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Abstract
We study the question of auction design in an IPV setting characterized by ambiguity. We

assume that the preferences of agents exhibit ambiguity aversion; in particular, they are rep-

resented by the epsilon-contamination model. We show that a simple variation of a discrete

Dutch auction can extract almost all surplus. This contrasts with optimal auctions under IPV

without ambiguity as well as with optimal static auctions with ambiguity - in all of these, types

other than the lowest participating type obtain a positive surplus. An important point of de-

parture is that the modified Dutch mechanism is dynamic rather than static, establishing that

under ambiguity aversion–even when the setting is IPV in all other respects–a dynamic mech-

anism can have additional bite over its static counterparts. A further general insight is that the

standard revelation principle does not automatically extend to environments not characterized

by subjective expected utility.
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1 Introduction

In the standard independent private values (IPV) setting bidders draw privately known
valuations from a given distribution. Each bidder is assumed to maximize subjective
expected utility, so that a bidder’s beliefs about the values of any other bidder is rep-
resented by a unique prior (i.e. a unique distribution over the domain of values). In
this setting Dutch auctions coincide with First Price Sealed Bid auctions, and optimal
auctions leave all but the lowest participating type with a surplus. This is true whether
bidders are risk neutral (Myerson (1981), Riley and Samuelson (1981)) or risk averse
(Matthews (1983), Maskin and Riley (1984)).

As far as we are aware, Karni (1988) is the first to show that the equivalence between
Dutch and First Price Sealed Bid auctions breaks down under non-expected utility
preferences.

In this paper we relax the unique prior assumption and study the question of auc-
tion design in an IPV setting characterized by ambiguity: bidders have an imprecise
knowledge of the distribution of values of others, and are faced with a set of priors. We
also assume that their preferences exhibit ambiguity aversion; in particular we use the
epsilon contamination representation, used extensively in the economics and statistics
literature.

Several papers have studied auctions (or auction-like environments) when bidders
have non-expected utility preferences (e.g. Karni and Safra 1986, 1989a,1989b; Karni
1988; Lo 1998; Nakajima 2004; Ozdenoren 2002; Volij 2002). The closest intellectual an-
tecedents appear in the paper by Bose, Ozdenoren, and Pape (2006), who show that in
the setting of ambiguity that we consider, the optimal static mechanism leaves buyer
types with information rent, and the amount of rent varies continuously with the ex-
tent of the ambiguity. In contrast, our main result shows that in this setting of ambi-
guity averse buyers, the seller can use a simple variation of a discrete Dutch auction
and extract almost all surplus. The important point of departure is that the modi-
fied Dutch mechanism we consider is dynamic rather than static, establishing that a
dynamic mechanism can present the seller with additional surplus extraction oppor-
tunities under ambiguity aversion even in a setting that is captured by the IPV model
in all other respects. This also shows that the introduction of ambiguity can pose dif-
ficulties for mechanism design, since the standard revelation principle may not extend
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to this setting.

In a seminal paper, Ellsberg (1961) showed that lack of knowledge about the distri-
bution over states, often referred to as ambiguity, can affect the choice of a decision
maker in a fundamental way that cannot be captured by a framework that assumes a
unique prior. Several subsequent studies have underlined the importance of ambiguity
aversion in understanding decision making behavior (e.g. Camerer and Weber (1992)).
and models taking such aversion into account have provided important insights in a
variety of economic applications including auctions.(1)

We model ambiguity aversion using the maxmin expected utility (MMEU) model of
Gilboa and Schmeidler (1989). Here, the agents have a set of priors (instead of a single
prior) on the underlying state space, and the payoff from any action is the minimum
expected utility over the set of priors. In our setting, each buyer considers a set of
distributions that contain the distribution from which the other buyer’s valuation is
drawn and each action (from the mechanism proposed by the seller) is evaluated based
on the minimum expected utility over the set of distributions. The buyer then chooses
the best action from the set of actions. To make a minimal departure from the standard
model, we assume that the seller is ambiguity neutral(2) and both the buyers and the
seller are risk neutral. In other words, apart from relaxing the unique prior assumption,
our framework is as close to the standard IPV model as possible.(3),(4)

(1)For example, using such preferences Mukerji (1998) explains the incompleteness of contracts and
Mukerji and Tallon (2004) explain the puzzling absence of wage indexation. An application to auction
theory is developed by Lo (1998), who shows that if bidders are ambiguity averse, the revenue equiva-
lence theorem (which holds in the standard IPV setting) is violated - sealed bid first price auctions raise
more revenue than sealed bid second price auctions.

(2)Assuming the seller to be ambiguity neutral allows us to focus on revenue extraction as the seller’s
objective. This also allows us to compare our results directly with the standard results from mechanism
design in a Bayesian setting. If the seller is also ambiguity sensitive, maximum surplus extraction is
not necessarily the objective while designing the mechanism. Studying such issues are interesting, but
beyond the scope of the work here.

(3)With multiple priors, the terms “independent” and “correlated” need to be used carefully. For the
most part we avoid using these terms. The important point is that in the standard model, even with risk-
neutrality, full surplus extraction is not possible when the beliefs do not depend on one’s own valuation
(i.e. in the independent case). Hence it is worth emphasizing that we consider the case where the sets
of probability distributions are the same for every buyer and do not depend on a buyer’s own valuations.
As shown by Bose et al. (2006), the optimal static mechanism does not extract full surplus in this setting.

(4)As in other applied mechanism design papers, we start at the interim stage where agents know their
own types (valuations, beliefs etc.). Of course, one could be interested in the ex ante stage also where
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As noted before, we use a version of MMEU known as “epsilon-contamination.” A
recent paper by Kopylov (2008) provides an axiomatization for this formulation (see
also Nishimura and Ozaki (2006)). The model we consider has a seller whose valua-
tion of the object is (normalized to) zero. There are two potential buyers and the seller
does not know either buyer’s valuation but believes that the valuations are determined
based on independent draws from the distribution F(v) having support [0, 1]. Each
buyer knows his own valuation and ambiguity regarding the valuation of the other
buyer is represented using the epsilon-contamination model. The specification is in
widespread use for its intuitive qualities and analytical tractability. It is used exten-
sively in the literature on robust statistics, starting with (as far as we are aware) Huber
(1973). Examples from the economics literature include Chen and Epstein (2002), Chu
and Liu (2002), Mukerji (1998), Nishimura and Ozaki (2004).

Formally, let P denote the set of all distributions on [0, 1]. Fix any ε ∈ (0, 1]. The set of
priors is then given by

PB(ε) = {G ∈ P : G = (1− ε)F + εL for some L ∈ P}

Intuitively, for some ε > 0, the buyer puts a weight of (1− ε) on the other buyer’s val-
uation being drawn from the distribution F, but puts ε weight that the valuation could
be drawn from some other distribution. As Kopylov (2008) shows, the weight (1− ε)
can be interpreted as the agent’s confidence in the subjective belief F; alternatively, the
weight ε can be thought of as an index of ambiguity aversion.

Let us now describe our Modified Dutch Mechanism (MDM). The seller declares a
decreasing sequence of prices {p1, .., pn} at the beginning. At stage k, provided the
item has not been sold up to that point, the seller randomly (with equal probability of
selecting any one buyer) approaches a buyer and offers the item at price pk. This offer
is secret in the sense that the other buyer is not made aware of this. If the approached

some draw by nature determines the agent’s types. Note, however, that the ex ante stage requires more
careful handling here compared to the standard case. For example, if the agents believe that nature
draws valuations of both buyers from the same distribution, knowledge of own value provides some
information about the set of distributions from which the other’s valuation is drawn. To model the ex
ante stage so that the problem remains similar in spirit to the standard IPV model, one would then need
an assumption such as nature drawing values from distributions which are themselves chosen according
to some independent but unknown (ambiguous) process.

It can be shown however, that even if nature draws both valuations from the same distribution, our
results remain unaffected. However, since full surplus extraction is possible even in the unique prior
case when beliefs vary with valuations, we do not focus on such situations.
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buyer passes, the seller approaches the other buyer (also in secret) and offers the item
at the same price pk. If the second buyer refuses as well the game goes to stage k +
1. If both buyers refuse at stage n, the seller keeps the item. We assume that the
randomization is independent across periods.

As in any mechanism design exercise the seller commits to the mechanism (including
the price offered in each period). Assuming that the buyers are approached randomly
and secretly in every period only helps to keep the mechanism symmetric. However,
this latter feature serves only an aesthetic purpose; the results do not depend on the
mechanism being symmetric.

Our surplus extraction result states the following. Fix a preference parameter ε > 0.
There is a δ∗(ε) such that for any given δ < δ∗(ε) and any η > 0, the seller can construct
an MDM (i.e. choose a price sequence) such that the mass of buyer types who do not
buy is at most [0, η] (i.e. the reserve type is at most η), and the types who buy do so at
a price such that their ex post surplus is at most δ. Since both δ and η can be arbitrarily
small, the seller can therefore extract almost full surplus.

The basic intuition for the result is that for any v and any price p where p < v, the
buyer gets a sure payoff of v − p from buying at p, whereas the payoff from waiting
one more period is v − p + ∆p times the probability that the current buyer obtains
the item in the next period, where ∆p is the difference between p and the next lower
price. With epsilon contamination preferences, the buyer attaches at least probability
ε that the item gets sold before he has the chance to obtain it next period. Thus the
loss from waiting is at least ε (v− p) whereas the gain from waiting is of the order ∆p.
For any given ε, since ∆p can be made arbitrarily small independent of the value of ε,
the gain from waiting can be made arbitrarily smaller than the loss from waiting. Put
differently, even though purchasing at price p results in the ex post surplus being at
most δ, the price sequence is constructed in such a way that this is still larger than the
(expected) surplus from waiting to buy at a lower price.

Note that this cannot happen in the standard (i.e. the unique prior) model. There, for
any type v, as long as the seller sells to types below v with positive probability, the
surplus of type v cannot be made arbitrarily small. Roughly speaking, in the absence
of ambiguity, given that F is smooth, the expected gain and expected loss from waiting
shrink at the same rate as the price gap becomes smaller.
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The above discussion also shows the importance of the special structure of the set of
priors in our case. The ε-contamination model assigns an epsilon weight to even very
unlikely events - and therefore a bidder always assigns an epsilon weight to the event
that he loses if he waits for the price to drop by even a very small amount. We exploit
precisely this feature to extract full surplus. Essentially, the full surplus extraction
result requires that the set be such that even though expected gain from waiting can
be made vanishingly small by making the price gaps small, the expected loss from
waiting is bounded away from zero. We discuss this issue further in section 6.

As mentioned before, Bose et al. (2006) (specifically, see section 4) study optimal auc-
tion design for the same environment that we consider in this paper. They use the
revelation principle to design the optimal mechanism. In the mechanism, types earn
positive information rent, and further, the rents approach those found in the unique
prior case as ε → 0. Our dynamic mechanism, in contrast, extracts almost all rents for
an arbitrarily small ε and is thus discontinuously different from the unique prior case.

