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Abstract

In a Markov decision problem with hidden state variables, a posterior distribution
serves as a state variable and Bayes’ law under an approximating model gives its law of
motion. A decision maker expresses fear that his model is misspecified by surrounding
it with a set of alternatives that are nearby when measured by their expected log
likelihood ratios (entropies). Martingales represent alternative models. A decision
maker constructs a sequence of robust decision rules by pretending that a sequence
of minimizing players choose increments to a martingale and distortions to the prior
over the hidden state. A risk sensitivity operator induces robustness to perturbations
of the approximating model conditioned on the hidden state. Another risk sensitivity
operator induces robustness to the prior distribution over the hidden state. We use
these operators to extend the approach of Hansen and Sargent (1995) to problems that
contain hidden states.

1 Introduction

This paper constructs robust decision rules for discounted dynamic programming problems
that confront a decision maker with an incentive to evaluate alternative models and to
learn about unknown parameters and other hidden state variables.1 Extending robust con-
trol theory to include these features allows us to approach unsolved problems in positive
and normative economics, for example, computing asset evaluations of robust investors and
designing robust monetary and fiscal policies. A criticism of our earlier robust control for-
mulations with persistent fears of model misspecification (for example, Hansen and Sargent
(1995), Hansen et al. (2006a), Hansen et al. (1999), Anderson et al. (2003)) is that they
precluded learning by not allowing the decision maker to use new information to refine his
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approximating model and diminish the set of plausible alternatives against which he seeks
robustness.2 This paper confronts that criticism by incorporating learning.

The Bayesian literature on model selection and learning has acquired prominent critics.
Turning their backs on Bayes’ law and the logic of backward induction, distinguished macro-
economists have recommended against using experimentation, learning, and model selection
to guide decision making.3 These skeptics seem to believe that in any concrete applica-
tion, the details of a model are bound to be subject to misspecifications that will render a
recommendation to experiment that comes from pursuing the logic of Bayes and backward
induction unacceptably fragile.4 Our methods show a decision maker how to experiment
even though he distrusts both his models and the prior that he places over them.

We begin by assuming that, through some unspecified process, a decision maker has
arrived at an approximating model that fits historical data well. Our notion of a model is
broad enough to subsume the possibility that the model is actually a collection of alternative
submodels, each of which can contain unknown parameters. More generally, we formulate
the decision environment using a hidden state Markov model, and we index a family of
probability models by conditioning on the hidden Markov state. Some of the components of
the Markov states can be time invariant indicators of submodels and others can be parameters
or hidden states associated with the submodels that vary over time. A conditional model is a
probability specification conditioned on a hidden Markov state. Because the decision-maker
fears that each member of his family of approximating conditional models is misspecified,
he surrounds each of them with a set of unspecified alternative models whose expected log
likelihood ratios (i.e., relative entropies) are restricted or penalized. The decision maker
believes that the data will be generated by an unknown member of one of these sets. When
relative entropies are constrained to be small, the decision maker believes that his model
is a good approximation. The decision maker wants robustness against these alternatives
because, as Anderson et al. (2003) emphasize, perturbations with small relative entropies
are statistically difficult to distinguish from the approximating model.

Since the decision maker does not know the hidden Markov state, he is also compelled
to weight the alternative conditional models. This paper assumes that at each date the
appropriate summary of past signals about the hidden state is the decision maker’s posterior
under the approximating model, just as it is when the decision maker trusts his model.
He makes a robust adjustment to these probabilities to accommodate the fact that they
were constructed from the approximating model. As we shall see, the decision maker is
not required to respect distortions to the distribution of today’s hidden state that were
implied by his decision making process at earlier dates. Hansen and Sargent (2005) studied
a closely related decision problem that requires today’s decision maker to commit to those
prior distortions of the distribution of today’s hidden states.

Section 2 formulates a Markov control problem in which a decision maker with a trusted
model receives signals about hidden state variables. Subsequent sections view the model
of section 2 as an approximation, use relative entropy to define a cloud of models that are

2See Weiland (2005).
3Alan Blinder, Robert E. Lucas, and Martin Feldstein have all argued against experimenting to refine

model selection. See Cogley et al. (2005a) for quotations and further discussion.
4See Brock et al. (2003, 2004) for an approach to model selection and decision making that also emphasizes

robustness.
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difficult to distinguish from it statistically, and construct a sequence of decision rules that
can work well for all of those models. Section 3 uses results of Hansen and Sargent (2005)
to represent distortions of an approximating model in terms of martingales defined on the
same probability space as the approximating model. Section 4 then defines two operators,T1

and T2, respectively, that are indexed by penalty parameters (θ1, θ2). In section 5, we use
T1 to adjust continuation values for concerns about model misspecification, conditioned on
knowledge of the hidden state. We use T2 to adjust continuation values for concern about
misspecification of the distribution of the hidden state. We interpret θ1 and θ2 as penalties
on pertinent entropy terms. Hansen and Sargent (2006b) specializes our section 5 recursions
to compute robust decision rules for the linear quadratic Gaussian case.

Section 6 relates the special θ1 = θ2 case to a decision problem under commitment
that we analyzed in Hansen and Sargent (2005) (they coincide when the discount factor is
unity). We discuss the dynamic consistency of worst case beliefs about the hidden state in
subsections 6.4 and 6.6. To prepare the machinery needed to construct stochastic discount
factors like those mentioned in section 10, section 7 describes the worst case distribution
over signals. Section 8 interprets our formulation and suggests modifications of it in terms
of the multiple priors models of Epstein and Schneider (2003a,b). Section 9 relates our
formulation to papers about reducing compound lotteries. Section 10 briefly describes a
model of Hansen and Sargent (2006a) that combines special cases of the recursions in Hansen
and Sargent (2006b) and the logarithmic preference specification of Tallarini (2000). Hansen
and Sargent (2006a) construct the value function for a representative consumer who lives in
a pure endowment economy and is unsure about the specifications of two submodels that
might govern consumption growth, as well as being unsure about the probability for mixing
those submodels. They deduce a multiplicative adjustment to the market price of risk that
is contributed by the representative consumer’s concerns about robustness. This model
illustrates how the consumer’s concern about misspecification of the probabilities for mixing
submodels and also of the conditional means and other hidden components of consumption
growth within each submodel can increase the volatility of the stochastic discount factor
and enhance what are typically interpreted as risk premia.5 Section 11 concludes. Hansen
and Sargent (2005) contains an extensive account of related literatures. An application to
a decision problem with experimentation and learning about multiple submodels appears in
Cogley et al. (2005a).

2 A control problem without model uncertainty

For t ≥ 0, we partition a state vector as xt =

[

yt
zt

]

, where yt is observed and zt is not.

A vector st of observable signals is correlated with the hidden state zt and is used by the
decision maker to form beliefs about the hidden state. Let Z denote a space of admissible
unobserved states, Z a corresponding sigma algebra of subsets of states, and λ a measure

5With enough data, the consumer can ‘learn his way out of’ concerns about misspecification on mixture
probabilities across models and on parameter estimates because eventually the mixture probabilities will
concentrate on one model and the parameter estimates will converge. But as we shall see, convergence does
not come close to occurring within the sample for the quarterly record of post WWII U.S. consumption
growth rates that we study.
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on the measurable space of hidden states (Z,Z). Let S denote the space of signals, S a
corresponding sigma algebra, and η a measure on the measurable space (S,S) of signals.

Let {St : t ≥ 0} denote a filtration, where St is generated by y0, s1, ..., st, where we shall
assume that s1, . . . , st is generated by system (1), (2), 3) below. We can apply Bayes’ rule to
τ to deduce a density qt, relative to the measure λ, for zt conditioned on information St. Let
{Xt : t ≥ 0} be a larger filtration where Xt is generated by x0, w1, w2, ..., wt. The smallest
sigma algebra generated by all states for t ≥ 0 is X∞

.
=
∨

t≥0 Xt; the smallest sigma algebra
generated by all signals for t ≥ 0 is S∞

.
=
∨

t≥0 St. Let A denote a feasible set of actions,
which we take to be a Borel set of some finite dimensional Euclidean space, and let At be
the set of A-valued random vectors that are St measurable.6

Signals and states are determined by the transition functions

yt+1 = πy(st+1, yt, at) (1)

zt+1 = πz(xt, at, wt+1) (2)

st+1 = πs(xt, at, wt+1) (3)

where {wt+1 : t ≥ 0} is an i.i.d. sequence of random variables. Knowledge of y0 and πy allows
us to construct yt recursively from signals and actions. The construction of xt in equation
(1) - (2) and the informational constraint on action processes imply that xt is Xt measurable
and yt is St measurable. Substituting (3) into (1) gives:

yt+1 = πy[πs(xt, at, wt+1), yt, at]
.
= π̄y(xt, at, wt+1).

