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Abstract

This paper extends Lucas (1978) to a production economy with two capital
goods. It is an RBC model in which each unit of investment requires a new
idea, an “option”. When options are scarce, new capital is harder to put in
place and the value of old capital rises. Thus the stock market and Tobin’s
Q are negative indexes of intangibles. During a boom, Q rises gradually, as
options are used up. Because investment represents an exercise of options, it
has an intertemporal substitution tradeoff that is absent in the adjustment-cost
model. Equilibrium may be efficient even without markets for knowledge; the
stock market may suffice.

1 Introduction

This paper extends Lucas (1978) to a production economy with two capital goods.
One is a traditional capital stock, the other is unimplemented knowledge that I refer
to as “investment options.” I shall refer to traditional capital as “trees” and to the
unexercised options as “seeds.” The paper is a specialization of Lucas’s model in the
sense that the shocks to the trees’ productivities are common.

An investment option is a profit opportunity that requires an investment to imple-
ment. It is postponable if it is a patented invention, or if it is specific to a firm so that
others cannot reduce its value by copying it. A firm has investment options that it
may use up immediately, or store for future use. A patent, for instance, represents an
investment option that only its holder can implement for a certain number of years.
In a sense, even a trademark represents an option to produce a product that no one
else can make. Some investment options are protected only by secrecy.

I set up a competitive GE model in which to plant a tree one needs a seed. Seeds
are produced by trees that are already planted. The number of trees grows over

∗New York University. I thank J. Campbell, J. Eaton, R. Gordon, B. Hall, R. Hall, H. Hopenhayn,
A. Kurmann, and N. Stokey for comments, V. Tsyrennikov for computations, corrections, comments,
and for writing Appendix 1, and the NSF for support.
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time and, in the absence of the seed constraint on investment, the model would be a
standard one-sector Ak model with shocks to technology.
The model also embeds in GE and endogenizes what Abel and Eberly (2005) call

“growth options.” It also relates closely to the GEmodel of Bilbiie, Ghironi andMelitz
(2006) who study the cyclical behavior of entry of producers but in the absence of
a seed constraint or of “option-value considerations,” as they put it, so that Tobin’s
Q is always unity. The model has no shocks to the investment technology, but it
behaves a bit like models that do have such shocks, such as Greenwood, Hercowitz
and Huffman (1987), and Fisher (2005). Investment options are also a focus of the
new Keynesian literature (Shleifer 1986), and the strategic delay literature (Chamley
and Gale 1994). The paper also relates to models of inventories such as Deaton
and Laroque (1992) and Khan and Thomas (2007). The paper’s main results are as
follows:
(i) Intangibles reduce Q.–Because seeds (i.e., “intangibles”) are scarce, the value

of planted trees (i.e., firms) and thus Tobin’s Q, is always above unity. When there
are many seeds, their price falls, and if the decline is sharp enough, so then does
the price of claims to the output of planted trees.1 Contrast that to Hall (2000),
where Q is a positive indicator of the stock of intangibles because his intangibles
are not embodied in capital but, rather, enter the final-goods production function
as a separate input. A natural experiment that distinguishes the two models is a
prolonged war during which unimplemented inventions accumulate (some of them
being incidental accomplishments of defense-oriented research). My model says that
after such a war Q should be low, whereas Hall’s model says that it should be high.
It turns out that after both world wars, Q in the U.S. was unusually low. Also,
measures of intangibles based on aggregate patent applications and trademarks co-
move negatively with Tobin’s Q, thus supporting my model.
(ii) Q rising during a boom.–The main difference between the Seeds model and

the adjustment-cost model is that during a prolonged boom during which seeds are
drawn down and become ever more scarce, Tobin’s Q gradually rises. That was
indeed what happened during the well-known run-ups of the late ‘20s and mid-late
‘90s. For this implication, the ability to store seeds is crucial; the stockpile dwindles
as the boom continues. On the other hand, the dwindling supply of seeds during
a boom also means that investment declines as the boom continues. Conversely, a
rising supply of seeds during a recession means that investment gradually rises and
Q gradually falls.
(iii) More volatile Q.–The Seeds model introduces an intertemporal substitution

in investment that raises its volatility for given average levels of Q.2 By contrast,
convex adjustment costs make investment smoother. The concept of investment in

1This is a GE effect that arises when all firms have more seeds. For any firm that alone receives
an additional seed, Q would rise, just as in Abel and Eberly (2005).

2By the same token, the ability to postpone investment reduces the model’s ability to explain
the volatility in Q. Intertemporal substitutability raises supply elasticities generally; e.g., of labor
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this model is “extensive” investment in new things, and such investment responds
more elastically to variations in Q; witness, e.g., how closely and elastically venture-
backed investment follows the Nasdaq index.3 In equilibrium, however, investment
is bounded by the available seeds, and this can raise Q to higher levels than in the
quadratic-adjustment-cost model.

(iv) Decentralization.–These results obtain in two decentralizations of the plan-
ner’s optimum. The first has complete markets. The incomplete-market economy has
an equilibrium that coincides with the complete-market equilibrium, but it may have
other, inefficient equilibria.

The model is similar to ones in which it is not adjustment costs but, rather,
liquidity constraints that prevent firms from eliminating the gap betweenQ and unity.
Gomes, Yaron and Zhang (2003) look for a liquidity factor in asset prices, and find one
that, however, behaves more procyclically, seeming to pose a greater constraint in the
boom, which is consistent with the Seeds model but that they regard as inconsistent
with the financial frictions model that they propose.

Section 2 presents the model, section 3 describes a complete-markets decentral-
ization, section 4 an incomplete-markets one. Section 5 reports simulations, and
compares the model to the data. Section 6 discusses the effect that intangibles have
on stock prices and output, looking at both model and data. Section 7 compares
the model to the standard adjustment-cost model. Section 8 tries to tie the model’s
implications to the behavior of the prices of capital goods and to the skill premium,
and to R&D-based measures of intangibles. Section 9 concludes the paper. Several
proofs and extensions are reported in the Appendix.

2 Model

The model is that of a growing economy with two types of capital — trees, k, and
seeds, S. A seed represents an option, storable indefinitely, to plant exactly one tree.

Production of fruit.–Output of fruit is

Y = zk. (1)

If X is the number of trees newly planted, k evolves as

k0 = k +X. (2)

supply in the Lucas and Rapping (1969) model, or of sales in the Deaton and Laroque (1992) and
Khan and Thomas (2005) models, and lowers the volatility of equilibrium wages and prices.

3The model was originally meant to explain bunching of investment, with IPO waves as the
empirical counterpart of such bunching — IPOs are also co-move with the stock market. In a partial
equilibrium model, Pastor and Veronesi (2005) argue that investment options are stored during
times of high uncertainty, and that once the uncertainty is resolved, firms rush in with IPOs.
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Production of seeds.–Let S denote the stock of seeds. New seeds are produced
by existing trees. Each period a tree gives rise to λ new seeds, i.e., a total of

new seeds = λk (3)

Thus seeds grow via a process like learning by doing that takes up no resources.
The planting of trees.–Planting a tree requires a unit of fruit and a seed. Only

one tree per seed can be planted, after which the seed is used up. Let S be the stock
of seeds and let X be the number of trees planted. Then S evolves as

S0 = λk + S −X ≥ 0. (4)

Since X is subtracted from the stock, a seed can be used to plant exactly one tree.
Thus investment is Leontieff in two inputs, seeds and fruit. Their proportions are
equal, an assumption that we shall drop when we get to the empirics, along with the
assumption that neither k nor S depreciate. Seeds are storable whereas fruit is not.
Timing.–Investment, X, is chosen after the trees produce zk units of fruit and

after λk new seeds. From (4), we have

X ≤ λk + S. (5)

Thus investment is Leontieff in two inputs: seeds and fruit. We shall let investment
be reversible.4

The income identity.–The cost of planting a tree is, as usual, one unit of fruit.
Letting C be the consumption of fruit, the income identity is

zk = C +X. (6)

The shocks.–The shocks follow the first-orderMarkov process: Pr (zt+1 ≤ z0 | zt = z) =
F (z0, z), and that z0 is stochastically increasing in z.
Preferences.–For σ > 0 and β < 1, preferences are

E0

( ∞X
t=0

βt
C1−σ
t

1− σ

)
.

Reducing the state space.–As we shall show formally in Section 2.1, constant
returns to scale and the absence of fixed factors allows us to reduce the number of
states from three to two: s ≡ S/k, and z. From (4), the law of motion for s is

s0 =
λ+ s− x

1 + x
, (7)

4Sargent (1980) analyzes the implications of the constraintX ≥ 0. I do not impose this constraint
here because the simulations and the data never violate it.
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Figure 1: Relation to the convex adjustment-cost model

implying the inequality constraint

x ≤ λ+ s, (8)

where x = X/k. We can express this constraint in terms of the costs. Let

C (x, s) =
investment cost
capital stock

=

½
x if x ≤ λ+ s
∞ otherwise

(9)

denote the cost of investment, in units of fruit.
Before starting the analysis, let us proceed intuitively and compare the Seeds

model to two standard models:
(i) The one-sector growth model.–It arises when the inequality in (5) never binds.

The latter occurs when λ is large enough, e.g., if λ exceeds the largest possible z. It
also occurs, de facto, when the initial stock of seeds, S0, is so large that (5) does not
come into play for a very long time.
(ii) The adjustment-cost model (ACM).–The ACM is like the Seeds model but

instead of (1), (4) and (5), we have the CRS production function

Y = zk − h

µ
X

k

¶
k, where h (x) =

1

φ

³ x

λ∗

´φ
. (10)

and the states are (k, z) alone. Interpreted in this way, adjustment costs consists
of foregone output. In some versions of the ACM, φ = 2. Since the ACM has no
intertemporal substitution component, the two models are never equivalent except in
the special case when the Seeds model has no intertemporal substitution, i.e., when
seeds cannot be stored:5

5Depreciation of S is formally introduced when the model is estimated in Section 6 and when
comparing the Seeds model to the ACM in Section 7.

5



 

λ + s  x 

 1 

 Marginal cost 
of investment 

( )sxC
x

,
∂
∂

Figure 2: Marginal adjustment costs

Proposition 1 If seeds cannot be stored and if

λ = λ∗ and φ→∞,

the ACM and the Seeds model become the same.

Proof. If seeds cannot be stored, the Seeds model has just one state, namely
z, and (5) becomes X ≤ λk. Therefore in (9), the cost cost of investment becomes
C (x, 0) in every period. And as φ→∞, the marginal cost of investment in the ACM
also converges to C (x, 0) when λ∗ = λ.
The Proposition is illustrated in Figure 1. In its left panel shows the consumption-

investment trade-off in the standard model and the convex-adjustment-cost model. In
its right panel,the Figure shows the constraint imposed by a particular upper bound
on x, namely λ+ s. Since s ≥ 0, investment can never be constrained by any number
smaller than λ, and so that’s the tightest constraint on x that can possibly arise. This
is the line labeled “least upper bound,” and this is the limit reached by both models
under the conditions that Proposition 1 describes The position of the constraint will
depend on what has been happening earlier. In particular, a “seed crunch” and with
it a high value of Q will turn out to be more likely following a prolonged boom caused
by a succession of large realizations of z. Such realizations are likely to draw s to its
minimum level of zero, leading the constraint to be x ≤ λ.