Even though the full surplus extraction result is special to the specific properties of the
ε-contamination, a general insight arising from our work is about the applicability of
the standard revelation principle to settings with ambiguity. The revelation principle
states that the outcome of any equilibrium from any mechanism can be replicated by a
truthful equilibrium of a static direct mechanism. Now, in a standard expected utility
setting (where, as usual, agents use Bayes Rule to update beliefs), preferences satisfy
the property of dynamic consistency (over acts) and hence ex ante optimal decisions
coincide with optimal decisions conditional on some event. Note that this is necessary
for the revelation principle to hold: otherwise there would be no guarantee that a direct
mechanism, which is by construction static, could replicate an equilibrium outcome
of a dynamic mechanism which can provide extra information to agents before they
make their decision. As we discuss with the help of a simple example in section (6.1.1),
in settings with ambiguity, ex ante decisions can differ from conditional ones, and in
our dynamic mechanism the agents must repeatedly make decisions conditioning on
new information arising in course of the mechanism. We show that in the presence of
ambiguity, dynamic mechanisms may have additional power over optimal static ones
even in situations where the two types of mechanisms do not produce different results
in ambiguity neutral settings. This also implies that the standard revelation principle
can fail in environments not characterized by a unique prior.
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While failure of dynamic consistency provides the additional power to the dynamic
mechanism over optimal static ones, this also implies that our theory must provide a
consistent way of reconciling preferences at different time periods. Recently, Sinis-
calchi (2006) has provided an axiomatic foundation of such sophisticated dynamic
choice for maxmin utility and full Bayesian updating and we follow this approach
as the foundation for dynamic behavior in our model. Agents are sophisticated in
the sense that they correctly anticipate future preferences while making current plans.
Further, (conditional) preferences are defined over trees, rather than Savage acts. As
discussed in section 6.1.2, this gives us a coherent theory of dynamic choice, and allows
us to abstract from the issue of dynamic consistency over acts. In constructing formal
propositions, we repeatedly use the idea that agents are sophisticated and therefore
make “correct” contingent plans, precluding the problem of future deviations from a
current plan. To be specific, our equilibrium is characterized by “cut-off” types, where
a cut-off type vk is the lowest type that buys at price pk. The set of types is then par-
titioned into intervals of the form (vk−1, vk] such that types in (vk−1, vk] plan to buy in
period k at price pk. We require equilibrium to be perfect, a particular implication of
which is that when a type accepts the seller’s offer as its (conditional) optimal action in
that period, it correctly anticipates its own future behavior (and hence future payoffs)
were it to reject the current offer.

While in a unique prior setting the optimal auction under IPV does not extract full sur-
plus, a different strand of the literature considers environments with correlated types
where it is possible to do so (see Crémer and McLean (1988), Crémer and McLean
(1985),McAfee and Reny (1992)). Note however that unlike the mechanisms in this
literature, ours do not involve any extraneous lotteries and satisfies limited liability.(5)

It is also important to note that our mechanism meets better the criticism of the so-
called Wilson doctrine– the idea that the mechanism should not require the designer
to possess detailed knowledge of the environment–and is therefore an example of more
robust mechanism design. The seller here does not need to know the exact distribution
F, nor the specifics of the contaminating set of distributions (beyond the fact that it has
certain properties - see section 6.3). We do assume in the formal model that the seller
does know the value of ε; note however that the seller is not required to know the exact
value of ε as long as it is known that there is a bound such that the true value of ε lies

(5)Robert (1991) shows that the Cremer-McLean result relies crucially on risk neutrality as well as
limited liability. While we do not explicitly consider risk-aversion, it is easy to show that our basic result
is unchanged if bidders are risk averse.
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above this bound.

A final comment on the nature of the ambiguity in our model. Here each buyer faces
ambiguity with respect to the other buyer’s valuation distribution. There is neither
any ambiguity about the strategy of the other buyer nor does the seller introduce any
ambiguity through the mechanism. However, introducing any of these other sources
of ambiguity would only make it easier for us to prove the central result. To see this,
note that the central idea in the construction of the MDM is to give each buyer a choice
at each stage between an ambiguous alternative and a sure payoff. The mechanism
then exploits the ambiguity of one of the alternatives to make the sure payoff more
attractive, which helps extract surplus. Adding extra sources of ambiguity does not
change the sure payoff, but does affect the ambiguous alternative, which makes sur-
plus extraction easier.

Earlier work in the area of robust Bayesian statistics have studied dynamic inference
problems facing a decision maker with maxmin preferences. The literature shows
that the juxtaposition of maxmin preferences with full Bayesian updating can give rise
to surprising results (e.g. Augustin (2003), Grunwald and Halpern (2004), Seidenfeld
(2004)). However, as far as we are aware, this paper is the first to study the question of
dynamic mechanism design under such non-EU preferences.

The rest of the paper is organized as follows. The next section presents the model.
Section 3 presents our mechanism, and characterizes equilibria in the induced game.
The main result of the paper appears in section 4, and section 5 presents a numerical
example. Section 6 discusses some aspects of the model, and section 7 concludes.
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2 The Model

2.1 The Basic Set-up

There is a seller with one indivisible object for sale. The seller’s valuation of the item is
(normalized to) zero. There are two potential buyers with valuations of the object lying
in the interval [0, 1].(6),(7) Own valuation is private information of each buyer. Each
buyer believes that the other’s valuation is drawn from some distribution from a set
of distributions on [0, 1]. The preferences of the buyers is represented by the maxmin
expected utility (MMEU, henceforth) model of Gilboa and Schmeidler (1989). Briefly,
if Ω is a set, P is a set of distributions on Ω, and F is a set of acts from Ω to the real
line R, then an act f ∈ F is evaluated according to the rule

min
p∈P

∫
u( f )dp

where u is some real valued function. In our context, we assume buyers are risk-
neutral.

The seller is (risk and) ambiguity neutral(8) and has a prior over a buyer’s valuation
given by the distribution F(v) with a continuous density f (v) > 0. As mentioned in
the introduction, we model the set of priors representing buyer’s ambiguous beliefs
using the epsilon contamination model.

Let P denote the set of all distributions on [0, 1]. Fix any ε ∈ (0, 1]. The set of priors
is then given by PB(ε) = {G ∈ P : G = (1− ε)F + εL for some L ∈ P}.(9) As noted
in the introduction, Kopylov (2008) has recently provided an axiomatic foundation for
preferences to be represented by the epsilon contamination model. Note also that other
than non-unique priors, the rest of the model conforms as closely as possible to the IPV
model standard in auction theory.

(6)We could, for the sake of generality, represent the buyer’s possible valuations to be the set [v, v].
However, we do allow the seller to have a non-trivial reserve price, and, as the result below shows, the
normalization to the space [0, 1] is harmless, and reduces algebraic clutter.

(7)Generalization to arbitrary N > 2 buyers is straightforward.
(8)See footnote (2).
(9)We use the same F to represent the seller’s beliefs as well as to generate PB to save on notation.

However, F being focal is inessential; any other distribution in place of F to generate the set PB would
work just as well.
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2.2 Extension to a dynamic setting

The Gilboa-Schmeidler model is atemporal. We need to extend this static choice model
to suit the specific context of our dynamic mechanism. To this end, we assume that
the buyer’s have maxmin - in particular, epsilon contamination - preferences at every
stage, and choose actions to maximize the minimum expected payoff from a set of
updated distributions. In the setting with ambiguity, updating a distribution can be
tricky. We discuss this issue in detail in section 6.2.

Specifically, based on the available information, an agent updates F and the distribu-
tions in the set P , and then chooses the action that maximizes the minimum expected
value of payoff where the minimizing set of distributions is obtained by taking a con-
vex combination of updated F (with weight (1− ε)) and the updated distributions in
P (with weight ε). This procedure is in keeping with the interpretation of ε that arises
from the axioms of Kopylov (2008), where the weight (1− ε) can be interpreted as the
decision makers degree of confidence in her subjective belief F.(10)

The updating rule we use is the “full Bayesian” (also called “prior-by-prior”) rule. This
has been used in economics as well as in the extensive literature on robust statistics.(11)

Even though this is probably the most well known rule, other rules have been proposed
in the literature. We discuss this issue in more detail in section 6.2.

Finally, we assume that the dynamic behavior of the buyers is sophisticated. They form
their decisions based on the entire game tree, correctly anticipate their own behavior
at future dates, and form consistent plans. Recently, Siniscalchi (2006) has provided an
axiomatic foundation of such sophisticated dynamic choice for maxmin utility and full
Bayesian updating. We follow the same idea here and posit that the (conditional) pref-
erences are defined over trees, rather than acts; we comment more on this in section 6.1
below.

(10)Alternatively, the weights ε and (1− ε) can be used simply to generate the set of priors of the Gilboa-
Schmeidler model. In this case the mixture is done only once (at the initial stage) to generate the set G,
and in subsequent periods the distributions in G are updated. However, even though the algebraic
expressions for the updated minimizing distributions would be different if one follows this alternative
approach, this would not affect our main result.

(11)See, for example, Walley (1991), Rios and Ruggeri (2000), Epstein and Schneider (2003). For an
axiomatization of this rule, see Jaffray (1994), Pires (2002). See Siniscalchi (2006) for an axiomatization
for an approach that is closest to the one we take in this paper.
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This completes the description of the general aspects of dynamic choice. Next, we
specify the mechanism, which clarifies the precise nature of dynamic choice facing
the bidders. The strategies of the bidders and the nature of equilibria induced by the
mechanism are then discussed in section 3.2.

3 The Modified Dutch Mechanism

We now describe the Modified Dutch Mechanism (MDM). The mechanism works as
follows. At the beginning, the seller declares a price sequence {p1, p2, ...pn} where pt

is the asking price in period t. In each period t, for t = 1, 2, ..., n, the seller randomly
chooses a buyer to approach first and offers the object at price pt. The randomizations
are independent across periods and each buyer has equal chance of being asked first.
If the buyer buys at that price the game is over; otherwise the seller approaches the
other buyer and offers the same price. If the second buyer accepts, the game is over;
otherwise we go to period t + 1 if t < n and the game is over (and the seller keeps the
item) if both buyers refuse even in period t = n. We assume that the buyers are asked
in secret, so that in every period, a buyer, when asked by the seller, does not know
whether he is being asked first or is being asked because the other buyer has refused
the current offer.

The mechanism is a modification of a discrete price Dutch auction; in particular we
assume–as is standard in dynamic auctions–that there is no discounting between pe-
riods. The seller’s ex post payoff is the price at which the item is sold if it is sold and
zero otherwise. The ex post payoff of a buyer of type v is v− p if it obtains the item at
price p and is zero otherwise.

