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Abstract

We develop a Savage-type model of choice under uncertainty in which agents identify

uncertain prospects with subjective compound lotteries. Our theory permits issue prefer-

ence; that is, agents may not be indifferent among gambles that yield the same probability

distribution if they depend on different issues. Hence, we establish subjective foundations

for the Anscombe-Aumann framework and other models with two different types of proba-

bilities. We define second-order risk as risk that resolves in the first stage of the compound

lottery and show that uncertainty aversion implies aversion to second-order risk which

implies issue preference and behavior consistent with the Ellsberg paradox.

† This research was supported by grants from the National Science Foundation.



1. Introduction

What distinguishes the Ellsberg paradox from the Allais Paradox and other related

violations of subjective expected utility theory is the fact that Ellsberg paradox type

behavior cannot be explained within a model of choice among lotteries. That is, the

Ellsberg paradox calls into question not only subjective expected utility theory but all

models of choice under uncertainty that postulate behavior based on reducing uncertainty

to risk.

The following “mini” version is useful for understanding our interpretation and reso-

lution of the Ellsberg Paradox. An experimental subject is presented with an urn. He is

told that the urn contains three balls, one of which is red. The remaining balls are either

green or white. A ball will be drawn from the urn at random. The decision-maker is asked

to choose between a bet that yields $100 if a green ball is drawn and 0 dollars otherwise

and a bet that yields $100 if a red ball is drawn and 0 dollars otherwise.

Before the ball is drawn, the decision-maker is asked his preference over two other

bets. In one bet he is to receive $100 if either a green or a white ball is drawn and 0 if a

red ball is drawn. With the other option, the decision-maker gets $100 if either a red or a

white ball is drawn and 0 if a green ball is drawn. We depict these bets as follows:

f =
(

100 0 0
G W R

)
versus h =

(
0 0 100
G W R

)

f ′ =
(

100 100 0
G W R

)
versus h′ =

(
0 100 100
G W R

)

Consider a decision-maker who prefers h to f and f ′ to h′. Presumably, by preferring h

to f , the decision-maker is revealing his subjective assessment that there is a higher chance

of a red ball being drawn then a green ball. Similarly, by revealing a preference for f ′ over

h′, the decision-maker is expressing his belief that the event “green or white” is more likely

than “red or white”. If the decision-maker’s assessments of the likelihoods of G, W and

R could be described by some probability μ, and if we assume that the decision-maker

prefers a greater chance of winning $100 to a smaller chance of winning $100, we would

conclude from the choices above that μ(R) > μ(G) and μ(G ∪ W ) > μ(R ∪ W ). Since,

G, W, R are mutually exclusive events, no such probability exists, hence the paradox.
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One intuitive explanation of the above behavior is the following: the decision-maker

finds it difficult to associate unique probabilities with the events G, W, R∪G and R∪W . In

contrast, the probability of the events R is 1
3 and hence the probability of the event G∪W

is 2
3 . The ambiguity of the events G, W makes the agent behave as if each of these events is

less likely than R when they are associated with good prizes but more likely than R when

associated with bad prizes. Consequently, the agent can prefer h to f and f ′ to h′. We

call this interpretation of the Ellsberg paradox “the ambiguity aversion interpretation.”

The literature on the Ellsberg paradox has considered two other related interpretations

of the above choices. To understand the “second-order uncertainty aversion” interpreta-

tion, consider the matrix below:

G G W W ball 1
G W G W ball 2
R R R R ball 3
gg gw wg ww

The last column describes the uncertainty regarding the ball that is chosen, while

the bottom row depicts the uncertainty regarding the color of each ball. For example gg

denotes the contingency in which both ball 1 and ball 2 are green, while wg describes the

contingency where ball 1 is white and ball 2 is green. Assume that the decision-maker

considers every possible column equally likely, every possible row equally likely, and the

row and column events independent. Furthermore, assume that the uncertainty is revealed

in two stages; first, the appropriate column is revealed, then the row. In this setting, a

bet on R yields (for sure) a gamble that wins with probability 1
3 while a bet on W (or G)

yields a lottery over gambles: with probability 1
4 the decision maker gets a gamble that

wins with probability 0; with probability 1
2 , she gets a gamble that wins with probability

1
3 ; and with probability 1

4 she gets a gamble that wins with probability 2
3 . Furthermore,

assume that the decision maker does not “reduce” this uncertainty and equate her chance

of winning to 1
3 , but rather, is averse to it. That is, he would rather have a “sure” 1

3 chance

of winning. Such preferences would justify Ellsberg behavior.

Finally, to understand the closely related “issue (or source) preference interpretation,”

call the uncertainty regarding the number of the ball that is drawn issue a and the un-

certainty regarding the color of the first two balls issue b, and let capital letters describe
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the color of the ball that is drawn. Note that a bet on R is a bet on issue a. Hence,

given our independence assumption, learning the outcome of issue b does not affect the

decision-maker’s belief regarding R. In contrast, the decision-maker’s assessment of the

probability of G conditional on ww is 0, while his assessment of G given gg is 2
3 . Hence,

R is a bet on which ball gets chosen (issue a), while G entails both a bet on which ball

gets chosen and on the number of green balls in the bag (issue b). Taking unions with W

reverses the roles of G and R: the probability of G ∪ W does not change once issue b is

resolved, while the probability of R ∪ W does. Therefore, a decision-maker who, ceteris

paribus, prefers lotteries that depend only on issue a to equivalent lotteries that depend

both on issue b and issue a and has the subjective prior above, must (i) prefer getting $100

if and only if R occurs getting $100 if and only if G occurs and (ii) prefer getting $100 if

and only if G or W occurs to getting $100 if and only if R or W occurs.

Note that both of the last two interpretations suggest the existence of two different

sets of probabilities over two different collections of events (i.e., the row events and the

column events above). Given the probabilities associated with the rows, by conditioning

on each column, we can obtain a lottery. Then, the column probabilities yield a lottery

over these lotteries. We describe decision-makers that identify each act with such a lottery

over lotteries as second-order probabilistic sophisticated. The last two interpretations above

suggest that the Ellsberg paradox is a consequence of greater aversion to the risk associated

with the column events versus row events, or equivalently, aversion to second-order risk.

The goal of this paper is to provide a theory of second-order probabilistic sophistication

(SPS), (Theorem 1), and to relate the Ellsberg paradox and various formulations of uncer-

tainty/ambiguity aversion to each other within that theory (Theorems 2 and 5). Our main

result, Theorem 2, reveals that in general, uncertainty aversion implies second-order risk

aversion which implies preference for issue a. Theorems 3 and 4 provide characterization

of two special classes of SPS preferences: SPS expected utility (SPS-EU) and SPS Choquet

expected utility (SPS-CEU). We show that if the agent is a SPS-expected utility maximizer

or a SPS-Choquet expected utility maximizer, then second-order risk aversion, preference

for issue a, and uncertainty aversion are all equivalent (Theorem 5). However, we provide

examples proving that in general, uncertainty aversion is stronger than second-order risk

aversion which is stronger than preference for issue a.
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1.1 Related Literature

Kreps and Porteus [16] introduce a more general form of compound lotteries, which

they call temporal lotteries, to study decision-makers who have a preference for when uncer-

tainty resolves. In their theory, temporal lotteries are taken as given and their assumptions

yield expected utility preferences over temporal lotteries.

We start with purely subjective uncertainty and provide necessary and sufficient con-

ditions for a preference relation to be second-order probabilistically sophisticated. The

derived subjective prior enables us to view every act as a mapping that associates a lottery

with each resolution of one issue. Hence our model provides subjectivist foundations for

the framework of the Anscombe and Aumann (1963) model. We then use the same prior to

reduce each Anscombe-Aumann act to a compound lottery. That is, Theorem 3 establishes

Savage-type foundations for a simple version of the Kreps and Porteus [16] model.

By introducing the notion of a temporal lottery and hence abandoning the often

implicit reduction of compound lotteries axiom, Kreps and Porteus develop a novel tool

for the analysis of a variety of behavioral phenomena. One such phenomenon is ambiguity

and ambiguity aversion. Given the amount and variety of work that has been done in this

field, our attempt to relate our analysis to the relevant literature is bound to be incomplete.

In particular, we focus our review of the literature on models that suggest a multi-stage

resolution of uncertainty or model multiple issues. A more detailed list and discussion of

ambiguity and ambiguity aversion can be found in Wakker [28].

Schmeidler [22] provides the first axiomatic model of choice geared at analyzing the

Ellsberg Paradox. In that paper, he models a decision maker with preferences over

Anscombe-Aumann acts who has expected utility preferences over objective (i.e., con-

stant) acts and Choquet expected utility preferences over general acts. He introduces

the notion of uncertainty aversion and relates it to the Ellsberg Paradox. Theorem 4

provides (purely) subjectivist foundations for the subclass of SPS preferences that fall in

Schmeidler’s model and Theorem 5 proves the equivalence of uncertainty aversion to issue

preference and second order risk aversion for that subclass.

Segal [23], [24] introduces the idea of using preferences over compound lotteries (which

he calls two-stage lotteries) to analyze the Ellsberg paradox and other issues related to
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ambiguity. In Segal [23], this particular model of choice over compound lotteries is assumed

and Ellsberg paradox type behavior is related to the decision-maker’s attitude towards

second-order risk (which he calls ambiguity). Segal [24] derives a subclass of the preferences

studied in Segal [23] from assumptions on the preference relation over compound lotteries

and investigates the relationships among various stochastic dominance and reduction (of

compound lotteries) axioms.

Like Segal [23], we relate Ellsberg paradox type behavior to a form of second-order risk

aversion (Theorem 2). However, we use a different notion of second-order risk. His notion

is applicable to binary acts (i.e., acts that yield the same two prizes) and is analogous

to a notion of risk aversion based on comparing lotteries to their means. Our notion of

second-order risk aversion is analogous to the standard notion of risk aversion based on

mean preserving spreads and is applicable to all lotteries.

Our analysis of second-order risk aversion is closely related to Grant, Kajii and Polak

[12]’s analysis of information aversion (or information loving). The Grant, Kajii and Polak

[12] notion of an elementary linear bifurcation is equivalent to our definition of a mean-

preserving spread. Hence, their notion of single-action information aversion corresponds

to our second-order risk aversion. In Grant, Kajii and Polak [12], the set of all two-stage

lotteries is taken as primitive. Nevertheless, once we establish second-order probabilistic

sophistication, we can easily compare their results to ours. In particular, parts of their

Proposition 1 are equivalent to parts of our Theorem 2.

Klibanoff, Marinacci and Mukerji [15] also have a model that describes the resolution

of uncertainty in two stages. Some interpretational and modeling differences notwithstand-

ing, their utility function is formally analogous to the one describing SPS-EU preferences

(Theorem 3). The most significant interpretational difference between our model and that

of Klibanoff, Marinacci and Mukerji is that they permit both the possibility that the first

stage of uncertainty might be identified with a particular observable and the possibility

that the first stage uncertainty is simply a part of the individual’s preferences that can be

pinned-down only with “cognitive data or thought experiments.”

The notion of ambiguity aversion used in Klibanoff, Marinacci and Mukerji [15] is

formally similar to our concept of second-order risk aversion. Their definition entails
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comparing arbitrary second-order lotteries to appropriate second-order riskless lotteries,

i.e., it is analogous to a definition of risk aversion based on comparing lotteries to their

means. Within their expected utility framework (and hence the setting of Theorem 3), risk

aversion defined as not preferring the distribution to its mean is equivalent to risk aversion

defined as preferring the distribution to a mean preserving spread.

Seo [25] considers preferences over the following choice objects: a lottery, P , is a prob-

ability distribution over acts f which map states to probability distributions, p, over prizes

x. Hence, this is Anscombe-Aumann’s original framework. Seo characterizes preferences

that can be represented by an expected utility function, U , such that its von Neumann-

Morgenstern utility, u, is analogous to the SPS-EU utility function of our Theorem 3.