In terms of (9), The marginal adjustment costs, ∂
∂x
C (x, s), are drawn in Figure

2. As in the ACM, costs of adjustment are still convex in x, but x also raises future
investment costs, an effect absent from the ACM.

The set on which (5) binds.–Consumption is most volatile and investment least
volatile when (5) binds. Let ∆ = {(s, z) | x (s, z) = λ+ s} be the set of states for
which (5) binds. In this region, X cannot respond to z and therefore C moves one-
for-one with zk and, hence, is more volatile than in the standard model. True, this
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Figure 3: The set ∆ when z is i.i.d.

statement is conditional on s, but for (s, z) ∈ ∆, s0 = 0, and x0 = x (0, z0). If (s, z)
remains in ∆ for more than one period, then in period two and beyond,

x (0, z) = λ and c = z − λ.

where c = C/k. The further z is from being a random walk (and it seems to depart
substantially from it, see Table 1), the more these rules depart from what the standard
model would predict. Even when z is i.i.d., x is increasing in z because a higher z
today raises wealth and causes a rise in desired future consumption. Because x is
increasing in z, ∆ contains large z values. For (s, z) ∈ ∆, s0 = 0 so that x0 = x (0, z0).

2.1 The planner’s problem

Now we return to the Seeds model as described in (1) through (6). The state is
(k, S, z), and the decision, X, is constrained by (5). The Bellman eq. is

v (k, S, z) = max
X≤λk+S

(
(zk −X)1−σ

1− σ
+ β

Z
v (k +X,λk + S −X, z0) dF

)
. (11)

Lemma 1 A unique solution v to (11) exists, and is is strictly concave in (k, S) .
Moreover, X is increasing in S and, if z is i.i.d., in z.

Proof. (i) Existence, uniqueness: Let T denote the operator on the RHS of
(11). The operator is a contraction and maps continuous functions v into continuous
functions (Tv) which, while unbounded, nevertheless meet condition 1d of Alvarez
and Stokey (2000), whence existence follows. (ii) Concavity: We shall show that if ṽ
is concave then T ṽ is strictly concave. Let 0 ≤ α ≤ 1. The constraint (5) is convex
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and its boundary is linear in S and k. Therefore if X1 is feasible and optimal for the
state (k1, S1) and X2 is feasible and optimal for (k2, S2), then Xα ≡ αX1+(1− α)X2

is feasible, though not necessarily optimal for (αk1 + (1− α) k2, αS1 + (1− α)S2).
Therefore if 0 < α < 1

T ṽ (αk1 + (1− α) k2, αS1 + (1− α)S2) ≥
(zk −Xα)

1−σ

1− σ
+ β

Z
ṽ (k +Xα, λk + S −Xα, z

0) dF

> αT ṽ (k1, S1) + (1− α)T ṽ (k2, S2)

Therefore the operator transforms weakly into strictly concave functions. Therefore,
the operator being a contraction, its unique fixed point v is strictly concave. (iii)
Properties of X: The FOC is

ξ (X,S) ≡ − (zk −X)−σ + β

Z
d

dX
v (k +X,λk + S −X, z0) dF = 0 (12)

(Once-differentiability of v will be proved later) We have dropped k and z from the
arguments of ξ as they play no role in the proof. We now argue in 3 steps: (A) If a
function of one variable H is twice differentiable with H 00 < 0, then

∂

∂S

µ
∂

∂X
H [λk + S −X]

¶
= −H 00 (·) > 0

Therefore, concavity of v in S alone implies ∂
∂S

dv
dX

³
= − ∂2v

∂S2

´
> 0 (the monotonicity

results do not require the second derivatives) earlier, under (ii) we showed that con-
cavity of v in (k, S) implies concavity of v inX holding (k, S) fixed — i.e., that d2v

dX2 < 0

and (B) Therefore ξX < 0 and ξS > 0. And, when z is i.i.d., ξz = σ (zk −X)−1−σ.
(C) Therefore ∂X

∂S
= − ξS

ξX
> 0, and when z is i.i.d., ∂X

∂z
= − ξz

ξX
> 0.

Reducing the state space.–The following result allows us to reduce the state space
to just (s, z):

Lemma 2 For σ 6= 1, v is of the form

v (k, S, z) = w (s, z) k1−σ,

where w (s, z) = v (1, s, z), and where w satisfies

w (s, z) = max
x≤λ+s

(
(z − x)1−σ

1− σ
+ (1 + x)1−σ β

Z
w

µ
λ+ s− x

1 + x
, z0
¶
dF

)
. (13)

Moreover, v and w are of the same sign as 1− σ.

The proof (not reported) substitutes the desired functional form for v on the RHS of
(11), and verifies that the same functional form emerges on the LHS. The case σ = 1
is covered separately below. Similar results are in Alvarez and Stokey (2000).
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Corollary 1 A unique solution w to (13) exists that is increasing and concave in s.

Proof. Existence: Since a unique v exists, w (s, z) = v (k, S, z) k−(1−σ) is the
unique solution for w. Increasing: In (8), a rise in s relaxes the constraint on x.
Moreover, if one inserts on the RHS of (13) a function w that increases in s, evidently
the property is preserved. Concave: The concavity of v (k, S, z) k−(1−σ) in S for fixed
k implies that w is concave in s.

Corollary 2 The policy x (s, z) is increasing in s and, if z is i.i.d., increasing in z.

Proof. All changes in s ≡ S/k can be interpreted as changes in S for a given k.
By Lemma 2, X is, for all k, increasing in S. For fixed k, a rise in S implies a rise in
s and in x. The claim about z follows at once from Lemma 2.

Lemma 3 w is strictly increasing in z.

Proof. The constraint set x ∈ [−1, z] is stochastically increasing in z. Since z0

is stochastically increasing in z, for any function w (s, z) increasing in z0, the second
term on the RHS of (13) is increasing in z. Moreover, since C ≥ 0, the first term on
the RHS of (13) is strictly increasing in z.

Lemma 4 w is differentiable with respect to s, with derivative

ws =
1

1 + λ+ s

¡
[1− σ]w − (1 + z) [z − x]−σ

¢
> 0 (14)

for all (s, z).

The proof is in Appendix 1; it follows the proof of Proposition 2 of Lucas (1978)
but is complicated by the constraint (8).

Note that the term (1− σ)w is positive for all σ 6= 1 because for σ > 1, w < 0.

Lemma 5 The optimal policy x (s, z)satisfies

1− β

Z µ
(1 + x)

z − x

¶−σ h
(z0 − x0)

−σ
(1 + z0) + λw0s

i
dF

½
= 0 if s0 > 0
≤ 0 if s0 = 0

. (15)

Proof. By Lemma 2, v is differentiable w.r.t. k, and if w is differentiable w.r.t.
s, so is v w.r.t. S. Then the FOC is

C−σ − β

Z
(vk − vS) dF ≤ 0, (16)
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with equality if S0 > 0. We have

v (k, S, z) = max
S0

(
(zk + S0 − λk − S)1−σ

1− σ
+ β

Z
v (k + λk + S − S0, S0, z0) dF

)
.

Since S does not enter the constraint S0 ≥ 0, the envelope theorem gives us

vS = −C−σ + β

Z
vkdF

and

vk = (z − λ)C−σ+(1 + λ) β

Z
vkdF = (z − λ)C−σ+(1 + λ)

¡
vS + C−σ

¢
= (1 + λ) vS+(1 + z)C−σ

(17)
But by Lemma 2, v (k, S, z) = w

¡
S
k
, z
¢
k1−σ so that

vk = (1− σ)wk−σ − swsk
−σ and vS = wsk

−σ

Now, from (17), vk = (1 + λ) vS + (1 + z)C−σ, so that the FOC becomes

C−σ − β

Z ¡
λv0S + (1 + z)C 0−σ¢ dF ≤ 0

But vS = wsk
−σ and the above equation then reads

0 ≥ (z − x)−σ k−σ − β

Z ³
λw0s (k

0)
−σ
+ (1 + z0) (z0 − x0)

−σ
(k0)

−σ
´
dF

=

µ
z − x

1 + x

¶−σ
− β

Z ³
λw0s + (1 + z0) (z0 − x0)

−σ
´
dF, (18)

from which (15) follows.
Let

z∗ (s) = inf {z | (z, s) ∈ ∆}
be the lower boundary of ∆, i.e., the line drawn in Figure 3. We then can show the
following:

Proposition 2 If z ∼ F (z) is i.i.d., then

z∗ (s) =
1 + (1 + α) (λ+ s)

α
, (19)

where α is the constant:

α =

µ
β

Z
λ (1− σ)w (0, z0)− (1 + z0) (z0 − x [0, z0])−σ

1 + λ
dF (z0)

¶1/σ
. (20)
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Proof. From (15) and from a one-period update of (14) we have

β

Z µ
1 + x

z − x

¶−σ
λ (1− σ)w0 − (1 + s0) (1 + z0) (z0 − x0)−σ

1 + λ+ s0
dF

½
= 1 if s0 > 0
≥ 1 if s0 = 0

,

i.e.,

β

Z
λ (1− σ)w0 − (1 + s0) (1 + z0) (z0 − x0)−σ

1 + λ+ s0

½
=
¡
1+x
z−x
¢σ

if s0 > 0
≥
¡
1+x
z−x
¢σ

if s0 = 0

i.e.,

α

½
= 1+x

z−x if s0 > 0
≥ 1+x

z−x if s0 = 0

On the other hand, if x is constrained and held constant at λ + s as z varies, the
RHS is decreasing in z. Large z’s make the inequality strict. We find the smallest
z that will allow strict equality at x = λ + (1 + λ) s. Setting it at equality we have
1+ λ+ s = α (z − λ− s), from which (19) follows. Moreover, for z = z∗ (s) at s0 = 0
so that x0 = x (0, z0), and w0 = w (0, z0), which yields (20).
On ∆, only Q responds to changes in z; x does not, and therefore s0 = λ is

also unchanged. Therefore shocks to output today have no effect on output in any
future period. Since ∆ contains mainly boom states the model thus implies that the
persistence of output shocks is lower in booms. Moreover, in this case where z is
i.i.d., changes in Q will not forecast output. This matches the finding of Henry et al.
(2005) that the stock market predicts growth better in recessions than in booms.

When z is serially correlated, the boundary of ∆ is no longer linear but ∆ retains
a shape similar to that portrayed in Figure 3: z∗ (s) still solves (19) in which α is
replaced by

α (z) =

µ
β

Z
λ (1− σ)w (0, z0)− (1 + s0) (1 + z0) (z0 − x [0, z0])−σ

1 + λ+ s0
dF (z0, z)

¶1/σ
.