We maintain the standard assumption of mechanism design literature that the seller,
the mechanism designer in our context, can commit to the mechanism. In particular this
means that the price sequence declared at the beginning of the game and the random
procedure of approaching buyers every period is adhered to as the game progresses.
Put differently, once a mechanism is chosen, only the two buyers - and not the seller
- are the players in the game induced by the mechanism. We also make the standard
assumption that all of the above is common knowledge.
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3.1 The Price Sequence

As mentioned before, the MDM consists of a price sequence {p0, p1, ..., pn} where pk

is the asking price in period k. Our objective is to show that for any ε > 0, there is an
MDM such that in the equilibrium of the game resulting from it, the seller can extract
almost all surplus from almost all types. Let us start by describing how the required
price sequence is constructed. For δ > 0, let {p0, p1, ..., pn} be the price sequence where

p0 = 1 and

pk =
(1− δ)k

(1− δ + εδ/2)k−1 for any k > 0 (3.1)

We remind the reader that ε is a preference parameter; we explain the role of δ shortly.
Let ∆k denote the “price gap” pk − pk+1, where

p0 − p1 ≡ ∆0 = δ, and

pk − pk+1 ≡ ∆k =
(

1− δ

1− δ + εδ/2

)k εδ

2
for any k > 0 (3.2)

Note therefore that both pk, and the gap ∆k, are decreasing in k. It also follows directly
that

lim
n→∞

n∑
k=0

∆k = 1

Since in the limit the prices cover the entire unit interval, we have the following prop-
erty, which is important for later results:

Property: Given any η ∈ (0, 1), there exists an integer T such that
∑T

k=1 ∆k > 1− η.

Given any η ∈ (0, 1), let T∗ be the smallest integer for which the above inequality is
satisfied. We set n = T∗, which defines the last offered price pn.

The basic idea of the surplus extraction result (derived in section 4) is then as follows.
The prices are constructed so that they cover the entire unit interval in the limit. The
parameter δ controls the price gaps ∆k, k > 0. For any given positive ε - no matter how
small - we can specify δ so that all price gaps are “small” compared to ε. This is the
crucial feature that allows us to exploit the ambiguity sensitivity of bidders: for any
ε, there is a δ∗ such that for any choice of δ < δ∗ the gain from waiting can be made
arbitrarily small compared to the loss from waiting, making it optimal for bidders to
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stop “within δ” of their values. This means all participating types get a surplus of at
most δ.

The remaining question, then, is to see which types participate. By suitably choosing n,
the price sequence can be designed so that in equilibrium, the lowest type that plans to
purchase the good has valuation η. Therefore all types above η participate and obtain
a surplus of at most δ. Since both δ and η can be made arbitrarily small, the result
follows.

3.2 Strategies and equilibria

As explained above, the MDM results in a sequential (extensive form) game of incom-
plete information. A strategy of a type in this game is a plan to accept or reject the
seller’s offer at every information set (i.e. at every instance where the seller makes the
offer) given the history of the game so far. An equilibrium is a pair of strategies, one
for each buyer, satisfying the standard conditions: the pair is commonly known and
each is a best response with respect to the other. Further restrictions on the structure
of behavior of buyers are discussed below.

First, we make the standard assumption that the game itself is common knowledge.
Each buyer faces ambiguity about the type of the other buyer, but, as in the standard
models, knows how each type behaves in equilibrium. Previous research has studied
static mechanisms in exactly this context and since our objective is to focus on the
role played by dynamic mechanisms, we preserve the other aspects of the framework.
Note that we are ruling out strategic ambiguity: players do not doubt each other’s
rationality. However, as noted in the introduction, other sources of ambiguity only
makes it easier to show the surplus extraction result of this paper.

Second, as noted in section 2, buyers have maxmin preferences throughout the game,
use the full Bayesian updating rule, and form consistent plans. As noted, Siniscalchi
(2006) provides an axiomatic foundation of such sophisticated dynamic choice with
maxmin utility and full Bayesian updating.

Third, the equilibrium strategy of a buyer is perfect in the sense that just like in the stan-
dard case, the same consistency requirement is imposed on the off-the-equilibrium-
path information sets as well. A type’s equilibrium decision in any period (i.e. to ac-
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cept or to reject the seller’s offer) is optimal not only with respect to the other buyer’s
strategy and the history of the game but also with respect to the knowledge of its own
behavior at all future information sets, including those that will not occur if the type is
to carry out its own equilibrium plan. We discuss this issue further in section 6.1 .

3.3 Characterizing Strategies

In this section, we discuss a particularly convenient way of representing strategies in
the game induced by the MDM.

Recall that at each price pk, k ∈ {1, . . . , n}, a buyer, if asked by the seller, must choose
one of two actions: accept or reject the seller’s offer. A strategy of a type of buyer i is
therefore a plan to accept or reject the seller’s offer at each price given the history up
to price pk−1. We assume that a buyer type accepts when indifferent between accept-
ing and rejecting and buys at the earlier period if indifferent between buying in two
different periods.(12)

An important feature of the strategies is that the decisions to buy by different types
must have a certain monotonicity property. Specifically, suppose that pk is the highest
price that a buyer of type v accepts. This means that the payoff v − pk is better than
the best (maxmin) expected payoff from either not accepting the seller’s offer at all or
accepting some future price. Since all types start with the same set of priors and use
the same rule to update the set, any type v′ > v must then also optimally accept the
offer pk rather than to continue. If pk is the first price at which type v plans to accept,
then the highest price that all higher types plan to accept must be at least as high as pk.
And similarly, the highest price that types below v accept is either pk or a lower price.

For each price pk there is a set of types (possibly empty) who buy at pk. Note that

(12)Note that this need not be an entirely innocuous assumption. Since at every node, a buyer can ei-
ther accept or reject, the strategies are pure. In a non-EU setting, an agent who is indifferent between
two pure actions might nevertheless strictly prefer a randomization over them to either pure action (see
Crawford (1990) for the seminal contribution). However, in our case allowing for randomization does
not create any problem. This is because the action “accept” gives rise to a sure (and hence unambigu-
ous) payoff. And an implication of the axiom certainty independence (see axiom A.2. in Gilboa and
Schmeidler (1989)) is that (even though there may be gains from hedging ambiguous acts) there is no
gain in hedging an ambiguous and an unambiguous act. A comment by an anonymous referee helped
us simplify the exposition of this point significantly.
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monotonicity implies that if pk is the highest price accepted by types v and v′, where
v > v′, then the same is true of any type v′′ ∈ (v′, v). Therefore such a strategy gives
rise to a vector of n cut-offs {v1, . . . , vn} where 1 > v1 > v2 > . . . > vn > 0, and where
types in the interval [v1, 1] plan to buy at p1, and types in the interval [vk, vk−1) plan to
buy at pk, k ∈ {2, . . . , n}.

To continue, we see that any strategy satisfying monotonicity must give rise to a vec-
tor of n cut-offs as described above. Thus without loss of generality we can restrict
attention to such strategies, and refer to these as “cut-off strategies.” Note that any
such cut-off strategy currently places no restriction on the parts of the strategies which
specify actions at prices below the highest acceptable price. For a strategy to be part
of a perfect equilibrium, further restrictions are required and we clarify these once we
establish the next result.

Next, we define an “interior cut-off strategy.”

Definition 1 Interior Cut-off Strategy: A strategy of buyer i, i ∈ {1, 2}, is called an inte-
rior cut-off strategy if there exists a vector vi = (vi

1, . . . , vi
n), 0 6 vi

n < vi
n−1 < . . . < vi

1 < 1,
such that for k > 1, the highest price accepted by the non-degenerate interval of types [vi

k, vi
k−1)

is pk, where vi
0 ≡ 1.

3.4 Characterizing Equilibria

In this section we discuss the properties of equilibria that results from the game in-
duced by the MDM. We show that when the price sequence {p1, ..., pn} is chosen ap-
propriately, any equilibrium has the property that for every price, there are sets of
types of positive measure for both buyers who plan to buy at that price. (For the rest
of the paper, the phrase “positive measure” is used with respect to the distribution F.)
We also define perfect cut-off strategy, i.e. cut-off strategies that are part of a perfect
equilibrium, and show existence of a symmetric equilibrium where both buyers follow
the same cut-off strategy.

For the rest of the section, we fix the preference parameter ε > 0.

The first result calculates the difference between the payoffs from buying at the current
price and waiting for the next lower price. This calculation is useful later when we
show that exactly such a calculation features in deriving equilibrium cut-off vectors.
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Lemma 1 Suppose the item has not been sold in periods 1, . . . , k − 1 and in period k < n
the seller offers the item to buyer i at price pk (given by equation (3.1)). Suppose j follows an
interior cut-off strategy that gives rise to a vector of cut-offs vj = (vj

1, . . . , vj
n). For any type

v of i the difference in payoff from buying immediately at price pk versus waiting one period to
buy at price pk+1 is

Gi
k(v) = v− pk − (1− ε)(v− pk+1)Hi

k (3.3)

where

Hi
k ≡

F(vj
k) + F(vj

k+1)

F(vj
k) + F(vj

k−1)
(3.4)

where vj
0 ≡ 1.

The proof is given below. Derivation of the conditional probabilities Hi
k used in the

proof is provided in section A.1 in the appendix.

Proof: If buyer i accepts the price pk, the payoff is v− pk. If the buyer waits to buy in
period k + 1 and manages to obtain the item then the ex post payoff is v− pk+1.

It is shown in section A.1 in the appendix that Hi
k is the probability under the distribu-

tion F that i obtains the item at pk+1 given that he refuses the current offer of pk. Under
epsilon contamination preference, the buyer’s expected payoff from waiting one pe-
riod is given by (1− ε)(v− pk+1)Hi

k. Therefore Gi
k(v) is as specified. ‖

The next result shows that all equilibrium strategies are interior cut-off strategies when-
ever the price gaps are small. In other words, this shows that for each price there is a
positive measure of types of each bidder who plan to buy at that price. The result plays
a crucial role in characterizing all equilibria.

Proposition 1 There exists δ > 0 such that for all δ < δ, the equilibrium strategies of both
buyers are interior cut-off strategies.

The formal proof is relegated to the appendix (section A.2). Here we provide a brief
sketch of the basic idea behind the result. Suppose the strategy followed by buyer j
is not an interior cut-off strategy. In other words, the strategy has “gaps” in the sense
that there are prices such that no type of buyer j plans to buy at those prices.

For example, suppose there are no types of j who would accept offers of pk−` through
pk, but there are types of j who buy at pk−`−1 and also types who buy at pk+1. Let
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Figure 1: A cut-off strategy for buyer i under n = 5 with gaps at p2 and p3 - there are no types

of bidder i who buys at p2 or p3. Our results rule out all gaps in equilibrium.

vj
k−`−1 be the lowest type of j who buys at price pk−`−1. Clearly, this type is indifferent

between buying at pk−`−1 and waiting till the price drops to pk+1.