Equations (2) and (3) determine a conditional density τ(zt+1, st+1|xt, at) relative to the prod-
uct measure λ× η.

As a benchmark, consider the following decision problem under complete confidence in
model (1), (2), (3) but incomplete information about the state:

Problem 2.1.

max
at∈At:t≥0

E

[

T
∑

t=0

βtU(xt, at)|S0

]

, β ∈ (0, 1)

subject to (1), (2), and (3).

To make problem 2.1 recursive, let ∗ denote a next period value and use τ to construct
two densities for the signal:

κ(s∗|yt, zt, at)
.
=

∫

τ(z∗, s∗|yt, zt, at)dλ(z∗)

ς(s∗|yt, qt, at)
.
=

∫

κ(s∗|yt, z, at)qt(z)dλ(z). (4)

By Bayes’ rule,

qt+1(z
∗) =

∫

τ(z∗, st+1|yt, z, at)qt(z)dλ(z)

ς(st+1|yt, qt, at)
≡ πq(st+1, yt, qt, at). (5)

6We could easily allow A to depend on the observable component of the state.
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In particular applications, πq can be computed with methods that specialize Bayes’ rule
(e.g., the Kalman filter or a discrete time version of the Wonham (1964) filter).

Take (yt, qt) as the state for a recursive formulation of problem 2.1. The transition law

is (1) and (5). Let π =

[

πy
πq

]

. Then we can rewrite problem 2.1 in the alternative form:

Problem 2.2. Choose a sequence of decision rules for at as functions of (yt, qt) for each
t ≥ 0 that maximize

E

[

T
∑

t=0

βtU(xt, at)|S0

]

subject to (1), (5), a given density q0(z), and the density κ(st+1|yt, zt, at). The Bellman
equation for this problem is

W (y, q) = max
a∈A

∫

{

U(x, a) + β

∫

W ∗ [π(s∗, y, q, a)]κ(s∗|y, z, a)dη(s∗)
}

q(z)dλ(z). (6)

In an infinite horizon version of problem 2.2, W ∗ = W .

2.1 Examples

Examples of problem 2.2 in economics include Jovanovic (1979), Jovanovic (1982), Jovanovic
and Nyarko (1995, 1996), and Bergemann and Valimaki (1996). Examples from outside
economics appear in Elliott et al. (1995). Problems that we are especially interested in are
illustrated in the following four examples. (More examples appear in section 10.)

Example 2.3. Model Uncertainty I: two submodels. Let the hidden state z ∈ {0, 1} index
one of two submodels. Let

yt+1 = st+1

zt+1 = zt
st+1 = πs(yt, z, at, wt+1). (7)

The hidden state is time invariant. The decision maker has prior probability Prob(z = 0) =
q. The third equation in (7) depicts two laws of motion. Cogley et al. (2005a) and Cogley
et al. (2005b) study the value of monetary policy experimentation in a model in which a is
an inflation target and πs(y, z, a, w) = π̄y(y, z, a, w) for z ∈ {0, 1} represent two submodels
of inflation-unemployment dynamics.

Example 2.4. Model Uncertainty II: a continuum of submodels. The observable state y takes
two possible values {yL, yH}. Transition dynamics are still described by (7), but now there is
a continuum of models indexed by the hidden state z ∈ [0, 1]× [0, 1] that stands for unknown
values of two transition probabilities for an observed state variable y. Given z, we can use
the third equation of (7) to represent a two state Markov chain that governs the observable

state y (see Elliott et al. (1995)), P =

[

p11 1 − p11

1 − p22 p22

]

, where (p11, p22) = z. The decision

maker has prior distribution g0,1(p11)g0,2(p22) on z; g0,1 and g0,2 are beta distributions.
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Example 2.5. Model Uncertainty III: a components model of income dynamics with an
unknown fixed effect in labor income. The utility function U(at) is a concave function of
consumption at; y2t is the level of financial assets, and y1t = st is observed labor income.
The evolution equations are

y1,t+1 = st+1

y2,t+1 = R[y2,t + y1,t − at]
z1,t+1 = z1,t

z2,t+1 = ρz2,t + σ1w1,t+1

st+1 = z1,t + z2,t + σ2w2,t+1

where wt+1 ∼ N (0, I) is an i.i.d. bivariate Gaussian process, R ≤ β−1 is a gross return on
financial assets y2,t, |ρ| < 1, z1,t is one unobserved constant component of labor income, and
z2,t is another unobserved serially correlated component of labor income. A decision maker
has a prior q0 over (z1,0, z2,0).

Example 2.6. Estimation of drifting coefficients regression model. The utility function
U(xt, at) = −L(zt − at), where L is a loss function and at is a time-t estimate of the
coefficient vector zt. The evolution equation is

yt+1 = st+1

zt+1 = ρzt + σ1w1,t+1

st+1 = yt · zt + σ2w2,t+1

where wt+1 ∼ N (0, I) and there is a prior q0(z) on an initial set of coefficients.

2.2 Modified problems that distrust κ(s∗|y, z, a) and q(z)

This paper studies modifications of problem 2.2 in which the decision maker wants a deci-
sion rule that is robust to possible misspecifications of equations (1)-(2). We express the
Bellman equation as (6) and use the decomposition of ς in (4). Representation (6) focuses
the decision maker’s concerns on two aspects of the stochastic structure: the conditional
distribution of next period’s signals κ(s∗|y, z, a) and the distribution over this period’s value
of the hidden state q(z). We propose a recursive formulation of a robust control and es-
timation problem that allows a decision maker to doubt either or both of these aspects of
his stochastic specification. To prepare the way, section 3 describes how misspecifications
of the decision maker’s approximating model can be represented in terms of sequences of
nonnegative random variables that form martingales under that approximating model.

3 Using martingales to represent model misspecifica-

tions

Hansen and Sargent (2005) use a nonnegative Xt-measurable function Mt with EMt = 1
to create a distorted probability measure that is absolutely continuous with respect to the
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probability measure over Xt generated by the model (1) - (2). The random variable Mt

is a martingale under this probability measure. Using Mt as a Radon-Nikodym derivative
generates a distorted measure under which the expectation of a bounded Xt-measurable
random variable Wt is ẼWt

.
= EMtWt. The entropy of the distortion at time t conditioned

on date zero information is E (Mt logMt|X0) or E(Mt logMt|S0).

3.1 Recursive representations of distortions

We often factor a density Ft+1 for an Xt+1-measurable random variable as Ft+1 = Ftft+1

where ft+1 is a one-step ahead density conditioned on Xt. It is also useful to factor Mt.
Thus, take a nonnegative martingale {Mt : t ≥ 0} and form

mt+1 =

{

Mt+1

Mt
if Mt > 0

1 if Mt = 0.

Then Mt+1 = mt+1Mt and

Mt = M0

t
∏

j=1

mj. (8)

The random variableM0 has unconditional expectation equal to unity. By construction, mt+1

has date t conditional expectation equal to unity. For a bounded random variable Wt+1

that is Xt+1-measurable, the distorted conditional expectation implied by the martingale
{Mt : t ≥ 0} is

E(Mt+1Wt+1|Xt)

E(Mt+1|Xt)
=
E(Mt+1Wt+1|Xt)

Mt

= E (mt+1Wt+1|Xt)

provided that Mt > 0. We use mt+1 to represent distortions of the conditional probability
distribution for Xt+1 given Xt. For each t ≥ 0, construct the space Mt+1 of all nonnegative,
Xt+1-measurable random variables mt+1 for which E(mt+1|Xt) = 1.

The conditional (on Xt) relative entropy of a nonnegative random variable mt+1 in Mt+1

is ε1
t (mt+1)

.
= E (mt+1 logmt+1|Xt) .

3.2 Distorting likelihoods with hidden information

The random variable Mt is adapted to Xt and is a likelihood ratio for two probability distrib-
utions over Xt. The St-measurable random variable Gt = E (Mt|St) implies a likelihood ratio
for the reduced information set St; Gt assigns distorted expectations to St-measurable ran-
dom variables that agree with Mt, and {Gt : t ≥ 0} is a martingale adapted to {St : t ≥ 0}.