While x is less volatile on ∆, to achieve a given growth rate, x must make up for
its low mean on ∆ with a higher mean off of ∆, which introduces a force towards
bimodality in the distribution of x and a higher volatility of x.6

6This section relates to Yorukoglu (2000) who studied the relation between income and the variety
of goods and who also had two regimes for consumption.
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3 Decentralization 1: Markets for trees and seeds

Assume that a market for seeds exists. If seeds are ideas or claims to ideas, this
is not so unrealistic. Serrano (2006) finds that 18 percent of patents granted to
small inventors are traded at least once in their lives, and that the citations-weighted
percentage is even higher. Large firms also often sell their patents and enter into
patent-sharing agreements with one another. Takeovers play a part in achieving
transfers of intellectual capital; this is a fairly thick market in which Microsoft and
Pfizer, e.g., have been highly active. A firm can be said to sell seeds when it spins off
some activity, or when it hires people at wages that include a negative compensating
differential for the value that its workers will draws from the experience gained; such a
market is modeled, e.g., by Prescott and Boyd (1987), Chari and Hopenhayn (1991),
Franco and Filson (forthcoming), and Chatterjee and Rossi-Hansberg (2007). An
example of employees walking out with seeds is Xerox in the 70’s — it had inventions
that it was unable or unwilling to implement and that were later marketed by its
former employees.

Prices.–Let p be the price of seeds, and q the price of a planted tree without a
claim on its current-period outputs of fruit and seeds.

Firms.–Firms last one period. A firm pays its net sales of fruit, zk − X, in
dividends every period, plus any profits it makes on buying and selling trees and
seeds. A firm enters a period with the bundle (k, S). It produces zk units of fruit
and λk seeds and it plants X trees. At the end of the period, it sells its holdings
(k +X,S0) to the public and to next generation of firms at the price vector (q, p),
pays all its profits out in dividends to its shareholders, and liquidates. Its profits are

π (k, S, z) ≡ zk −X + q (k +X) + pS0

= (z + q) k + p (S + λk) + (q − [1 + p])X

after substitution from (4) for S0.

No arbitrage.–A negative X would entail selling off X trees and X seeds that
those trees embody at a price of 1 + p.7 Thus we have the no-arbitrage condition8

q = 1 + p, (21)

which implies that
π (k, S, z) = (z + pλ+ q) k + pS. (22)

The first three terms represent rents from trees, and the fourth rents from seeds.

Households.–Households own trees and seeds separately. Ownership of a tree
delivers an end-of-period income z + pλ + q, and ownership of a seed delivers p.

7This happens, e.g., when a company sells off a division, or when it is acquired.
8This condition would hold even if aggregate investment is nonnegative; an individual firm could

have X < 0 without affecting aggregates.
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Ownership lapses after one period. The household’s budget constraint therefore reads

C + p (S0 − S) + q (k0 − k) = zk + pλk. (23)

Equilibrium.–When the households’ and firms’ plans coincide, (2) and (4) hold,
and when we use , the LHS of (23) becomes

C + p (λk −X) + qX = C +X + pλk using (21)

= zk + pλk using (6),

which coincides with the RHS of (23). Since the firm’s problem does not determine X
(provided that [21] holds), we shall derive the decision rules forX from the household’s
problem.
The household’s Bellman eq.–We shall assume that p = p (s, z) does not de-

pend on k, in which case (21) implies that q (s, z) also does not depend on k. The
household’s personal state is (k, S), and it takes the aggregate state (k,S, z) and
the aggregate laws of motion for (k, S) which depend on the decision rules of other
households as given. The household’s Bellman equation is

V (k, S,k,S, z) = max
k0,S0≥0

½
U (zk + pλk − p [S0 − S]− q [k0 − k]) + β

Z
V (k0, S0,k0,S0, z0) dF

¾
,

(24)
where

p = p

µ
S

k
, z

¶
, q = 1 + p

µ
S

k
, z

¶
, k0 = k̂0 (k,S,k,S, z) , S0 = Ŝ0 (k,S,k,S, z)

and where
³
k̂, Ŝ

´
are functions that the household takes as given but that in equi-

librium will have to coincide with the household’s policy rules — hence a fixed-point
exercise in

³
k̂, Ŝ

´
is needed at the end.

Lemma 6 If equilibrium exists, it is the same as the planner’s optimum.

Proof. Since the household consumes all the output, equilibrium is optimal if
and only if, for all (k, S, z),

V (k, S, k, S, z) = v (k, S, z) . (25)

Since the planner’s solution maximizes the representative household’s consumption,
V ≤ v for all states. But when (21) holds, then any (C, k0, S0) that the planner
can feasibly choose is also feasible to the household: Let Ch be the household’s
choice Cp the planner’s choice: Plugging the planner’s choices (k0, S0) into the house-
hold’s budget constraint, Ch = zk + pλk − (p [S0 − S] + q [k0 − k]) = zk + pλk −
(p [λk −Xp] + qXp) = zk −Xp = Cp. Then V ≥ v and therefore (25) holds.
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The household is not constrained by (4), so that the two first-order conditions
must both hold with equality:

k0 : −qU 0 (C) + β

Z
V1dF = 0, (26)

and

S0 : −pU 0 (C) + β

Z
V2dF = 0. (27)

Efficiency of the equilibrium.–Subtracting (27) from (26) and applying (21) yields

−U 0 (C) + β

Z
(V1 − V2) dF.

This implies (26) is V1 = v1 and if V2 = v2. In that case prices would coincide with
marginal social values of (k, S), because the envelope theorem applied to (24) gives
V1 = (z + pλ+ q)U 0 (C) and V2 = pU 0 (C) , i.e.,

p = β

Z
U 0 (C 0)

U 0 (C)
p0dF (z0, z) , (28)

and

q = β

Z
U 0 (C 0)

U 0 (C)
(z0 + p0λ+ q0) dF (z0, z)

= λp+ β

Z
U 0 (C 0)

U 0 (C)
(z0 + q0) dF (z0, z) . (29)

where p and q are evaluated at
¡
S
k
, z
¢
, and V1 and V2 at (k, S, k, S, z).

Calculating q and p.–Optimum and equilibrium are the same, and therefore p
must equal the marginal social value of a seed:

p (s, z) =
1

U 0 (C)
vS = (z − x)σ ws (s, z) . (30)

because 1
U 0(C) =

(z−x)σ
k−σ and vS =

1
k
ws (s, z) k

1−σ. Now we can finally prove the result
on the relation between seeds and q:

Proposition 3 p (s, z) and, hence, q (s, z) are decreasing in s.

Proof. By Corollary 1, w is concave in s which means that ws is decreasing in
s. By Corollary 2, x is increasing in s so that (z − x)σ is decreasing in s. Thus the
claim holds for p and, by (21) it also holds for q.

Thus the ability to store seeds reduces the model’s ability to explain a level of
Q above unity. Allowing for intertemporal substitution therefore reduces the level of
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Q and it also reduces the model’s ability to explain the volatility in Q, for the same
reason that in models of storage such as Deaton and Laroque (1992), the storage
technology reduces expected fluctuations in the price of the commodity: Models of
competitive storage imply Et (pt+1) ≤ 1+r

1−δpt, where r is the rate of interest and δ the
depreciation rate or carrying cost.
Book value.–We shall measure the “replacement” cost of the firm by the stock

of its tangible capital, k, even though the true replacement cost is (1 + p) k. This is
because until recently a U.S. firm could, and would, treat its R&D as an expense,
and deductible from the firms taxable income.

Measured Tobin’s Q.–The firm’s investment activity yields it zero profits. The
income generated by the trees in the ground is zk + pλ and we shall think of it as
the firm’s earnings or its dividend. Then the “ex-dividend” value of its assets (k, S)
is qk + pS, or per tree it is

Qa (s, z) ≡ q + ps. (31)

This is what we shall use for Q in the simulated model in Figures 4 and 5, and in the
regression (47). We may think of q as the firm’s marginal Q because that is the cost
of a planted tree. Thus measured Q exceeds marginal Q.

4 Decentralization 2: Market for firm shares only

This section simply assumes that the market for seeds is closed and that, while each
firm’s state (k, S, z) is public information, separate markets for k and s do not exist.
It would of course be better to model the friction that causes the market for seeds to
have zero transactions, but this would complicate things. So, let us assume that only
(k, S) bundles trade in the form of shares of firms. We use the recursive equilibrium
concept of Mehra and Prescott (1980) extended to a growing economy, as done in
Jovanovic (2006).

Suppose that firms’ shares trade but that seeds and trees do not trade separately.
Seeds then have to be stored by the firms that produced them, and the representative
firm holds the tree-seed bundle (k, S) under its roof. The household can own a
claim on the dividends paid by such a firm and no other assets exist. Therefore this
decentralization has just two markets: A market for output, and a market for firms’
shares. Since the number of date-t goods (consumption, capital, and seeds) is three,
the number of goods exceeds the number of markets, and we cannot be sure that a
recursive competitive equilibrium is optimal.

Assume a continuum of firms of measure one and an equal number of households.
Equilibrium then requires that each household hold exactly one share. Firms pay
(z − x [s, z]) k dividends in state (k, s, z), and households take firms’ policies x (s, z)
as given.
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4.0.1 The household’s decision problem

With n shares, a household’s wealth is the current dividend, (z − x) k plus the ex-
dividend value of his holdings, Q̂ (s, z) kn. This wealth is spent on consumption and

on future holdings of shares Q̂ (s, z) kn0. Thus Q̂kn0 + C =
³
[z − x] k + Q̂k

´
n, or

after dividing through by k,

Q̂n0 + c =
³
z − x+ Q̂

´
n,

so that
c = (z − x)n+ Q̂ (n− n0)

where x is given to the household. The household takes the aggregate law of motion
of k0 (s, z) x (s, z) and s0 (s, z) as given. His state is (k, n, s, z), and, with some of the
arguments (s, z) dropped from the notation, his Bellman equation then is

V (k, n, s, z) = max
n0

⎧⎪⎨⎪⎩
³
(z − x [s, z])n+ Q̂ (s, z) (n− n0)

´1−σ
k1−σ

1− σ
+ β

Z
V (k0 (s, z) , n0, s0, z0) dF

⎫⎪⎬⎪⎭ .

Deriving the pricing equation.–As in the planner’s problem, V (k, n, s, z) =W (n, s, z) k1−σ,
where

W (n, s, z) = max
n0

(
([z−x(s,z)]n+Q̂(s,z)(n−n0))

1−σ

1−σ +

β (1 + x [s, z])1−σ
R
W (n0, s0 [s, z] , z0) dF

)
. (32)

The derivative of W with respect to n, call it Wn, exists for much the same reasons
that ws does. Equilibrium requires that n0 (1, s, z) = 1. At equilibrium, the first-order
condition is

(z − x [s, z])−σ Q̂ (s, z) = β (1 + x [s, z])1−σ
Z

Wn (1, s
0 [s, z] , z0) dF. (33)

The envelope theorem then implies

Wn (1, s, z) = (z − x [s, z])−σ
h
z − x (s, z) + Q̂ (s, z)

i
.