Now, according to the supposed equilibrium, all types in (pk+1, vj
k−`−1) refuse price

offers pk−` through pk. Note first that if ` is at least 1, and j does not plan to buy
at prices pk−` through pk, the best response of i should be not to buy at prices pk−`

through pk−1. It is possible that some type of i may want to buy at price pk; however,
the important point is that a gap from j will give rise to a corresponding gap from i.

Consider now vj
k−`−1, the lowest type buying at pk−`−1. The type is indifferent between

buying at pk−`−1 and waiting till pk+1. Therefore a type just below (but arbitrarily close
to) vj

k−`−1 is approximately indifferent between those options. An important part of the
argument is showing that as δ becomes small so that the gaps between prices decrease,
the term H j

k−`−1, which is the conditional probability (under distribution F) that j ob-
tains the item in period k + 1 if he passes in period k− `− 1, is approximately equal to
H j

k, the conditional probability (again, under F) that j obtains the item in period k + 1
if he passes in period k.

The above argument is used to derive a contradiction. In the proposed equilibrium,
a type just below vj

k−`−1 is approximately indifferent between pk−`−1 and pk+1 (and
in particular is not supposed to buy at prices pk−` through pk). However, given that
H j

k−`−1 ≈ H j
k, and pk < pk−`−1, in period k when the seller actually offers the price pk,

such a type strictly prefers to buy at pk rather than wait till period k + 1, contradicting
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the supposed equilibrium behavior. It is essentially this argument that rules out any
gaps in the strategies adopted by either player in equilibrium, proving the stated result.
While this is the basic intuition, the formal proof has to carefully check several cases,
and is somewhat lengthy. We have relegated it to the appendix.

Recall that our definition of an interior cut-off strategy above did not impose any out-
of-equilibrium restrictions. We now impose such restrictions and define a perfect cut-
off strategy. For a strategy to be part of a perfect equilibrium, it must specify behavior
that is optimal at every information set given the (correct) assessment of the behavior
of the other player as well as one’s own behavior at every continuation information
set. Specifically, if, say pk(v) is the highest acceptable price for type v, it must be better
for v to accept pk(v) than to reject and act optimally at every (off-equilibrium-path)
future occasion if asked by the seller. The following result shows that for the appro-
priately chosen price sequence, such optimality simply implies that v must accept all
subsequent (off-equilibrium-path) offers by the seller as well.

Lemma 2 Let pk(v) be the highest acceptable price for type v of buyer i, i ∈ {1, 2}. For δ < δ,
optimal behavior at any subsequent information set requires that type v also accepts all prices
lower than pk(v).

Proof: From Proposition 1 we know that for δ low enough equilibrium strategies are
interior cut-off strategies. Hence for every price, there are types of positive measure
who plan to buy at that price.

Next, suppose pk is the highest acceptable price for a type v. Suppose, to the contrary,
that type v does not find some price pk+`, ` > 1, acceptable. From Proposition 1,
there is some type v′ for whom pk+` is the highest acceptable price. The monotonicity
property then immediately gives a contradiction. If v′ > v, then the higher price pk

cannot be acceptable to v. On the other hand, if v′ < v, then since v′ finds it optimal to
accept when offered pk+`, the same must be true of the higher type v.

Thus, if pk is the highest price type v accepts in equilibrium, then the (off-equilibrium-
path) strategy of type v is to accept every lower price as well.‖

Therefore, a perfect cut-off strategy is an interior cut-off strategy with the additional
requirement that if a type accepts any price, it must also accept all subsequent prices.
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From definition 1, the highest price accepted by a non-degenerate interval of types
(vi

k−1, vi
k] is pk. It follows that for a perfect cut-off strategy, vi

k is the lowest type of
i who buys at pk, and is indifferent between accepting pk or continuing for just one
more period and accepting the next available price pk+1.

We now use the results above to characterize perfect cut-off strategies. Since any equi-
librium involves such strategies, this characterizes all equilibria.

Proposition 2 For δ < δ, in any equilibrium the strategy of any bidder i is a perfect cut-off
strategy vi = (vi

1, . . . , vi
n) where vn = pn. Further, for 1 6 k 6 (n− 1), vi

k ∈ (pk, vi
k−1),

where v0 ≡ 1, and vi
k is given by

vi
k = pk + ∆k

(1− ε)Hi
k

1− (1− ε)Hi
k

where Hi
k is given by equation (3.4). For any given vj, vi

k is unique.

Proof: For δ small, it follows from Lemma 2 that in any equilibrium buyers must
use a perfect cut-off strategy. From Lemma 3 (in Appendix A.2), we have vi

n = pn.
From Lemma 1 we know that if the strategy of j gives rise to the cut-off vector vj =
(vj

1, . . . , vj
n), then for any type v of i the difference in payoff from buying immediately

versus waiting one period to buy at price pk+1 is given by Gi
k(v). Since the type vi

k is
the lowest type that buys at k, it must be that vi

k is determined by solving Gi
k(v) = 0

for v.

Now, clearly, Gi
k(pk) < 0. Therefore vi

k > pk. Since (as shown by Proposition 1) a
positive measure of types of i plan to buy at each price, we also have vi

k < vi
k−1. Thus

it must be that Gi
k(vk−1) > 0. Further, Gi

k(v) is strictly increasing and continuous in
v. Therefore if an equilibrium (vi, vj) exists, for any given vj there exists a unique
vi

k ∈ (pk, vi
k−1) such that Gi

k(vi
k) = 0. Finally, Gi

k(vi
k) = 0 implies (from equation (3.3))

vi
k − pk = (1− ε)(vi

k − pk+1)Hi
k = (1− ε)(vi

k − pk + ∆k)Hi
k. Solving, we get the stated

equation.‖

The result above characterizes all equilibria. Finally, the next result proves existence.
The proof is essentially an application of Brouwer’s fixed point theorem and has been
relegated to the appendix.

Proposition 3 There is δ > 0 such that for any δ < δ, a symmetric equilibrium exists.
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4 The Main Result

We now present the main result of the paper which follows directly from the charac-
terization results derived in the last section. For any preference parameter ε > 0, the
seller can design an MDM such that the object is sold to almost all types and the types
who buy pay a price that is arbitrarily close to their valuation of the item. More specif-
ically, for any given ε > 0, there is δ∗(ε) such that for any chosen δ ∈ (0, δ∗(ε)) and
η > 0, the reserve type is no greater than η (i.e. the item is sold if at least one buyer’s
valuation is greater than η) and no buyer type obtains (an ex post) surplus greater than
δ. (Of course, the types that do not buy get zero surplus. However, the seller makes
zero revenue from them as well and so an important point of the result is that while
extracting almost all surplus from the types that buy, the mass of non-buying types can
be made to be arbitrarily small.) Since the set of types who are excluded are at most
[0, η] and the ex post surplus of the types who buy is at most δ, and since both δ and η

can be arbitrarily small, the result follows.

Proposition 4 For any preference parameter ε > 0, there exists δ∗(ε) > 0 such that for any
δ < δ∗(ε), and η > 0, there is an MDM such that in any equilibrium of the game induced by
the MDM, the item is sold if at least one buyer has valuation greater than η and no type obtains
an ex post surplus greater than δ.

Proof: The results in the previous section show that for any ε > 0, there is δ∗(ε) > 0
such that whenever δ < δ∗(ε), an equilibrium exists, and all equilibria can be charac-
terized as in Proposition 2. Further, as noted in section 3.1, for any η ∈ (0, 1), there
exists an integer T such by choosing n = T, the price sequence (which consists of n
prices) of the MDM covers at least a fraction (1− η) of types so that the item is not
sold to at most types in [0, η]. Thus, it only remains to show that no type that buys gets
an ex post surplus greater than δ.

Now, since types in [vk, vk−1) buy at price pk, the ex post surplus of any type buying
at pk is at most vk−1− pk, which is bounded above by δ as follows: From the necessary
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conditions for equilibrium presented in Proposition 2, we have

vk−1 − pk = pk−1 − pk + ∆k−1
(1− ε)Hk−1

1− (1− ε)Hk−1

< ∆k−1 + ∆k−1
(1− ε)

ε

=
∆k−1

ε
=

δ

2

(
1− δ

1− δ + δε/2

)k−1

< δ

where the second step follows from the fact that Hk−1(vk−1) < 1. The final inequality
follows from the fact that the coefficient of δ is less than 1 for any ε > 0. This completes
the proof.‖

As mentioned in the introduction, the basic intuition for the result is that for any v and
faced with any price p where p < v, a buyer can get a sure payoff v− p from buying
now, or wait to be offered a lower price but face the prospect that the other buyer
accepts it before this can happen. As explained before, the loss from waiting is at least
(v− p)ε whereas the gain from waiting is of the order ∆p. For any given ε, by making
∆p successively small, the gain from waiting can be made arbitrarily small. Further,
the price sequence is constructed so that v− p is at most δ, and even when δ is small,
the loss from waiting is still larger than the gain from waiting.

It is also worth reiterating that this cannot happen in the standard unique prior model.
Roughly speaking, in the absence of ambiguity, given that F is smooth, the expected
gain and expected loss from waiting shrink at the same rate as the price gap becomes
smaller.

5 A Numerical Example

Suppose F is the uniform distribution on the unit interval. For any k < n the equation
for vk is

vk = pk + ∆k
(1− ε)Hk

1− (1− ε)Hk

where

Hk =

(v1 + v2)/(1 + v1) for k = 1, and

(vk + vk+1)/(vk−1 + vk) for 2 6 k 6 (n− 1)
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Given vn = pn, the equations can be solved for any given n. It can be directly verified
(as well as already noted in Proposition 3) that there is a unique positive solution for
any vk.

The following table shows a few steps (n = 7) for δ = 0.05, and ε = 0.2. In this case we
extract a surplus of at least 0.95 of value from the top 8% types. The prices pk and cut-
offs vk are as shown. The right hand column shows the maximum rent obtained by any
type. The rent obtained by any type v ∈ [v(k+1), vk) is given by v− p(k+1) 6 vk− p(k+1),
which is the maximum rent.

Price Vk Maximum Rent
0.950 0.968 0.0500
0.945 0.964 0.0232
0.940 0.959 0.0243
0.935 0.954 0.0241
0.930 0.949 0.0240
0.925 0.943 0.0238
0.920 0.920 0.0228

Continuing in this fashion (i.e. by increasing n beyond 7), it is possible to extract a rent
of at least a fraction 0.95 of value from any fraction of types less than 1.