The richer setting permits Seo to derive this representation from an ingenious dominance

assumption.

Tversky and Fox [26] introduce the notion of source (i.e., issue preference) and provide

evidence showing that, ceteris paribus, basketball fans prefer gambles on the outcomes of

basketball games to objective gambles. Abdellaoui, Baillon, and Wakker [1] expand on the

Tversky and Fox approach and provide more evidence of issue preference. They show that

decision makers prefer betting on the temperature in their own city (Paris) to betting on

the temperature in foreign cities.

Nau [19] provides a theoretical model with two issues. Nau assumes a finite state

space Ω = Ωa × Ωb, provides axioms that ensure the existence of a representation that

is additively separable when restricted to lotteries that depend only on issue a or only

on issue b but permit state-dependent preferences. He also derives the state-independent

representation by imposing Wakker [27]’s trade-off consistency axiom. Unlike Nau, we do

not allow for state dependent preferences. However, we permit general, nonseparable (i.e.,

nonexpected utility) preferences and probabilistic sophistication.
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2. Second-Order Probabilistic Sophistication

Let Z be the set of prizes and Ω := Ωa × Ωb be the set of all states. We refer to a, b

as issues. Let A be the algebra of all subsets of Ωa and B be the algebra of all subsets of

Ωb. Let Ea denote the algebra of all sets of the form A×Ωb for some A ∈ A, Eb denote the

algebra of all sets of the form Ωa ×B for some B ∈ B, and E denote the algebra of all sets

that can be expressed as finite unions of sets of the form A × B for A ∈ A, B ∈ B (i.e.,

E is the algebra generated by Ea ∪ Eb). A function f : Ω′ → Z ′ is simple if f(Ω′) is finite.

For any algebra E ′, the function f is E ′–measurable if it is simple and f−1(z) ∈ E ′ for all

z ∈ Z.

Let F denote the set of all (Savage) acts; that is, F is the set of E–measurable functions

from Ω to Z. A binary relation � on F characterizes an individual. Our first assumption

is that this binary relation is a preference relation.

Axiom 1: (Preference Relation) � is complete and transitive.

We use ∼ to denote the indifference relation associated with � and use f � g to

denote f � g and not g � f . We identify each z ∈ Z with the corresponding constant act.

Our second assumption ensures that the individual is not indifferent among all constant

acts.

Axiom 2: (Nondegeneracy) There exists x, y ∈ Z such that x � y.

Let Ec denote the complement of E in Ω. For any set E ∈ E , we say that the acts f

and g agree on E if f(s) = g(s) for all s ∈ E. We write f = g on E to denote the fact that

f agrees with g on E. An event E ∈ E is null if f = g on Ec implies f ∼ g. Otherwise,

the event E is non-null. Our next assumption states that for all non-null events E and

all acts f , improving what the decision-maker gets if E occurs, keeping what he gets in

all other contingencies constant makes the decision-maker better off. Hence, this axiom

ensures that the ordinal ranking of prizes is state independent.

Axiom 3: (Monotonicity) For all non-null E, f = g on Ec, f = z on E, g = z′ on E

implies z � z′ if and only if f � g.
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Axioms 1−3 are identical to their counter-parts in Savage’s theory. The next assump-

tion ensures that Ω can be divided into arbitrarily “small” events of the form A × Ωb and

Ωa × B:

Axiom 4: (Continuity) For all f, g ∈ F and z ∈ Z, if f � g then, there exist a partition

E1, . . . , En ∈ Ea of and a partition F1, . . . , Fn ∈ Eb of Ω such that

(a) [f i = f, gi = g on Ec
i and f i = gi = z on Ei] implies [f i � g and f � gi]

(b) [fj = f, gj = g on F c
j and fj = gj = z on Fj ] implies [fj � g and f � gj ]

Most models that study acts (i.e., the Savage setting) impose the assumptions above.1

These models differ in their comparative probability axiom and their separability axioms.

Note that for any f ∈ F , there exists a partition A1, . . . , An of A and a partition

B1, . . . , Bm of B such that the function f is constant on each Ai ×Bj , for i = 1, . . . , n and

j = 1, . . . , m. Hence, we can identify each f ∈ F with some n + 1 by m + 1 matrix. That

is:

f =

⎛
⎜⎜⎝

x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗

⎞
⎟⎟⎠

Definition (Fa, Fb): Let Fa and Fb denote the set of Ea–measurable and Eb–measurable

acts respectively.

For f ∈ Fa and g ∈ Fb we write

f =

⎛
⎝ x1 A1

...
...

xn An

⎞
⎠ , g =

(
x1 . . . xm

B1 . . . Bm

)

Axiom 5a: (a−Strong Comparative Probability) If x � y and x′ � y′ then

⎛
⎜⎜⎜⎜⎝

x A1

y A2

z3 A3
...

...
zn An

⎞
⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎝

y A1

x A2

z3 A3
...

...
zn An

⎞
⎟⎟⎟⎟⎠ iff

⎛
⎜⎜⎜⎜⎝

x′ A1

y′ A2

z′3 A3

...
...

z′n An

⎞
⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎝

y′ A1

x′ A2

z′3 A3

...
...

z′n An

⎞
⎟⎟⎟⎟⎠

1 Axiom 4 is a slightly stronger than the usual continuity assumption since it requires that the event
space can be partitioned both into small probability Ea and Eb events.
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Axiom 5a is the Machina-Schmeidler strong comparative probability axiom imposed

on Ea–measurable acts. Consider prizes x, y such that x � y and an act f that yields x on

event A1 × Ωb and y on A2 × Ωb. If the decision-maker prefers f to the act that yields y

on A1 × Ωb and x on A2 × Ωb and agrees with f outside of (A1 ∪ A2) × Ωb, this suggests

that he considers A1 × Ωb more likely than A2 × Ωb. The assumption asserts that prizes

don’t affect probabilities. That is, if we conclude that the decision-maker A1 ×Ωb strictly

more likely than A2×Ωb using some act f , we should not be able to conclude the opposite

using some other act f ′. Our main new assumption is the axiom below:

Axiom 5b: (a|b−Strong Comparative Probability) If

⎛
⎝ x1 A1

...
...

xn An

⎞
⎠ �

⎛
⎜⎝

y1 A1
...

...
yn An

⎞
⎟⎠ and

⎛
⎜⎝

x′
1 A1

...
...

x′
n An

⎞
⎟⎠ �

⎛
⎜⎝

y′
1 A1

...
...

y′
n An

⎞
⎟⎠

Then,

⎛
⎜⎜⎝

x1 y1 z13 . . . z1m A1
...

...
...

. . .
...

...
xn yn zn3 . . . znm An

B1 B2 B3 . . . Bm ∗

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

y1 x1 z13 . . . z1m A1
...

...
...

. . .
...

...
yn xn zn3 . . . znm An

B1 B2 B3 . . . Bm ∗

⎞
⎟⎟⎠

iff ⎛
⎜⎜⎝

x′
1 y′

1 z′13 . . . z′1m A1

...
...

...
. . .

...
...

x′
n y′

n z′n3 . . . z′nm An

B1 B2 B3 . . . Bm ∗

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

y′
1 x′

1 z′13 . . . z′1m A1

...
...

...
. . .

...
...

y′
n x′

n z′n3 . . . z′nm An

B1 B2 B3 . . . Bm ∗

⎞
⎟⎟⎠

Henceforth, we refer to Axioms 5a and 5b together as Axiom 5. Axiom 5b has three

important implications. First, it implies the Machina-Schmeidler strong comparative prob-

ability axiom on Eb. To see this, assume that all columns in the above statement of Axiom

5b are constants. That is, x1 = x2 = . . . = xn, y1 = y2 = . . . = yn, z13 = z23 = . . . = zn3,

etc. Then, we obtain a symmetric version of Axiom 5a. This ensures that the agent is

probabilistically sophisticated over Eb–measurable acts. It follows from this observation
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that Axiom 5b is stronger than the symmetric counterpart of 5a. To see the other two

implications, consider the example below: suppose

f =
(

100 A1

1 A2

)
�

(
0 A1

100 A2

)
= g and

f̂ =
(

1 A1

100 A2

)
�

(
100 A1

0 A2

)
= ĝ

suggesting that both μa(A1) and μa(A2) are close to 1
2 . Then, Axiom 5b implies

f ′ =

⎛
⎝ 100 0 −500 A1

1 100 1000 A2

B1 B2 B3 ∗

⎞
⎠ �

⎛
⎝ 0 100 −500 A1

100 1 1000 A2

B1 B2 B3 ∗

⎞
⎠ = g′

iff

f ′′ =

⎛
⎝ 1 100 −500 A1

100 0 1000 A2

B1 B2 B3 ∗

⎞
⎠ �

⎛
⎝ 100 1 −500 A1

0 100 1000 A2

B1 B2 B3 ∗

⎞
⎠ = g′′

But, the preferences for f over g and f̂ over ĝ rely on the fact that the rows of f and g are

(almost) equally likely and f ′ � g′ and f ′′ � g′′ require that conditional on each column,

these rows remain (almost) equally likely. Hence, Axiom 5b implies that equally likely

issue a (i.e., row) events remain equally likely after conditioning on any issue b (column)

event. Thus, the second implication of the axiom is that it renders the issues statistically

independent.

To understand the final implication of Axiom 5b, suppose that B1 is more likely than

B2. Then, the first row of g′ is worse than the first row of f ′ but the second row of g′ is

better than the second row of f ′. But, assuming μb(B3) is not very small, this means that

the rows of f ′ yield closer payoffs than those of g′, while the rows of g′′ yield closer payoffs

than those of f ′′. Hence, f ′ has less (second-order) issue a risk than g′, while f ′′ has more

second order issue a risk than g′′. By demanding that f ′ � g′ implies f ′′ � g′′, Axiom 5b

precludes aversion to such risk. It is this feature of Axiom 5b that permits the translation

of acts into compound lotteries where second-order risk is only associated with issue b.

Let Δ(Z ′) = {p : Z ′ → [0, 1] : p−1((0, 1]) is finite and
∑

z p(z) = 1} be the set of all

simple lotteries on some set Z ′. Let δz denote the degenerate lottery that yields z with

probability 1.
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Definition: The function φ : Δ(Z ′) → IR satisfies stochastic dominance2 if for all α ∈
(0, 1), φ(αδz + (1 − α)r) > φ(αδz′ + (1 − α)r) if and only if φ(δz) > φ(δz′).

We use p, p′ and p′′ to denote generic elements of P := Δ(Z) and π, π′, π′′ to denote

generic elements of Δ(P ). Hence, P is the set of simple lotteries on Z and Δ(P ) is the set

of simple lotteries on P . We call Δ(P ) the set of compound lotteries.

Definition (μ, μa, μb): A function μ on E is a probability if (i) μ(E) ≥ 0 for all E ∈ E ,

(ii) μ(Ω) = 1 and (iii) E ∩E′ = ∅ implies μ(E ∪E′) = μ(E)+μ(E′). Let μa and μb denote

the marginals of the probability measure μ on the two issues, i.e. μa(A) = μ(A ×Ωb) and

μb(B) = μ(Ωa × B) for every A ∈ A and B ∈ B.

We say that Ea, Eb are μ−independent if μ(A × B) = μa(A) · μb(B) for every A ∈ A
and B ∈ B. The next definition describes how to associate an Anscombe-Aumann act f∗

with each Savage act f ∈ F whenever Ea, Eb are μ−independent. Since the underlying μ

is clear we suppress the dependence on μ in the definitions below.

Definition (pf , f∗, F∗): Let μ be a probability on E . For f ∈ F , define pf ∈ Δ(Z) as

follows:

pf (z) = μ(f−1(z)) for all z ∈ Z

Also, for f ∈ F such that

f =

⎛
⎜⎜⎝

x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗

⎞
⎟⎟⎠

define f∗ : Ωb → P as follows:

pj(z) =
∑

i:xij=z

μa(Ai)

f∗(s) = pj for all s ∈ Bj

and let F∗ be the set of all simple functions from Ωb to P .