Updating, substituting into (33), and dividing by (z − x)−σ gives our version of the
Lucas (1978) pricing formula

Q̂ (s, z) = β (1 + x [s, z])

Z
M (s, s0, z, z0)

³
z0 − x [s0 (s, z) , z0] + Q̂ (s0 [s, z] , z0)

´
dF,

(34)
where

M (s, s0, z, z0) ≡
µ
[1 + x (s, z)] (z0 − x [s0 (s, z) , z0])

z − x (s, z)

¶−σ
(35)

is the MRS in consumption between today and tomorrow.
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4.0.2 The firm’s decision problem

Since markets for s do not exist, the firm’s only decision is x. Let us use bold letters
to denote aggregate states and decisions x (s, z) and s0 (s, z). Let P denote the cum-
dividend price of 1/k’th of the representative firm, i.e., the price of the tuple (1, s).
Equilibrium is efficient if P = vk+svS, with v defined in (11). The functional equation
(in units of the consumption good) for its cum-dividend price per unit of k is

P (s, s, z) = max
x

µ
z − x+ β (1 + x)

Z
M (s, s0, z, z0)P (s0 [s, z] , s0, z) dF

¶
(36)

Writing P in this way implies that s is public information s even when it differs
from s. I.e., (36) assumes that (s, s) is a sufficient statistic for the how the market
values the firm. If the market did not know a firm’s s, it would try to guess s
from the firm’s choice of x, and incentive constraints would be needed to accompany
the problem in (36). Thus the seeds market does not exist for reasons other than
imperfect information about s.
In equilibrium,

1. All firms must choose the same x, and so we ask that in state (s, z) = (s, z),
the firm will behave like other firms. That is, at the fixed point for P , the
RHS of (36) is maximized by x (s, s, z) = x (s, z). This would imply that
s0 = λ+s−x(s,s,z)

1+x(s,s,z)
= s0 (s, z) = λ+s−x(s,z)

1+x(s,z)
.

2. For all (s, z), the maximized value of the firm must equal the value that the
shareholders hold:

P (s, s, z) = z − x (s, s, z) + (1 + x (s, s, z)) Q̂ (s, z) . (37)

In fact, property 1 implies property 2 as one can deduce by setting x (s, s, z) =
x (s, z) for all (s, z) so that s0 = s0, in which case substitution from (37) into (36)
makes it identical to (34). Thus it suffices to show that property 1 holds. Recall that
U (C) = c1−σ

1−σ so that U
0 (C 0) /U 0 (C) = [(1 + x) (z0 − x0) / (z − x)]−σ. Then, evaluated

at x = x, the FOC in (36), calculated by solving

P (s, s, z) = max
s0

½
z − x̂ (s0, s) + β (1 + x̂ [s0, s])

Z
M (s, s0 [s, z] , z, z0)P (s0 [s, z] , s0, z0) dF

¾
(38)

where

x̂ (s0, s) =
λ+ s− s0

1 + s0
, (39)

and does not depend on the firm’s action.
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Differentiability of P .–Similar to the proof of Lemma 4 we can establish that
Ps (s, s, z) ≡ ∂

∂s
P (s, s, z) exists everywhere. Since

∂x̂

∂s0
=

∂ (1 + x̂)

∂s0
=

∂

∂s0

µ
1 + λ+ s

1 + s0

¶
= − 1 + x

1 + s0

the derivative w.r.t. s0 is 1+x
1+s0 − β 1+x

1+s0

R
M 0P 0dF + (1 + x)β

R
M 0P 0

sdF ≤ 0, with an
exact equality if s0 > 0. The term (1 + x) cancels, and so the FOC to the problem
(38) is

1− β

Z
M 0P 0dF + (1 + s0)β

Z
M 0P 0

sdF

½
= 0 if s0 > 0
≤ 0 if s0 = 0

, (40)

Efficiency.–Here P is the cum-dividend price of one-k’th of the firm in current
consumption units. Per unit of its k, a firm is a package of (1, s) units of (k, S).
Therefore, efficiency would appear to require that P = 1

U 0 (vk + svS). In what follows
we let x (s, z) denote the planner’s optimal policy, and s0 (s, z) = λ+s−x(s,z)

1+x(s,z)
.

The next claim states that if the representative firm used the planner’s policy, its
market value would equal the marginal social value of the bundle (k, S):

Lemma 7
P (s, s, z) = P, (41)

where P is given in (36).

Proof. Updating (41) by a period we have P (s0 [s, z] , s0, z0) = (1− σ) (z0 − x [s0, z0])σ w (s0, z0).
Substituting into the RHS of (36), the latter becomes

z − x (s, z) + β (1 + x [s, z])

Z
M (s, s0, z, z0) (1− σ) (z − x [s, z])σ w (s0 [s, z] , z0) dF

= z − x+ (1− σ)β
(1 + x)1−σ

(z − x)−σ

Z
w (s0, z0) dF in view of (35)

= (1− σ) (z − x [s, z])σ w (s, z)

= P (s, s, z) , as claimed in (41).

The previous lemma is, however, conditional on the assumption that the repre-
sentative firm uses the planner’s policy, i.e., that

x (s, s, z) = x (s, z) . (42)

Next we shall show that (42) does hold if (41) does.

Lemma 8 If P satisfies (41), then (42) holds.
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Proof. If (42) holds, the firm’s FOC, (40), must coincide with the planner’s FOC,

(15). In view of (35), LHS of (40) can be written as 1−β
R ³ (1+x)(z0−x0)

z−x

´−σ
(P 0 − [1 + s0]P 0

s) dF .

This is the same as the LHS of (15) if

(z0 − x0)
−σ
(P 0 − [1 + s0]P 0

s) =
h
(z0 − x0)

−σ
(1 + z0) + λw0s

i
i.e., if

1 + z +
λws

(z − x)−σ
= P − (1 + s)Ps (43)

Now applying the envelope theorem in (38) and noting that, since x̂ (s0, s) = λ+s−s0
1+s0 ,

∂x̂
∂s
= 1

1+s0 =
1+x
1+λ+s

, gives

Ps =
∂x̂

∂s

µ
−1 + β

Z
M 0P 0dF

¶
=

1 + x

1 + λ+ s

µ
−1 + P − (z − x)

1 + x

¶
,

=
P − 1− z

1 + λ+ s
.

Substituting this into (43) for Ps gives

1 + z +
λws

(z − x)−σ
= P − (1 + s)

P − 1− z

1 + λ+ s

=
λP

1 + λ+ s
+ (1 + s)

1 + z

1 + λ+ s

Rearranging,
λws

(z − x)−σ
=

λP − λ (1 + z)

1 + λ+ s
,

i.e.,

ws = (z − x)−σ
P − (1 + z)

1 + λ+ s

= (z − x)−σ
(1− σ) (z − x [s, z])σ w (s, z)− (1 + z)

1 + λ+ s
(41),

=
1

1 + λ+ s

¡
[1− σ]w − (1 + z) [z − x]−σ

¢
But this is the same as (14).
Lemmas 7 and 8 then imply the main result of this section:

Proposition 4 The incomplete-market economy has an efficient equilibrium.

For general parameter values, we cannot rule out other equilibria that are not
efficient.
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4.0.3 The effects of financial-market completion

If the efficient equilibrium were in fact unique, we could conclude that if all firms
are publicly traded, the emergence of a seeds market should affect neither prices nor
quantities. It is enough that all firms trade on the stock market. Even in a financially
developed society like the U.S., however, only about one half of the privately owned
capital trades on stock markets, and therefore further enlargement of the stock market
would probably raise efficiency, as Greenwood and Jovanovic (1990) found in a model
in which different-sized firms gradually join the stock market as they grow.

The efficiency result should extend to a situation in which firms do differ because,
e.g., they draw different z’s. Jovanovic and Braguinsky (2004) develop a related
one-period model in which firms differ in two dimensions: Project quality which we
can interpret as s, and managerial ability, which we can interpret as z. They find
that even when s is private information to the firm being acquired, the stock market
achieves efficiency.

As far as translating these results to the market for information generally, we
must qualify all this by noting that seeds, S , do not share some of the features of
inventions that are sometimes thought important. Namely,

1. Seeds are of purely private value, and not costlessly reproducible — as informa-
tion perhaps is — and cannot raise output in more than one firm;

2. The producer of a seed has a perfect property right to it even when markets for
seeds do not exist.

If either assumption did not hold, equilibrium would not be efficient. Moreover,
if inventions were embodied in people and if people could extract the rents from the
firm, then Q would certainly be different and equilibrium could be inefficient.

5 Numerical solution and fitting the data

The Appendix provides more details on the data and procedure.
Process for z.–I shall restrict the realizations of z to just five values. Since z

is estimated as Y/k, its value is sensitive to how capital operated by private firms
is classified. It is likely that a lot or the wartime capital was mis-classified as Gov-
ernment capital when in fact it was used by the private sector (Gordon 1969). Ac-
cordingly the empirics will start in 1953. But we shall then also take out a constant
and linear trend from z, on the presumption that we do not measure the true k.
In this way we get a trendless z, which is what the model assumes. When de-
trended linearly, z follows an AR(1) process with autocorrelation coefficient 0.93,
and innovation standard deviation 0.03. The Tauchen-Hussey procedure for dis-
cretizing the AR yields a first-order Markov chain with 5 evenly spread-out states,
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(z1, z2, z3, z4, z5) = (0.32, 0.34, 0.36, 0.38, 0.40), and the symmetric transition proba-
bility matrix in Table A:

z1 z2 z3 z4 z5 Stationary dist.
z1 0.71 0.27 0.02 0.00 0.00 0.15
z2 0.18 0.55 0.24 0.02 0.00 0.22
z3 0.01 0.22 0.53 0.22 0.01 0.25
z4 0.00 0.02 0.24 0.55 0.18 0.22
z5 0.00 0.00 0.02 0.27 0.71 0.15

(44)

Table A: The Matrix of transition probabilities for z

which induces the autocorrelation coefficient of 0.93 and standard deviation of 0.03
— the same as the data.
Parameters.–At this point we assume that k depreciates at the rate δ and S

depreciate physically9 at the rate γ so that their laws of motion (2) and (4) become
k0 = (1− δ) k+X and S0 = (1− γ) (S + λk −X) respectively. The parameter values
used are shown in Table B:

β σ δ z̄ s0 λ γ
0.95 6.23 0.043 0.36 0.03 0.075 0.11

Table B: Parameter values for the Seeds model

5.1 Simulated decision rules and Q.

For the parameter values and transition probabilities stated in the above tables,
Figure 4 plots the equilibrium Q, the decision rules and the value function. In all the
plots, the variable on the horizontal axis is s, the beginning-of-period seeds-capital
ratio. For the sake of clarity we shall omit the decision rules corresponding to z2 and
z4. We may summarize the plots as follows:

1. Panel (a) of Figure 4 plots Tobin’s Q.10 As s gets large, p (s, z) → 0 for all
9Of course γ tries to capture what in fact is obsolescence, and not physical depreciation. If the

model is to fit at the national level, then we should use a number for obsolescence of U.S. knowledge
because of being superseded by firms other nations. Presumably it is smaller than the rate at which
the patents of a firm obsolesce. One typically uses 15 percent for domestic obsolescence, and some
combinantion of this number with the fraction of patenting abroad and the fraction that foreigners
patent in the U.S. would be needed to come up with the right number for γ. See Eaton and Kortum
(1999) for some of the relevant numbers.
10To calculate Q we substitute fom (14) into (30) to obtain

p (s, z) = (z − x)σ
1

1 + λ+ s

³
[1− σ]w − (1 + z) [z − x]−σ

´
=

1

1 + λ+ s

µ
1− σ

(z − x)−σ
w − [1 + z]

¶
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Figure 4: Decision rules and equilibrium prices

z, and therefore Q (s, z) → 1. The maximal Q of 1.87 occurs when s = 0 and
z = z5.