It is interesting to compare this with the outcome of the static optimal mechanism.
Bose et al. (2006) show that the optimal (static) direct revelation mechanism is a full
insurance mechanism in which the reserve type v∗ is such that v∗ − (1− ε)1−F(v∗)

f (v∗)
= 0,

and the (expected) surplus of type v > v∗ is (1− ε)
∫ v

v∗ F(y)dy. If F is uniform on the
unit interval, the reserve type is (approximately) 0.44, and the surplus is approximately
0.32 for v = 1. To have a direct comparison with the calculations above, suppose the
seller were to choose 0.92 as the reserve type. Then type v = 1 gets a surplus equal
to (.8)

∫ 1
0.92 ydy which is about 0.06.In contrast, in the MDM, type v = 1 gets a surplus

of exactly δ which in this numerical example is 0.05 (and, in general, can be made
arbitrarily small). Further, under the optimal static mechanism the surplus of type
v = 1 increases further as the reserve price falls, but never exceeds δ under the MDM.
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6 Discussion

Maxmin preferences, and in particular the epsilon contamination formulation, have
been used extensively in the literature to represent ambiguity averse behavior. Our
results show the effect that a dynamic mechanism can have in a setting which is IPV in
all aspects other than the ambiguity aversion of the buyers. In this section we discuss
various aspects of our model to explain their role in delivering the main result. Some
of these issues have been briefly mentioned earlier.

6.1 Dynamic Consistency

Preferences satisfy dynamic consistency if an optimal plan based on prior preferences
coincides with the sequentially optimal plan in a decision tree, and vice versa. This
is unproblematic in the expected utility paradigm,(13) but does not arise naturally un-
der ambiguity. It is well known that with ambiguity sensitive (and in general, non-
expected utility) preferences, well known updating rules (including the one we use)
can give rise to dynamic inconsistency. One response, adopted by several authors, is to
impose dynamic consistency as an added axiom.(14) However, the literature also points
out that in certain situations it makes more intuitive sense to allow for preferences that
violate dynamic consistency. In particular, we refer the reader to Epstein and Schneider
(2003) for an excellent discussion in an Ellsberg type setting which shows that when
there are intuitive choices for different periods, ambiguity may result in dynamic con-
sistency being problematic.

We explore this issue in the following parts. Using a simple example, we explore in
section 6.1.1 the role of a dynamic mechanism when preferences are not dynamically
consistent over Savage acts. In particular, we discuss how a dynamic mechanism dif-
fers from the optimal direct revelation mechanism. A second objective is to highlight

(13)In the expected utility paradigm, assuming that preferences satisfy dynamic consistency is not a
problem if one assumes that the updating follows Bayes rule. It is well known (see Epstein and Schnei-
der (2003)) that if the conditional preferences at every time-event pair satisfy expected utility theory,
they satisfy dynamic consistency if and only if the updating is done using Bayes Rule.

(14)See, for example, Epstein and Schneider (2003), Maccheroni, Marinacci, and Rustichini (2006),
Klibanoff, Marinacci, and Mukerji (2006). Alternatively, one can have a dynamically consistent updating
rule but give up consequentialism. For such an approach, see Hanany and Klibanoff (2006).
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the general insight regarding the role of dynamic mechanisms under ambiguity that
extends beyond the specific settings used in the paper. We construct the example us-
ing the general maxmin model rather than the epsilon contamination specification.

While section 6.1.1 discusses the role of dynamic mechanisms in the presence of dy-
namic inconsistency over acts, we should emphasize that our formal model does not
suffer from any inconsistency. Section 6.1.2 clarifies this latter point. It also points out
why defining preferences over acts might be inadequate for the setting we consider.

6.1.1 Dynamic Versus Static Mechanisms and the Role of the Revelation Principle

Consider the following 2 period decision problem. A buyer has value v for an object.
Initially, nature moves and either offers or does not offer the object at a price p. We
assume that v > p. If the offer is made, the buyer chooses to accept or reject. If the
buyer rejects, nature moves again and either offers or does not offer a price p − ∆,
for some ∆ > 0. If the offer is made, the buyer accepts. (Note that the mechanism in
the paper has a similar structure of choice at each stage for each buyer. Since in this
example the game ends in 2 periods, there is no loss of generality in simplifying the
second period actions.)

Let us translate the above decision tree into states and acts. Let E1 denote the state
that “nature does not offer p.” The complement of E1 is broken up into two further
states: E2 (nature offers p, does not offer p− ∆) and E3 (nature offers p, offers p− ∆).
Hence, the state space is E1 ∪ E2 ∪ E3. Since the buyer accepts the offer p − ∆ if he
hasn’t already accepted the previous offer of p, it suffices to consider two acts: a which
denotes “accept p” and r, denoting ”reject p.” The acts are defined as:

a(E1) = 0, a(E2) = a(E3) = v− p

r(E1) = 0, r(E2) = 0, r(E3) = v− p + ∆

Suppose Pr[E2] = α, Pr[E3] = β, and Pr[E1] = 1 − α − β. By varying α and β we
can generate a suitable set of distributions. To avoid the degenerate case we assume
α > 0, β > 0 and α + β < 1.

Initially, the buyer compares min {(α + β)(v− p)} to min{β(v − p + ∆)}. However,
suppose E1 did not happen and the buyer now faces the offer p. Now the compari-
son is between the sure payoff of v − p and (using the full Bayesian updating rule)
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min
{(

β
α+β

)
(v− p + ∆)

}
. It is easy to find numbers such that even though min{β(v−

p + ∆)} > min {(α + β)(v− p)} (implying r is preferred to a initially), we have v− p >

min
{(

β
α+β

)
(v− p + ∆)

}
(implying a is preferred to r conditional on E1 not occur-

ring). Note that unlike in an EU setting, such a “switch” can occur here because in
calculating the conditional expected payoff under ambiguity, the updated minimizing
distribution is not the update of the minimizing distribution used at the initial stage.

For example, suppose v − p = 10, ∆ = 5, and there are only two possible priors as
shown below (where the entries are probabilities):

E1 E2 E3

Prior 1 0.89 0.01 0.1
Prior 2 0.8 0.1 0.1

The initial payoff from r is 0.1× 15 = 1.5 and that from a is min{.2, .11} × 10 = 1.1
Therefore r is preferred to a. However the conditional payoffs (conditioning on E1 not
occurring) are: 10 from a and min

{
0.1
0.11 × 15, 0.1

0.2 × 15
}

= 7.5 from r. Therefore a is now
preferred to r. Thus a plan based on the initial preferences does not coincide with the
sequentially optimal plan for this decision problem.

An important objective of this exercise is to point out that even though the full sur-
plus extraction is special (and as we indicate later, depends on specific preferences and
properties of sets of priors), in a general setting with ambiguity averse dynamically in-
consistent preferences, a dynamic mechanism can exploit conditional preferences and
thus have extra opportunities for surplus extraction compared to a static mechanism
that are not available in the standard EU model.

An important related point is that the standard direct revelation game essentially car-
ries out the mechanism design exercise in terms of the “initial preferences.” If the ac-
tual (indirect) mechanism is also static, this procedure is without loss of generality.
However the mechanism from the standard direct revelation game extends to dynamic
mechanisms with agents of the type we consider only if agents were to have the power
to commit to the decisions formed from the initial preferences.(15) In contexts where

(15)The surplus earned by the buyers if they face the same price sequence as in the MDM but could
somehow commit to a strategy, would be at least as much as the surplus they earn in the optimal static
mechanism in Bose et al. (2006). Hence one could view the difference between an agent’s surplus in
their model and ours as the maximum price the agent is willing to pay to access a commitment device.
We thank Peter Klibanoff for this observation.
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such additional power is unavailable, the mechanism derived using the revelation
game corresponds to the optimal static mechanism and use of a dynamic mechanism
can produce results different from the optimal static one.

6.1.2 Consistent Plans

A coherent theory of dynamic choice must allow for consistent planning. Further, the
theory must provide a consistent way of reconciling preferences at different time peri-
ods.

In this paper, we do this by adopting Siniscalchi (2006) as the foundation for dynamic
behavior in our model. First, we use the idea that agents are forward looking. For-
mally, the axiom of sophistication allows for agents to form plans and to carry them
out consistently: a sophisticated decision maker correctly anticipates his future prefer-
ences while making current plans, hence precluding the problem of future deviations
from the current plan. Second, considering preferences defined over (decision) trees
rather than over acts (with conditional preferences defined over sub-trees), results in
a coherent theory of dynamic choice that does not need to appeal to the notion of
dynamic consistency.(16),(17) In fact, as we now argue, the example from the previous
section suggests that in settings like ours, acts may not be rich enough to capture all
aspects of a problem that a decision maker cares about.

Consider a variation of the example discussed in the previous section. Now, the buyer
moves first and chooses between one of two actions, a or r. Following each choice
of the buyer, nature chooses between E1, E2 and E3. The corresponding payoffs are
(0, v− p, v− p) if a is chosen, and (0, 0, v− p + ∆) if r is chosen.

This alternative tree gives rise to exactly the same acts as in the previous section. Hence
if preferences are defined over acts only, the two situations should not give rise to dif-
ferent outcomes. However, this second decision tree corresponds to a static choice
model, or alternatively, a situation where the buyer facing the choice problem de-

(16)See in particular section 4 of Siniscalchi for an axiomatization for the maxmin model and full
Bayesian updating.

(17)It is indeed the case that buyers in our model have preferences that are sophisticated (so that they
can carry out a plan consistently) and dynamically inconsistent (over Savage acts). The formal model
however, does not refer to the property of dynamic consistency.
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scribed in the previous section can somehow access a commitment device and hence
can commit to choices based on the initial preferences.(18) From a formal point of view,
this alternative decision tree is different from that of the previous section, and therefore
when preferences are defined over trees, there is no inconsistency if the buyer’s choice
of actions differ across these two trees. Note finally, that the buyer, being sophisticated,
will anticipate correctly that he chooses r in the decision tree described here and that
he chooses a in the decision problem faced in the previous section.

6.2 Updating Rules

We use the full Bayesian updating rule where the decision maker uses Bayes rule to
update all distributions (except those under which the observed event would be im-
possible), and the payoff is equal to the minimum expected utility calculated by con-
sidering this entire set of updated distributions. While this is one of the most well used
rules in the literature, other rules have been proposed as well. For example, a second
well known rule with an axiomatic foundation is the generalized maximum likelihood
rule (Gilboa and Schmeidler, 1993). Under this, the retained (and updated) distribu-
tions are those that give maximum likelihood to the event known to have occurred.
Our result holds under this alternative updating rule as well. Faced with an offer pk

in period k, a buyer knows that the object remained unsold in previous rounds, i.e. the
other buyer’s type is in [0, vk−1). Therefore, when calculating the payoff from rejecting
pk, the buyer’s contaminating set admits only distributions that are “most favorable”
in terms of the event [0, vk−1). However, within this set, the worst distribution is still
the one the puts the entire weight on the event that the current buyer will not obtain
the item if he waits. Therefore the minimum expected payoff is the same as under the
full Bayesian rule.