2 When Z′ itself is a set of lotteries, this condition is sometimes called compound independence (Segal
[24]) or recursivity (Grant, Kajii and Polak [12]).
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Next, we describe how to associate a compound lottery with each Anscombe-Aumann

act. Note that F∗ is a mixture space (with the usual) Anscombe-Aumann mixture oper-

ation which defines αf∗ + (1 − α)g∗ as the act that yields in state s, the von Neumann-

Morgenstern mixture αf∗(s) + (1 − α)g∗(s).

Definition (πf): Let μ be a probability on E and let Ea, Eb be μ−independent. For

f ∈ F , define the compound lottery πf as follows:

πf (p) = μb(f∗−1(p))

We say that a measure μ is nonatomic on Ea if E ∈ Ea and α ∈ [0, 1] implies there

exists E′ ∈ Ea such that E′ ⊂ E and μ(E′) = αμ(E). A symmetric condition is required

for μ to be nonatomic on Eb. We say that μ is nonatomic if it is nonatomic on both Ea, Eb.

The three mappings described above are all onto when Ea, Eb are μ−independent and μ is

nonatomic. That is, for each p ∈ P there exists f ∈ F such that pf = p, for each h ∈ F∗

there exists f ∈ F such that f∗ = h, and for each π ∈ Δ(P ) there exists f ∈ F such that

πf = π.

We endow P with the supremum metric and Δ(P ) with the Prohorov metric.3 That

is, let d∞(p, p′) = supz∈Z |p(z) − p′(z)| for p, p′ ∈ P and for any finite set T ⊂ P , let

T ε = {p′ ∈ P : minp∈T d∞(p′, p) < ε}. Then, let dΔ(π, π′) be the infimum of ε that satisfy

π(T ) ≤ π′(T ε) + ε and π′(T ) ≤ π(T ε) + ε

for all finite T ⊂ P .4 For any compound lottery π, define suppZ π to be the union of all z

in the support of p over p in the support of π. That is, suppZ π =
⋃

p∈supp π

supp p.

Definition: A function W : Δ(P ) → IR is weakly continuous if πn converges to π and⋃∞
n=1 suppZ πn is finite implies lim W (πn) = W (π).5

3 The Prohorov metric is usually defined more generally on the set of all probability measures on the
Borel sets of a metric space. Here, we are considering the subspace, Δ(P ), of that space.

4 In the standard definition of the Prohorov metric (see for example Billingsley [4]), the infimum is
taken over ε such that the above inequalities are satisfied for all Borel measurable T ⊂ P . Note that the
two definitions coincide for simple probability measures.

5 Since we require
⋃∞

n=1
suppZ πn to be finite, our results would not change if we endow P with any

metric topology such that the relative topology of Δ(Z′) in P coincides with the Euclidean topology of
Δ(Z′), for all finite Z′ ⊂ Z. For example, our results go not change if we replace the supremum metric

with the metric dα(p, q) =
∑

z∈Z |p(z) − q(z)|α for all p, q ∈ P , where α > 0.
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It is well known that the Prohorov metric topology and the topology of weak conver-

gence are equivalent when P is a separable metric space. Therefore, for finite Z, our weak

continuity indeed becomes continuity in the topology of weak convergence.

Machina and Schmeidler call a decision-maker probabilistically sophisticated if he

has a subjective prior over the state-space, considers all acts that yield the same lottery

equivalent and satisfies stochastic dominance. We refer to preferences satisfying Axioms

1 − 5 as second-order probabilistically sophisticated (SPS) preferences. Theorem 1 shows

decision-makers with SPS preferences are indifferent between f and g whenever f and g

yield the same compound lottery; that is, f ∼ g whenever πf = πg. But, they need not

be indifferent between f and g if pf = pg because these decision-makers also care about

second-order risk.

Theorem 1: The binary relation � satisfies Axioms 1 − 5 if and only if there exists a

nonatomic probability μ on E and a weakly continuous, nonconstant W : Δ(P ) → IR such

that (i) Ea, Eb are μ−independent, (ii) W (πf ) ≥ W (πg) iff f � g, and (iii) Both W and

the function w : P → IR defined by w(p) = W (δp) satisfy stochastic dominance.

Familiar arguments ensure that the μ of Theorem 1 is unique and W is unique up to

a continuous monotone transformation. The details of the proof of Theorem 1, which rely

on Theorem 2 of Machina and Schmeidler [17], are in the appendix. Here, we give a sketch.

The main idea is to apply Machina and Schmeidler’s proof of probabilistic sophistication

twice, first to Fa, then to F∗. Let Ω′ be an arbitrary state space, Z ′ be any set of

prizes and let F ′ be the set of all simple functions from Ω′ to Z ′. Theorem 2 of Machina

and Schmeidler [17] establishes that if a binary relation �′ over F ′ satisfies Axiom 1 − 3

and continuity (i.e., replace Ωa with Ω′ in Axiom 4a) and strong comparative probability

(i.e., let the Ai’s in Axiom 5a denote arbitrary subset of Ω′) then �′ is probabilistically

sophisticated. Applying this theorem to Fa yields a probability measure μa and a stochastic

dominance satisfying function w̃ : P → IR such that f � g iff w̃(pf ) ≥ w̃(pg) for all f, g ∈
Fa, where the probability distributions pf , pg are derived from μa. Next, we introduce the

binary relation, �∗, on F∗ the set of all Anscombe-Aumann acts.

Definition (�∗): Let f∗ �∗ g∗ if and only if f � g.

13



In the proof of Theorem 1, we show that �∗ is well-defined; that is, f∗ = g∗ implies

f ∼ g. Applying Machina and Schmeidler’s Theorem 2 again, we obtain a probability μb

on Ωb and a stochastic dominance satisfying function W : Δ(P ) → IR such that f∗ �∗ g∗

iff W (π∗
f∗) ≥ W (π∗

g∗) where for any h ∈ F∗, the compound lottery π∗
h is defined by

π∗
h(p) = μb(h−1(p)). Let μ be the product on E of μa and μb. That is, for any E−set

E =
⋃n

i=1 Ai × Bi, let μ(E) =
∑n

i=1 μa(Ai) · μb(Bi). To complete to proof we show that

W is weakly continuous.

To see how we can derive a subjective version of the Anscombe-Aumann model for

our framework and use it to relate Axiom 5b to existing comparative probability and

replacement axioms, we identify each f ∈ Fa with a function fa : Ωa → Z by setting

fa(ωa) = f(ωa, ωb) for any ωb ∈ Ωb. Formally:

Definition (F0
a , χ): Let F0

a denote the set of all simple functions from Ωa to Z. Define

the bijection

χ : Fa → F0
a

as follows:

χ(f)(ωa) = f(ωa, ωb) for all ωb ∈ Ωb

We let fa denote χ(f).

Then, by identifying each f ∈ F with a function from Ωb to F0
a , we can interpret

Axiom 5b as Machina-Schmeidler’s strong comparative probability axiom applied to acts

on Ωb with prizes in F0
a . To clarify this symmetry between Axioms 5a and 5b, we re-state

Axiom 5b as follows:

Axiom 5b: Suppose f, f̂ , g, ĝ, h1, ĥ1, . . . hm, ĥm ∈ Fa and

f � g and f̂ � ĝ

Then, (
fa ga h1

a . . . hm
a

B1 B2 B3 . . . Bm

)
�

(
ga fa h1

a . . . hm
a

B1 B2 B3 . . . Bm

)
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iff (
f̂a ĝa ĥ1

a . . . ĥm
a

B1 B2 B3 . . . Bm

)
�

(
ĝa f̂a ĥ1

a . . . ĥm
a

B1 B2 B3 . . . Bm

)

Hence, we impose the Machina-Schmeidler comparative probability assumption on

Ea–measurable acts with prizes Z and on Eb–measurable acts with prizes in F0
a but never

on arbitrary E–measurable acts. Therefore, in one sense, Axiom 5 is stronger than the

corresponding assumption in Machina and Schmeidler [17], it is applied to a richer set of

prizes. On the other hand, there is a sense in which Axiom 5 is weaker; it is applied to a

smaller set of acts.6

The Machina-Schmeidler comparative probability assumption applied to all acts in F
would not yield a μ that is a product measure while our assumptions do not ensure that

acts can be reduced to lotteries; only that they can be reduced to compound lotteries. More

specifically, our assumptions enable us to identify Savage acts on Ωa ×Ωb with Anscombe-

Aumann acts on Ωb. The implied preferences on these Anscombe-Aumann acts are weaker

than the preferences considered in Machina and Schmeidler [18] and Grant and Polak [13]).

These two papers define preferences over Anscombe-Aumann acts and impose assumptions

(a replacement axiom in the former paper and two axioms, betting neutrality and two-

outcome independence in the latter) that our model does not satisfy. By circumventing

the calibration of subjective probabilities with objective probabilities, or equivalently, the

b−probabilities with a−probabilities that the additional Machina and Schmeidler [18] or

Grant and Polak [13] assumptions enable, our model permits issue preference and related

violations of probabilistic sophistication such as the Ellsberg paradox.

An alternative approach to the one we have taken here would be to impose more

structure on Z, for example, assume that it is an interval of real numbers, and enough

continuity to ensure that conditional certainty equivalents are well defined. Then, we could

strengthen Axiom 3 to cover a richer set of prizes such as the fa’s in the second version

of Axiom 5b. Given this stronger version of monotonicity, we could weaken Axiom 5b to

apply only to acts in Fb (i.e., make it just like 5a) and still obtain the representation of

Theorem 1.
6 In fact, it is not difficult to see that an SPS preference satisfies the comparative probability axiom

on all acts in F if and only if it is an expected utility preference. Therefore, the intersection of the current
model with Machina Schmeidler [17] is the subjective expected utility model with independent μ.
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3. Second-Order Risk Aversion and the Ellsberg Paradox

In this section, we provide measures of second-order risk, relate second-order risk

aversion to issue preference and the Ellsberg paradox. By Axiom 2, there are prizes

x, y ∈ Z such that x � y. Let x = 1 and y = 0. Consider the following acts

f =

⎛
⎝ 1 0 A

1 0 Ωa\A
B Ωb\B ∗

⎞
⎠ , g =

⎛
⎝ 1 1 A

0 0 Ωa\A
B Ωb\B ∗

⎞
⎠ , h =

⎛
⎝ 1 0 A

0 1 Ωa\A
B Ωb\B ∗

⎞
⎠

Note that if μ is any measure on E that renders the issues independent and μ(A) =

μ(B) = 1
2 , then πg = πh. To see this note that both πg and πh assign probability 1 to

the lottery p that yields 1 with probability 1
2 and 0 with probability 1

2 . If � is an SPS

decision-maker, then πg = πh implies g ∼ h. Note also that pf = pg = ph = p. Hence,

if the decision-maker were probabilistically sophisticated, he would be indifferent among

all three acts. However, an SPS decision-maker may distinguish between acts that yield

different second-order distributions. Observe that

πf =
1
2
δδ1 +

1
2
δδ0 �= δ 1

2 δ1+
1
2 δ0

= πg = πh

A decision-maker facing the bet f will know the outcome of his bet whenever he learns the

resolution of issue b while a decision-maker holding the bet g or h will learn nothing when

he learns the resolution of issue b. That is, a decision-maker confronting f faces significant

second-order risk (with respect to issue b) while a decision-maker facing g or h faces no

second-order risk.

Note however that by identifying issue a with the number of green balls and issue

b with the number of the ball that gets chosen, we could have interpreted the Ellsberg

paradox as a consequence of second-order risk loving behavior. Which of the two possible

ways of assigning issues is the right one? More generally, how can we distinguish issue

a type uncertainty from issue b type uncertainty? In our approach, the choice of issue b

(i.e., the source of second-order risk), like the assignment of probabilities, is a subjective

matter.