Define the Xt-measurable random variable ht by

ht
.
=

{

Mt

E(Mt|St)
if E (Mt|St) > 0

1 if E (Mt|St) = 0

and decompose Mt as
Mt = htGt. (9)

7



Decompose entropy as

E (Mt logMt|S0) = E [Gtht (log ht + logGt) |S0]
= E (Gtht log ht|S0) + E (Gt logGt|S0)

where we have dropped an ht from the last term because E(ht|St) = 1 and Gt is St measur-
able. Define ε2

t (ht)
.
= E (ht log ht|St) as the conditional (on St) relative entropy.

We now have the tools to represent and measure misspecifications of the two components
κ(s∗|y, z, a) and q(z) in (6). In (9), Mt distorts the probability distribution of Xt, ht distorts
the probability of Xt conditioned on St, Gt distorts the probability of St, andmt+1 distorts the
probability of Xt+1 given Xt. We use multiplication by mt+1 to distort κ and multiplication
by ht to distort q. We use ǫ1t (mt+1) to measure mt+1 and ǫ2t (ht) to measure ht.

4 Two pairs of operators

This section introduces two pairs of risk-sensitivity operators, (R1
t ,T

1) and (R2
t ,T

2). In
section 5, we use the T1 and T2 operators to define recursions that induce robust decision
rules.

4.1 R1
t and T1

For θ > 0, let Vt+1 be an Xt+1-measurable random variable for which E
[

exp
(

−Vt+1

θ

)

|Xt

]

<

∞. Then define

R
1
t (Vt+1|θ) = min

mt+1∈Mt+1

E (mt+1Vt+1|Xt) + θε1
t (mt+1)

= −θ logE

[

exp

(

−
Vt+1

θ

)

|Xt

]

. (10)

The minimizing choice of mt+1 is

m∗
t+1 =

exp
(

−Vt+1

θ

)

E
[

exp
(

−Vt+1

θ

)

|Xt

] (11)

where the term in the denominator assures that Em∗
t+1|Xt = 1.

In the limiting θ = ∞ case, R1
t (Vt+1|∞) = E(Vt+1|Xt). Notice that this expectation can

depend on the hidden state. When θ < ∞, R1
t adjusts E(Vt+1|Xt) by using a worst-case

belief about the probability distribution of Xt+1 conditioned on Xt that is implied by the
twisting factor (11), as well as adding an entropy penalty. When the conditional moment

restriction E
[

exp
(

−Vt+1

θ

)

|Xt

]

<∞ is not satisfied, we define R1

t
to be −∞ on the relevant

conditioning events.
When the Xt+1-measurable random variable Vt+1 takes the special formW (yt+1, qt+1, zt+1),

the R1
t (·|θ) operator implies another operator:

T
1(W |θ)(y, q, z, a) = −θ log

∫

exp

(

−
W [π(s∗, y, q, a), z∗]

θ

)

τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗).
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The transformation T1 maps a value function that depends on next period’s state (y∗, q∗, z∗)
into a risk-adjusted value function that depends on (y, q, z, a). Associated with this risk sen-
sitivity adjustment T1 is a worst-case distortion in the transition dynamics for the state and
signal process. Let φ denote a nonnegative density function defined over (z∗, s∗) satisfying

∫

φ(z∗, s∗)τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗) = 1. (12)

The corresponding entropy measure is:

∫

log[φ(z∗, s∗)]φ(z∗, s∗)τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗).

In our recursive formulation, we think of φ as a possibly infinite dimensional control vector
(a density function) and consider the minimization problem:

min
φ≥0

∫

(W [π(s∗, y, q, a), z∗] + θ log[φ(z∗, s∗)])φ(z∗, s∗)τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗)

subject to (12). The associated worst-case density conditioned on Xt is φt(z
∗, s∗)τ(z∗, s∗|xt, at)

where

φt(z
∗, s∗) =

exp
(

−V [π(s∗,yt,qt,at),z∗]
θ

)

E
[

exp
(

−V [π(st+1,yt,qt,at),zt+1]
θ

)

|Xt

] . (13)

4.2 R2
t and T2

For θ > 0, let Ŵt be an Xt-measurable function for which E
[

exp
(

−Ŵt

θ

)

|St
]

< ∞. Then

define

R
2
t

(

V̂t|θ
)

= min
ht∈Ht

E
(

htV̂t|St
)

+ θε2
t (ht)

= −θ logE

[

exp

(

−
V̂t

θ

)

|St

]

. (14)

The minimizing choice of ht is

h∗t =
exp

(

−Ŵt

θ

)

E
[

exp
(

−Ŵt

θ

)

|St
]

where the term in the denominator assures that Eh∗t |St = 1.
When an Xt-measurable function has the special form Ŵt = V̂ (yt, qt, zt, at), (14) implies

another operator

T
2(V̂ |θ)(y, q, a) = −θ log

∫

exp

[

−
V̂ (y, q, z, a)

θ

]

q(z)dλ(z).
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The associated minimization problem is:

min
ψ≥0

∫

[

V̂ (y, q, z, a) + θ logψ(z)
]

ψ(z)q(z)dλ(z)

subject to (15), where ψ(z) is a relative density that satisfies:

∫

ψ(z)q(z)dλ(z) = 1 (15)

and the entropy measure is
∫

[logψ(z)]ψ(z)q(z)dλ(z).

The optimized density conditioned on St is ψt(z)qt(z), where

ψt(z) =
exp

(

− V̂ (yt,qt,z,at)
θ

)

E
[

exp
(

− V̂ (yt,qt,z,at)
θ

)

|St
] . (16)

5 Control problems with model uncertainty

We propose robust control problems that take qt(z) as the component of the decision maker’s
state vector that summarizes the history of signals. The decision maker’s model includes
the law of motion (5) for q (Bayes’ law) under the approximating model (1), (2), (3). Two
recursions that generalize Bellman equation (6) express alternative views about the decision
maker’s fear of misspecification. A first recursion works with value functions that include
the hidden state z as a state variable. Let

W̌ (y, q, z) = U(x, a) + E
{

βW̌ ∗[π(s∗, y, q, a), z∗]
∣

∣x, q
}

, (17)

where the action a solves:

W (y, q) = max
a
E

[

U(x, a) + E
{

βW̌ ∗[π(s∗, y, q, a), z∗]
∣

∣x, q, a
}∣

∣

∣
y, q, a

]

. (18)

The value function W̌ depends on the hidden state z, whereas the value function W in (6)
does not. A second recursion modifies the ordinary Bellman equation (6), which we can
express as:

W (y, q) = max
a
E

[

U(x, a) + E
{

βW ∗[π(s∗, y, q, a)]
∣

∣x, q, a
}
∣

∣

∣
y, q, a

]

. (19)

Although they use different value functions, without concerns about model misspecification,
formulations (17)-(18) and (19) imply identical control laws. Furthermore, a W (y, q) that
satisfies (19) also obeys (18) by virtue of the law of iterated expectations. Because Bellman
equation (19) is computationally more convenient, the pair (17)-(18) is not used in the stan-
dard problem without a concern for robustness. However, with a concern about robustness,
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a counterpart to (17)-(18) becomes useful when the decision maker wants to explore dis-
tortions of the joint conditional distribution τ(s∗, z∗|y, z, a).7 Distinct formulations emerge
from (18) and (19) when we replace the conditional expectation E(·|y, q, a) with T2(·|θ2) and
the conditional expectation E(·|x, q, a) with T1(·|θ1). When θ1 = θ2 = +∞, (17)-(18) or (19)
lead to value functions and decision rules equivalent to those from (6). When θ1 < +∞ and
θ2 < +∞, recursions (17)-(18) and (19) lead to different decision rules because they take
different views about the conditional distributions that the malevolent player wants to dis-
tort, or equivalently, about the aspects of the stochastic specification in the approximating
model against which the decision maker seeks robustness.

5.0.1 Which conditional distributions to distort?

The approximating model (1), (2), (3) makes both tomorrow’s signal s∗ and tomorrow’s
state z∗ functions of x. When tomorrow’s value function depends on s∗ but not on z∗ as
in (19), the minimizing player chooses to distort only κ(s∗|y, z, a), which amounts to being
concerned about misspecifications of the evolution equation (3) for the signal and not (2)
for the hidden state. Such a continuation value function imparts no additional incentive
to distort the evolution equation (2) of z∗ conditioned on s∗ and x.8 Such a continuation
value that depends on s∗ but not on z∗ thus imparts concerns about a limited array of
distortions that ignore possible misspecification of the z∗ evolution (2). Therefore, when we
want to direct the maximizing agent’s concerns about misspecification onto the conditional
distribution κ(s∗|y, z, a), we should form a current period value that depends only on the
history of the signal and of the observed state. We do this in recursion (23) below.