2. Panel (b) plots investment, which responds more to s when z is high. At z3, z4,
and z5, investment is constrained at low values of s. E.g., x (s, z5) = λ + s
when s is close to zero, so that the initial slope of the red curve in Panel (b)
is unity. When z ∈ {z1, z2}, however, x is never constrained and s then has a
much smaller effect on it. Referring again to Figure 3, neither z1 nor z2 lies in
∆ for any value of s.

3. Panel (c) of Fig. 4 plots the long-run distribution of seeds. Seventy percent of
the time seeds are in the s = 0 bin, but this bin also contains some positive but
small values of s, and in fact s = 0 occurs only 55 percent of the time. The
maximal value is 0.056.

4. Finally, the last panel plots w which is negative (because σ > 1) and increasing
in both s and z.

We actually use a version that allows positive δ and γ. Finally, (21) gives us q, which is the market
value of planted trees in the complete-market decentralization, and the value of the firm in the
incomplete-market decentralization.
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The effect of s is to move x and Q in opposite directions. On the other hand, z
moves x and Q in the same direction, and this effect dominates so that the correlation
between x and Q is positive as the matrix of unconditional correlations for the data
and model in Table C shows:

s x Q
z -0.04 0.49 0.71
s -0.11 -0.19
x 0.33

Data

s x Q
z -0.58 0.45 0.94
s -0.08 -0.60
x 0.14

Model
Table C : The Matrix of unconditional correlations in the data and in

the model

The signs the model produces are correct, but the magnitudes are far apart in some
cases, most notably the correlation between s and z. The model generates the strong
positive correlation between z and Q and the negative correlation between s and x.
The largest discrepancy is the relation between s and z.

5.2 Fitting the post-war series

The state variables of the model are k, S, and z, and the decision variable is x. In
addition, we focused on the price of seeds, p, but the real motivation for it is the
role that p plays in the price of the firm, Q. Thus we shall fit the following post-
war series: (i) The output-capital ratio, z, (ii) The seed-capital ratio, s, (iii) The
investment-capital ratio, x, and (iv) Tobin’s q as given in (31).
In all four Panels of Figure 5, the dashed (red) lines represent the model, the solid

(blue) lines represent the data. Most of the parameters were chosen to minimize the
RSS between the simulated and constructed series. The variables were constructed
as follows:

1. The dashed line in Panel (a) of Figure 5 plots z = Y/k. The model has 5 values
of z to fit this with.

2. Panel (b) plots the series for s implied by the model as the dashed line, calcu-
lated via

s0 = (1− γ)
λ+ s− x

1− δ + x
, (45)

where s0 = 0.03. The solid line is our estimate of the seeds series, using patent
applications as explained in the Appendix. Constructing the estimated series
involved the introduction of a parameter θ = 0.04 for converting units of seeds
into units of k The simulated s peaks at 0.42 in the late ‘80s. The model
overpredicts the empirical estimate of st, i.e., the estimate of the seeds series
that produces the model’s best fit to the post-war data. Instead of using patent
applications, we experimented with new trademarks and with R&D and as
proxies for λk, but the model’s fit of the s series did not improve.
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Figure 5: Time path of the data and model outcomes

3. Panel (c) shows that the model does not solve the excess-volatility puzzle, but
we’ll see that it does better than the ACM on this score. The influence of z on
Q is more important than that of s.

4. In Panel (d) of Figure 5 we plot the actual and fitted Q. For the measured
Q, for 1951-1999 we use Hall’s series, but since it ends in 1999, for the period
1999-2004 we use Abel’s data scaled so that the two Q series match in 1999.
This is the dashed line in Panel (d) of Figure 5. To get a sustained rise in Q
we must have a prolonged period during which z = z5. The ‘90s appear to have
been such a period. Evidently, the seeds model explains more of the variation in
Q, but it overpredicts the volatility of x by more. Of course, this model cannot
ever generate Q < 1.11

As an explanation for the behavior of Q in panel (d), the model has a problem
with reconciling Q with the following properties of the time-series for z:

11Since investment is in fact always positive, the constraint X ≥ 0 (if we were to impose it) would
never be violated. A second way to explain why Q is sometimes below 1 is to introduce more than
one type of capital. But when there are several types of capital, the arrival of a better new capital
will cause the value of old capital to fall. Greenwood and Jovanovic (1999) and Hobijn and Jovanovic
(2001) argue that this this explains the low Q in the 1974-86 period, and Jovanovic and Rousseau
(2007) study the entire Twentieth Century using similar logic.
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• Y/k falls dramatically in the late ‘70s and early ‘80s, something that the model
interprets as a low-z epoch causing the huge buildup of seeds portrayed in panel
(b) and the resulting collapse of Q to its lowest possible level of unity, and

• The long productivity slowdown of the 70’s and early ‘80s delays the predicted
rise in Q to the ‘90s. In fact, Q starts its rise in the early ‘80s. Even with the
accompanying rise in the estimate of z, it takes time for the model s (the solid
line) to be drawn to zero and for Q to rise to its maximal value of 1.88.

6 Intangibles and Q

The market value of k is 1 + p and the market value of s is ps. Since p is decreasing
in s, marginal q is decreasing in s. But we have to show that measured Q, which is
given in (31), is decreasing in s. The next Proposition derives a sufficient condition
for that to be so.

Proposition 5 Qa is monotone decreasing in s for all s ≥ 0 if

σ ≥ 1 + λ. (46)

Proof. The proof will assume that x, and hence Qa, are everywhere differentiable
in s (if it is not differentiable the conclusion thatQa declines remains the same). Then

∂Qa

∂s
= p+ (1 + s) ps.

On the set ∆, x = λ + s so that ∂x
∂s
= 1. Off the set ∆, ∂x

∂s
< 1. Using (14), and

p = 1
1+λ+s

([1− σ]w [z − x]σ − (1 + z)).

ps =
1

1 + λ+ s

µ
−p+ [1− σ]

µ
σw [z − x]σ−1

∂x

∂s
+ ws [z − x]σ

¶¶
≤ 1

1 + λ+ s
(−p+ [1− σ] p) (because

∂x

∂s
≥ 0)

= − 1

1 + λ+ s
σp

therefore
∂Qa

∂s
= p− 1 + s

1 + λ+ s
σp ≤

µ
1− σ

1 + λ

¶
p,

from which (46) follows.
The proposition offers only a sufficient condition, but it also can be shown that

for σ sufficiently small, Qa rises with s. Nevertheless, condition (46) holds at realistic
values of σ and λ that in the simulation are 2 and 0.135 respectively. This is why the
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seeds model implies a fall in Q whereas Hall’s (2000) implies a rise in Q. In my model,
variation in intangibles is caused by variation in the stock of unimplemented seeds. In
Hall’s model there are variable proportions between intangibles and physical capital
in production and there is no storage of intangibles, hence a rise in intangibles gives
a rise in the productivity of the firm’s measured capital and (barring the GE effects
that I have emphasized here) it produces a rise in the firm’s Q.

In the two panels of Table 3 we have already seen that the correlation between
s and Q (the bolded numbers in the two panels) is negative. The finding is robust
to extending the number of z’s to five — see Table A3. Let us explain this finding in
more detail. In the model the stock S denotes unexercised options. Thus a rise in s
represents a rise in the ratio of unimplemented intangible capital to tangible capital.
The stock of all intangible capital is k+ S with k being the number of seeds already
in the ground and being used for production. Therefore the ratio

All intangible capital
Tangible capital

=
k + S

k
= 1 + s

is also monotone in s. Therefore, s is also an index of all options, be they implemented
or not.

Evidence.–Whether intangibles raise Q or lower thus ultimately depends on
whether intangibles enter final goods production independently of k as Hall assumes,
or whether they are embodied in k as I have assumed here. One source of evidence
is the aftermaths of large wars during which industry resources tend to mobilize for
aiding the war effort and during which unexercised options are likely to accumulate.
In other words, prolongued wars lead to a buildup of seeds as a result of wartime
research for military purposes. This means that after the war there should be a stock
of unimplemented ideas and Q should be low. The evidence from the U.S. and the
U.K. shows that Q was exceedingly low after both world wars. Figure 6 reproduces
Figure 5 from Wright (2004). It shows that of the three epochs when Q was at its
lowest, the first was following WW1 and the second was following WW2. The same
is true for U.K. q as Figure 7 (a reproduction of Chart 8 of Smithers 2007) shows.
Since the price of capital goods has been declining faster than that of consumption
goods, we may expect that ideas predominate in the production function for k, and
not the production function for final goods.
Several alternative explanations come to mind that may explain low post-war

Qs. First, one may wonder whether there is some purely accounting reason why the
denominator of Q was somehow artificially inflated after WW2, having to do with
whether capital was mis-classified so that the denominator of Q was perhaps too high
But exactly the opposite seems to have been the case — Gordon (1969) convincingly
establishes that much Government capital was, for several years after 1945, operated
for profit by private firms, yet not counted as private capital, and excluded from the
book values of those firms. Gordon argues further that this accounting practice this
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Figure 6: three series for Tobin’s Q from Figure 5 of Wright (2004).

raised the measured rate of return on Corporate assets. On these grounds, then, we
would have expected post-war Q to have been high, not low.

A second explanation for low Q after WW2 is that the market expected a severe
postwar recession that would take profits and employment after 1945 down to some-
thing like the late 1930s, that this fear was not fully dispelled until the mid 1950s,
and that only then did markets become convinced that the economy was capable of
peacetime prosperity. This argument will not explain why Q was low after WW1,
however, and the hypothesis still awaits a systematic test.

A third possibility is that after the war there was a consumption boom with people
wanting to borrow and thereby bidding up the interest rate and the rate at which
earnings are discounted, and thereby lowering Q. But interest rates after the war
were near all time lows. Figure 29 of Jovanovic and Rousseau (2006) shows that the
ex-post real interest rate on 60- and 90-day commercial paper was negative for most
of the late 1940s.