Regardless of which issue is issue a and which issue is issue b, the compound lottery

associated with act h is δ 1
2 δ1+

1
2 δ0

. Now, to verify which issue is the one associated with
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second-order risk, i.e., issue b, we need to check if agent is indifferent between g and h or

f and h. The former, means that the column events are issue b events, while the latter

implies that the row events are issue b events.

This notion of second-order risk is analogous to the standard notion of risk. To see

the similarity between the two concepts recall that when Z is an interval of real numbers,

both Z and Δ(Z) are mixture spaces. Suppose there are two lotteries p, p′ ∈ Δ(Z) such

that p = α(βδx + (1− β)δy) + (1−α)p′′ and p′ = αδβx+(1−β)y + (1−α)p′′. Then, p is said

to be a mean-preserving spread of p′. A decision-maker who has preferences over lotteries

is risk averse if he prefers p′ to p whenever p is a mean preserving spread of p′. Hence,

a risk averse decision-maker prefers it when a mixture in the space Δ(Z) is replaced by

mixture in the space Z. Since Δ(P ) and P are also mixture spaces, we can use the same

idea to define second-order risk aversion:

Definition: The compound lottery π is a mean preserving spread of π′ if there are

α, β ∈ [0, 1], p, q ∈ P , and π′′ ∈ Δ(P ) such that

π = α(βδp + (1 − β)δq) + (1 − α)π′′ and

π′ = αδβp+(1−β)q + (1 − α)π′′

We say that � is second-order risk averse if f ′ � f whenever πf is a mean preserving

spread of πf ′ .

Theorem 2: Let � be an SPS preference. Then, (iii) ⇒ (i) ⇔ (ii) ⇒ (iv):

(i) � is second order risk averse

(ii) h∗ = αf∗ + (1 − α)g∗ and πf = πg implies h � f

(iii) h∗ = αf∗ + (1 − α)g∗ and f ∼ g implies h � f

(iv) f ∈ Fa, g ∈ F , h ∈ Fb and pf = pg = ph implies f � g � h.

The equivalence of (i) and (ii) is the most difficult argument in the proof of Theorem

2 and is closely related to Proposition 1(i) in Grant, Kajii and Polak [12]. Condition

(iii) of Theorem 2 is exactly Schmeidler’s definition of uncertainty aversion if we interpret

his objective lotteries as issue a and the subjective uncertainty as issue b. Condition (ii)
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applies only to f and g that yield the same compound lottery. By Theorem 1, such acts

are indifferent. Hence, (iii) implies (ii). Condition (iv) states that if f is a bet on issue a,

h is a bet on issue b and g is any act that has the same subjective probability distribution

as f and h, then, the decision-maker will prefer f to g and g to h. We call this condition

issue preference. It is not difficult to verify that if f ∈ Fa, g ∈ F and h ∈ Fb such that

pf = pg = ph, then there is a finite sequence of compound lotteries π1, . . . , πn such that

π1 = πf , πj = πg for some j, πn = πh, and πi+1 is a mean preserving spread of πi for all

i = 1, . . . , n − 1. Hence, condition (ii) implies condition (iv).

In the appendix, after the proof Theorem 2, we provide counter-examples to (iv)

implies (ii) and to (ii) implies (iii). Hence, a result stronger than Theorem 2 cannot

be proved. To see why (iv) does not imply (ii), note that (iv) provides no criterion for

comparing f and g when neither is an element of Fa ∪ Fb even if πg is a mean-preserving

spread of πf . To get intuition as to why (ii) does not imply (iii), consider the simplest case

with only two prizes and two equally likely states in Ωb. Then, each act f∗ can be identified

with a point in [0, 1]2. In this setting, (iii) is the statement that the implied preferences on

[0, 1]2 are quasiconcave while (ii) is the statement that α(a1, a2)+(1−α)(a2, a1) �∗ (a1, a2)

for all (a1, a2) ∈ [0, 1]2.

In the following section, we show that conditions (i)-(iv) are equivalent for SPS pref-

erences that are EU within each issue or satisfy comonotonic independence in the sense of

Schmeidler [22].

3.1 Second-Order Risk with Expected Utility Preferences

Simpler and stronger characterization of second-order risk aversion are feasible for

SPS preferences satisfying certain expected utility properties. Axiom 6a below is Savage’s

sure thing principle applied to acts in Fa. In contrast, Axiom 6b is Savage’s sure thing

principle applied to all acts conditional on events in Eb. We refer to Axioms 6a, b together

as Axiom 6. Theorem 3 below establishes that imposing Axiom 6 on SPS preferences yields

a version of the model introduced by Kreps and Porteus [16]. In this case, the agent is

an expected utility maximizer with respect to both issue a and b lotteries but may not

be indifferent between an issue a lottery and an equivalent issue b lottery. We refer to

this type of preferences as SPS-EU preferences. Parts (a) and (b) of the following axiom

18



impose Savage’s sure thing principle on issue a and issue b dependent acts. Note that both

parts of the axiom together are weaker than Savage’s sure thing principle since neither

part permits conditioning on events E /∈ Ea ∪ Eb.

Axiom 6: (Sure Thing Principles) Let Ea ∈ Ea, Eb ∈ Eb, f, g, f ′, g′ ∈ Fa, and f̃ , g̃, f̃ ′, g̃′ ∈
F . Then,

(a) f = f ′ on Ea, g = g′ on Ea, f = g on Ec
a, f ′ = g′ on Ec

a

implies f � g if and only if f ′ � g′

(b) f̃ = f̃ ′ on Eb, g̃ = g̃′ on Eb, f̃ = g̃ on Ec
b , f̃ ′ = g̃′ on Ec

b

implies f̃ � g̃ if and only if f̃ ′ � g̃′

Nau [19] deals with a finite state space that also has a product structure; that is, he

too has two issues. His Axiom 2 is analogous to Axiom 6(b) above and his Axiom (3) is a

stronger version of Axiom 6(a). Then, he imposes additional axioms to derive a version of

Theorem 3 that does not require the independence of the two issues.

Axioms 1−6 lead to SPS preferences with a different von Neuman-Morgenstern utility

function for each issue. If we interpret issue b as the first period and issue a as the second

period, Theorem 3 yields a subjective model of Kreps and Porteus temporal lotteries.7,8

Theorem 3: The binary relation � satisfies Axioms 1 − 6 if and only if there exists a

nonatomic probability μ on E and a function W : Δ(P ) → IR, such that (i) Ea, Eb are

μ−independent, (ii) W (πf ) ≥ W (πg) iff f � g, and (iii) W is given by

W (π) =
∑
p∈P

v

(∑
x∈Z

u(x)p(x)

)
π(p)

for some continuous and strictly increasing v : IR → IR and nonconstant u : Z → IR.

We refer to preferences that satisfy the hypothesis of Theorem 3 as SPS expected

utility (SPS-EU) preferences. We call the corresponding (v, u, μ) a representation of �.

7 Compound lotteries are simplified versions of Kreps-Porteus temporal lotteries. The latter allow for
interim consumption and more importantly, multiple periods.

8 Machina and Schmeidler’s comparative probability axiom, which is analogous to our Axiom 5 is
stronger than Savage’s comparative probability axiom. In the presence of the sure thing principle, Savage’s
axiom is equivalent to the Machina-Schmeidler axiom. Therefore, in Theorem 3, we can replace Axiom 5
with suitable analogues of Savage’s comparative probability axiom.
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It is easy to verify that a SPS-EU preference (v, u, μ) is second-order risk averse if and

only if v is concave. Hence, second-order risk aversion of a SPS-EU preferences is formally

equivalent to preference for late resolution of uncertainty as formulated by Kreps and

Porteus [16].

The Ellsberg paradox is often studied within the framework of Choquet expected

utility or maxmin expected utility preferences. To define a Choquet expected utility pref-

erence, we first state the definition of the Choquet integral in the Anscombe-Aumann

setting: Recall that F∗ denotes the set of all simple functions from Ωb to P .

A function ν : B → [0, 1] is a capacity if ν(Ωb) = 1, ν(∅) = 0 and ν(B) ≥ ν(B′) when-

ever B′ ⊂ B. Given any capacity ν, for any real-valued, Eb–measurable simple function r,

define the Choquet integral of r as follows:

∫
Ωb

rdν =
k∑

i=1

(αi − αi+1)ν

⎛
⎝⋃

j≤i

Bj

⎞
⎠

where α1 ≥ . . . ≥ αk, αk+1 = 0 and B1, . . . , Bk form a partition of Ωb such that r(s) = αi

for all s ∈ Bi, i = 1, . . . , k.

Then, a preference relation �∗ on F∗ is a Choquet expected utility preference if there

exists a capacity ν and an expected utility function U : P → IR such that the function W ∗

defined below represents �.

W ∗(f∗) =
∫

Ωb

U ◦ f∗ dν

Schmeidler’s axiomatization of Choquet expected utility relies on the comonotonic

independence axiom. Gilboa [10] provides a characterization of Choquet expected utility

preferences in the Savage setting. The axiom below is a version of the comonotonic inde-

pendence axiom that yields second-order probabilistically sophisticated Choquet expected

utility preferences.

Definition: Let f and g be the two acts below:

f =

⎛
⎜⎜⎝

x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗

⎞
⎟⎟⎠ g =

⎛
⎜⎜⎝

y11 . . . y1m A1
...

. . .
...

...
yn1 . . . ynm An

B1 . . . Bm ∗

⎞
⎟⎟⎠
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These acts are comonotonic if for all j, k

⎛
⎜⎝

x1j A1

...
...

xnj An

⎞
⎟⎠ �

⎛
⎝ x1k A1

...
...

xnk An

⎞
⎠ implies

⎛
⎜⎝

y1j A1

...
...

ynj An

⎞
⎟⎠ �

⎛
⎜⎝

y1k A1
...

...
ynk An

⎞
⎟⎠

The axiom below is the comonotonic sure thing principle for SPS preferences. It

imposes the sure thing principle on all comonotonic acts conditional on Ea events.

Axiom 6c: (Comonotonic Sure Thing Principle) Let Ea ∈ Ea be nonnull and f, g, f ′, g′ ∈
F , be comonotonic acts f . Then

f = f ′ on Ea, g = g′ on Ea, f = g on Ec
a, f ′ = g′ on Ec

a

implies f � g if and only if f ′ � g′

Since all acts in Fa are comonotonic, Axiom 6c implies Axiom 6a. Of course, Axiom

6c does not imply Axiom 6b because 6c only permits conditioning on events in Ea and is

restricted to comonotonic acts. Similarly, Axiom 6a does not imply 6c because 6a only

applies to acts in Fa while 6c applies to arbitrary comonotonic acts in F . In fact, the

combination of 6a and 6b do not imply 6c as verified by observing that the preferences

characterized by Theorem 3 and 4 are not nested.

Recall that for any SPS preference �, there exists a non-atomic μa and �∗ such that

f � g if and only if f∗ �∗ g∗. We call an SPS preference, �, a second-order probabilistically

sophisticated Choquet expected utility (SPS-CEU) preference if the corresponding �∗ is a

Choquet expected utility preference on F∗ for some capacity ν = γ ◦ μb. The theorem

below identifies SPS-CEU preferences as the SPS preferences satisfying Axiom 6c.

Theorem 4: The binary relation � satisfies Axioms 1−5 and 6c if and only if there exists

(i) a nonatomic probability μ on E such that Ea, Eb are μ−independent, (ii) W ∗ : F∗ → IR

such that f � g if and only if W ∗(f∗) ≥ W ∗(g∗), and (iii) a nonconstant u : Z → IR and

a strictly increasing and continuous bijection γ : [0, 1] → [0, 1] such that W ∗ is defined by

the Choquet integral

W ∗(f∗) =
∫

Ωb

U ◦ f∗ dν
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where U(p) =
∑

z∈Z u(z)p(z) and ν = γ ◦ μb.