However, in some situations, we might want to extend the maximizing player’s concerns
about misspecification to the joint distribution τ(z∗, s∗|y, z, a) of z∗ and s∗. We can do
this by making tomorrow’s value function for the minimizing player also depend on z∗. In
recursions (20)-(21) below, we form a continuation value function that depends on z∗ and
thereby extend recursions (17), (18) to incorporate concerns about misspecification of (2).

Thus, (20)-(21) below will induce the minimizing player to distort the distribution of z∗

conditional on (s∗, x, a), while the formulation in (23) will not.

5.1 Value function depends on (x, q)

By defining a value function that depends on the hidden state, we focus the decision maker’s
attention on misspecification of the joint conditional distribution τ(z∗, s∗|y, z, a) of (s∗, z∗).
We modify recursions (17)-(18) by updating a value function according to

W (y, q, z) = U(x, a) + T
1 [βW ∗(y∗, q∗, z∗)|θ1] (x, q, a) (20)

after choosing an action according to

max
a

T
2
(

U(x, a) + T
1
[

βW ∗(y∗, q∗, z∗)|θ1

]

(

x, q, a
)

∣

∣

∣
θ2

)

(y, q, a), (21)

7Another way to express his concerns is that in this case the decision maker fears that (2) and (3) are
both misspecified.

8Dependence between (s∗, z∗) conditioned on x under the approximating model means that in the process
of distorting s∗ conditioned on (x, a), the minimizing player may indirectly distort the distribution of z∗

conditioned on (x, a). But he does not distort the distribution of z∗ conditioned on (s∗, x, a)
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for θ1 ≥ θ1, θ2 ≥ θ2(θ1) for θ1, θ2 that make the problems well posed.9 Updating the value
function by recursion (20) makes it depend on (x, q), while using (21) to guide decisions makes
actions depend only on the observable state (y, q). Thus, continuation value W̌ depends on
unobserved states, but actions do not. To retain the dependence of the continuation value
on z, (20) refrains from using the T2 transformation when up-dating continuation values.
The fixed point of (20)-(21) is the value function for an infinite horizon problem. For the
finite horizon counterpart, we begin with a terminal value function and view the right side
of (20) as mapping next period’s value function into the current period value function.

5.1.1 Time inconsistency of maximizing player’s preferences

In formulation (20)-(21), the current period decision maker acknowledges the dependence
on the current hidden state of discounted future returns. For simplicity, suppose that we set
θ1 = ∞. ThenW (y, q, z) gives the discounted value of an objective conditioned on the hidden
state z. That this hidden state helps predict future signals and future observable state vectors
is reflected the dependence of this value function on z. This dependence remains when we let
θ1 < ∞, thus activating a concern about model misspecification conditioned on the current
period value of the state z. Such dependence is also present in a commitment formulation
of the problem discussed in Hansen and Sargent (2005). In the present formulation without
commitment, we use recursion (20) to portray a Markov perfect equilibrium of a game in
which the date t maximizing decision maker (and his malevolent companions) take as given
the decisions of future maximizing decision makers (and their malevolent companions).10

That the T2 operator is applied only at the last stage of the backward induction in (20)-
(21) renders the preferences of the time 0 agent dynamically inconsistent.11 The dynamic
inconsistency reflects a conflict between the interests of decision makers at different times,
one that vanishes when β → 1 and which we now describe.

To explore the preferences implicit in this formulation it is convenient to apply the
operators R1

t and R2
t to continuation values. Let Vt+1 denote the continuation values of a

stochastic process of actions from date t + 1 forward. This continuation value can depend
on the future states. It is Xt+1 measurable but not necessarily St+1 measurable. Assess this
action process at date t+1 using R2

t+1(Vt+1|θ2), which makes a robust adjustment and results
in an St+1 measurable continuation value.

Consider two such continuation values, V a
t+1 and V b

t+1, where

R
2
t+1(V

a
t+1|θ2) ≥ R

2
t+1(V

b
t+1|θ2). (22)

We are interested in a date t ranking of these two after we discount (22) and add a common
current period contribution Ut to both before applying R2

t . This results in two continuation
values that are not necessarily comparable, namely, Ut+R1

t (βV
a
t+1|θ1) and Ut+R1

t (βV
b
t+1|θ1).

For some realized signal histories, the ranking in inequality (22) can be reversed, even after
applying R2

t .

9Limits on θ1 and θ2 are typically needed to make the outcomes of the T
1 and T

2 operators be finite.
10Laibson (1997) uses a Markov perfect equilibrium of such a game to model the decisions of made by

someone with intertemporally inconsistent preferences coming from hyperbolic discounting.
11That dynamic inconsistency is what prompts us to model decisions as the Markov perfect equilibrium

represented in recursion (20).
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It is instructive to consider the special case in which Ut is St measurable. Then

R
2
t [Ut + R

1
t (βV

j
t+1|θ1)|θ2] = Ut + R

2
t [R

1
t+1(βV

j
t+1|θ1)|θ2]

for j = a, b. The source of possible intertemporal reversal of rankings is that inequality (22)
does not imply:

R
2
t [R

1
t+1(βV

a
t+1|θ1)|θ2] ≥ R

2
t [R

1
t+1(βV

b
t+1|θ1)|θ2].

If, however, we strengthen inequality (22) to be:

V a
t+1 ≥ V b

t+1

then the rankings are preserved. Thus, when we limit comparisons to ones conditioned on
hidden states, then intertemporal inconsistency vanishes.

In the next subsection, we propose an alternative approach that avoids the conflict that
is the source of this intertemporal inconsistency at the cost of giving the hidden states a less
direct role. In particular, as we shall see, this alternative approach considers value functions
that depend only on (y, q) and not the hidden state z. This formulation removes an incentive
to explore misspecification of the hidden state dynamics themselves and instead focuses only
on how those misspecifications might affect the evolution of signals.

5.2 Value function depends on (y, q)

To focus on misspecifications of the conditional distribution κ(s∗|y, z, a), we want the mini-
mizing player’s value function to depend only on the reduced information encoded in (y, q).
For this purpose, we use the following counterpart to recursion (19):

W (y, q) = max
a

T
2

(

U(x, a) + T
1 [βW ∗(y∗, q∗)|θ1] (x, q, a)

∣

∣

∣
θ2

)

(y, q, a) (23)

for θ1 ≥ θ1 and θ2 ≥ θ2(θ1). Although z∗ is excluded from the value function W ∗, z
may help predict the observable state y∗ or it may enter directly into the current period
reward function, so application of the operator T1 creates a value function that depends on
(x, q, a), including the hidden state z. Since the malevolent agent observes z, he can distort
the dynamics for the observable state conditioned on z via the T1 operator. Subsequent
application of T2 gives a value function that depends on (y, q, a), but not z; T2 distorts the
hidden state distribution. The decision rule sets action a as a function of (y, q). The fixed
point of Bellman equation (23) gives the value function for an infinite horizon problem. For
finite horizon problems, we iterate on the mapping defined by the right side of (23), beginning
with a known terminal value function. Recursion (23) extends the recursive formulation of
risk-sensitivity with discounting advocated by Hansen and Sargent (1995) to situations with
a hidden state.

5.3 A third formulation that forgets that z is hidden

It is interesting to contrast the above approaches with an alternative one that is be feasible
for problems in which z does not appear directly in U but instead either y appears alone or

13



y and q both appear. Then one could proceed by simply applying a single risk-sensitivity
operator. For such problems, the Bellman equation without concerns about robustness (6)
could also be expressed as

W (y, q) = max
a∈A

U(y, q, a) + β

∫

W ∗ [π(s∗, y, q, a)] ς(s∗|y, q, a)dη(s∗).

The analysis of robust control problems without hidden states in Hansen and Sargent (1995)
and Hansen et al. (2006a) could be applied to obtain robust decision rules by taking (y, q)
as the observed state. Decision rules that are robust to misspecification of ς(s∗|y, q, a) can
be obtained by iterating on

W (y, q) = max
a∈A

U(y, q, a) + T
1[βW ∗(y∗, q∗)|θ](y, q, a).

This approach absorbs Bayes’ law into the transition law for the state and seeks robustness to
misspecification of ς(s∗|y, q, a). In contrast, the formulations in (20)-(21) and (23) distinguish
distortions to κ(s∗|y, z, a) and to q(z) and seek robustness to misspecifications of each of them
separately.