Corrado, Hulten and Sichel (2005) and Hall (forthcoming) estimate that the stocks
of intangibles rose during the 90’s. The seeds model is consistent with this fact only
if we assume that what these authors measure is exercised options. Bronwyn Hall’s
production function estimates can be reconciled with the seeds model if we assumed
that the quality of k is not properly measured, and that the measurement error
depends on the number of seeds embodied in the capital. One would need to relax
the Leontieff assumption of one seed to one tree, and introduce variable proportions.
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Figure 7: Tobin’s q in the U.K., 1920-2006

7 Comparison to the adjustment-cost model (ACM)

The ACM is specified in (10). As we saw in the beginning of Section 2, the difference
between the Seeds model and the ACM is in the nature of the adjustment cost. Since

st = s0 +
t−1X
j=0

(1− γ)j (λ− xt−j), substituting for s in (9) yields an investment cost

of the form Ĉ (xt, xt−1, xt−2, ...) , which is increasing in all its arguments. For any
j > 0, a rise in xt−j tightens the constraint at t. We use the same (β, σ, δ) and the
same process for z as for the Seeds model. We then choose (λ∗, φ) to fit the first
moments of x and Q. The Appendix supplies more detail. The procedure gives us
the estimates in Table D:

λ∗ φ
0.6 1.8

Table D: Values of the new parameters of the ACM

In the ACM, z is the only state variable and therefore a one-to-one relation emerges
between x and Q, namely the FOC

Q = 1 + h0 (x) = 1 + (λ∗)−φ xφ−1,

which, since φ is close to 2 is almost linear and is plotted in Figure (8).

In Figure (8) we indicate on the horizontal axis the value of the Seed-model
parameter λ = 0.075. The Seeds model has just one shock, z, the same as in the
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ACM, but it has a second state variable, s, on which x and Q both depend, and
this loosens the relation between x and Q. Thus Abel and Eberly’s (2006) argument
carries over to the aggregate setting. Panel (c) of Fig. 4 shows that in the long run the
steep red curve (pertaining to s = 0) and similar curves for s vales close to zero are
relevant seventy percent of the time. This curve becomes vertical at x = λ = 0.075.
The next line pertains to the median value s = 0.006, and it becomes vertical at
x = 0.075 + 0.006 = 0.081. The most elastic curve becomes vertical at 0.131, not
shown in the figure.
Next, let us contrast the two models’ implications for the second moments of the

data when both are constrained to fit the first moments. This is done in Table E.
Column 2 reports the moments of the data. Columns 3-6 report the results of three
100,000-period simulations of two models when the shocks are drawn according to
the transition matrix in (44). Columns 3-5 of Table E report the statistics for three
versions of the Seeds model.

Column 3 presents the Seeds model under the parameter values that, together
with (44), were used to generate Figure 4 and Figure 5. The initial condition is
s0 = 0.04. One should compare the numbers in Column 3 to the information in
Figure 4. For instance, E (s) and σ (s) are the mean and standard deviation of the
distribution of s plotted in Panel (c) of Figure 4. For the ACM we choose φ and λ∗ to
fit E (x) and E (Q), which the Seeds model also fits. Otherwise, all the parameters
that the two models have in common are the same for the two models.

The Seeds model vs. the ACM.–The ACM explains the volatility of x better;
the Seeds model underpredicts σ (x). On the other hand, the Seeds model does
a lot better with σ (Q) while still falling short by a factor of almost two. but it
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underpredicts σ (Q) and σ (c) by less. Finally, the Seeds model has an additional
endogenous variable — seeds — and no new exogenous variables, but as we have seen
in Figure 5 it does not explain well any reasonable measure of seeds. Consumption
volatility is the same in the two models, but investment is more volatile in the ACM.
Nevertheless, the Seeds model explains much better the volatility of Q, as Figure 8
suggested.

How much does intertemporal substitution matter?–At the outset of Section 2 we
argued that the substantive difference between the Seeds model and the ACM is in
that the former has intertemporal substitution in investment. Column 4 shuts off the
ability to store seeds but otherwise keeps the same parameters as underlie Column
3.12 As expected, the volatility of investment falls and that of consumption rises but,
surprisingly, the volatility of Q does not rise. How general this conclusion is remains
to be investigated.

(No seed storage) (infinite seeds)
Moment Data SDM SDM (γ = 1) SDM (s0 =∞) ACM
E(z) 0.37 0.367 0.367 0.368 0.368
E(x) 0.07 0.074 0.074 0.082 0.073
E(s) 0.002 0.007 0.000 — —
E(Q) 1.30 1.303 1.316 1.000 1.301
E(c) 0.30 0.293 0.294 0.285 0.290
σ(z) 0.027 0.024 0.024 0.023 0.023
σ(x) 0.007 0.004 0.003 0.010 0.073
σ(s) 0.009 0.012 0.000 — —
σ(Q) 0.566 0.302 0.299 0.000 0.069
σ(c) 0.020 0.021 0.022 0.014 1.000

Table E : The Seeds model and the ACM

The effect of dropping the seed constraint.–Column 5 drops the seeds constraint
by endowing the economy with an infinite supply of seeds at the outset. Here things
work as expected. This becomes the standard growth model without adjustment
costs. Then Q is always unity, and σ (x) rises above the level reached even by the
ACM.

Cash-flow regressions.–It is customary to regress investment on Q and on cash
flow and when cash flow “drives Q out” of the regression, this is held to be a problem
forQ theory. But, as Abel and Eberly (2005) stress, investment options are not always
exercised, but their value changes over time, and with it the firm’s measured Q, and
therefore the significance of cash flow independently of Q does not indicate a failure
of the Q theory. While they have established that convincingly for the cross section,
it remains to be seen whether the same conclusion holds in the time series in the GE
12At this point, the ACM is more flexibly parametrized than the Seeds model because, as we

noted in Proposition 1, the case where seeds cannot be stored is in fact a special case of the ACM
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Figure 9: Tobin’s Q and the relative price of capital 1953-2001

context. Per unit of k, net cash flow is the same as aggregate consumption, z − x.
We shall therefore simulate the results of such a regression by taking a million draws
of the model and subjecting the endogenous variables to the regression in question.
The results were

xt+1
INVESTMENT

= −0.02 + 0.44(zt − xt)
CASH

− 0.03 Qa
t

MEASURED Q
. (47)

where Qa was simulated via (31), i.e., from the first decentralization. Given the large
sample size, all three coefficients differ significantly from zero. The reason why cash
is positive seems to be that z−x increases in z, and z is persistent, leading on average
to a higher x0.

8 Other information about (pt)

One could summarize this paper by saying that it “tries to explain (Qt) by generating
(pt).” So far we have not used any information on (pt). In this section we shall
informally consider two sources of information on p: (i) the relative price of capital
and of high skills, and (ii) the relation between a firm’s Q and proxies for its S.

8.1 The relative price of capital and the skill premium

Do seeds help create cheaper machines?–Suppose that firms sell planted trees to
competitive fruit companies who then sell fruit to customers. If we consider a planted
tree a finished capital good, then marginal Q, i.e., 1 + p, should then coincide with
the price of capital. This does not fit the facts, however, as Figure 9 shows; the
de-trended relative price of capital is negatively related to Q. This means that seeds
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Figure 10: The skill premium taken from Goldin and Katz (2007)

are probably not embodied in equipment or, if they are, they do not lead to cheaper
equipment.

Do seeds help create better human capital?–Perhaps it is more appropriate to
think of seeds as generating human capital that is embodied in people. In that case,
a lot of seeds on hand is like having a glut of technical or other advanced skills.
Thinking this way leads to using the skill premium as a measure of the scarcity of
skills. Since Q is also high when skills are scarce, this means that Q and the skill
premium should be positively correlated over time. Goldin and Katz (2007) report the
time series for college premium and the high-school premium. The college premium
is highly correlated with Q since WW2; it rises in the 50s and 60s, falls in the 70’s
and again starts to rise in the 80s about the same time as does Q. The high-school
premium is less strongly but still positively related to Q.

The empirics of the previous section notwithstanding, it seems more appropriate
to view seeds as being embodied in human capital rather than physical capital.

8.2 The cross-section relation between Q and S

The cross section implications contrast with those of the time series: In periods in
which the economy has many unexercised options, Q should be low, but at any date,
firms with more options should have Qs that are high relative to Qs of firms that do
not own any unexercised options. We can benefit from this implication and arrive at
an independent estimate of the aggregate time series of p and q.

Let us now look further into this question. So far, firms were assumed to be
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Figure 11: Estimate of 1+ p (st, zt) from cross-section data — results sup-
plied by Bronwyn Hall, 1974-2003.

identical. One can, however, inject a zero measure of firms being endowed with
different relative seed stocks, si but the same z as all other firms. This would leave
all other firms’ valuations and policies unchanged.

A firm’s beginning-of-period value would now depend on its state (Si, ki), in ad-
dition to the aggregate state (s, z). The aggregate k would not affect the firm’s price
because it affects neither q nor p. Then its beginning-of-period value per unit of
capital would be

Q̃i ≡
1

ki
π (ki, Si, s, z) = 1 + z + p (s, z)

µ
1 + λ+

Si
ki

¶
. (48)

Since p changes with the aggregate state (st, zt) but not with i, it can, for each t,
be estimated from the cross-section regression of Qi on Si

ki
, provided the latter could

be reliably estimated. I report some results related to Hall (forthcoming) in Figure
11. According to the model, the two lines should have coincided, but they do not.
Why don’t they? Probably, it is because firms’ zs also differ and that firm i, say,
has accumulated an above-average stock of seeds, si, precisely because its zi has been
low. Therefore, instead of (48), we should write

Q̃i ≡
1

ki
π (ki, Si, zi, s, z) = 1 + zi + p (s, z)

µ
1 + λ+

Si
ki

¶
. (49)

Now the unobservable zi is negatively correlated with Si/ki, and this invalidates the
interpretation we have given to Figure 11 because a rise in Qi would now possibly
signal a lower Si/ki.
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9 Conclusion

This paper has offered a microfoundation for adjustment costs that emphasizes the
role of new ideas in investment and in the business cycle, and that features an in-
tertemporal substitution element missing in existing formulations of adjustment costs.
This is why the model can explain the sustained rise in Q during a boom such as
sometimes occurs in fact. The paper has found that investment options raise the
volatility of Q compared to the standard adjustment-cost model. Moreover, because
they facilitate the formation of new capital, new ideas reduce the value of old capital,
an implication that we found was borne out in fact. Thus what we often call intangi-
ble capital acts to reduce the market value of tangible capital. Finally, we found that
a stock market alone may suffice to ensure efficiency of the equilibrium.
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10 Appendix 1: Data and estimation

Data sources are described in table 1.13

Table 1: Data sources

Variable Data source
k Capital stock NIPA 6.1. Current-cost net stock of private fixed assets, line 1
Y Output NIPA 1.1.5. Gross domestic product, line 1 - line 20
X Investment NIPA 1.1.5. Gross domestic product, line 6
Q Tobin’s Q 1950-99 from R.Hall, 1999- from A. Abel, spliced to Hall’s series in 1999
N Patents, Trademarks See fn. 10 in Jovanovic and Rousseau (2006)
kr Real capital stock NIPA 6.2. Chain quantity indxs for net stock of prvt fxd assts, line 1
z Productivity Computed as z = Y/k, linearly detrended
x Investment/capital Computed as x = X/k
n Patents/capital Computed as n = N/kr

We estimate two models: The Seeds model and the Adjustment-Cost model. We
start with the Seeds model.

