equilibria

FiGURE 3. Relation between time and number of equilibria.

model. Already with 20,000 strategies the trivial algorithm needs 3.8 days. Al-
gorithm 2, on the other hand, needs only 1.6 hours.

On the whole, Algorithm 2, is remarkably fast. It finds all equilibria of a game
with 3.6 x 10° strategy-profiles in only 10 seconds, and it finds the equilibria of
2,000 such games in 6 hours. The graph in Figure 3 shows that nothing is hidden
in the averages; the graph plots all 2,000 games. It shows how many equilibria
each game has, and how long it takes for the algorithm to find them. Note that,
with one exception, Algorithm 2, never needs more than one minute to find all
equilibria.

Table [T compares the performance of the two algorithms. With 20,000 strate-
gies, Algorithm 2is 56 times faster than the Trivial algorithm. The relative per-
formance of Algorithm ;2] improves with the number of strategies, because the
performance of Algorithm 2| is sensitive to the number of equilibria more than to
the number of strategies.
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7.3. Implementation. The implementation is written in C. The code and out-
put can be downloaded from http://www.hss.caltech.edu/"fede. The im-
plementation does not take advantage of all the features of Algorithm 2, In
particular, when it checks that a candidate strategy profile is an equilibrium, it
searches for a profitable deviation over all the players’ strategies. So the above
results are an lower bound on the performance of a less daft implementation of
Algorithm 2.

A difficulty in implementing Algorithm 2| is that the set of possible states of
the algorithm is potentially large. Reserving space for the possible states may
slow down the program. I found a rudimentary solution in my implementation
by choosing, in each iteration, only the minimal elements of the state. The
algorithm may then search more than is necessary, but the set of strategies in a
space is kept to a minimum. There is also a choice to be made of data structures
for representing states. I chose a sufficiently large array—a simple solution, but
probably inefficient. Another possible choice is a linked list.

The results on the left in Table T are based on 100 simulations in the case
of the trivial algorithm, and 2,000 simulations in the case of Algorithm 2, The
trivial algorithm needs the same amount of time to compute the equilibria of
each game. There is a very slight difference in the actual computation of some
games, probably due to how the computer organizes the task, or because some
payoff functions require slightly more time than others. But all 100 games with
20,000 strategies required essentially 2.8 minutes.

All the simulations were done on a Linux Dell Precision PC with a 1.8 GHz
Xeon CPU and 512 MB Ram. The computer performs 252.2 million floating-
point operations per second (based on output MFLOPS(1), from Al Aburto’s
flops.c program).

8. CALCULATING BEST-RESPONSES

8.1. The source of slowness. The example in Section 5 shows that Algorithm 2,
can be slow. I shall argue that the example is in some sense pathological, and that
the algorithm is likely to be very fast in most situations—in particular when the
source of the game is the discretization of a game with continuous strategy-spaces.

The algorithm is slow when best-response calculations “advance slowly.” For
example, consider a game with two players, each with K = 10 strategies: the

1

TABLE III. Comparison of Trivial and Algorithm ;2

Strat. Trivial/Alg. 2
20,000 56
40,000 66
60,000 146
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numbers 31,32,...40. If player 1’s best response to 2 playing 31 is 31, then
computing 1’s best-response to 2 playing 32 requires 10 computations; it requires
computing the payoffs from all strategies, and finding the maximum. But if
1’s best response to 2 playing 31 is 39, then computing 1’s best response to 32
requires only 2 computations—best responses are monotone increasing, so it is
enough to compare the payoffs from playing 39 and 40.

Hence, if best-responses advance slowly relative to K—as K grows—then Al-
gorithm 2} is relatively slow. On the other hand, if best-responses advance at
rate K or faster, the algorithm will be fast. In fact, I shall establish that the
algorithm will be linear in the worst case.

When will best-responses advance quickly? Consider an n-player game, and
suppose that player ¢ has strategy-space [0, 1]. We can apply Algorithm |_2: by first
discretizing i’s strategy-space to {k/K : k=10,... K}.