5.4 Advantages of our specification

We take the distribution qt(z) as a state variable and explore misspecifications of it. An
alternative way to describe a decision maker’s fears of misspecification would be to perturb
the evolution equation for the hidden state (2) directly. Doing that would complicate the
problem substantially by requiring us to solve a filtering problem for each perturbation of
(2). Our formulation avoids multiple filtering problems by solving one and only one filtering
problem under the approximating model. The transition law πq for q(z) in (5) becomes a
component of the approximating model.

When θ1 = +∞ but θ2 < +∞, the decision maker trusts the signal dynamics κ(s∗|y, z, a)
but distrusts q(z). When θ2 = +∞ but θ1 < +∞, the situation is reversed. The two-θ
formulation thus allows the decision maker to disentangle his suspicions about these two
aspects of the model. Before saying more about the two-θ formulation, the next section
explores some ramifications of the special case in which θ1 = θ2 and how it compares to the
single θ specification that prevails in a related decision problem under commitment.

6 The θ1 = θ2 case

For the purpose of studying intertemporal consistency and other features of the associated
worst case models, it is interesting to compare the outcomes of recursions (20)-(21) or (23)
with the decision rule and worst case model described by Hansen and Sargent (2005) in
which at time 0 the maximizing and minimizing players in a zero-sum game commit to
a sequence of decision rules and a single worst case model, respectively. Because there is
a single robustness parameter θ in this “commitment model”, it is natural to make this
comparison for the special case in which θ1 = θ2.
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6.1 A composite operator T2 ◦ T1 when θ1 = θ2

When a common value of θ appears in the two operators, the sequential application T2T1

can be replaced by a single operator:

T
2 ◦ T

1
[

U(x, a) + βW (y∗, q∗)
]

(y, q, a)

= −θ log

∫

exp

(

−
U(x, a) + βW [π(s∗, y, q, a)]

θ

)

κ(s∗|y, z, a)q(z)dη(s∗)dλ(z).

This operator is the outcome of a portmanteau minimization problem over a single relative
density ϕ(s∗, z) ≥ 0 that satisfies12

∫

ϕ(s∗, z)κ(s∗|y, z, a)q(z)dη(s∗)dλ(z) = 1,

where ϕ is related to φ and ψ defined in (12) and (15) by

ϕ(s∗, z) =

∫

φ(z∗, s∗|z)ψ(z)q∗(z∗)dλ(z∗),

where this notation emphasizes that the choice of φ can depend on z. The entropy measure
for ϕ is

∫

[logϕ(s∗, z)]ϕ(s∗, z)κ(s∗|y, z, a)q(z)dη(s∗)dλ(z),

and the minimizing composite distortion ϕ to the joint density of (s∗, z) given St is

ϕt(s
∗, z) =

exp
(

−U(yt,z,at)+βW [π(s∗,yt,qt,at)]
θ

)

E
[

exp
(

−U(yt,z,at)+βW [π(st+1,yt,qt,at)]
θ

)

|St
] . (24)

6.2 Special case U(x, a) = Û(y, a)

When U(x, a) = Û(y, a), the current period utility drops out of formula (24) for the worst-
case distortion to the distribution, and it suffices to integrate with respect to the distribution
ς(s∗|y, q, a) that we constructed in (4) by averaging κ over the distribution of the hidden
state. Probabilities of future signals compounded by the hidden state are simply averaged
out using the state density under the benchmark model, a reduction of a compound lottery
that would not be possible if different values of θ were to occur in the two operators.

To understand these claims, we deduce a useful representation of εt(mt+1, ht) by solving:

εt(m
∗
t+1, h

∗
t ) ≡ min

mt+1∈Mt,ht∈Ht

E
[

htε
1
t (mt+1)|St

]

+ ε2
t (ht)

subject to E (mt+1ht|St+1) = gt+1, where E (gt+1|St) = 1, a constraint that we impose
because our aim is to distort expectations of St+1-measurable random variables given current
information St. The minimizers are

m∗
t+1 =

{ gt+1

E(gt+1|Xt)
if E (gt+1|Xt) > 0

1 if E (gt+1|Xt) = 0

12Recall that applying T
1 and T

2 separately amounts to minimizing over separate relative densities φ and
ψ.
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and h∗t = E (gt+1|Xt) . Therefore, m∗
t+1h

∗
t = gt+1 and the minimized value of the objective is

εt(m
∗
t+1, h

∗
t ) = E [gt+1 log(gt+1)|St] ≡ ǫ̃t(gt+1). (25)

Thus, in penalizing distortions to continuation values that are St-measurable, it suffices to
use the entropy measure ǫ̃t defined in (25) and to explore distortions to the conditional
probability of St+1-measurable events given St. This is precisely what the gt+1 random
variable accomplishes. The gt+1 associated with T2T1 in the special case in which U(x, a) =
Û(y, a) implies a distortion φt in equation (13) that depends on s∗ alone. The iterated
operator T2T1 can be regarded as a single risk-sensitivity operator that functions like T1:

T
2
T

1
[

Û(y, a) + βW ∗(y∗, q∗)
]

(y, q, a)

= Û(y, a) − θ log

∫

exp

(

−
βW ∗(π(s∗, y, q, a))

θ

)

ς(s∗|y, q, a)dη(s∗).

In Hansen and Sargent (2006b), we describe how to compute this operator for linear quadratic
problems.

6.3 Role of absolute continuity and relation to commitment solu-

tions and

Among the outcomes of iterations on the recursions (20)-(21) or (23) of section 5 are time-
invariant functions that map (yt, qt) into a pair of nonnegative random variables (mt+1, ht).
For the moment, ignore the distortion ht and focus exclusively on mt+1. Through (8), the
time-invariant rule for mt+1 can be used to a construct a martingale {Mt : t ≥ 0}. This
martingale implies a limiting probability measure on X∞ = ∨t≥0Xt via the Kolmogorov ex-
tension theorem. The implied probability measure on X∞ will typically not be absolutely
continuous over the entire collection of limiting events in X∞. Although the martingale con-
verges almost surely by virtue of Doob’s martingale convergence theorem, without absolute
continuity, the limiting random variable will not have unit expectation. This implies that
concerns about robustness persist in a way that they don’t in a class of robust control prob-
lems under commitment that are studied, for example, by Whittle (1990) and Hansen and
Sargent (2005).13

6.3.1 Problem formulation

Let M∞ be a nonnegative random variable that is measurable with respect to X∞, with
E(M∞|S0) = 1. For a given action process {at : t ≥ 0} adapted to {Xt : t ≥ 0}, let V∞

.
=

13The product decomposition (8) of Mt implies an additive decomposition of entropy:

E (Mt logMt|S0) − E (M0 logM0|S0) =

t−1
∑

j=0

E [MjE (mj+1 logmj+1|Xj) |S0] . (26)

Setting E(M0|S0) = 1 means that we distort probabilities conditioned on S0.
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∑∞
t=0 β

tU(xt, at) subject to (1)-(2). Suppose that θ > 0 is such that E
[

exp
(

−1
θ
V∞
)

|S0

]

<

∞. Then

R
1
∞(V∞)

.
= min

M∞≥0,E(M∞|S0)=1
E(M∞V∞|S0) + θE(M∞ logM∞|S0) (27)

= −θ logE

[

exp

(

−
1

θ
V∞

)

|S0

]

. (28)

This static problem has minimizer M∗
∞ =

exp(− 1

θ
V∞)

E[exp(− 1

θ
V∞)|S0]

that implies a martingale M∗
t =

E (M∗
∞|Xt) .

14 Control theory interprets (28) as a risk-sensitive adjustment of the criterion
V∞ (e.g., see Whittle (1990)) and gets decisions that are robust to misspecifications by
solving

max
at∈At,t≥0

−θ logE

[

exp

(

−
1

θ
V∞

)

∣

∣

∣
S0

]

.

In a closely related setting, Whittle (1990) obtained time-varying decision rules for at that
converge to ones that ignore concerns about robustness (i.e., those computed with θ = +∞).

The dissipation of concerns about robustness in this commitment problem is attributable
to setting β ∈ (0, 1) while using the undiscounted form of entropy in the criterion function
(27). Those features lead to the existence of a well defined limiting random variable M∞

with expectation unity (conditioned on S0), which means that tail events that are assigned
probability zero under the approximating model are also assigned probability zero under the
distorted model.15

6.3.2 Persistence of robustness concerns without commitment

In our recursive formulations (20)-(21) and (23) of section 5, the failure of the worst-case
nonnegative martingale {Mt : t ≥ 0} to converge to a limit with expectation one (conditioned
on S0) implies that the distorted probability distribution on X∞ is not absolutely continu-
ous with respect to the probability distribution associated with the approximating model.
This feature sustains enduring concerns about robustness and permits time-invariant robust

14See Dupuis and Ellis (1997). While robust control problems are often formulated as deterministic
problems, here we follow Petersen et al. (2000) by studying a stochastic version with a relative entropy
penalty.