Note that the general issue with respect to updating rules is that the results in the
paper would hold as long as the rule does not throw away these worst distributions.
And we are not aware of any general argument that would require removal of these
worst distributions as the game progresses. To be specific, consider an event [vk, vk−1)
and note that the set of distributions that the buyers consider initially has amongst it
(at least) one distribution F̃ which puts an epsilon weight on this event. Now, suppose

(18)See footnote (15).
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the buyer is told that the event [vk−1, 1] has not occurred. There is no obvious reason
to suggest that this extra information should now make F̃ irrelevant.

6.3 Set of Priors

The version of epsilon contamination we use takes the set of all distributions to be
the set of contaminating distributions. It has often been pointed out, especially in the
statistics literature, that this may be too general, and a ”reasonable” modification of the
model might involve requiring each element of this set to satisfy certain properties. For
example, suppose F is differentiable and satisfies the monotone hazard rate property;
it might then be considered desirable to require elements of the set of contaminating
distributions to satisfy these two properties as well.(19) However, such modifications
do not automatically invalidate the main result of this paper. To see why, suppose the
contaminating distributions are of the form Ln(v) = vn, n = 1, 2, ...Each distribution in
this family is differentiable and satisfies the monotone hazard rate property.(20) Since
the conditional probability of the event [vk, vk−1), given the event [0, vk−1) is equal to

1−
(

vk
vk−1

)n
, and since infn

(
vk

vk−1

)n
= 0, it is as if, for all practical purposes, there is

a contaminating distribution that puts the entire mass on [vk, vk−1) (which is precisely
what is done in the formal analysis).

On the other hand, if the above example was changed to include the set of distributions
of the form Ln(v) = v

1
n , n = 1, 2, ..., the full surplus extraction result clearly does not

hold. Similarly, if the set contains only finitely many distributions, again full surplus
extraction is not possible.

The above discussion illustrates that even though we have taken the set of contaminat-
ing distributions to be the set of all distributions over [0, 1], our result should hold for
many–though not all–subsets of distributions as well. Letting P denote the set of con-
taminating distributions, a sufficient condition is that P contains all the distributions

(19)The interpretation is that as before the decision maker puts a weight ε on the true distribution not
being F. Now, however, he has confidence that the true distribution, even if not F, has certain properties
similar to F.

(20)Of course this is only a particular family of distributions having the property of being differentiable
and having monotone hazard rate. However, since the minimum cannot increase if sets are made bigger,
considering only a particular family like this suffices to illustrate our point.
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such that(21)

inf
L∈P

[L(x) ≡ Pr{v 6 x} according to L] = 0 for all x ∈ [0, 1]

As noted before, the crucial idea is that when an agent decides whether to accept the
current price pk (and get a certain payoff), his gain from waiting for a further drop
in price is made small compared to the loss from waiting. The contaminating set of
distributions must be such that the updated distribution - used to calculate the (mini-
mum) expected payoff from waiting - allows this to happen and it can be seen that the
sufficient condition guarantees exactly this.

6.4 (Seemingly) minor differences in the design of the mechanism

In the MDM, in any round k, the price pk is offered to the buyers sequentially which
allows each buyer to obtain an unambiguous payoff from accepting the offer. To make
the mechanism symmetric, we have chosen a formulation where in each round the
seller randomly chooses the order in which buyers are offered the price for that round.
We can also allow a variation in which the seller chooses, at the start of the game, a
buyer who is asked first in each period. This encumbers the algebra since the two
buyers have slightly different problems to contemplate, but the main result holds un-
changed.

However, consider now a variation where at each stage k, the price pk is offered to the
two buyers simultaneously, and the winner is chosen randomly if both accept. In all
other respects this alternative mechanism is similar to the MDM.

In a standard Bayesian setting, the two formats would clearly not yield significantly
different outcomes. However, with ambiguity aversion, this seemingly minor differ-
ence produces a dramatically different outcome. Under the alternative specification,
both accepting and rejecting an offer produce ambiguous outcomes, which is why the
full surplus extraction result fails.

From the perspective of mechanism design theory this implies that minor differences
in the construction of mechanisms - differences that might be outcome irrelevant in the
standard EU framework - can have a drastic impact under ambiguity aversion.

(21)We thank an anonymous referee for this observation as well as the one about the role of seemingly
minor design differences noted in the next section.

28



7 Conclusion

Evidence (experimental and otherwise) suggests that it is important for economic mod-
els to explore the consequence of non-expected utility preferences. The fairly large (and
growing) literature in this area has given us many valuable insights.

In this paper, we consider a private values auction model with ambiguity and buyers
with ambiguity averse preferences. In the standard setting with a unique prior, the
optimal mechanism leaves all but the lowest participating type with information rent.
Previous work shows that even under ambiguity aversion, the optimal static mecha-
nism leaves buyer types with rent. In contrast, we show that in the latter environment,
dynamic mechanisms have more power, and using the epsilon contamination specifi-
cation to model ambiguity aversion, we construct a very simple dynamic mechanism
that extracts almost all surplus.

We view the contribution of our work as providing an example of the non-standard
effects that ambiguity aversion can have on mechanism design. Our formal model
uses the epsilon contamination specification and clearly our result of full surplus ex-
traction is related to this setting. Nevertheless, the idea that in auction like settings,
dynamic mechanisms can extract a greater surplus than static ones by exploiting am-
biguity aversion is a more general one. By showing that the equivalence between static
and dynamic mechanisms (standard under the unique prior model) need not extend
to a setting with ambiguity, our results strike a cautionary note for working in the
non-unique prior environment. This is further highlighted by the contrast between
our results and those in Bose et al. (2006) who study optimal static auctions under am-
biguity, and leads us to conclude that a straightforward application of the revelation
principle has its limitations when preferences are no longer characterized by subjec-
tive expected utility. Understanding the proper scope of the revelation principle with
such “non-probabilistically sophisticated” preferences is an interesting question that
we hope to address in future research.
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8 Appendix: Proofs

A.1 Some Conditional Probabilities

This section derives some conditional probabilities that are used repeatedly in the anal-
ysis.

Let Hi
k denote the probability under the distribution F (i.e. if there were no ambiguity)

that i obtains the item the item at pk+1 given that he refuses the current offer of pk. This
can be calculated in two parts.

First, let φi
k denote the probability under the distribution F that i obtains the item at

pk+1 conditional on the item not being sold at pk. Second, let πi
k denote the probability

(again, this is the probability under F) that if i refuses the current offer pk the object
remains unsold till the next price pk+1. Then we have Hi

k = πi
kφi

k.

Calculating φi
k: φi

k can be derived is as follows. If buyer i is asked first in period
k + 1 (which happens with probability 1/2), he obtains the item for sure. If j is asked
first (probability 1/2), i obtains the item only if j passes. Given that the object is unsold
at pk, we know that the type of j is lower than vj

k. Therefore the probability that j will

refuse pk+1 given that he has refused pk is given by Prob(vj < vj
k+1|v

j < vj
k) =

F(vj
k+1)

F(vj
k)

.

Therefore

φi
k =

1
2

+
1
2

F(vj
k+1)

F(vj
k)

(A.1)

Calculating πi
k: Next, πi

k can be derived as follows.

First, we need to work out the probability that a buyer is being asked first given that he
is asked whether he wants to buy at pk. The conditioning on being asked is important
since the fact that a buyer is asked whether he wants to buy at pk conveys information
about whether he is first or second. Let qi ∈ {1, 2} denote the position (1st or 2nd) of
buyer i in any period. Further, let Ai denote the event that “buyer i is asked whether
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he wants to buy at pk.” We want to determine Prob(qi = 1|Ai).

Prob(qi = 1|Ai) =
Prob(qi = 1)Prob(Ai|qi = 1)

Prob(qi = 1)Prob(Ai|qi = 1) + Prob(qi = 2)Prob(Ai|qi = 2)

=

1
2

1
2

+
1
2

F(vj
k)

F(vj
k−1)

=
F(vj

k−1)

F(vj
k−1) + F(vj

k)

where vj
0 ≡ 1. Next, Prob(qi = 2|Ai) = 1− Prob(qi = 1|Ai) =

F(vj
k)

F(vj
k−1) + F(vj

k)
.

We are now ready to derive πi
k. Note that given i refuses pk, the probability of the

object being unsold if i is second (qi = 2) is 1, and the probability of the object being

unsold if i is first (qi = 1) is
F(vj

k)

F(vj
k−1)

. Therefore

πi
k = Prob(qi = 1|Ai)

F(vj
k)

F(vj
k−1)

+ Prob(qi = 2|Ai)(1)

=
2F(vj

k)

F(vj
k−1) + F(vj

k)
(A.2)

where vj
0 ≡ 1. Finally, using equations (A.1) and (A.2), we get

Hi
k = πi

k φi
k =

F(vj
k) + F(vj

k+1)

F(vj
k) + F(vj

k−1)

where vj
0 ≡ 1.
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A.2 Proof of Proposition 1

In this section we prove Proposition 1. The basic outline of our argument is as follows.
In Lemma 3 we show that in any equilibrium, for both buyers, the cut-off type for price
pn is in fact pn and that there are types of positive measure who plan to buy at price pn.
Next, we show in Lemma 4 that for both buyers, there are types of positive measure
that plan to buy at p1. Lemma 6 is crucial, it shows that whenever δ is sufficiently small,
given that a positive measure of types of both buyers buy at prices p1 and pn, there
must be a positive measure of types of both buyers who buy at price pn−1. Proposition 1
now follows from a recursive argument: provided types of positive measure plan to
buy at prices p1 and pk+1, ..., pn, there must be types of positive measure who plan to
buy at pk as well.

We remind the reader that the term vi
k, is used to denote the lowest type of buyer i who

plans to buy at price pk. Also, to avoid confusion with respect to superscripts versus
exponents, in the rest of this Appendix, we refer to the two buyers as i and j instead of
1 and 2.

Lemma 3 In any equilibrium, vi
n = vj

n = pn. Further, a positive measure of types of both
buyers plan to buy at price pn but not at any earlier price.

Proof: Consider a type v ∈ (pn, pn−1) of either buyer. Buying at any price greater than
pn−1 is dominated by not buying at all. Further, while the surplus from not buying
is zero, that from buying at price pn is v − pn > 0. Hence types of positive measure
(pn, pn−1) must plan to buy at pn but not at any earlier price. Furthermore, the lowest
type (the type that is indifferent between buying at price pn and not buying at all) that
buys at pn is pn, so that vi

n = vj
n = pn. ‖

In what follows, we use the word “probability” to mean probability with respect to the
distribution F.

Before we proceed, a comment on the notation we use in considering out-of-equilibrium
cases where no type of a buyer plans to buy at some prices. For k > 1, let pk through
pk+t be prices such that no types of a buyer buy at these prices; however, there are types
who buy at price pk−1. In this case as vk−1 = vk = ... = vk+t and let pk−1 be the price at
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which types [vk+t, vk−1) plan to buy. For k = 1, we still denote 1 = v0 = v1 = ... = vk+t,
but now pk+t+1 is the price at which types [vk+t+1, 1] plan to buy.