Figure {4, illustrates the situation. On the top part of the figure is player i’s
payoff function s; — w;(s;, s_;), holding opponents’ strategies fixed at s_;. In the
middle of the figure is i’s best-response to s_;, when i is restricted to choosing
s; or a larger strategy—her strategy-space in I'"(s;, s_;). We select the smallest
best response when there is more than one. For strategies s; € [0, s;], s; is the

1

best-response. For strategies s; € (s}, s?), it is a best-response to choose s;; the

solution is at a corner. For s; € [s?, s?], on the other hand, i’s best response is to

1)
choose s?. Finally, for s; € (s3,1], it is again optimal for i to be at a corner, and
s; 1s the unique best-response in the restricted game. The bottom of Figure /4
shows ;. rr(s,,s_) (Sis 5-i) — ;.

I now show that best-responses advance quickly over sets of s; such that
Bi,rr(ss,5_0) (Sis 5-i) — 8; > 0 (indicated as “Fast” regions in Figure |4:) and slowly
over sets of s; such that 3;rr, s ,)(5i,5-) —s; = 0 (indicated as “Slow” regions
in Figure .'45

Let k*(K)/K be i’s smallest best-response to s_; in the discretized version of
the game—i.e. the game where i has strategy-space {k/K : k =0,... K}. Assume
that ¢’s payoff function is continuous, then the maximum theorem ensures that

inf 62’,F7'(si,s_i)(8i7 Sfi) < ll[?l inf k*<K)/K7

as the set of maximizers parameterized by K is upper hemicontinuous.

First, let s; be such that inf 3; rr, 5_,)(5i, 5—) —s; > 0. Then k*(K) — s; grows
at rate at least K. So the number of strategies that we eliminate from future best-
response calculations, k*(K), grows at rate at least K, and thus best-responses
advance quickly. In fact (see s 8. 2:) it will in the worst case advance linearly.

Second, let s; be such that inf B rrs,s 0 (Si5-:) — s = 0. As K grows,
k*(K)/K will approach s;, so the number of strategies we eliminate from future
calculations will be, in the limit, zero. In practice, the algorithm will advance
one-step-at-a-time, until an increase in some other player’s strategy pulls the
algorithm away from the region.
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Ui (8i,8—7)

- Brr(s)(s)

Si

Brr(s)(s) — si

Fast Slow Fast Slow  s;

FIGURE 4. Slow and fast regions.

So Algorithm 2, will advance quickly over fast regions, and slowly in slow re-
gions. The overall result depends on the size of the regions, on how much time



20 F. ECHENIQUE

it spends in each region, and on whether the algorithm will actually end up in
these regions. For example, the largest equilibrium often implies that the algo-
rithm does not need to search over the slow regions on the upper side of players’
strategy spaces.

Normally, fast regions are important enough, and the algorithm is fast enough
over these regions (faster than linear), that the algorithm finds all equilibria very
quickly.

8.2. Bounding how much best-responses change with K. The algorithm’s
running time depends on how slowly best responses advance. But it is too strong
to require that best responses advance quickly globally—normally there are some
strategy-profiles at which best responses advance slowly. One possible solution
is to control the size of the regions in strategy space where best responses must
advance slowly. I develop a different solution below. I consider a family of games,
and assume that, at each s in strategy space, the average best-response over the
family of games does not advance slowly. It follows that Algorithm 2/is on average
linear.

Let (92, F, P) be a probability space. Let (I'y,w € Q) be a family of GSC
such that I', has n players, for all w € €2, and each player i has strategy-space
{1,2,...K}.

Assume that there is v € (0, 1) such that, for any strategy-profile s,

V(K —5;) < Einf 3 pr (5)(5) — 5.

Note that S; is finite, so Einf 3; rr (5)(s) is well-defined.

Let T'(w) be the time required by Algorithm |F_2: to find all candidate equilibria.
T'(w) requires counting the number of payoff-function evaluations performed by
the algorithm [I, p. 35-38|.Strategy spaces are fixed, so T'(w) has finite range,
and thus F(T) is well-defined.

Proposition 8. FE(T) is O(nK/~?%).