15Because all terms on the right side of (26) are nonnegative, the sequence

t−1
∑

j=0

Mj−1E (mj logmj |Xj−1)

is increasing. Therefore, it has a limit that might be +∞ with positive probability. Thus,
limt→∞E(Mt logMt|S0) converges. Hansen and Sargent (2005) show that when this limit is finite almost
surely, the martingale sequence {Mt : t ≥ 0} converges in the sense that limt→∞E ( |Mt −M∞| |S0) = 0,
where M∞ is measurable with respect to X∞

.
=
∨∞

t=0
Xt. The limiting random variable M∞ can be used to

construct a probability measure on X∞ that is absolutely continuous with respect to the probability measure
associated with the approximating model. Moreover, Mt = E(M∞|Xt). When the implied M∞ is strictly
positive with probability one, the distorted probability measure will be equivalent with the original proba-
bility measure. In this case, tail events that are assigned probability measure zero under either measure are
assigned zero under the other one.
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decision rules, in contrast to the outcomes with discounting in Whittle (1990) and Hansen
and Sargent (2005), for example. For settings with a fully observed state vector, Hansen and
Sargent (1995) and Hansen et al. (2006a) discounted entropy in order to formulate recursive
problems that yield time-invariant decision rules and enduring concerns about robustness.
The present paper extends these recursive formulations to problems with unobserved states.

6.4 Dynamic inconsistency of worst-case probabilities about hid-

den states

This section links robust control theory to recursive models of uncertainty aversion by ex-
ploring aspects of the worst case probability models that emerge from the recursions defined
in section 5. Except in a special case that we describe in subsection 6.6, those recursions
achieve dynamic consistency of decisions by sacrificing dynamic consistency of beliefs about
hidden state variables. We explore how this happens. Until we get to the special case ana-
lyzed in subsection 6.6, the arguments of this subsection will also apply to the general case
in which θ1 6= θ2.

Problems (10) and (14) that define R1
t and R2

t , respectively, imply worst-case probability
distributions that we express as a pair of Radon-Nikodym derivatives (m∗

t+1, h
∗
t ). Are these

probability distortions consistent with next period’s distortion h∗t+1? Not necessarily, because
we have not imposed the pertinent consistency condition on these beliefs. In particular, our
use ofmt+1, ht to distort two conditional distributions each period overdetermines a distortion
to the distribution of xt+1 conditional on St+1: because mt+1 distorts the probabilities of
Xt+1 events conditional on Xt and ht distorts the probabilities of Xt events conditioned on
St, mt+1ht distorts the probabilities of Xt+1 events conditional on St. Given the distorted
probabilities of Xt+1 events conditioned on St, we can deduce the probability distortion of
Xt+1 events conditional on St+1 (because St ⊂ St+1 ⊂ Xt+1). If we had required the decision
maker at time t+1 to adhere to this distortion, he would not be free to choose ht+1 anew at
time t+ 1. Thus, except when a special condition that we lay out in the next subsection is
met, the decision maker’s worst-case beliefs about the distribution of xt+1 conditional on St+1

will not be time-consistent. This is a price that we pay to attain a recursive formulation in
which qt(z) remains a state variable for our formulation of the robust estimation and control
problem.

6.5 A belief consistency condition

To deduce a sufficient condition for time consistency, recall that the implied {M∗
t+1 : t ≥ 0}

should be a martingale. Decompose M∗
t+1 in two ways:

M∗
t+1 = m∗

t+1h
∗
tG

∗
t = h∗t+1G

∗
t+1.

These equations involve G∗
t+1 and G∗

t , both of which we have ignored in the recursive formu-
lation of section 5. Taking expectations conditioned on St+1 on both sides of m∗

t+1h
∗
tG

∗
t =

ht+1G
∗
t+1 yields

G∗
tE
(

m∗
t+1h

∗
t |St+1

)

= G∗
t+1.

Thus,
g∗t+1 = E

(

m∗
t+1h

∗
t |St+1

)
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is the implied multiplicative increment for the candidate martingale {G∗
t : t ≥ 0} adapted

to the signal filtration.

Claim 6.1. A sufficient condition for the distorted beliefs to be time consistent is that the
process {h∗t : t ≥ 0} should satisfy:

h∗t+1 =

{

m∗

t+1
h∗

t

E(m∗

t+1
h∗

t
|St+1)

if E
(

m∗
t+1h

∗
t |St+1

)

> 0

1 if E
(

m∗
t+1h

∗
t |St+1

)

= 0.
(29)

This condition is necessary if G∗
t+1 > 0.16

The robust control problem under commitment analyzed by Hansen and Sargent (2005)
satisfies condition (29) by construction: at time 0 a single minimizing player chooses a pair
(m∗

t+1, h
∗
t ) that implies next period’s h∗t+1. However, in the recursive games defined in the

recursions (20)-(21) and (23) in section 5, the date t+ 1 minimizing agent can deviate from
the h∗t+1 that is implied by the (m∗

t+1, h
∗
t ) pair chosen by the date t minimizing agent. The

pair (m∗
t+1, h

∗
t ) gives one distortion of the distribution of the hidden state (conditioned on

St+1) and h∗t+1 gives another. We do not require that these agree, and, in particular, do not
require that the probabilities of events in Xt+1 be distorted in the same ways by the date
t determined worst-case distribution (conditioned on St+1) and the date t + 1 worst-case
distribution (conditioned on St+1).

A conflict can arise between these worst-case distributions because choosing an action is
forward-looking, while estimation of z is backward looking. Dynamic inconsistency of any
kind is a symptom of conflicts among the interests of different decision makers, and that
is the case here. The two-player games that define the evaluation of future prospects (T1)
and estimation of the current position of the system (T2) embody different orientations – T1

looking to the future, T2 focusing on an historical record of signals.
The inconsistency of the worst-case beliefs pertains only to the decision maker’s opinions

about the hidden state. If we ignore hidden states and focus on signals, we can assem-
ble a consistent distorted signal distribution by constructing g∗t+1 = E

(

m∗
t+1h

∗
t |St+1

)

and
noting that E

(

g∗t+1|St
)

= 1, so that g∗t+1 is the implied one-period distortion in the signal
distribution. We can construct a distorted probability distribution over events in St+1 by
using

G∗
t+1 =

t+1
∏

j=1

g∗j . (30)

Under this interpretation, the pair (m∗
t+1, h

∗
t ) is only a device to construct g∗t+1. When the

objective function U does not depend directly on the hidden state vector z, as is true in many

16This consistency condition arguably could be relaxed for the two player game underlying (23). Although
we allow mt+1 to depend on the signal st+1 and the hidden state zt+1, the minimizing solution associated
with recursions (23) depends only on the signal st+1. Thus we could instead constrain the minimizing agent
in his or her choice of mt+1 and introduce a random variable m̃t+1 that distorts the probability distribution
of zt+1 conditioned on st+1 and Xt. A weaker consistency requirement is

h∗t+1 =
m̃t+1m

∗
t+1h

∗
t

E
(

m̃t+1m
∗
t+1h

∗
t |St+1

)

for some m̃t+1 with expectation equal to one conditioned on st+1 and Xt.
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economic problems, the consistent set of distorted probabilities defined by (30) describes the
events that directly influence the decision maker’s well being.

6.6 Discounting and payoffs influenced by hidden states are the

source of intertemporal inconsistency

If β = 1 and U(x, a) does not depend on the hidden state, we can show that the distortions
(mt+1, ht) implied by our recursions satisfy the restriction required for Claim 6.1 and so are
temporally consistent. Therefore, in this special case, the recursive games in section 5 imply
the same decisions and worst case distortions as the game under commitment analyzed by
Hansen and Sargent (2005). For simplicity, suppose that we fix an action process {at : t ≥ 0}
and focus exclusively on assigning distorted probabilities. Let {Vt : t ≥ 0} denote the process
of continuation values determined recursively and supported by choices of worst-case models.

Consider two operators R1
t and R2

t with a common θ. The operator R1
t implies a worst-case

distribution for Xt+1 conditioned on Xt with density distortion:

m∗
t+1 =

exp
(

−Vt+1

θ

)

E
[

exp
(

−Vt+1

θ

)

|Xt

] .

