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1. Introduction

This paper studies a general model of search on the job that allows for aggregate shocks, idio-

syncratic shocks, and different specifications of the contractual environment. The paper’s main

result is to formally establish the existence of a type of equilibria, called Block Recursive Equi-

libria (BRE), which are tracvtable for studying equilibrium dynamics. To attain this result, we

depart from the bulk of the literature on search on the job, and we assume that the search process

is directed1–in the sense that a worker knows the terms of trade offered by different firms before

he chooses where to apply for a job–rather than random (or undirected)–in the sense that a

worker does not have any information about terms of trade offered by different firms.

The models of random search on the job by Burdett and Mortensen (1998), Postel-Vinay and

Robin (2003), and Burdett and Coles (2003) are a useful tool for studying labor markets because

they can simultaneously and parsimoniously explain a number of qualitative features of the data.

For example, they can explain the empirical regularities in the transition of workers between the

states of employment, unemployment and across jobs that pay different wages (e.g. the negative

relationship between job hazard and tenure). They can explain why similar workers employed at

similar firms are paid different wages. They can explain why wages tend to increase with tenure

and experience.2

However, these models are difficult to solve outside of steady-state because the distribution of

workers across different employment states (unemployment, and employment at different wages)

is an infinite-dimensional state variable which non-trivially affects the agents’ value and policy

functions.3 This technical feature limits the use of these models. For example, a macroeconomist

cannot measure the effect of aggregate productivity shocks on the flows of workers across different

employment states and on the wage distribution by simply comparing steady-states (unless he

has reason to believe that these shocks are very persistent and that the transition phases have

negligible length). A public economist cannot measure the welfare effect of a change to the

unemployment benefit legislation by comparing two steady-states (unless he has reason to believe

1The directed search literature was pioneered by Montgomery (1991), Peters (1991), Moen (1997), Acemoglu
and Shimer (1999), and Burdett Shi and Wright (2001).

2Mortensen (1994), Pissarides (1994), and Barlevy (2002) are other popular models of search on the job. These
models have qualitative properties that are very different from those of the models by Burdett and Mortensen
(1998), Postel-Vinay and Robin (2002), and Burdett and Coles (2003). For example, they cannot generate residual
wage inequality.

3Recently, Moscarini and Postel-Vinay (2008) have succeded in characterizing the transitional dynamics of the
model by Burdett and Mortensen (1998) (henceforth, BM98). Their results also suggest that it might be possible
to solve the equilibrium of BM98 in a fully stochastic environment. The current paper provides a model that has
the same qualitative properties as BM98 and can be solved in a stochastic environment as easily as a representative
agent model.
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that the agents’ discount factor is approximately zero and, hence, the transition phases are

unimportant). And if an econometrician estimates the steady-state of a model, he has to be

careful in using data from a period of time when the fundamentals of the economy have remained

approximately unchanged.4

Moreover, the hypothesis that the search process is random appears at odds with the existing

empirical evidence. For example, in a recent survey of the US labor market, Hall and Krueger

(2008, Table 1) find that 84 percent of white, male, non-college workers either “knew exactly” or

“had a pretty good idea” about how much their current job would pay from the very beginning

of the application process (the time of the first interview). Another piece of evidence against the

random search hypothesis and in favor of directed search comes from Holzer, Katz and Krueger

(1991). Using data from the 1982 Employment Opportunity Pilot Project Survey, these authors

find that firms in high-wage industries tend to attract more applicants per vacancy that firms in

industries where the terms of trade are less generous. These findings should not be surprising, as

directed search reflects the fundamental idea in economics that prices help a market allocating

resources.

In this paper, we consider a stochastic model of directed search on the job. This model

is rather general in that it allows for aggregate shocks, idiosyncratic shocks, and for different

specifications of the contractual environment (fixed-wage contracts and dynamic contracts). For

this model, we prove existence of an equilibrium in which the agents’ value and policy functions do

not depend on the infinite-dimensional distribution of workers across different employment states.