Constructing Ŝt.–This Appendix concerns the construction of the solid line the
second panels of Figure 5. The law of motion for S given (4). S0 = λk + (1− γ)S−X,
which assumes that seeds are measured in the same units as k. But there is no
guarantee that this is so in fact, and so a new parameter θ must be introduced
(either in the model or in the data) to convert units of patents into units of planted
trees. We shall introduce the parameter in the construction of the empirical seeds
series, Ŝt. We assume that we can estimate λk by

ˆ

λk = θ · (New Patents).

and, to prevent Ŝt from becoming negative, we change (4) to

Ŝ0 = max
³
0, (1− γ) Ŝ −X + θ · (New Patents)

´
. (50)

13For Patents we use the total number “utility” (i.e., invention) patents from the U.S. Patent and
Trademark Office for 1963-2000, and from the U.S. Bureau of the Census (1975, series W-96, pp.
957-959) for 1946-62. The number of registered trademarks is from the U.S. Bureau of the Census
(1975, series W-107, p. 959) for 1946-1969, and from various issues of the Statistical Abstract of the
U.S. for later years.
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Dividing through by k from the data (see table 1), and taking an initial condition
equal to that in the data we obtain the estimated seeds series plotted as the solid
blue line in panel 2 of Figure 5:

ŝ0 = max

µ
0, (1− γ)

ŝ− x+ θ NEW PATENTS
CAPITAL STOCK

1− δ + x

¶
.

The model prediction, the dashed line in Figure 5, is generated by (7) with the initial
condition, s0, also a parameter to be estimated — and set to the same value s0 for
both the empirical and the theoretical series.
The estimation procedure is non-linear least squares. Model parameters are chosen

to minimize the L2-norm between the observed series (s, x,Q) and the same series
obtained from the data. The Seed model’s parameters were chosen in two steps:
1. Parametrizing the z process.–In the first step the estimated from the data

productivity process z is discretized into a 5-state first-order Markov process us-
ing Tauchen-Hussey procedure. Productivity process was estimated to be an AR(1)
process with autoregressive coefficient ρ = 0.93 and standard deviation σz = 0.03.
The mean level of z was chosen to match the average Y/k ratio in the data. Table 2
reports the Markov transition matrix of the approximating 5-state process. This one
is not restricted to be symmetric.

Table 2: Approximating 5-state Markov process for productivity process
z1 z2 z3 z4 z5 Stationary dist.

z1 = 0.32 0.71 0.27 0.02 0.00 0.00 0.15
z2 = 0.34 0.18 0.55 0.24 0.02 0.00 0.22
z3 = 0.36 0.01 0.22 0.53 0.22 0.01 0.25
z4 = 0.38 0.00 0.02 0.24 0.55 0.18 0.22
z5 = 0.40 0.00 0.00 0.02 0.27 0.71 0.15

Next ẑt was chosen to minimize the distance to the observed level of zt,

ẑt = arg max
ẑt∈{z1,..,z5}

(ẑt − zt)
2

except for the period 1996-1999 when the zt was set to z5 (the largest z) so that a
better fit to Q could be obtained.
2. Choosing the other parameters.–Let us choose parameters so that the model

when fed with the sequence {ẑt} generates series (ŝ, x̂, Q̂) close to those observed in
the data,

min
λ,γ,θ,s0

ws

51X
i=1

(ŝi − s1953+i)
2 + wx

51X
i=1

(x̂i − x1953+i)
2 + wQ

51X
i=1

(Q̂i −Q1953+i)
2 (51)
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subject to

E[x̂i|λ, z̄, γ, s0, θ] = 0.0740, E[Q̂i|λ, z̄, γ, s0, θ] = 1.3025.

The weights (ws, wx, wQ) are set to values (2, 2, 0.01).

The seeds model parameters are reported in table 3. Parameter β was set to match
the annual risk free rate of 5%. Parameter δ was set to equal the average of the
values given by the RHS of the following rearrangement of the law of motion for k:
δ = Xt

kt
+1− kt+1

kt
. Parameters σ, λ, θ, s0 were chosen by the optimization routine (51).

Table 3: Parameters Values for The Seeds Model
β σ δ z̄ s0 λ γ θ
0.95 6.23 0.043 0.36 0.03 0.075 0.11 0.04

The adjustment-cost model.–ACM’s cost function is specified in (10) as

h(x) =
1

φ

³ x

λ∗

´φ
.

Parameters β, σ, δ are fixed at the values used for the Seeds model. The parameters
(φ, λ∗) are chosen to minimize

(E(x | φ, λ∗)− 0.0740)2 + (E(Q | φ, λ∗)− 1.3025)2.

All the above parameters are reported in table 4.

Table 4: Parameters Values for The ACM Model
β σ δ φ λ∗

0.95 6.2 0.04 1.8 0.6

Table 5 reports the data and the model moments.

Note that correlations in table 5 also have the same sign as those in table 6.
A comparison of model moments.–Table 6 reports moments of the data and of

the various models; the moments were obtained using a pseudo-random sequence of
z’s of length 100,000.

11 Appendix 2: Extensions

11.1 Research

Because new seeds are proportional to capital in the model, seeds pile up in recessions,
and this depressesQ for a while after the recovery starts. If research or other resources
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Table 5: Unconditional Correlations in the Model and in the Data

Model Data
s x Q s x Q

z -0.58 0.45 0.94 z -0.04 0.49 0.71
s -0.08 -0.60 s -0.11 -0.19
x 0.14 x 0.33

Table 6: Unconditional Correlations in the Model (using 100000 random draws of z)

s x Q
z -0.5630 0.6125 0.9390
s -0.3461 -0.5197
x 0.3135

are needed, fewer seeds will be created when p is low. To see how it might work, let
us change (3) to

new seeds = λRεk1−ε

so that (4) becomes
S0 = λRεk1−ε + S −X

and so that (5) becomes
X ≤ λRεk1−ε + S.

The planner’s Bellman equation becomes

v (k, S, z) = max
R≥0, X≤λRεk1−ε+S

(
(zk −X −R)1−σ

1− σ
+ β

Z
v
¡
k +X,λRεk1−ε + S −X, z0

¢
dF

)
.

For σ 6= 1, v is still of the form

v (k, S, z) = w (s, z) k1−σ,

where w (s, z) = v (1, s, z), and where w satisfies

w (s, z) = max
(r,x)∈Ω(s)

(
(z − x− r)1−σ

1− σ
+ (1 + x)1−σ β

Z
w

µ
λrε + s− x

1 + x
, z0
¶
dF

)

where

r =
R

k
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Table 7: Model moments
(No seed storage) (infinite seeds)

Moment Data SDM SDM (γ = 1) SDM (s0 =∞) ACM
E(z) 0.37 0.367 0.367 0.368 0.368
E(x) 0.07 0.074 0.074 0.082 0.073
E(s) 0.002 0.007 0.000 — —
E(Q) 1.30 1.303 1.316 1.000 1.301
E(c) 0.30 0.293 0.294 0.285 0.290
σ(z) 0.027 0.024 0.024 0.023 0.023
σ(x) 0.007 0.004 0.003 0.010 0.073
σ(s) 0.009 0.012 0.000 — —
σ(Q) 0.566 0.302 0.299 0.000 0.069
σ(c) 0.020 0.021 0.022 0.014 1.000

and
Ω (s) = {(r, x) | x ≤ s+ λrε} .

Since ε < 1, r will never be negative. If z was firm specific and if seeds could not
be stored, this version of the model would be close to Klette and Kortum (2004) and
Lentz and Mortensen (2005).
The problem with this is that it introduces a Q-elastic supply of seeds, which will

limit somewhat how much Q can rise in booms. In sum, it will produce less variation
in Q, but maybe a more realistic seeds.

11.2 The deterministic Seeds model

Suppose z is a constant. Since k does not depreciate, x then equals the growth rate
of k and of C. Let’s solve for the constant-growth rate that would obtain in the
absence of the constraint (5). We shall call this the “desired” growth rate, xd. Then
U 0 (Ct+1) /U

0 (Ct) = (1 + x)−σ and the effective discount factor is

β̂ ≡ β (1 + x)−σ . (52)

An additional unit of capital produces z units for ever, and so optimal investment
leads to a Tobin’s Q of unity:

Q ≡
Ã

β̂

1− β̂

!
z = 1. (53)

Equations (52) and (53) can be solved for xd:

1 + xd = (β [1 + z])1/σ . (54)
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The model collapses to the standard model if s goes off to infinity. We seek
parameter restrictions that will prevent this from happening. From (5),

xt ≤ min (z, λ+ st) (55)

This, however, is a short-run constraint, that holds at each t. If k were to grow faster
than λ, st would eventually become negative. To see this, combine (4) and (3) to get
S0 = S −X + λk and, hence,

st+1 =
λ+ st − xt
1 + xt

. (56)

It’s easy to show that λ is the maximal feasible long-run growth rate. Let ε be a
constant, and suppose that x = λ+ ε. Then

Lemma 9 For all s0 ≥ 0,

(i) ε > 0 =⇒ st → −∞
(ii) ε < 0 =⇒ st → +∞

Proof. (i) Let ε > 0. Then st+1 =
λ+st−x
1+x

= st−ε
1+x

< st − ε
1+x
, so that st <

s0−
¡

ε
1+x

¢
t→ −∞. (ii) let ε < 0. Then st+1 > st+

|ε|
1+x

so that st > s0+
|ε|
1+x

t→ +∞.

Desired growth exceeds λ if

[β (1 + z)]1/σ > 1 + λ,

which is also when the seeds constraint binds in every period. High values of z or β,
and low values of σ and λ make it more likely that this inequality will hold. Tobin’s
Q is just the present value of the marginal product of capital, Σ∞t=1β̃

t
z, i.e.,

Q =

Ã
β̃

1− β̃

!
z, where β̃ = β (1 + λ)−σ > β

¡
1 + xd

¢−σ
= β̂.

Values of Q above unity arise because consumption growth is lower than it would be
under xd; the rate of interest is thus lower, and this raises the present value of income
from capital above its cost.
The case σ = 1.–From (54), the desired investment and growth rate x is

xd (z) = βz − (1− β) ,

and Tobin’s Q is

Q (z) =

½
1 if xd (z) ≤ λ

β
1+λ−βz if xd (z) > λ

.

The value of z at which xd (z) = λ is 1
β
(1 + λ− β). Figure 12 plots xd (z) and Q (z).

Of course, x = min
¡
λ, xd [z]

¢
.
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Figure 12: Comparative steady states for x and q when σ = 1.