The operator R2
t implies a worst-case model for the probability of Xt conditioned on St with

density distortion:

h∗t =
E
[

exp
(

−Vt+1

θ

)

|Xt

]

E
[

exp
(

−Vt+1

θ

)

|St
] .

Combining the distortions gives

m∗
t+1h

∗
t =

exp
(

−Vt+1

θ

)

E
[

exp
(

−Vt+1

θ

)

|St
] .

To establish temporal consistency, from Claim 6.1 we must show that

h∗t+1 =
exp

(

−Vt+1

θ

)

E
[

exp
(

−Vt+1

θ

)

|St+1

]

where

h∗t+1
.
=
E
[

exp
(

−Vt+2

θ

)

|Xt+1

]

E
[

exp
(

−Vt+2

θ

)

|St+1

] .

This relation is true when β = 1 and U does not depend on the hidden state z. To accom-
modate β = 1, we shift from an infinite horizon problem to a finite horizon problem with a
terminal value function. From value recursion (20) and the representation of R1

t+1 in (10),

exp

(

−
Vt+1

θ

)

∝ E

[

exp

(

−
Vt+2

θ

)

|Xt+1

]

,
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where the proportionality factor is St+1 measurable. The consistency requirement for h∗t+1

is therefore satisfied.
The preceding argument isolates the role that discounting plays in rendering the worst

case beliefs over the hidden state time inconsistent. Heuristically, the games defined by
the recursions (20)-(21) or (23) imply intertemporal inconsistency when β < 1 because
the decision maker discounts both current period returns and current period increments
to entropy; while in the commitment problem analyzed in Hansen and Sargent (2005), the
decision maker discounts current period returns but not current period increments to entropy.

7 Implied worst case model of signal distortion

The martingale (relative to St) increment gt+1 = E (mt+1ht|St) distorts the distribution of
the date t + 1 signal given information St generated by current and past signals. For the
following three reasons, it is interesting to construct an implied g∗t+1 from the m∗

t+1 associated
with R1

t or T1 and the h∗t associated with R2
t or T2.

First, actions depend only on signal histories. Hidden states are used either to depict
the underlying uncertainty or to help represent preferences. However, agents cannot take
actions contingent on these hidden states, only on the signal histories.

Second, in decentralized economies, asset prices can be characterized by stochastic dis-
count factors that equal the intertemporal marginal rates of substitution of investors who
are off corners and that depend on the distorted probabilities these investors use to value
contingent claims. Since contingent claims to consumption can depend only on signal histo-
ries (and not on hidden states), the distortion to the signal distribution is the twist to asset
pricing that is contributed by investors’ concerns about model misspecification. In partic-
ular, under the approximating model, gt+1

E[gt+1|St]
becomes a multiplicative adjustment to the

ordinary stochastic discount factor for a representative agent (e.g., see Hansen et al. (1999)).
It follows that the temporal inconsistency of worst case beliefs over hidden states discussed
in section 6.4 does not prevent appealing to standard results on the recursive structure of
asset pricing in settings with complete markets.17

Third, Anderson et al. (2003) found it useful to characterize detection probabilities using
relative entropy and an alternative measure of entropy due to Chernoff (1952). Chernoff
(1952) showed how detection error probabilities for competing models give a way to measure
model discrepancy. Models are close when they are hard to distinguish with historical data.
Because signal histories contain all data that are available to a decision maker, the measured
entropy from distorting the signal distribution is pertinent for statistical discrimination.
These lead us to measure either E

(

g∗t+1 log g∗t+1|St
)

or Chernoff’s counterpart, as in Anderson
et al. (2003).18

Our characterizations of worst case models have conditioned implicitly on the current
period action. The implied distortion in the signal density is:

∫

φt(z
∗, s∗)τ(z∗, s∗|yt, z, , at)ψt(z)qt(z)dλ(z∗)dλ(z)

17See Johnsen and Donaldson (1985).
18Anderson et al. (2003) show a close connection between the market price of risk and a bound on the

error probability for a statistical test for discriminating the approximating model from the worst case model.
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where φt is given by formula (13) and ψt is given by (16). When a Bellman-Isaacs condition
is satisfied,19 we can substitute for the control law and construct a conditional worst case
conditional probability density for st+1 as a function of the Markov state (yt, qt). The process
{(yt+1, qt+1) : t ≥ 0} is Markov under the worst case distribution for the signal evolution.
The density qt remains a component of the state vector.

8 A recursive multiple priors model

To attain a notion of dynamic consistency when the decision maker has multiple models,
Epstein and Schneider (2003a,b) advocate a formulation that, when translated into our
setting, implies time varying values for θ1 and θ2. Epstein and Schneider advocate sequential
constraints on sets of transition probabilities for signal distributions. To implement their
proposal in our context, we can replace our fixed penalty parameters θ1, θ2 with two sequences
of constraints on relative entropy.

In particular, suppose that
ε1
t (mt+1) ≤ κ1

t (31)

where κ1
t is a positive random variable in Xt, and

ε2
t (ht) ≤ κ2

t (32)

where κ2
t is a positive random variable in St. If these constraints bind, the worst-case

probability distributions are again exponentially tilted. We can take θ1
t to be the Xt-

measurable Lagrange Multiplier on constraint (31), where m∗
t+1 ∝ exp

(

−Wt+1

θ1
t

)

and θ1
t

solves ε1
t (m

∗
t+1) = κ1

t . The counterpart to R1

t
(Wt+1) is

C
1

t
(Wt+1)

.
=

E

[

Wt+1 exp
(

−Wt+1

θ1
t

)

|Xt

]

E

[

exp
(

−Wt+1

θ1
t

)

|Xt

] .

Similarly, let θ2
t be the St-measurable Lagrange multiplier on constraint (32), where h∗t ∝

exp
(

−Ŵt

θ2
t

)

, and θ2
t solves ε2

t (h
∗
t ) = κ2

t . The counterpart to R2

t
(Ŵt) is

C
2

t
(Ŵt)

.
=

E

[

Ŵt exp
(

−Ŵt

θ2
t

)

|St

]

E

[

exp
(

−Ŵt

θ2
t

)

|St

] .

These constraint problems lead to natural counterparts to the operators T1 and T2.
Constraint formulations provide a justification for making θ1 and θ2 state- or time-

dependent. Values of θ1 and θ2 would coincide if the two constraints were replaced by a
single entropy constraint E [htε

1
t (mt+1)|St] + ε2

t (ht) ≤ κt, where κt is St-measurable. Lin
et al. (2004) and Maenhout (2004) give other reasons for making the robustness penalty pa-
rameters state dependent.20 With such state dependence, it can still be useful to disentangle

19For example, see Hansen et al. (2006a) or Hansen and Sargent (2006d).
20These authors consider problems without hidden states, but their motivation for state dependence would

carry over to decision problems with hidden states.
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misspecifications of the state dynamics and the distribution of the hidden state given current
information. Using separate values for θ1 and θ2 achieves that.

9 Risk sensitivity and compound lotteries

Jacobson (1973) linked a concern about robustness, as represented in the first line of (10),
to risk sensitivity, as conveyed in the second line of (10). That link has been exploited in the
control theory literature, for example, by Whittle (1990). Our desire to separate the concern
about misspecified state dynamics from concern about misspecifying the distribution of the
state inspires two risk-sensitivity operators. Although our primary interest is to let a decision
maker respond to model misspecification, our two operators can also be interpreted in terms
of enhanced risk aversion.21

9.1 Risk-sensitive interpretation of R1
t

The R1
t operator has an alternative interpretation as a risk-sensitive adjustment to contin-

uation values that expresses how a decision maker who has no concern about robustness
prefers to adjust continuation values for their risk. The literature on risk-sensitive control
uses adjustments of the same logE exp form that emerge from an entropy penalty and a
concern for robustness, as asserted in (10). There are risk adjustments that are more general
than those of the logE exp form associated with risk-sensitivity. In particular, we could
follow Kreps and Porteus (1978) and Epstein and Zin (1989) in relaxing the assumption that
a temporal compound lottery can be reduced to a simple lottery without regard to how the
uncertainty is resolved, which would lead us to adjust continuation values by

R̃
1
t (Vt+1) = φ−1 (E [φ(Vt+1)|Xt])

for some concave increasing function φ. The risk-sensitive case is the special one in which
φ is an exponential function. We focus on the special risk-sensitivity logE exp adjustment
because it allows us to use entropy to interpret the resulting adjustment as a way of inducing
robust decision rules.