We refer to this equilibrium as a Block Recursive Equilibrium (BRE). Like the equilibrium of the

models by Burdett and Mortensen (1998), Postel-Vinay and Robin (2002), and Burdett and Coles

(2003), the BRE of our model generates worker flows between employment, unemployment, and

across employers; it generates a negative relationship between job hazard and tenure; it generates

residual wage inequality, and a positive return to tenure and experience. However, unlike the

equilibrium of these other models, the BRE of our model can be easily computed in and out of

the steady-state. Therefore, our model can be used, without qualifications, to carry out the labor

market measurements that we have described in the previous paragraph.

It is precisely the difference in the nature of the search process that explains why our model

4Postel-Vinay and Robin (2002) explicitely acknowledge that estimating the steady-state of an OJS model
restricts their choice of data: “We have deliberately selected a much shorter period than is available because we
want to find out whether it is possible to estimate our model over a homogeneous period of the business cycle.
It would have been very hard to defend the assumption of time-invariant parameters (the job offer arrival rate
parameters in particular) had we been using a longer panel.” Similarly, Jolivet et alii (2006) state that “We choose
to restrict our analysis to a 3-year sample for three reasons. [...] Third, the model assumes that the labor market
is in a steady-state, an asusmption that would be harder to defend over a longer period of time.”
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admits a Block Recursive Equilibrium and the models by Burdett and Mortensen (1998), Postel-

Vinay and Robin (2002), and Burdett and Coles (2003) do not. The search process is directed

in our model but undirected in the other models. If the search process is directed, workers

in different employment states choose to apply for different jobs, because they have different

preferences over the probability of getting a job and the value offered by a job. Therefore, the

distribution of workers across employment states does not affect the benefit to the firm from

creating a vacancy that offers certain terms of trade, the tightness of the labor market and,

ultimately, the agents’ value and policy functions. In contrast, if the search process is random,

workers in different employment states search for the same jobs. Therefore, the distribution of

workers across different employment states affects the probability that a firm meets a worker

who is willing to accept certain terms of trade, the benefit to the firm of creating a vacancy, the

tightness of the labor market and, ultimately, the agents’ value and policy functions. At the end

of Section 5, we will provide a more detailed explanation for why directed search is important for

existence of a BRE.

The main contribution of this paper is to prove existence of a BRE for a relatively gen-

eral model of directed search on the job which allows for aggregate shocks, idiosyncratic shocks,

workers’ risk aversion, and for different specifications of the contractual environment. This con-

tribution provides a solid foundation for future applications of models of directed search on the

job. Moen and Rosen (2004) were the first to develop a model of search on the job in which the

search process is, to some extent, directed (workers can choose where to apply for a job within

a restricted set of vacancies). Delacroix and Shi (2006) examine a model of directed search on

the job with fixed-wage contracts. However, their analysis only focuses on the steady-state equi-

librium. Shi (2008) was the first to prove the existence of a BRE for a model of directed search

on the job. However, his model restricts attention to a deterministic environment and to the

case of wage/tenure contracts. Menzio and Shi (2008) were the first to prove existence of a BRE

for a stochastic model of directed search on the job. In addition, they calibrate their model and

use it to measure the contribution of aggregate productivity shocks to the cyclical volatility of

unemployment, vacancies, and other labor market variables. However, their model only restricts

attention to the case of complete labor contracts. In order to generalize the results from Shi

(2008) and Menzio and Shi (2008), the current paper has to develop a different existence proof.

Parts of the existence proof in Shi (2008) rely on the absence of aggregate shocks and on the as-

sumption of wage/tenure contracts. The existence proof in Menzio and Shi (2008) is based on the

equivalence between the solution to the social planner’s problem and the equilibrium allocation.

This equivalence does not hold when employment contracts are incomplete.
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2. The Model

2.1. Agents and Markets

The economy is populated by a continuum of workers with measure one and a continuum of

firms with positive measure. Each worker has a periodical utility function υ(.) defined over

consumption, where υ : R → R is a twice-continuously differentiable, strictly increasing, weakly
concave function such that υ0(.) ∈ [υ0, ῡ0], 0 < υ0 ≤ ῡ0. Each worker maximizes the expected sum

of periodical utilities discounted at the factor β ∈ (0, 1). The unemployment benefit is b.