11.3 Transitional dynamics in the deterministic case

We shall just set up the basics, but not carry out the analysis. The transitional
dynamics are easier to analyze if time is continuous. If λ is high enough, the model
has no transitional dynamics because then seeds are a free good, an irrelevant by-
product of final-goods production. Transitional dynamics arise when desired growth
exceeds λ, i.e., when (57) holds. Let (k0, S0) be given, with S0 > 0. Let preferences
be Z ∞

0

1

1− σ
e−ρtC1−σ

t dt.

Output is
zk = C +X,

the laws of motion are

Ṡ = λk −X and k̇ = k +X,

and the seed constraint reads
S ≥ 0.

In the absence of the seed constraint “desired” growth would be Ċ
C
= k̇

k
= z−ρ

σ
. For

transitions to occur we therefore need that

λ <
z − ρ

σ
. (57)

In this case, the seed constraint must eventually bind, from which point on we have
X = λk.
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Optimal growth.–This is a version of Hotelling’s exhaustible-resources problem.
The control is X and the states are (k, S). The Hamiltonian is

(zk −X)1−σ

1− σ
+ μX + p (λk −X) + nS

wherem is the shadow value of S and μ is the shadow value of capital. The optimality
conditions are

X : − (zk −X)−σ − μ−m = 0 (58)

k : z (zk −X)−σ + λm = −μ̇+ ρμ (59)

S : n = −ṁ+ ρm (60)

and the two constraints must hold.
The region [0, T ) where S > 0.–Let T be the date at which the transition ends.

For t ≥ T , St = 0 and Xt = λkt. In this region, n = 0 so that (60) implies

mt = m0e
ρt for t < T .

Substituting for mt and from (58) into (59) gives us

μz + λm0e
ρt = −μ̇+ ρμ

which is the differential equation

μ̇ = (ρ− z)μ− λm0e
ρt

Now an equation of the form dμ
dt
= Aμ + Beρt has the solution μ = C1e

At + B eρt

ρ−A .
Therefore

μt = C1e
(ρ−z)t − λm0

z
eρt

The region [T,∞).–Here all the multipliers are constant. In particular
μ = 1 +m.

Tobin’s Q.–Let Tobin’s Q, defined here as the discounted marginal product of k:

Q =

Z ∞

t

e−ρ(τ−t)
U 0 (Cτ)

U 0 (Ct)
zdτ.

This is the present value of a unit of capital. In the limit, consumption will grow at
the rate λ so that U 0(Cτ )

U 0(Ct)
= e−σλ(τ−t) and Q will converge to

Q∞ = z

Z ∞

t

e−(ρ+σλ)(τ−t)dτ =
z

ρ+ σλ

where the rate of interest is
ρ+ σλ

which is less than z if (57) holds, so that Q∞ > 1. But if (57) does not hold, then
consumption grows at the rate z−ρ

σ
and Q∞ = 1.
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12 Appendix 3: Proofs of differentiability

This is the proof of Lemma 4. The complete proof is for the case of no depreciation.
I use subscripts to denote the state that a policy pertains to. Thus we have the

accounting identities

s0s =
λ+ s− xs
1 + xs

and s0s+h =
λ+ s+ h− xs+h

1 + xs+h
.

Variations.–We use (39) to figure out the feasible variations.
Variation (i).–If we begin at state s+h, and if we want to end up at s0s, we need

an investment of

x̂ (s0s, s+ h) =
λ+ s+ h− λ+s−xs

1+xs

1 + λ+s−xs
1+xs

=
(1 + xs) (λ+ s+ h)− (λ+ s− xs)

1 + xs + λ+ s− xs

=
(1 + xs)h+ xs (λ+ s) + xs

1 + λ+ s

= xs + h
1 + xs
1 + λ+ s

.

Then

Ah ≡
µ
1 + x̂

1 + xs

¶1−σ
=

µ
1 +

h

1 + λ+ s

¶1−σ
,

and
x̂− xs = h

1 + xs
1 + λ+ s

.

Therefore

w (s+ h, z) ≥ U (z − x̂ [s0s, s+ h]) + (1 + x̂ [s0s, s+ h])
1−σ

β

Z
w (s0s, z

0) dF

= U (z − x̂ [s0s, s+ h]) +Ah (1 + xs)
1−σ β

Z
w (s0s, z

0) dF

= U (z − x̂ [s0s, s+ h]) +Ah (w (s, z)− U (z − xs))

and

w(s+ h, z)− w(s, z) > U(z − x̂[s0s, s+ h])−AhU(cs) + (Ah − 1)w(s, z)
= U(z − x̂[s0s, s+ h])− U(cs) + (Ah − 1)(w(s, z)− U(cs)).

Dividing both sides by h and taking the limit as h& 0 gives

d

ds
w(s, z) > −U 0(cs) lim

h&0

x̂− xs
h

+ lim
h&0

(Ah − 1)
h

[w(s, z)− U(cs)]

= −U 0(cs)
1 + xs
1 + λ+ s

+ (1− σ)
w(s, z)− U(cs)

1 + λ+ s
. (61)
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because, by L’Hôpital’s rule,

lim
h&0

(Ah − 1)
h

= lim
h&0

dAh

dh
= lim

h&0

d

dh

µ
1 +

h

1 + λ+ s

¶1−σ
=

1− σ

1 + λ+ s
lim
h&0

µ
1 +

h

1 + λ+ s

¶−σ
=

1− σ

1 + λ+ s

Variation 2: Start from s and end at s0s+h...

Variation (ii) .– If we begin at state s, and if we want to end up at s0s+h, we need
an investment of

x̂
¡
s0s+h, s

¢
=

λ+ s− λ+s+h−xs+h
1+xs+h

1 + λ+s+h−xs+h
1+xs+h

=
(1 + xs+h) (λ+ s)− (λ+ s+ h− xs+h)

1 + xs+h + λ+ s+ h− xs+h

=
xs+h (λ+ s)− (h− xs+h)

1 + λ+ s+ h
=
(1 + λ+ s)xs+h − h

1 + λ+ s+ h

=
(1 + λ+ s+ h)xs+h − h (1 + xs+h)

1 + λ+ s+ h

= xs+h −
h (1 + xs+h)

1 + λ+ s+ h
(62)

< xs+h −
h (1 + xs)

1 + λ+ s+ h
(63)

because by Corollary 2, x is increasing in s. We shall also need the following impli-
cation of (62):

Bh ≡
µ
1 + x̂

1 + xs+h

¶1−σ
=

µ
1− h

1 + λ+ s+ h

¶1−σ
Therefore

w (s, z) ≥ U (z − x̂) + (1 + x̂)1−σ β

Z
w
¡
s0s+h, z

0¢ dF
= U (z − x̂) +Bh (1 + xs+h)

1−σ β

Z
w
¡
s0s+h, z

0¢ dF
= U (z − x̂)−BhU (z − xs+h) +Bhw (s+ h, z) .

and therefore

w (s, z)− w (s+ h, z) ≥ U (z − x̂)−BhU (z − xs+h) + (Bh − 1)w (s+ h, z) ,
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i.e.,

w (s+ h, z)− w (s, z) ≤ BhU (z − xs+h)− U (z − x̂) + (1−Bh)w (s+ h, z) (64)

= U (z − xs+h)− U (z − x̂) + (1−Bh) [w (s+ h, z)− U (cs+h)](65)

Now, [w (s+ h, z)− U (z − xs+h)] is Lipschitz in h for every z > 0. This is because it
is bounded above by the increment in value when a unit of consumption is added in
perpetuity, and the latter is bounded as long as c > 0, i.e., as long as z > 0). Now,
by (63), xs+h ≥ x̂+ h(1+xs)

1+λ+s+h
and therefore

U (z − xs+h)− U (z − x̂) ≤ U

µ
z − x̂+

h (1 + xs)

1 + λ+ s+ h

¶
− U (z − x̂)

Using the RHS of this expression to replace the first two terms on the RHS of 65)
leaves the inequality in (65) undisturbed. Moreover, using L’Hôpital’s rule as before,

lim
h&0

1

h
(1−Bh) [w (s+ h, z)− U (cs+h)] =

1− σ

1 + λ+ s
[w (s, z)− U (cs)]

Putting this all together,

ws ≤
1

1 + λ+ s
(U 0 (cs) (1 + xs) + (1− σ) [w (s, z)− U (cs)]) (66)

Then (61) and (66) imply (14). To see this, (14) says (in this notation) that

ws =
1

1 + λ+ s
([1− σ]w − (1 + z)U 0 (c)) > 0.

For them to be the same we would need that

− (1 + x)U 0 + (1− σ) (w − U) = (1− σ)w − (1 + z)U 0, (67)

i.e.,
− (1 + x)U 0 − (1− σ)U = − (1 + z)U 0,

i.e.
(1− σ)U = (z − x)U 0

which is true because z − x = c, so that both sides of the equation equal c1−σ.
Therefore (61) and (66) imply (14).

12.1 Notes on differentiability when δ and γ are positive

Let δ = depreciation of k and let γ be the depreciation of S. The laws of motion and
the value are

k0 = k (1− δ) +X, (68)
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S0 = (1− γ) (S + λk −X) , (69)

and

v (k, S, z) = max
X≤λk+S

(
(zk −X)1−σ

1− σ
+ β

Z
v (k [1− δ] +X, (1− γ) (S + λk −X) , z0) dF

)
.

(70)
Then

s0 =
S0

k

k

k0
=
(1− γ) (s+ λ− x)

1− δ + x
, (71)

Alternatively,

x̂ (s0, s) =
(1− γ) (λ+ s)− (1− δ) s0

1− γ + s0
. (72)

The auxiliary Bellman equation is

w (s, z) = max
x

(
(z − x)1−σ

1− σ
+ (1− δ + x)1−σ β

Z
w

µ
(1− γ) (s+ λ− x)

1− δ + x
, z0
¶
dF

)
,

(73)
Differentiation:

w = max
s0

(
(z − x̂)1−σ

1− σ
+ (1− δ + x̂)1−σ β

Z
w (s0, z0) dF

)

where x̂ is defined in (72). Take the derivative w.r.t. s:

ws =
1− γ

1− γ + s0

½
− (z − x̂)−σ + (1− σ) (1− δ + x̂)−σ β

Z
w (s0, z0) dF

¾
=

1− γ

1− γ + s0

½
−U 0 +

1− σ

1− δ + x̂
(w − U)

¾
=

1

1 + s+λ−x
1−δ+x

½
−U 0 +

1− σ

1− δ + x̂
(w − U)

¾
(using [71] for

s0

1− γ
)

=
1− δ + x̂

1− δ + λ+ s

½
−U 0 +

1− σ

1− δ + x̂
(w − U)

¾
(74)

When γ = δ = 0, does this become ws =
1

1+λ+s
([1− σ]w − (1 + z)U 0 (c))? For that

to be true we would need

− (1 + x̂)U 0 + (1− σ) (w − U) = (1− σ)w − (1 + z)U

But this is the same as (67), and so it holds.
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