Lemma 4 In equilibrium a positive measure of types of each buyer plan to buy at p1.

Proof: Suppose buyer j does not plan to buy at prices p1, . . . , pk for 1 6 k < n, and pk+1

is the first price at which j buys. (This is denoted as vj
1 = . . . = vj

k = 1 and vj
k+1 < 1.)

Clearly, the best response of i is not to buy at prices p1, . . . , pk−1. If i refuses pk, the
probability that the game reaches pk+1 is 1. Thus πi

k = 1. Therefore Hi
k = πi

kφi
k =

φi
k = 1/2 + (1/2)F(vj

k+1).(22) Further, if i refuses pk, he is asked first next period with
probability 1/2 and gets the unambiguous payoff of (v− pk+1). Therefore, the payoff
from refusing pk is

(
1/2 + 1/2(1− ε)F(vj

k+1)
)

(v− pk+1).

Define the following function.

Ĝi
k(v) ≡ v− pk −

(
1/2 + 1/2(1− ε)F(vj

k+1)
)

(v− pk+1) (A.3)

Ĝi
k(v) can be rewritten as 1

2(v − pk)(1 − (1 − ε)F(vj
k+1)) −

1
2(1 + (1 − ε)F(vj

k+1))∆k.
Note that

2Ĝi
k(1) = (1− pk)(1− (1− ε)F(vj

k+1))− (1 + (1− ε)F(vj
k+1))∆k

> δε− (2− ε)∆k > δε− (2− ε)∆1 =
δε2

2(1− δ) + δε
> 0

where the second step follows from the fact that (1− pk) > (1− p1) = δ, and the fact
that F(vj

k+1) < 1, and the third step uses ∆1 > ∆k.

Since Ĝi
k(v) is continuous, increasing in v, and negative at v = pk, there exists vi

k such
that Ĝi

k(v) > 0 for v > vi
k and Ĝi

k(vi
k) = 0. Since we know that i does not plan to buy at

any earlier price than pk, it must be that types [vi
k, 1] of buyer i plan to buy at pk.

Now consider buyer j. If j refuses pk, the probability (under F) that the object is sold
at pk is strictly positive. Therefore, the minimizing distribution for j puts the entire
weight on the type of i being such that the object is sold at pk. Let

Gj
k(v) ≡ v− pk − (1− ε)(v− pk+1)H j

k

(22)Note that this is the same formula as in equation (A.1), since here F(vj
k) = F(vj

k−1) = 1.
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We have

Gj
k(1) = 1− pk − (1− ε)(1− pk+1)H j

k = (1− pk)(1− (1− ε)H j
k)− (1− ε)∆kH j

k

> δε− (1− ε)∆k > δε− (1− ε)∆1 = δε

(
1− δ + ε

2(1− δ) + δε

)
> 0

where the first inequality follows since H j
k < 1, and (1− pk) > (1− p1) = δ and the

second one follows since ∆k 6 ∆1. Since Gj
k(v) is increasing and continuous, there are

types of j of positive measure near 1 who would deviate and buy at pk. Contradiction.‖

We now derive an inequality in the next lemma that is useful for later proofs. The
reader can skip the proof of the lemma without losing the thread of the argument.

Lemma 5 vi
n−`−t − vi

n < δ(` + t).

Proof: Case 1: Some types of j buy at least some price in {pn−`−t, . . . , pn−`−1}, t > 1.

In this case, if i refuses pn−`−t, it is possible that the game ends before pn−` is offered.
We know that vi

n−`−t is given by Gi
n−`−t(v) = 0, i.e.

vi
n−`−t − pn−`−t = (1− ε)(vi

n−`−t − pn−`)Hi
n−`−t

= (1− ε)(vi
n−`−t − pn−`−t + ∆n−`−t + . . . + ∆n−`−1)Hi

n−`−t

Solving,

vi
n−`−t − pn−`−t = (∆n−`−t + . . . + ∆n−`−1)

(1− ε)Hi
n−`−1

1− (1− ε)Hi
n−`−1

< (∆n−`−t + . . . + ∆n−`−1)
(1− ε)

ε
(A.4)

Let α ≡ 1−δ
1−δ+δε/2 . Note that α < 1. From equation (3.2), we have ∆k = 1

2 δεαk < 1
2 δε.

Therefore

vi
n−`−t − pn = vi

n−`−t − pn−`−t + pn−`−t − pn

= vi
n−`−t − pn−`−t + ∆n−`−t + . . . + ∆n−1

< (∆n−`−t + . . . + ∆n−`−1)
(1− ε)

ε
+ ∆n−`−1 + ∆n−` + . . . + ∆n−1

= (∆n−`−t + . . . + ∆n−`−2)
(1− ε)

ε
+

∆n−`−1

ε
+ ∆n−` + . . . + ∆n−1

<
1
2

(δ(1− ε)(t− 1) + δ + δε`)

< δ(` + t) (A.5)
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where the third step follows from the inequality (A.4) above, and the last step follows
from the facts that 0 < ε < 1.

Finally, since vi
n = pn, vi

n−`−t − vi
n < δ(` + t).

Case 2: No type of j buys at prices {pn−`−t, . . . , pn−`−1}, t > 1.

We know that types of i buy at pn−`−t and at pn−` but not at the prices in between.
If t > 1, any type of i who buys at pn−`−t can deviate profitably and buy at pn−`−1

instead. Contradiction. Therefore in this case the only possibility is t = 1.

So it remains to prove the inequality when t = 1 and no type of j buys at pn−`−1. In
this case, analogously with (A.3), vi

n−`−1 is given by Ĝi
n−`−1(v) = 0, where

Ĝi
n−`−1(v) ≡ v− pn−`−1 −

(
1/2 + 1/2(1− ε)Ri

n−`−1

)
(v− pn−`)

where Ri
n−`−1 is the conditional probability that j rejects pn−`.(23) Using the fact that

v− pn−` = v− pn−`−1 + ∆n−`−1, and solving,

vi
n−`−1 − pn−`−1 = ∆n−`−1

1 + (1− ε)Ri
n−`−1

1− (1− ε)Ri
n−`−1

<
2− ε

ε

Proceeding as in (A.5),

vi
n−`−1 − pn = vi

n−`−t − pn−`−1 + ∆n−`−1 + . . . + ∆n−1

<
2
ε

∆n−`−1 + ∆n−` + . . . + ∆n−1 < δ +
δε

2
` < δ(` + 1)

This completes the proof.‖

To continue with the proof of the proposition, let us now show that both buyers have
types who plan to buy at price pn−1.

We use the following observation repeatedly in the following proofs. Suppose buyer
j does not plan to buy at prices {pn−`+1, . . . , pn−1} where 2 6 ` 6 n − 1, but plans
to buy at pn−` (and of course at pn). Then the best response of buyer i involves not
planning to buy at prices {pn−`+1, . . . , pn−2} whenever ` > 2. Further, there must be
types of i who plan to buy at pn−`. (Otherwise types of j buying at pn−` can profitably
deviate to, say, pn−2. This contradicts the assumption that j buys at pn−`). Armed with
these facts, let us now show the result.

(23)Suppose the lowest price higher than pn−` at which some types of j buy is pn−`−1−s for s > 1. Then

Ri
n−`−1−s =

F(vj
n−`

)

F(vj
n−`−1−s)

.
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Lemma 6 There is δ > 0 such that for δ < δ there are types (of positive measure) of j who buy
at pn−1.

Proof: In the proposed equilibrium, types v > vj
n−` of j buy at prices p > pn−`, with

type vj
n−` and some types just above buying at price pn−`. But since j does not buy at

prices {pn−`+1, . . . , pn−1}, types just below vj
n−` must buy at pn and not before. There-

fore, in the proposed equilibrium, it must be that vj
n−` is indifferent between buying at

pn−` or pn. So we have, for buyer j,

vj
n−` − pn−` = (1− ε)(vj

n−` − pn)H j
n−` (A.6)

where H j
n−` = π

j
n−` π̂

j
n−1 φ

j
n−1, where π

j
n−` is the probability that the object is unsold

at pn−` given that j refuses the current offer of pn−`, π̂
j
n−1 is the probability that the

object will remain unsold at pn−1, and φ
j
n−1 is the probability that j obtains the item at

price pn.

We know some types of i buy at price pn−`. Let pn−`−t, t > 1, be the price before pn−`

at which some types of i buy in equilibrium. We have

π
j
n−` =

2F(vi
n−`)

F(vi
n−`) + F(vi

n−`−t)
and π̂

j
n−1 =

F(vi
n−1)

F(vi
n−`)

Note that if there are no types of i who buy at pn−1, then F(vi
n−1) = F(vi

n−`), and

π̂
j
n−1 = 1. Otherwise π̂

j
n−1 is less than 1.

Finally φ
j
n−1 =

1
2

+
1
2

F(vi
n)

F(vi
n−1)

, where, again, if there are no types of i who buy at pn−1,

then F(vi
n−1) = F(vi

n−`). From the above,

H j
n−` =

F(vi
n−1) + F(vi

n)
F(vi

n−`) + F(vi
n−`−t)

(A.7)

Now, we can rewrite equation (A.6) above as

vj
n−` − pn−` =

(1− ε)(pn−` − pn)H j
n−`

1− (1− ε)H j
n−`

(A.8)

Let
Gj

n−1(v) ≡ v− pn−1 − (1− ε)(v− pn) H j
n−1

36



where H j
n−1 = π

j
n−1 φ

j
n−1, where φ

j
n−1 is as given above, and π

j
n−1 is the proba-

bility that the object remains unsold at pn−1 given that j refuses the current offer of
pn−1. Note that π

j
n−1 = 1 if no types of i buy at price pn−1, otherwise it is equal to

2F(vi
n−1)

F(vi
n−1)+F(vi

n)
. In either case, since φ

j
n−1 < 1, we have H j

n−1 < 1 as well. To establish

that contrary to what has been supposed, there are types of j who will in fact want to
buy at price pn−1, it is useful to break up the analysis into several cases.

Case 1: ` and t are fixed positive integers.

Intuitively, this is the case where both i and j follow strategies where they do not buy
for some finite number of prices. Note that in this case δ(` + t)→ 0, as δ→ 0

We use the fact that vi
n−`−t − vi

n < δ(` + t) (shown in Lemma 5) in the proof below.
We must consider two subcases: the case in which some types of i buy at pn−1 and the
complementary case.

Case 1.1: Some types of i buy at pn−1.