9.2 R2
t and the reduction of compound lotteries

While (16) shows that the operator R2
t assigns a worst-case probability distribution, another

interpretation along the lines of Segal (1990), Klibanoff et al. (2003), and Ergin and Gul
(2004) is available. This operator adjusts for state risk differently than does the usual
Bayesian model averaging approach. Specifically, we can regard the transformation R2

t as a
version of what Klibanoff et al. (2003) call constant ambiguity aversion. More generally, we
could use

R̃
2
t (V̂t) = ψ−1E

[

ψ(V̂t)|St
]

for some concave increasing function ψ. Again, we use the particular ‘logE exp’ adjustment
because of its explicit link to entropy-based robustness.

21Using detection probabilities, Anderson et al. (2003) describe alternative senses in which the risk-
sensitivity and robustness interpretations are and are not observationally equivalent.
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10 Another example

Hansen and Sargent (2006a) follow Tallarini (2000) and start with a representative consumer
who, if he did not want to make a risk-sensitivity or robustness adjustment, would value
streams of log consumption ct according to

Vt = (1 − β)ct + EtβVt+1.

But he wants to make multiple risk sensitivity adjustments to reflect multiple doubts about
the stochastic specification of consumption growth. The representative consumer has two
submodels for consumption growth st+1 ≡ ct+1 − ct, each of which has the state space form

ζt+1(ι) = A(ι)ζt(ι) + C(ι)wt+1

ct+1 − ct ≡ st+1 = D(ι)ζt(ι) +G(ι)wt+1

where {wt+1} is an iid Gaussian process with mean 0 and covariance I and ζ0(ι) is nor-
mally distributed with mean ζ0(ι) and covariance matrix Σ0(ι). Denote the submodels
ι ∈ {0, 1} and suppose that the representative consumer attaches probability p̌t = E(ι|St)
to model 1 at time t These probabilities can be computed by using Bayes rule and data
st = [st, st−1, . . . , s1].

Hansen and Sargent (2006a) specify submodel ι = 0 so that it makes consumption growth
be an i.i.d. Gaussian process with an unknown mean. Submodel ι = 1 is like, but not
identical to, a model of Bansal and Yaron (2004) that makes consumption growth contain a
difficult to detect persistent component. In addition to the uncertainty about shocks wt+1

assumed by Bansal and Yaron, one component of ζ(1) is a constant conditional mean of
consumption that is unknown to the representative consumer. This feature would increase
the risk faced by our representative consumer relative to Bansal and Yaron’s, even if he set
p̂0 = 1. The representative learns about the mean consumption growth parameters as well
as other parts of the hidden state zt = [ζt(0), ζt(1), ι].

The results of applying Bayes’ law to submodel ι can be represented in terms of an
innovations representation that takes the form

ζ̌t+1(ι) = A(ι)ζ̌t(ι) +K[Σt(ι), ι]w̌t+1(ι)

Σt+1(ι) = A(ι)Σt(ι)A(ι)′ + C(ι)C(ι)′ −K[Σt(ι), ι][A(ι)Σt(ι)A(ι)′ + C(ι)G(ι)′]′

st+1 = D(ι)ζ̌t + w̌t+1(ι)

where

K[Σt(ι), ι]
.
= [A(ι)Σt(ι)D(ι)′ + C(ι)G(ι)′][D(ι)Σt(ι)D(ι)′ +G(ι)G(ι)′]−1,

ζ̌t+1(ι) = E[ζt+1|s
t, ι], w̌t+1(ι) is the forecast error for the signal (i.e., the ‘innovation’), and

Σt(ι) is the covariance matrix for ζt(ι)− ζ̌t(ι) conditioned on ι and the signal history through
date t. Evidently, in this model, ζ̌t(ι),Σt(ι), ι = 0, 1, and p̌t are sufficient statistics for the
joint distribution qt(z).

Hansen and Sargent (2006a) apply recursions (20), (21) to form the stochastic discount
factor implied by a representative consumer who is concerned about misspecifications of the

24



following distributions: (i) the distributions of (zt+1, st+1) conditioned on [ι, ζt(ι)]; (ii) the
distributions of ζt(ι) conditioned on [ι,St]; and (iii) the distributions of ι, conditional on
St. The representative consumer of Hansen and Sargent (2006a) applies T1 to adjust for
his suspicion about (i) and iterates on (20) to find valuations as functions of ζ(ι), ι. The
representative consumer makes adjustment (21) by applying T2 first to adjust the distrib-
ution mentioned in (ii). He then applies another T2 operator to adjust for suspicion of the
distribution mentioned in (iii). The implied Radon-Nikodym derivative that perturbs the
distribution of st+1 = ct+1 − ct conditional on St serves as a multiplicative adjustment to the
stochastic discount factor; in a T1-only model, Hansen et al. (1999) dubbed its conditional
standard deviation the market price of model uncertainty. Hansen and Sargent (2006a)
study market prices of model uncertainty that emerge from the setting described here and
investigate how it compares to ones that emerge from the T1 only models of Hansen et al.
(1999) and Tallarini (2000).

The distributions mentioned in (i) and (ii) of the previous paragraph are both Gaussian,
while the one in (iii) is a scalar ∈ (0, 1). Because the logarithmic preference specification, the
value function for problem posed in section 5.1 is affine in ζ̌ , c. As a result the calculations
in this model become very easy – the Kalman filter does the hard work in implementing
Bayes’ Law and the calculations of T1,T2 for the linear-quadratic Gaussian model in Hansen
and Sargent (2006c) apply. The assumption that A(ι), C(ι), D(ι), G(ι) are known accounts
for this simplicity. Extending the model to let some elements in these matrices be unknown
enriches the scope for modeling learning about unknown parameters at the cost of making
the filtering problem nonlinear and so pushing it beyond the range of the Kalman filter.
Hansen et al. (2006b) study such problems.

11 Concluding remarks

By incorporating learning, this paper responds to thoughtful criticisms of our earlier work
about recursive formulations of robust control without learning. In the context of concrete
examples, the framework here allows us to examine the consequences for valuations and
decision rules of learnable components of the state that can capture both model selection
and parameter estimation. For example,

The model in Hansen and Sargent (2006a) that we described in section 10 is about a
pure endowment economy, so that the representative consumer chooses no actions – his
worst case model determines valuations but not actions. Of course, the framework in this
paper allows us also to study settings in which a decision maker chooses an action that
influences the motion of the state. We illustrate this aspect by performing an analysis of
robust experimentation in Cogley et al. (2005a). For a given concern about misspecification
of hidden state probabilities as measured by θ2, we can study the speed at which learning
works to diminish concerns about misspecification along particular dimensions of uncertainty
as the accretion of data together with Bayes law gradually reduces the set of perturbed
models by tightening posterior probabilities. The formulas in Hansen and Sargent (2006b)
and Hansen and Sargent (2006a) show precisely how the volatilities of hidden state estimates
that come from Bayes’ law affect the gap between the worst case probabilities and those from
the approximating model.
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Our procedures for solving robust discounted dynamic programming problems are as
easy to use as corresponding problems without concerns about robustness and come down to
replacing each of two conditional expectations operators in the problem without robustness
with a risk-sensitivity operator. For a finite θ1, the operator T1 captures the decision maker’s
fear that the state and signal dynamics conditioned on both the observed and hidden com-
ponents of the state are misspecified. For a finite θ2, the operator T2 captures the decision
maker’s fear that the distribution of the hidden state conditioned on the history of signals
is misspecified. Using different values of θ1 and θ2 in the operators T1 and T2 gives us the
freedom to focus distrust on different aspects of the decision maker’s model.22

22Specifications with θ1 = θ2 emerge when we follow Hansen and Sargent (2005) by adopting a timing
protocol that requires the malevolent agent to commit to a worst case model {Mt+1} once and for all at time
0. Hansen and Sargent (2005) give a recursive representation for the solution of the commitment problem
in terms of R

1
t and R

2
t operators with a common but time-varying multiplier equal to θ

βt . The presence

of βt causes the decision maker’s concerns about misspecification to vanish for tail events. Only for the
undiscounted case does the zero-sum two player game with commitment in Hansen and Sargent (2005) give
identical outcomes to the games without commitment in this paper. As noted in section 6.6, when β < 1,
the gap between the outcomes with and without commitment is the source of time-inconsistency of the worst
case beliefs about the hidden state. Much of the control theory literature (e.g., Whittle (1990) and Başar and
Bernhard (1995)) uses the commitment timing protocol and sets β = 1. Hansen and Sargent (2005) show
how to represent parts of that literature in terms of our formulation of model perturbations as martingales.
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