Our final result provides a stronger characterization of second-order risk aversion for

SPS-EU and SPS-CEU preferences. The theorem establishes that for such preferences,

second-order risk aversion is equivalent to issue preference and to Schmeidler’s notion of

uncertainty aversion provided we identify Schmeidler’s objective lotteries with issue a. It

follows that all of the characterizations of uncertainty aversion provided by Schmeidler are

also characterizations second-order risk aversion.9

Theorem 5: Let � be a SPS-EU preference or a SPS-CEU preference. Then, the

following conditions are equivalent:

(i) � is second order risk averse

(ii) h∗ = αf∗ + (1 − α)g∗ and πf = πg implies h � f

(iii) h∗ = αf∗ + (1 − α)g∗ and f ∼ g implies h � f

(iv) f ∈ Fa, g ∈ F , h ∈ Fb and pf = pg = ph implies f � g � h.

Note that by Theorem 2, to prove Theorem 5, it is enough to show that (iv) implies

(iii). Consider the following weakening of condition (iv):

(v) f ∈ Fa, h ∈ Fb and pf = ph implies f � h

For SPS-EU preferences, (v) is equivalent to (iv). This fact is formally related to the

observation that for expected utility preferences, defining risk aversion by comparing lot-

teries to their means versus by comparing lotteries to their mean preserving spreads leads

to identical formulations of risk aversion and comparative risk aversion. Furthermore, it

is known that (v) implies (i) (see for example Grant, Kajii and Polak [12]). Klibanoff,

Marinacci and Mukerji (2005) define ambiguity aversion as (v) applied to binary acts. For

SPS-EU preferences, this ensures that the condition holds for all acts.10 For SPS-CEU

9 For example, Schmeidler show that an Choquet expected utility preference is uncertainty averse if
and only if ν is convex, that is ν(B) + ν(B′) ≤ ν(B ∩ B′) + ν(B ∪ B′) for all B, B′ ∈ B. For SPS-CEU
preferences, this condition is equivalent to γ being a convex function.

10 This can be verified by noting that in the proof of Theorem 5, only binary acts are used for establishing
(iv) ⇒ (iii) for SPS-EU preferences.
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preferences, (v) is not equivalent to (iv): while (iv) is equivalent to the convexity of γ, (v)

is equivalent to γ(t) ≤ t for all t ∈ [0, 1].11

4. Conclusion

As in the first interpretation outlined in the introduction, the Ellsberg paradox is

often intuitively identified with aversion to ambiguity. Recently, a number of authors have

formalized this intuition by providing definitions of ambiguity and ambiguity aversion.

The approach taken by these authors is roughly the following: first, a set of unam-

biguous acts is defined. Then, an ambiguity neutral agent is defined. Finally, agent 1 is

defined to be ambiguity averse if there is an ambiguity neutral agent 2 such that for any act

g and any unambiguous act f , f �2 g implies f �1 g. The notion of ambiguity/ambiguity

aversion formalized in Epstein [6] and Epstein and Zhang [7] differs from the one in Ghi-

rardato and Marinacci [9] with respect to the underlying notion of ambiguity neutrality.

Epstein [6] identifies being ambiguity neutral with probabilistic sophistication while Ghi-

rardato and Marinacci [9] define ambiguity neutrality as expected utility maximization.

Ghirardato and Marinacci [9] seek a very broad notion that permits them to relate any

departure from the expected utility model as either ambiguity aversion or ambiguity lov-

ing, while the Epstein/Epstein and Zhang formulation is tailored to the analysis of the

Ellsberg paradox.

In contrast, both in Nau [19] and in our model, the emphasis is on the agent having

different preferences on uncertain acts that depend on separate issues. Nau defines the

agent’s preferred issue as the unambiguous one. Like Ghirardato and Marinacci, Nau

uses his model to provide a unified framework analyzing state dependent preferences, the

Ellsberg paradox and the Allais’ paradox. Like Epstein [6] and Epstein and Zhang [7], we

have attempted to identify our central concept (issue preference or equivalently, second-

order risk aversion) exclusively with the Ellsberg paradox.

11 We are grateful to the associate editor for this last observation.
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5. Appendix

5.1 Proof of Theorem 1

We start by proving a useful result about the Prohorov metric on Δ(P ).

Lemma 0: Suppose that μb is a nonatomic probability measure on Eb. Let π, π′ ∈ Δ(P ),

f∗ ∈ F∗, and π = πf∗ . Then, dΔ(π, π′) is the infimum of ε > 0 for which there exist

g∗ ∈ F∗ such that πg∗ = π′ and

μb({s ∈ Ωb : d∞(f∗(s), g∗(s)) ≥ ε}) ≤ ε (1)

Proof: It is easy to see that if ε satisfies Equation (1) for some g∗ ∈ F∗ with πg∗ = π′,

then dΔ(π, π′) ≤ ε. To see the other direction, suppose that dΔ(π, π′) < ε. Let Oε(p)

denote the open ball around p with radius ε and D = supp(π). Let S denote the partition

of Dε generated by {Oε(p) : p ∈ D}. Consider a supply-demand network where the demand

nodes are lotteries in D, and the supply nodes are cells of the partition S and ∅. Each

p ∈ D has demand π(p), each Q ∈ S has supply π′(Q), and ∅ has supply ε. The supplier ∅ is

connected to all demand nodes. The supplier Q is connected to p if and only if Q ⊂ Oε(p),

in which case we write Q → p. Note that for all T ⊂ D

∑
p∈T

π(p) = π(T ) ≤ π′(T ε) + ε =
∑

Q : Q→p for some p∈T

π′(Q) + ε.

Therefore, Gale [8]’s Feasibility theorem implies that there exist flows λQp, λεp ≥ 0 for

all p ∈ D and Q → p such that: (i) ∀p ∈ D :
∑

Q : Q→p λQp + λεp ≥ π(p), (ii) ∀Q ∈ S :∑
p : Q→p λQp ≤ π′(Q), and (iii)

∑
p∈D λεp ≤ ε. For each p ∈ D, by (i) and nonatomicity

of μb, the event f∗−1(p) can be partitioned into events {BQp}Q : Q→p ∪ {Bεp} such that

μb(BQp) ≤ λQp and μb(Bεp) ≤ λεp. By (ii) and nonatomicity of μb, there exists g∗ ∈ F∗

such that πg∗ = π′ and g∗(s) ∈ Q for all Q ∈ S and s ∈ ⋃
p : Q→p BQp. By (iii), Equation

(1) is satisfied.

To see the necessity of the axioms, suppose that the μ and W that the theorem

specifies exist. Then, Axioms 1, 3, and 5 are obviously satisfied. Note that if all constant

acts were indifferent, then the fact that w and W satisfy stochastic dominance would imply
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that both w, W are constant functions, a contradiction. Hence, Axiom 2 is also satisfied.

To see that Axiom 4 is satisfied, consider any f, g such that W (πf ) > W (πg) and let z be

any element of Z. Without loss of generality that we can express f as:

⎛
⎜⎜⎝

x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗

⎞
⎟⎟⎠

Define the partition Pk
a by dividing Ω into k equiprobable events Ek

1 , . . . , Ek
k ∈ Ea. (This

is possible since μa is nonatomic.)

Let fE be the act obtained from f by replacing the outcome of f with z at s ∈ E ∈ E .

Consider the sequence (fn) = (fE1
1
, fE2

1
, fE2

2
, fE3

1
, fE3

2
, fE3

3
, . . .). Since f∗ and f∗

Ek
l

satisfy

Equation (1) for ε = 1/k, by Lemma 0, πfn converges to πf . Since
⋃∞

n=1 suppZ πfn =

suppZ πf ∪ {z} and W is weakly continuous, for some k large enough, W (πfE
) > W (πg)

for all E ∈ Pk
a . Hence, fE � g. A symmetric argument establishes that for k large enough,

f � gE for all E ∈ Pk
a , proving Axiom 4a. Dividing Ω into k−equiprobable Eb–measurable

events and repeating the same argument proves 4b.

Next, assume that � satisfies Axioms 1 − 5. Then � |Fa−the restriction of � to

Ea–measurable acts, satisfies the Machina-Schmeidler axioms. Therefore by Theorem 2 of

Machina and Schmeidler [17], there is a nonatomic probability measure μa on (Ωa,A) and

a mixture continuous and monotonic (with respect to first order stochastic dominance)

function w̃ : P → IR such that w̃(pf ) ≥ w̃(pg) if and only if f � g for all f, g ∈ Fa. Hence,

w̃ represents �|Fa
, the restriction of � to Fa.

Lemma 1: If B1 is nonnull, then:

⎛
⎝ x1 A1

...
...

xn An

⎞
⎠�

⎛
⎜⎝

y1 A1
...

...
yn An

⎞
⎟⎠⇔

⎛
⎜⎜⎝

x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠�

⎛
⎜⎜⎝

y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠

Proof: Let B1 be nonnull. We prove the lemma in two steps. In Step 1, we show that

strict preference � on the left hand side implies strict preference � on the right hand side.
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In the second step we show that indifference ∼ on the left hand side implies indifference

∼ on the right hand side.

Step 1: First assume that

⎛
⎝ x1 A1

...
...

xn An

⎞
⎠ �

⎛
⎜⎝

y1 A1
...

...
yn An

⎞
⎟⎠ .

By Axiom 2, there exist x, y ∈ Z be such that x � y. By Axiom 3,

⎛
⎜⎜⎝

x z12 . . . z1m A1
...

...
. . .

...
...

x zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

y z12 . . . z1m A1
...

...
. . .

...
...

y zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ .

Applying to the partition {B1, ∅, B2, . . . , Bm}, Axiom 5b yields

⎛
⎜⎜⎝

x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ .

Step 2: Assume that ⎛
⎝ x1 A1

...
...

xn An

⎞
⎠ ∼

⎛
⎜⎝

y1 A1
...

...
yn An

⎞
⎟⎠ .

Suppose that the acts

⎛
⎜⎜⎝

x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠

are not indifferent. Without loss of generality, assume

⎛
⎜⎜⎝

x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

y1 z12 . . . z1m A1
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ .
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Let z be a �-worst and z a �-best outcome in {xi : i = 1, . . . , n}∪{yi : i = 1, . . . , n}∪
{zij : i = 1, . . . , n, j = 2, . . . , m}. Then, by Axioms 2 and 3, we can find z∗ such that

z∗ �

⎛
⎝ x1 A1

...
...

xn An

⎞
⎠ ∼

⎛
⎜⎝

y1 A1
...

...
yn An

⎞
⎟⎠ and z∗ � z

or z∗ such that

⎛
⎝ x1 A1

...
...

xn An

⎞
⎠ ∼

⎛
⎜⎝

y1 A1
...

...
yn An

⎞
⎟⎠ � z∗ and z � z∗.

Suppose we have a z∗ as in above (The other case can be covered by a symmetric

argument). By the representation obtained for �|Fa , there exists i∗ ∈ {1, . . . , n}, such

that z∗ � yi∗ and μa(Ai∗) > 0. Without loss of generality let i∗ = 1.

By Axiom 4a, there is a partition C1, . . . , Ck of Ωa such that for any i = 1, . . . , k:

⎛
⎜⎜⎝

x1 z12 . . . z1m A1
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎝

z∗ z∗ . . . z∗ Ci

y1 z12 . . . z1m A1 \ Ci

...
...

. . .
...

...
yn zn2 . . . znm An \ Ci

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎠ .

Since μa(A1) > 0, there is i ∈ {1, . . . , k} such that μa(Ci ∩ A1) > 0. Since z∗ � z, by

iterated application of Axiom 3, we have

⎛
⎜⎜⎜⎜⎝

z∗ z∗ . . . z∗ Ci

y1 z12 . . . z1m A1 \ Ci

...
...

. . .
...