Each firm operates a constant returns to scale technology which turns one unit of labor into

y + z units of consumption. The first component of productivity, y, is common to all firms, and

its value lies in the set Y = {y1, y2, ...yN(y)}, where y ≡ y1 < ... < yN(y) ≡ ȳ and N (y) ≥ 2 is
an integer. The second component of productivity, z, is specific to each firm-worker pair, and its

value lies in the set Z = {z1, z2, ...zN(z)}, where z ≡ z1 < ... < zN(z) ≡ z̄ and N (z) ≥ 1 is an
integer. Each firm maximizes the expected sum of periodical profits discounted at the factor β.

The labor market is organized in a continuum of submarkets indexed by the expected lifetime

utility x that the firms offer to the workers, x ∈ X = [x, x̄], with x < υ(b)/ (1− β) and x̄ >

υ(ȳ + z̄)/ (1− β). Specifically, whenever a firm meets a worker in submarket x, the firm offers

the worker an employment contract that gives him the expected lifetime utility x. In submarket

x, the ratio of the number of vacancies created by firms to the number of workers looking for

jobs is given by θ(x, ψ) ≥ 0 and is determined in the equilibrium, where ψ is the aggregate state
of the economy described below. In the remainder of the paper, we shall refer to θ(x, ψ) as the

tightness of submarket x.5

Time is discrete and continues forever. At the beginning of each period, the state of the

economy can be summarized by the triple (y, u, g) ≡ ψ. The first element of ψ denotes the

aggregate component of labor productivity, y ∈ Y . The second element denotes the measure of

workers who are unemployed, u ∈ [0, 1]. The third element is a function g : X × Z → [0, 1], with

g(V, z) denoting the measure of workers who are employed at jobs that give them the lifetime

utility Ṽ ≤ V and that have an idiosyncratic component of productivity z̃ ≤ z.

Each period is divided into four stages: separation, search, matching and production. During

the separation stage, an employed worker is forced to move into unemployment with probability

δ ∈ (0, 1). Also, during the separation stage, an employed worker has the option to voluntarily
move into unemployment.

5In submarkets that are not visited by any workers, θ(x,ψ) is an out-of-equilibrium conjecture that helps
determining the equilibrium behavior.
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During the second stage, a worker gets the opportunity of searching for a job with a probability

that depends on his recent employment history. In particular, if the worker was unemployed at

the beginning of the period, he can send an application with probability λu ∈ (0, 1]. If the worker
was employed at the beginning of the period and did not lose his job during the separation stage,

he can search with probability λe ∈ (0, 1]. If the worker lost his job during the separation stage,
he cannot search immediately. Conditional on being able to search, the worker chooses which

submarket to visit. In this sense, search is directed. Also, during the search stage, a firm chooses

how many vacancies to create and where to locate them. The cost of maintaining a vacancy for

one period is k > 0. Both workers and firms take the tightness θ(x, ψ) parametrically.6

During the matching stage, the workers and the vacancies in submarket x come together

through a frictional meeting process. In particular, a worker meets a vacant job with probability

p(θ(x, ψ)), where p : R+ → [0, 1] is a twice continuously differentiable, strictly increasing, strictly

concave function such that p(0) = 0 and p0(0) < ∞. Similarly, a vacancy meets a worker

with probability q(θ(x, ψ)), where q : R+ → [0, 1] is a twice continuously differentiable, strictly

decreasing function such that q(θ) = p(θ)/θ, q(0) = 1, and p(q−1(.)) being concave.7 When a

vacancy and a worker meet, the firm that owns the vacancy offers to the worker an employment

contract that gives him the lifetime utility x. If the worker rejects the offer, he returns to his

previous employment position. If the worker accepts the offer, the two parties form a new match.

To simplify the exposition, we assume that all new matches have the idiosyncratic component of

productivity z0 ∈ Z.