Now, since there are no types of j who buy at pn−1, it must be that Gj
n−1(v) is not

strictly positive for any v ∈ [pn−1, vj
n−`]. Consider the value of Gj

n−1(·) at vj
n−`. We

have

Gj
n−1(vj

n−`) = vj
n−` − pn−1 − (1− ε)(vj

n−` − pn) H j
n−1

= (vj
n−` − pn−`) + (pn−` − pn)− ∆n−1

− (1− ε)
[
(vj

n−` − pn−`) + (pn−` − pn)
]

H j
n−1

= (pn−` − pn)

(
1− (1− ε) H j

n−1

1− (1− ε) H j
n−`

)
− ∆n−1

>

[
2

(
1− (1− ε) H j

n−1

1− (1− ε) H j
n−`

)
− 1

]
∆n−1

where the second step follows from equation (A.8), and the third step follows from the
fact that pn−` − pn > pn−2 − pn = ∆n−2 + ∆n−1 > 2∆n−1.

Now, H j
n−` is given by (A.7), and H j

n−1 =
F(vi

n−1) + F(vi
n)

F(vi
n−1) + F(vi

n−`)
. Therefore

H j
n−1

H j
n−`

=
F(vi

n−`) + F(vi
n−`−t)

F(vi
n−`) + F(vi

n−1)
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From Lemma 5, vi
n−`−t − vi

n−1 < vi
n−`−t − vi

n < δ(` + t). Therefore, as δ→ 0, the ratio
H j

n−1

H j
n−`

converges to 1. Hence for sufficiently small δ, the term
1−(1−ε) H j

n−1

1−(1−ε) H j
n−`

is greater than

1
2 and we have Gj

n−1(vj
n−`) > 0.

Case 1.2: No type of i buys at pn−1.

In this case, if buyer j refuses pn−1, he knows that the game proceeds to the next stage
and with probability 1/2 he gets the first offer next period. Analogously to equa-
tion (A.3), define

Ĝj
n−1(v) ≡ v− pn−1 −

(
1
2

+
1
2
(1− ε)

F(vi
n)

F(vi
n−1)

)
(v− pn)

Let Rj
n−1 ≡

F(vi
n)

F(vi
n−1)

. It follows that

2Ĝj
n−1(vj

n−`) = (vj
n−` − pn−1)(1− (1− ε)Rj

n−1)− ∆n−1(1 + (1− ε)Rj
n−1)

= (pn−` − pn)

(
1− (1− ε) Rj

n−1

1− (1− ε) H j
n−`

)
− ∆n−1(1 + (1− ε)Rj

n−1)

>

[
2

(
1− (1− ε) Rj

n−1

1− (1− ε) H j
n−`

)
− (2− ε)

]
∆n−1

where the final inequality follows, as before, from the fact that pn−` − pn > 2∆n−1.

From Lemma 5, vi
n−`−t − vi

n < δ(` + t). Therefore, as δ → 0, the ratio
Rj

n−1

H j
n−`

converges

to 1. Hence for sufficiently small δ, Ĝj
n−1(vj

n−`) > 0.

Case 2: t is arbitrary and ` varies with n.

This is the case when the gap pn−` − pn−1 does not vanish as δ→ 0.

As δ → 0, since (pn−` − pn) does not vanish, and since for any given η > 0, H j
n−`

is bounded away from zero, it follows from equation (A.8) that vj
n−` − pn−` does not

vanish. Therefore, vj
n−` − pn−1 does not vanish. However, pn − pn−1 → 0, and (1−

ε)H j
n−1 < 1 (for case 1.1) and (1 − ε)Rj

n−1 < 1 (for case 1.2). Therefore for δ small

enough, Gj
n−1(vj

n−`) > 0 (case 1.1) and Ĝj
n−1(vj

n−`) > 0 (case 1.2).

In cases 1 and 2 above, we have shown that Gj
n−1(vj

n−`) > 0 (and Ĝj
n−1(vj

n−`) > 0). But

since Gj
n−1(·) (and Ĝj

n−1(·)) is strictly increasing, continuous, and negative at pn−1, this
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implies that there is vj
n−1 ∈ (pn−1, vj

n−`) such that Gj
n−1(v) > 0 (and Ĝj

n−1(v) > 0) for

v ∈ (vj
n−1, vj

n−`). Since types below vj
n−` do not buy at any price greater than or equal

to pn−`, these types (of positive measure) strictly prefer to stop at pn−1 rather than wait
till pn. This contradicts the supposition that there are no types of j who buy at pn−1.

We need to consider a third possibility in order to complete the Lemma.

Case 3: ` is a fixed integer and t varies with n.

This is the case when as δ → 0, δ(` + t − 1) does not go to zero because t (and n)
becomes arbitrarily large as δ becomes small. However, this is analogous to a case we
have analyzed before with i and j roles switched. We know that in equilibrium, both
buyers have types who plan to buy at price pn−`. If i plans to buy at prices pn−`−t

and pn−`, but not to buy at prices {pn−`−t+1, ..., pn−`−1}, the best response of j should
involve not buying at prices {pn−`−t+1, ..., pn−`−2}. If pn−`−t − pn−`−1 does not go to
zero, we can use the arguments in case 2 above to argue that contrary to what is being
supposed, for small δ, buyer i will in fact have some types of positive measure who
buy at pn−`−1 rather than waiting till pn−`.

This completes the proof of the lemma.‖

To continue now with the proof of the Proposition, suppose both buyers have a positive
measure of types buying at prices pn−k to pn, where 1 6 k 6 n− 2. By exactly the same
argument as above we can establish that both buyers must also buy at pn−k−1. This,
combined with the previous steps complete the proof of Proposition 1.‖
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A.3 Proof of Proposition 3

Define Ak = [pk, 1] for k = 1, 2, . . . , n− 1. Let A be the cartesian product of Ak. A vector
x ∈ A is of the form: x = {x1, . . . , xn−1}, such that xk ∈ [pk, 1]. Note that A is closed
and bounded and hence compact, and it is also convex.

Let Z be the cartesian product of [0, 1] taken n− 1 times. Let C be the subset of Z such
that

C =
{

x ∈ [0, 1]n−1 |x1 > x2 > . . . > xn−1

}
Note that C is compact and convex. Let D ≡ C ∩ A. Since C and A are both finite
dimensional compact and convex sets, D is also compact and convex.

Finally, we define the set of cut-off vectors E:

E =
{

v ∈ [0, 1]n+1 |v0 = 1, {v1, . . . , vn−1} ∈ D, vn = pn

}
E is the set of cut-off vectors D with each vector augmented by an initial and final
element, which are fixed at 1 and pn, respectively.

Throughout the proof we assume that δ is small enough so that all previous results
hold. The following definitions are used throughout the proof.

Any vector (v1, . . . , vn−1) is said to be in the interior of D if vk > vk+1 for all k ∈
{1, . . . , n− 2}, and any vector in D not in the interior of D is said to be in the border
of D. Any vector v is said to be in the interior (border) of E if (v1, . . . , vn−1) is in the
interior (border) of D.

Let EB denote the border of B, and let EI denote the interior of E. Clearly, E = EB ∪ EI .

Next, similar to the term Hi
k in Lemma 1 (as well as in appendix A.1), let Hk(v) denote

the probability that the a buyer can buy at pk+1 conditional on passing at pk. As before,

this is given by Hk(v) =
F(vk) + F(vk+1)
F(vk) + F(vk−1)

.

Let y(v) ≡ {y0(v), . . . , yn(v)} denote the best response to any v ∈ E.

STEP 1: First, consider the set of vectors in EI (the interior of E). From Proposition 2,
we know that the best response is unique, continuous, and given by y0(v) = 1, yn(v) =
pn, and for 0 < k < n:

yk(v) = pk + ∆k
(1− ε)Hk(v)

1− (1− ε)Hk(v)
(A.9)
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STEP 2: Next consider v ∈ EB. Let us first show that the best response mapping can
be discontinuous at border vectors. For example, consider any border vector where
vk−1 = vk = vk+1 for some k. For any such vector, Hk = 1, and the best response
involves not buying at pk, implying yk = yk−1.

Note that for any v ∈ EI , Hk < 1. The argument in step 1 shows that for any v ∈ EI ,
yk < yk−1. Further, limHk→1 yk < yk−1. But if Hk = 1, yk = yk−1. Thus the best response
mapping could be discontinuous at any v ∈ EB.

To solve the problem we proceed as follows. We set up a “pseudo best response”
function as follows. In taking a best response to any v ∈ EI , a buyer behaves according
to equation (A.9). Thus the pseudo best response coincides with the true best response
on EI . For any v ∈ EB, there is at least one k for which vk−1 = vk (i.e. no type of the
other buyer buys at pk). Faced with any degenerate interval [vk, vk−1), the pseudo best
response corresponds to the best response of the (fictitious) situation where the buyer
believes that if he does not buy at pk, then with probability ε the object is sold to the
other buyer before the game reaches pk+1.(24)

Thus faced with any border vector, when offered any price pk, the pseudo best response
compares v− pk to (1− ε)(v− pk+1)Hk for all values of Hk 6 1 (i.e. even when Hk = 1).

For any v ∈ EB let ŷk(v) denote the pseudo best response. From the above, this is
exactly similar to equation (A.9) for interior points, and is given by

ŷk(v) = pk + ∆k
(1− ε)Hk(v)

1− (1− ε)Hk(v)

for Hk(v) 6 1.

Consider any ṽ ∈ EB. From equation (A.9), clearly limv→ṽ yk(v) = ŷk(ṽ). Thus replac-
ing y by ŷ on EB preserves continuity of the best response mapping.

With this specification, the calculations in Proposition 2 can be retraced and it can be
easily seen that all conclusions are exactly the same (even with Hk = 1 we preserve
the factor (1 − ε), and none of the results require Hk < 1). In particular, note that
ŷk < ŷk−1 for all k ∈ {1, . . . , n}, and therefore the pseudo best response vector belongs
in the interior of E.

(24)In other words, while the true best response to any such border point would assume correctly that
refusing pk would mean that the game reaches the next stage with probability 1, the pseudo best re-
sponse in effect assumes that the interval [vk, vk−1) is not degenerate, but there are some types of the
other buyer who do buy at pk.
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STEP 3: Finally, define the mapping Ψ : E→ E such that

Ψ0(v) = 1

Ψk(v) =

yk(v) if v ∈ EI

ŷk(v) if v ∈ EB

Ψn(v) = pn

Since Ψ maps E continuously to itself, by Brouwer’s fixed point theorem, there exists a
fixed point of Ψ, i.e. there exists v∗ such that Ψ(v∗) = v∗.

We know from Proposition 2 that for any v ∈ EI , Ψ(v) belongs to the interior of E. As
noted at the end of step 2, the same is true for vectors in EB. Thus the range of Ψ is a
subset of EI . Therefore any fixed point must be in EI . But Ψ(v) is the true best response
for any v ∈ EI . It follows that any fixed point must be a true mutual best response, and
therefore a symmetric equilibrium.‖
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