...
yn zn2 . . . znm An \ Ci

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎜⎜⎝

z∗ z12 . . . z1m A1 ∩ Ci

y1 z12 . . . z1m A1 \ Ci

y2 z22 . . . z2m A2
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By transitivity

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 z12 . . . z1m A1 ∩ Ci

x1 z12 . . . z1m A1 \ Ci

x2 z22 . . . z2m A2
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎝

z∗ z12 . . . z1m A1 ∩ Ci

y1 z12 . . . z1m A1 \ Ci

y2 z22 . . . z2m A2
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

(∗)
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Since μa(Ci ∩ A1) > 0 and z∗ � y1, by the representation for �|Fa , we have

⎛
⎜⎜⎜⎜⎝

z∗ A1 ∩ Ci

y1 A1 \ Ci

y2 A2
...

...
yn An

⎞
⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎝

y1 A1 ∩ Ci

y1 A1 \ Ci

y2 A2
...

...
yn An

⎞
⎟⎟⎟⎟⎠ ∼

⎛
⎜⎜⎜⎜⎝

x1 A1 ∩ Ci

x1 A1 \ Ci

x2 A2
...

...
xn An

⎞
⎟⎟⎟⎟⎠ .

But then Step 1 implies that

⎛
⎜⎜⎜⎜⎜⎜⎝

z∗ z12 . . . z1m A1 ∩ Ci

y1 z12 . . . z1m A1 \ Ci

y2 z22 . . . z2m A2
...

...
. . .

...
...

yn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 z12 . . . z1m A1 ∩ Ci

x1 z12 . . . z1m A1 \ Ci

x2 z22 . . . z2m A2
...

...
. . .

...
...

xn zn2 . . . znm An

B1 B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

a contradiction to (∗).

Lemma 1 and the representation obtained for �|Fa permit us associate with � a

preference �∗ on Anscombe-Aumann acts F∗ as follows. For any f ∈ F let f∗ �∗ g∗ ⇔
f � g. We next note that �∗ is well defined as a preference on F∗.

Lemma 2:
(i) For any h ∈ F∗ there is f ∈ F such that h = f∗.

(ii) If f∗ = g∗ then f ∼ g.

Proof: Part (i) follows from nonatomicity of μa, part (ii) follows from iterated application

of Lemma 1.

By construction δp �∗ δq ⇔ w̃(p) > w̃(q). The preference relation �∗ inherits the

nondegeneracy axiom from �. Note that a set B ∈ B is null with respect to �∗ if and

only if it is null with respect to �. Therefore, Lemma 1 implies that �∗ satisfies Statewise

Monotonicity. By Axiom 3 and Axiom 4, �∗ satisfies continuity on Ωb. Finally, by Axiom

5b, �∗ also satisfies Strong Comparative Probability. Therefore, we can apply Theorem

2 of Machina and Schmeidler [17] once again, in order to obtain a nonatomic probability

measure μb on (Ωb,B) and a function W : Δ (P ) → IR such that (i) W is mixture continuous
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and monotonic with respect to first order stochastic dominance and (ii) W (π∗
f∗) ≥ W (π∗

g∗)

iff f∗ � g∗ for all f, g ∈ F where π∗
h∗ ∈ Δ(P ) is defined by π∗

h∗(p) = μb(h∗−1(p))). Note also

that the proof in Machina and Schmeidler [17] yields W such that {W (π∗) : π∗ ∈ Δ(P )}

is convex.

Since πf = π∗
f∗ for any f ∈ F , we have that

f � g ⇔ f∗ �∗ g∗ ⇔ W (π∗
f∗) > W (π∗

g∗) ⇔ W (πf ) > W (πg) ∀f, g ∈ F

establishing that W represents �. Define w: P → IR by w(p) = W (δp). Then

w(p) > w(q) ⇔ W (δp) > W (δq) ⇔ δp �∗ δq ⇔ w̃(p) > w̃(q)

showing that w and w̃ are ordinally equivalent. In particular, w is also monotonic with

respect to first order stochastic dominance. We conclude the proof by showing that W is

weakly continuous.

Lemma 3: W is weakly continuous.

Proof: Assume that the sequence πt converges to π and
⋃∞

t=1 suppZ πt is finite. Suppose

that W (π) > liminfW (πt). Note that Theorem 2 in Machina and Schmeidler [17] ensures

that W has a convex range. Therefore, there exists π′ such that W (π) > W (π′) >

liminfW (πt). By nonatomicity of μ, there exists f ′ such that πf ′ = π′. We can assume

without loss of generality that f can be expressed as:

⎛
⎜⎜⎝

x11 . . . x1m A1
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗

⎞
⎟⎟⎠

where (i) μa(A1) > 0; (ii) x1j � xij , for i = 1, . . . , n and j = 1, . . . , m. (If f does not have

the above form, using nonatomicity of μa we can find f̄ ∈ F of the desired form such that

f̄∗ = f∗.)
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Let x be a �-worst outcome in (
⋃∞

t=1 suppZ πt)
⋃

suppZ π. Now since f � f ′, by

Axiom 4a, there is a partition C1, . . . , CI of Ωa such that for any i = 1, . . . , I:

gi :=

⎛
⎜⎜⎜⎜⎝

x . . . x Ci

x11 . . . x1m A1 \ Ci

...
. . .

...
...

xn1 . . . xnm An \ Ci

B1 . . . Bm ∗

⎞
⎟⎟⎟⎟⎠ � f ′.

Since μa(A1) > 0, there is i ∈ {1, . . . , I} such that μa(Ci ∩A1) > 0. Let C = Ci ∩A1, then

g :=

⎛
⎜⎜⎜⎜⎜⎜⎝

x . . . x C
x11 . . . x1m A1 \ C
x21 . . . x2m A2
...

. . .
...

...
xn1 . . . xnm An

B1 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

� gi � f ′,

where the weak preference above follows from iterated application of Axiom 3.

Suppose without loss of generality that: (iii) μb(B1) > 0 and

(iv)

⎛
⎜⎜⎝

x C
x11 A1 \ C
...

...
xn1 An

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

x C
x1j A1 \ C
...

...
xnj An

⎞
⎟⎟⎠ j = 1, . . . , m.

(If g does not satisfy (iii) and (iv), we can reorder the columns by adjoining the null Bj ’s

to a nonnull one and construct ḡ satisfying (iii) and (iv) such that the equality ḡ∗ = g∗

holds μb-almost surely.)

Since g � f ′, by Axiom 4b, there is a partition D1, . . . , DJ of Ωb such that for any

j = 1, . . . , J :

hj :=

⎛
⎜⎜⎜⎜⎝

x x . . . x C
x x11 . . . x1m A1 \ C
...

...
. . .

...
...

x xn1 . . . xnm An

Dj B1 \ Dj . . . Bm \ Dj ∗

⎞
⎟⎟⎟⎟⎠ � f ′.

Since μb(B1) > 0, there is j ∈ {1, . . . , J} such that μb(Dj ∩ B1) > 0. Let D = Dj ∩ B1,

then
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h :=

⎛
⎜⎜⎜⎜⎜⎜⎝

x x x . . . x C
x x11 x12 . . . x1m A1 \ C
x x21 x22 . . . x2m A2
...

...
...

. . .
...

...
x xn1 xn2 . . . xnm An

D B1 \ D B2 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

� hj � f ′,

where again the weak preference above follows from iterated application of Axiom 3.

Let ε = min{μa(C)/n, μb(D)/m} > 0 and let t be such that dΔ(π, πt) < ε. By Lemma

0, there exists f∗
t ∈ F∗ such that πt = πf∗

t
and μb({s ∈ Ωb : d∞(f∗

t (s), f∗(s)) ≥ ε}) < ε.

By nonatomicity of μa, there is f̄t ∈ F and events E1, . . . , En ∈ A; F1, . . . , Fm ∈ B such

that f̄∗
t = f∗

t , Ei ⊂ Ai, Fj ⊂ Bj , μa(Ei) < ε, μb(Fj) < ε and f̄t gives xij on Ai\Ei×Bj \Fj

for i = 1, . . . , n and j = 1, . . . , m.

Then, by (iv) and iterated application of monotonicity with respect to stochastic

dominance of W , we obtain:

ht :=

⎛
⎜⎜⎜⎜⎜⎜⎝

x x . . . x x C
x11 x . . . x1m x A1 \ C
x21 x . . . x2m x A2
...

...
. . .

...
...

...
xn1 x . . . xnm x An

B1 \ F1 F1 . . . Bm \ Fm Fm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

� h.

Similarly, by (ii) and iterated application of monotonicity with respect to stochastic dom-

inance of w and W , we obtain:

gt :=

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 x . . . x1m x A1 \ E1

x x . . . x x E1
...

...
. . .

...
...

...
xn1 x . . . xnm x An \ En

x x . . . x x En

B1 \ F1 F1 . . . Bm \ Fm Fm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

� ht.

Finally, by iterated application of Axiom 3, we have that f̄t � gt. Therefore, ft ∼ f̄t �
gt � ht � h � f ′, implying that W (πt) > W (π′) for all t ≥ N , a contradiction to

W (π′) > liminfW (πt). Therefore, W (π) ≤ liminfW (πt). A symmetric argument shows

that limsupW (πt) ≤ W (π), implying that W (π) = limW (πt).
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5.2 Proof of Theorem 2

Part (iii) ⇒ (ii) follows from πf = πg ⇒ f ∼ g for SPS preferences. To see the

implication (i) ⇒ (iv), it is enough to note that f ∈ Fa, g ∈ F , and h ∈ Fb induce the

same lottery (i.e., pf = pg = ph) then, there exists π1, . . . , πm and 1 ≤ k ≤ m such that

πj+1 is a mean preserving spread of πj for all j = 1, . . . , m − 1, π1 = πf , πk = πg and

πm = πh. To conclude the proof we will show the equivalence of (i) and (ii).

(i) ⇒ (ii): Assume that � is second order risk averse. Let f, g, h ∈ F be such that

h∗ = αf∗ + (1 − α)g∗ and πf = πg. Then

πh =
∑

(p,q)∈P×P

μb

(
f∗−1(p) ∩ g∗−1(q)

)
δαp+(1−α)q.

Let

π =
∑

(p,q)∈P×P

μb

(
f∗−1(p) ∩ g∗−1(q)

)
(αδp + (1 − α)δq).

Therefore there exists π1, . . . , πm such that π1 = πh, πm = π and πj+1 is a mean preserving

spread of πj for j = 1, . . . , m− 1. Hence, (i) implies W (πh) ≥ W (π). We can rewrite π as

π =
∑
p∈P

⎡
⎣α

∑
q∈P

μb

(
f∗−1(p) ∩ g∗−1(q)

)
+ (1 − α)

∑
q∈P

μb

(
f∗−1(q) ∩ g∗−1(p)

)⎤⎦ δp

=
∑
p∈P

[
αμb

(
f∗−1(p)

)
+ (1 − α)μb

(
g∗−1(p)

)]
δp

=
∑
p∈P

[απf (p) + (1 − α)πg(p)] δp = πf = πg.

Since πf = π and W represents �, we have h � f .

(ii) ⇒ (i): Assume that the SRS preference � satisfies condition (ii). We will show that

f � g whenever πg is a mean preserving spread of πf . Let πg be a mean preserving spread

of πf , then there are α, β ∈ [0, 1], p, q ∈ P and π′ ∈ Δ(P ) such that

πg = α(βδp + (1 − β)δq) + (1 − α)π′ and

πf = αδβp+(1−β)q + (1 − α)π′
.

Let B ⊂ Ωb be such that μb(B) = α and f∗ = βp + (1 − β)q on B. Without loss of

generality, let f∗ = g∗ outside of B.
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Next, we define a sequence of partitions Πk = {Bk
0 , Bk

1 , . . . , Bk
2k−1} of B such that

Πk+1 refines Πk for k ≥ 1. Let B1
0 = {s ∈ B : g∗(s) = p} and B1

1 = {s ∈ B : g∗(s) = q}.
Having defined the partition Πk for some k ≥ 1, inductively define Πk+1 as follows: For

any l ∈ {0, . . . , 2k − 1} by nonatomicity of μb, partition Bk
l into two subsets Bk+1

2l and

Bk+1
2l+1 such that μb(Bk+1

2l ) = βμb(Bk
l ) and μb(Bk+1

2l+1) = (1 − β)μb(Bk
l ).