Proof. Let L be the number of iterations in Algorithm 2. Each iteration [, [ =
1,2,... L, has [; iterations in the RT-algorithm. Each iteration h, h = 1,...1,
implies a best-response calculation for each player i. Fix one player. Let x}' be
the strategy that is a best response in iteration [ of Algorithm 2 and iteration A of
the corresponding RT algorithm. Let K; be the number of strategies we need to
consider for that player in iteration [; note that K; = K — aclll_’f. Since the player
under consideration is fixed, there should be no confusion in using subindexes of
K to denote iterations in this section. If the calculated best response in iteration

h —1 was xf’_l, the best-response calculation is done in K; — a:?_l time. We thus

need to bound Y5 ST (K — ).
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Consider the [-th iteration of the RT algorithm, where each player has K;
strategies. I shall prove that

-1

E) (K —x) < EK/y
h=0

by induction. First,

Ei(Kl —a) = E {i(Kl — )+ E [(Kz — ) :13{1_2] }

h=0
-2
< £{S0m-ah) 4 (- o).
h=0
as the assumption on mean best responses implies that £ [(Kl — @ *1) lIl ] >
x4y (K — ), and so £ [(Kl — x| 2] < (1 =) (K —272).
Second, suppose as inductive hypothesis that

-1 (—1)—m

E) (Ki—a2})<E (Ki—af)+ > (1=

h=0 h=0 h=0

form=1,...1; — 2. Then

(I;—=1)—m m
Eq Y (F—-ah)+> (1- }
m+1 }

h=0 h=0
(Li=1)—-m m
=F Z (K — xl + Z |: 1 — xl(ll_l)_m)’
h=0 h=0
(Ii=1)=(m+1) m+1
SES Y (Ei—al)+ Y (L= - )
h=0 h=0

Where the inequality follows from the hypothesis on mean best responses, simi-
larly to the case I considered first. Induction on m thus proves

-1 I—1
EY (Ki—a])<EK Y (1-7)'"=EK/[1-(1-""]/g<K/y
h=0 h=0

Now, by a similar calculation

L L L
-1 5 -
EY Ki/y<EY (1-7)>="K/y<EY (1-9"K/,
=1 =1

=1
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where I = max{l; : 1 =1,...L}. Then

K/vy < K/

L —
1— (1 _,Y)I(L-&-l)
E K/v<FE

But there are n players, so the expected time used by the algorithm is bounded
by

nk/v?.

9. TWO-PLAYER GAMES WITH STRICT PREFERENCES

Let I' be a two-player game where players have strict preferences and d; =
dy = 1. T present a simple version of Algorithm 2 that finds all the equilibria of
.

Algorithm 3. Find s = inf £ using T(inf S), and 5 = sup £ using T(sup S). Let
£ = {s,5}. The set of possible states of the algorithm is S x S, the algorithm
starts at state (s, s).

Let the state of the algorithm be m = (s,s*) € S x S. While s #3, repeat the
following sub-routine to obtain a new state m’.

SUBROUTINE [If s + (1,1) < 3, then do steps 1-3:

(1) Run T"(s+ (1,1)); let § be the strategy profile at which it stops.

(2) Check that no player j wants to deviate from §; to a strategy in the interval
[3;, (m+ (1,1));]. If no player wants to deviate, add § to E.

(3) Let m' = (8,inf fr(8)).

Say that Algorithm ;3] makes an iteration each time it does steps 1-3. Let
K = min {Kl,KQ}.

Proposition 9. Algorithm 5, finds all Nash equilibria in at most K iterations.

Proof. The proof that Algorithm 3 is well-behaved and finds all Nash equilibria
is similar to the proof for Algorithm 2. I omit it; it can be found in the working-
paper version of the paper [9].

Now I shall prove that the algorithm needs less than K iterations. First, each
iteration of Algorithm 3 produces one and only one element of M, so there are
no more iterations than there are elements in M. Second, M C {1,...K;} X
{1,... Ky}, and for each m,m’ € M, m # m’ then either m + (1,1) < m’ or
m’ + (1,1) < m. Thus M cannot have more elements than either {1,... K;} or
{1,... Ky}. Thus, M has not more than min { Ky, Ky} = K elements. O
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