Note that μb(Bk
l ) = αβi(1 − β)k−i where i is the number of 0’s in the k-digit binary

expansion of l. (For example, if k = 5 and l = 9 then the 5-digit binary expansion of 9 is

01001 so i = 3.) By nonatomicity of μa, we can find a sequence of acts gk ∈ F such that:

g∗k(s) =

⎧⎨
⎩

p s ∈ Bk
l and l is even

q s ∈ Bk
l and l is odd

g∗(s) s /∈ B

By definition g∗1 = g∗, implying that g1 ∼ g. By nonatomicity of μb, there exist acts

hn
m for n = 0, 1, 2, . . . and m = 1, 2, . . . such that:

(hn
m)∗ =

m2n∑
k=(m−1)2n+1

1
2n

g∗k

i.e., (hn
m)∗ is the average of the mth 2n consecutive Anscombe-Aumann acts in the sequence

g∗k.

Note that on B2n

l , (hn
1 )∗ gives i

2n p + 2n−i
2n q and on Bm2n

l , (hn
m)∗ gives i

2n p + 2n−i
2n q

where i is the number of 0’s in the last 2n digits in the m2n-digit binary expansion of l.

Therefore, we can write πhn
1

as:

πhn
1

= α
2n∑
i=0

(
2n

i

)
βi(1 − β)2

n−iδ i
2n p+ 2n−i

2n q + (1 − α)π′

It is easy to verify that πhn
m

= πhn
1

and therefore hn
m ∼ hn

1 for all m ≥ 1. Since

(hn+1
m )∗ = 1

2 (hn
2m−1)

∗ + 1
2 (hn

2m)∗ and πhn
2m−1

= πhn
2m

, by condition (ii), hn+1
m � hn

2m−1.

Therefore, by transitivity, hn
1 � h0

1 for any n ≥ 0. Since (h0
1)

∗ = g∗1 we have h0
1 ∼ g1, thus

hn
1 � h0

1 ∼ g1 ∼ g implying that hn
1 � g for any n ≥ 0.

Next, we show that πhn
1

converges to πf . Let ε > 0 be given. Define the probability

measure μ∗ on B by μ∗(B′) = μb(B
′∩B)

μb(B) . Also, define T k(s) = 1 if s ∈ Bk
l for some even l

33



and T k(s) = 0 otherwise. Let ε′ > 0 be such that d∞(β′p + (1 − β′)q, βp + (1 − β)q) < ε

for any β′ ∈ (β − ε′, β + ε′). By the Weak Law of Large Numbers12 (applied to T k on the

probability space (Ωb,B, μ∗)), the average of i.i.d. Bernouilli random variables with mean

β converges in probability to β. Therefore, there is N such that for any n ≥ N :

μb({s ∈ Ωb : |
2n∑
i=0

T i(s)/2n − β| ≥ ε′}) < ε.

Then, for any n ≥ N , μb ({s ∈ Ωb : d∞ ((hn
1 )∗(s), f∗(s)) ≥ ε}) < ε, which, by Lemma 0,

implies that dΔ(πhn
1
, πf ) ≤ ε. Therefore, πhn

1
converges to πf . Since

∞⋃
n=0

suppZ πhn
1

=

suppZ πf is finite and W (πhn
1
) ≥ W (πg), weak continuity of W implies that W (πf ) ≥

W (πg). Therefore, � is second order risk averse.

Below, we provide counter-examples to (iv) implies (i) and (i) implies (iii). For both

counter-examples assume that Z = {0, 1}. Hence, P can be identified with the unit interval

where p ∈ P denotes the probability of getting 1. Also, each π can be identified with a

simple probability distribution on the unit interval. Let μa be any nonatomic probability

measure on the set of all subsets of some Ωa. Similarly, let μb be any nonatomic probability

measure on the set of all subsets of some Ωb.

We first define a weakly continuous utility function W on Δ(P ). Since each f ∈ F
can be identified with a unique πf , this utility function induces a preference �W on F .

Define the function m : Δ(P ) → [0, 1] as follows:

m(π) =
∑

x∈[0,1]

xπ(x)

Hence, m(π) is the mean of π. For any lottery π define ηπ, the mean error of π, as follows:

ηπ(z) =
∑

x:|x−m(π)|=z

π(x)

Hence, m(ηπ) is the mean absolute error of π. Let ψ(α) = log(1+α)
4 . Define,

W (π) = m(π) − ψ(m(ηπ))

12 Despite the fact that μ and hence μ∗ are finitely additive, the Weak Law of Large Numbers still
applies since Bernoulli random variables are simple.
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The weak continuity of W is easy to verify. It is straightforward to check that for any

y > x, a small increase in π(y) at the expense of π(x) cannot increase m(ηπ) at a rate

greater than 2(y−x). To see this, note that such an increase will have two kinds of effects.

First, it could change m(π) and second it will increase the weight on the term |y−m(π)| at

the expense of the weight on the term |x−m(π)|. Each of these effects can increase m(ηπ)

at a rate no more than y − x and hence ψ(m(ηπ)) cannot increase at a rate greater than

(y − x)/2. On the other hand, such an increase in π(y) increases m(π) at a rate y − x and

therefore, the overall effect is an increase in W (π). It follows that W satisfies stochastic

dominance. Since w(x) = W (δx) = x, we conclude that w satisfies stochastic dominance

as well. We claim that �W satisfies (i) but not (iii). To verify (i), note that W is risk

averse since mean-preserving spreads leave m(π) unchanged and (weakly) increase m(ηπ).

To see that �W does not satisfy (iii), let π = .5δ1 + .5δ0 and set w = W (π) < .5.

Choose f, g such that πf = δw and πg = π. Then, straightforward calculations yield

π.5f∗+.5g∗ = .5δ.5w+.5 + .5δ.5w and m(ηπ.5f∗+.5g∗ ) = .5m(ηπ)+ .5m(ηδw) = .5m(ηπ). Hence,

the strict concavity of ψ ensures that W (π.5f∗+.5g∗) < .5W (π) + .5W (δw) = w proving

that �W does not satisfy (iii).

For the second counter-example, let V be the nonexpected utility functional on Δ(P )

defined as follows:

V (π) =
αm(π1) + 2(1 − α)m(π2)

2 − α
(∗)

where π = απ1 + (1 − α)π2, π1(x) > 0 implies x ≥ V (π) and π2(x) > 0 implies x ≤ V (π).

The preference represented by this V belongs to the class introduced in Gul [14].13 In

that paper, it is shown that the function V is well-defined; that is, a real number V (π)

satisfying (∗) always exists and that this number is the same for any α, π1, π2 satisfying

the properties above. Define W : Δ(P ) → IR as follows:

W (π) = m(π) − 1
4
V (ηπ)

The function V described in (∗) is neither risk averse nor risk loving and since the rest

of W is linear, this means that W is neither risk averse nor risk loving. This feature

13 In particular, this preferences is a disappointment averse preference with linear u and β = 1.
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of W permits the preferences that W represents to fail (ii) but still satisfy (iv). Again,

it can be verified that W is weakly continuous and that for y > x a small increase in

π(y) at the expense of π(x) has two effects. First, it can increase V (ηπ) by changing

m(π) and increasing each |z − m(π)|. This effect is at most y − x. The second effect is

the one associated with increasing the weight of |y − m(π)| and decreasing the weight of

|x − m(π)| (while keeping m(π) fixed) in the definition of V . Note that the function V is

piecewise differentiable. Considering each case separately (|y−m(π)| > |x−m(π)| ≥ V (ηπ);

|x − m(π)| > |y − m(π)| ≥ V (ηπ); |y − m(π)| ≥ V (ηπ) ≥ |x − m(π)| etc.) reveals that

this derivative of V is at most 2(y − x). Hence, the total effect of a small increase in π(y)

together with the same small decrease in π(x) is no greater than 3(y − x) and therefore

the total effect of this change on W is at least (y − x)/4 > 0, proving that W and the

function w defined by w(p) := W (δp) both satisfy stochastic dominance. We claim that

�W satisfies (iv) but not (i).

Let f ∈ Fa, g ∈ F such that pf = pg. Then, W (πf ) = pf = pg ≥ pg − V (ηπg )/4 =

W (πg) and hence f � g. Next, take h ∈ Fb such that γ := ph = pg. Note that W (πg) ≥
W (πh) if and only if V (ηπh

) ≥ V (ηπg ). By (∗), if γ < 1
2 , then

V (ηπh
) =

γ(1 − γ) + 2(1 − γ)γ
2 − γ

On the other hand, for V (ηπg ), (∗) yields

V (ηπg
) =

α|y − γ| + 2(1 − α)|x − γ|
2 − α

for x, y, α such that |y− γ| ≥ |x− γ|, αy +(1−α)x = γ, α, x, y ∈ [0, 1]. Somewhat tedious

but straightforward calculations reveal that setting y = 1, x = 0, and α = γ maximizes the

right-hand side of the display equation above among all α, x, y satisfying these constraints.

A symmetric argument shows that V (ηπh
) ≥ V (ηπg

) for the γ ≥ 1
2 case as well.

To show that W does not satisfy (ii), we construct π and π′ such that π′ is a mean-

preserving spread of π and V (ηπ) > V (ηπ′). For example π = .4δ5/6 + .6δ0 and π′ =

.2δ1 + .2δ2/3 + .6δ0 and hence V (ηπ) = 3/8, V (ηπ′) = 10/27 satisfy the desired inequality.

Hence, the preference that W represents fails (i) and by Theorem 2, it fails (ii).
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5.3 Proof of Theorem 3

Verifying that if the desired representation exists, then Axioms 1-6 are satisfied is

straightforward and omitted. Suppose Axioms 1-6 are satisfied and let W be the repre-

sentation of � guaranteed by Theorem 1. Let μ = μa × μb be the associated probability

measure. Define �∗ on F∗ as follows f∗ �∗ g∗ if and only if W (πf ) ≥ W (πg). Since μb and

μa are nonatomic, �∗ is well-defined. It follows from Axiom 6b and Savage’s Theorem that

�∗ has an expected utility representation W ∗ such that W ∗(f∗) =
∑

p U∗(p)μ(f∗−1(p)).

By Axiom 6a, the preference on Fa defined by f �′ g if and only if U∗(pf ) ≥ U∗(pg)

satisfies all of the Savage axioms and therefore there exists an expected utility function

U : P → IR such that if U(pf ) ≥ U(pg) if and only if U∗(pf ) ≥ U∗(pg). Since U∗ and U

represent the same preference, the restriction of � to Fa, there exist a strictly increasing

function v : U(P ) → IR such that U∗ = v ◦ U . Let u(z) = δz for all z ∈ Z. Define W ′ by

W ′(π) =
∑
p∈P

v

(∑
x∈Z

u(x)p(x)

)
π(p)

Note that W ∗(f∗) = W ′(πf ) for all f and f � g iff f∗ �∗ g∗ iff W ∗(f∗) ≥ W ∗(g∗) iff

W (πf ) ≥ W (πg). Since U is an expected utility function, U(P ) is an interval. Hence, if

v is continuous it can easily be extended to a continuous, strictly increasing function on

IR. Therefore, to conclude the proof, we need only to show that v is continuous. Since,

v is strictly increasing, there are only two possible types of discontinuities it can have:

There exists t = U(p) and ε > 0 such that either v(t) ≥ v(t′) + ε for all t′ < t, t′ ∈ U(P )

or v(t′) ≥ v(t) + ε for all t′ > t, t′ ∈ U(P ). Suppose, the former holds for some t (the

argument for the other case is symmetric and omitted).

Choose p ∈ P such that U(p) = t and t′ < t such that v(t′) > v− − ε, where v− is

the left limit of v at t. Let p′ ∈ P , f ∈ Fa, g ∈ F and B ∈ B be such that U(p′) = t′,

μb(B) = .5, f∗(ωb) = p for all ωb ∈ Ωb, g∗(ωb) = p for all ωb ∈ B and g∗(ωb) = p′ for all

ωb ∈ Ωb\B. Then W ′(πf ) = v(t) > .5v(t) + .5v(t′) = W ′(πg) > v− and hence f � g. Let

x minimize U(δz) among z in the support of p′. There exists A ∈ A with μa(A) > 0 such

that f gives a prize strictly better than x on A. Then, for any A′ ⊂ A such that μa(A′) > 0

f̂(ωa, ωb) = x for all ωa ∈ A′ and f̂(ωa, ωb) = f(ωa, ωb) otherwise implies W ′(πf̂ ) ≤ v−.

So, g � f̂ , contradicting Axiom 4a.
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5.4 Proof of Theorem 4

Two acts f∗, g∗ ∈ F∗ such that

f∗ =
(

p1 p2 . . . pm

B1 B2 . . . Bm

)
, g∗ =

(
q1 q2 . . . qm

B1 B2 . . . Bm

)

are comonotonic if pi �∗ pj implies qi �∗ qj for all i, j. Three acts are comonotonic if each

pair is comonotonic.

A preference relation �∗ on F∗ satisfies vNM continuity if f∗ �∗ g∗ �∗ h∗ implies

that there exist α, β ∈ (0, 1) such that αf∗ + (1 − α)h∗ �∗ g∗ �∗ βf∗ + (1 − β)h∗. The

preference �∗ satisfies comonotonic independence, if f∗, g∗, h∗ are comonotonic, f∗ �∗ g∗

and α ∈ (0, 1) implies αf∗ + (1 − α)h∗ �∗ αg∗ + (1 − α)h∗.

By the theorem on page 578 of Schmeidler [22], if a preference relation �∗ on F∗

satisfies vNM continuity, weak stochastic dominance (i.e., f∗(ωb) �∗ g∗(ωb) for all ωb ∈ Ωb

implies f∗ �∗ g∗), weak nondegeneracy (i.e., there exists f∗, g∗ such that f∗ �∗ g∗) and

comonotonic independence, then it is has a Choquet expected utility representation.

The proof that the existence of the W in the statement of Theorem 3 implies that �∗

is a CEU preference is standard. The proof that � satisfies Axiom 6c whenever �∗ is a

CEU preference is straightforward and omitted. We conclude by proving that the axioms

guarantee the desired representation.

Assume that � satisfies Axioms 1−5 and 6c. By Theorem 1, there exists a preference

�∗ on F∗ such that f � g iff f∗ �∗ g∗ and a nonconstant, weakly continuous, stochastic

monotonicity satisfying W such that W (πf ) ≥ W (πg) iff f∗ �∗ g∗ for all f, g ∈ F . Since

W is nonconstant, �∗ satisfies weak nondegeneracy and since W is satisfies stochastic dom-

inance, �∗ satisfies weak stochastic dominance. Also, it follows from the weak continuity

of W that �∗ satisfies vNM continuity. We show that �∗ is a Choquet expected utility by

proving that �∗ satisfies comonotonic independence.

Observe that since Axiom 6c implies Savage’s sure thing principle on Fa. Then,

by Savage’s theorem, there exists some expected utility function U such that f � g iff

U(pf ) ≥ U(pg) for all f, g ∈ Fa.

Consider comonotonic f∗, g∗ such that

f∗ =
(

p1 p2 . . . pm

B1 B2 . . . Bm

)
, g∗ =

(
q1 q2 . . . qm

B1 B2 . . . Bm

)
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Then, for any natural number n construct f̂ , ĝ such that

f̂ =

⎛
⎜⎜⎝

p1 . . . pm A1
...

. . .
...

...
p1 . . . pm An

B1 . . . Bm ∗

⎞
⎟⎟⎠ ĝ =

⎛
⎜⎜⎝

q1 . . . qm A1
...

. . .
...

...
q1 . . . qm An

B1 . . . Bm ∗

⎞
⎟⎟⎠

for A1, . . . , An such that μa(Ai) = 1
n for all i. That is, f̂ conditional on Ai × Bj is Ea–

measurable and has distribution pj , and ĝ conditional on Ai × Bj is also Ea–measurable

and has distribution qj for all i, j.

For any N ⊂ {1, . . . , n}, let f̂N denote the act obtained from f by replacing each

row j ∈ N with the corresponding row of ĝ. Hence, f̂∅ = f̂ and f̂{1,...,n} = ĝ etc. Note

that since U is an expected utility function, U(pi) ≥ U(pj) and U(qi) ≥ U(qj) implies

U(αpi + (1 − α)qi) ≥ U(αpj + (1 − α)qj). Hence, f̂N and f̂N ′
are comonotonic for all

N, N ′.

Then, by Axiom 6c, g∗ �∗ 1
nf∗ + n−1

n g∗ implies

1
n

f∗ +
n − 1

n
g∗ ∼∗

⎛
⎜⎜⎜⎜⎜⎜⎝

q1 . . . qm A1

p1 . . . pm A2

q1 . . . qm A3
...

. . .
...

...
q1 . . . qm An

B1 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

∗

�∗

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 . . . pm A1

p1 . . . pm A2

q1 . . . qm A3
...

. . .
...

...
q1 . . . qm An

B1 . . . Bm ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

∗

∼∗ 2
n

f∗ +
n − 2

n
g∗

Repeating the argument with other rows and using transitivity implies g∗ �∗ f∗. It follows

that f∗ �∗ g∗ implies f∗ �∗ αf∗ + (1 − α)g∗ �∗ g∗ for every rational α ∈ (0, 1). It then

follows from the weak continuity of W that the same holds for every α ∈ (0, 1).

Suppose f∗ �∗ g∗ and

h∗ =
(

r1 r2 . . . rm

B1 B2 . . . Bm

)

is also comonotonic with f∗ and g∗. For any α ∈ (0, 1) choose A ∈ A such that μa(A) = α

and note that by the argument above

f∗ ∼∗

⎛
⎝ p1 . . . pm A

p1 . . . pm Ωa\A
B1 . . . Bm ∗

⎞
⎠
∗

�∗

⎛
⎝ q1 . . . qm A

p1 . . . pm Ωa\A
B1 . . . Bm ∗

⎞
⎠
∗

∼∗ αf∗ + (1 − α)g∗
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Applying Axiom 6c again yields

αf∗+(1−α)h∗∼∗

⎛
⎝ p1 . . . pm A

r1 . . . rm Ωa\A
B1 . . . Bm ∗

⎞
⎠
∗

�∗

⎛
⎝ q1 . . . qm A

r1 . . . rm Ωa\A
B1 . . . Bm ∗

⎞
⎠
∗

∼∗αg∗+(1 − α)h∗

Proving that �∗ satisfies comonotonic independence.

Therefore, �∗ is a Choquet expected utility preference, let W ∗ be the Choquet ex-

pected utility that represents �∗. Without loss of generality let W ∗(p) = U(p) for any

constant act p ∈ F∗.

It follows Theorem 1 that the capacity of every event depends only on its μb proba-

bility. That is, the associated capacity ν can be written as γ ◦ μb for strictly increasing

γ : [0, 1] → [0, 1] such that γ(0) = 0, γ(1) = 1. To conclude the proof we show that γ is

continuous. Since γ is strictly increasing, there are only two possible types of discontinu-

ities it can have: Either γ(t) ≥ γ(t′) + ε for all t′ < t or γ(t′) ≥ γ(t) + ε for all t′ > t.

Suppose, the former holds for some t (the argument for the other case is symmetric and

omitted).

Choose B such that μb(B) = t. Such a B exists by Theorem 1. Choose p, q such that

U(p) > U(q) and α ∈ (γ(t) − ε, γ(t)). Such p, q exits by nondegeneracy. Define f, g ∈ F ,

such that f∗(ωb) = p for all ωb ∈ B, f∗(ωb) = q for all ωb ∈ Ωb\B and g∗(ωb) = αp+(1−α)q

for all ωb ∈ Ωb. Note that W ∗(f∗) = γ(t)U(p) + (1 − γ(t))U(q) > αU(p) + (1 − α)U(q) =

W ∗(g∗) and hence f � g.

Let x minimize U(δz) among z in the support of q. Then, for any B′ ⊂ B such that

μb(B′) > 0 f̂(ωa, ωb) = x for all ωb ∈ B′ and f̂(ωa, ωb) = f(ωa, ωb) otherwise implies

W ∗(f̂∗) ≤ (γ(t)−ε)U(p)+(1−γ(t)+ε)U(q) < αU(p)+(1−α)U(q) = W ∗(g∗). So, g � f̂ ,

contradicting Axiom 4a.

5.5 Proof of Theorem 5

By Theorem 2, we need only show that (iv) ⇒ (iii). Let �= (v, u, μ) be a SPS-EU

preference that satisfies (iv). Let t, t′ be in the convex hull of u(Z) and β ∈ [0, 1]. Then,

there exist lotteries p, p′ ∈ P such that u(p) = t and u(q) = t′. By nonatomicity of μ,

there are acts f, g, h ∈ Fa, and B ∈ B such that pf = p, pg = p′, ph = βp + (1 − β)p′

and μb(B) = β. Define h′ ∈ F as follows: h′(ωa, ωb) = f(ωa, ωb) for all ωb ∈ B and
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h′(ωa, ωb) = g(ωa, ωb) for all ωb �∈ B. Suppose (v, u, μ) is a representation of �. Then,

W (h) = v[βu(p)+(1−β)u(p′)] = v(βt+(1−β)t′) and W (h′) = βv(u(p))+(1−β)v(u(p′)) =

βv(t) + (1 − β)v(t′). By condition (iv), h � h′ and hence v is concave. Suppose h∗ =

αf∗ + (1 − α)g∗ for some f, g, h ∈ F such that f ∼ g. Then, it follows from Theorem 3

that W (h) =
∑k

i=1 v[αu(pi) + (1 − α)u(qi)]βi where W (f) =
∑k

i=1 v[u(pi)]βi = W (g) =∑k
i=1 v[u(qi)]βi for some p1, . . . , pk, q1 . . . , qk and βi > 0. It follows from the concavity of v

that W viewed as a function of (u(p1), . . . , u(pk)) [and hence (u(q1), . . . , u(qk))] is concave.

Hence, W (h) ≥ W (f) as desired.

Next, assume that � is a SPS-CEU preference. Let (γ, u, μ) be a representation of

�. Without loss of generality, assume u(z∗) = 1, u(z∗) = 0 for some z∗, z∗ ∈ Z. Let

α ∈ (0, 1) and t, t′ ∈ [0, 1]. Assume without loss of generality that t ≤ t′. Choose A ∈ A
and B, B′ ∈ B such that μa(A) = α, B ∩ B′ = ∅, μb(B) = t, μb(B′) = t′ − t. Also, choose

B′′ ∈ B such that μb(B′′) = t+α(t′− t). Let f(ωa, ωb) = z∗ if (ωb ∈ B or ωa ∈ A, ωb ∈ B′)

and f(ωa, ωb) = z∗ otherwise. Also, let g(ωa, ωb) = z∗ if ωb ∈ B′′ and g(ωa, ωb) = z∗

otherwise. Then, W (f) = (1 − α)γ(t) + αγ(t′) while W (g) = γ(αt′ + (1 − α)t). Since

g ∈ Fb and pg = pf , (iv) establishes that γ is convex which implies that the capacity

ν = γ ◦ μb is convex. That is:

ν(B ∪ B′) + ν(B ∩ B′) ≥ ν(B) + ν(B′)

Then, (iii) follows from the characterization of uncertainty aversion (the proposition on

page 582) in Schmeidler [22].
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