During the last stage, an unemployed worker produces and consumes b ∈ (0, ȳ + z̄) units

of output. A worker employed at a job z produces y + z units of output and consumes w

of them, where w is specified by the worker’s labor contract. At the end of the production

stage, Nature draws next period’s aggregate component of productivity, ŷ, from the probability

distribution Φŷ(ŷ|y), and next period’s idiosyncratic component of productivity, ẑ, from the

probability distribution Φẑ(ẑ|z).8 The draws of the idiosyncratic component of productivity are
independent across matches.9

6That is, workers and firms treat the tightness θ(x,ψ) just like households and firms treat prices in a Walrasian
Equilibrium.

7The last property of q(θ) is needed to guarantee that the worker’s search problem is strictly concave and its
solution unique. The reader should notice that this property (as well as the other properties of p and q) are satisfied
by many standard specifications of the matching process. For example, it is satisfied by the CES matching process
q(θ) = [α/(α+ θσ)]1/σ, p(θ) = θ [α/(α+ θσ)]1/σ, α ∈ (0, 1) and 1 ≥ σ > 0.

8Throughout this paper, the caret on a variable indicates the variable in the next period.
9In order to keep the exposition simple, we have chosen to restrict attention to aggregate and idiosyncratic

shocks that affect only labor productivity. However, the proof of the existence of a Block Recursive Equilibrium
does not depend on this choice, and can be easily generalized to the case in which aggregate and idiosyncratic
shocks affect the search process, the value of unemployment, labor income taxes, etc.
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2.2. Contractual Environment

We consider two alternative contractual environments. In the first environment, the firm commits

to an employment contract that specifies the worker’s wage as a function of the history of realiza-

tions of the idiosyncratic productivity of the match, z, the history of realizations of the aggregate

state of the economy, ψ, and the history of realizations of a two-point lottery that is drawn at

the beginning of every production stage.10 In the remainder of the paper, we shall refer to this as

the “dynamic contract” environment, since we will formulate the contracts recursively as in the

literature on dynamic contracts (e.g., Atkeson and Lucas, 1992).11 In the second environment,

the firm commits to a wage that remains constant throughout the entire duration of the employ-

ment relationship. This constant wage is allowed to depend only on the outcome of a two-point

lottery that is drawn at the beginning of the employment relationship. In the remainder of the

paper, we shall refer to this as the “fixed-wage contract” environment.

We are interested in these two contractual environments because they have been the focus

of the literature on random search on the job. The “dynamic contract” environment generalizes

the environment considered by Burdett and Coles (2003) and Shi (2008) to an economy with

stochastic productivity.12 The “fixed-wage contract” environment is the same environment that

has been considered by Burdett and Mortensen (1998), van den Berg and Ridder (1998), and

Jolivet et al. (2006). Notice that, under both specifications of the environment, contracts are

incomplete because wages cannot be made contingent upon the outside offers received by the

worker.

2.3. Worker’s Problem

Consider a worker whose current employment position gives him a lifetime utility V and who has

the opportunity to look for a job at the beginning of the search stage. His search decision is to

choose which submarket x to visit. If the worker visits submarket x, he succeeds in finding a job

with probability p(θ(x, ψ)), and fails with probability 1 − p (θ (x, ψ)). If he succeeds, he enters

the production stage in a new employment relationship which gives him the lifetime utility x. If

he fails to find a new match (or if he does not apply for a job), he enters the production stage by

10We allow the specifications of the employment contract to depend on the history of realization of these two-
point lotteries in order to guarantee that the firm’s value function is concave. In this sense, lotteries play a similar
role in our model as in Prescott and Townsend (1984).
11In contrast to most models in the literature on dynamic contracts, however, there is no private information in

our model, and a worker can quit for another job or into unemployment in any period during the contract.
12In the special case where workers are risk neutral, the dynamic contracts considered in this paper attain the

same allocation as the complete contracts considered in Menzio and Shi (2008) do. Therefore, the proof of the
existence of a Block Recursive Equilibrium in this paper generalizes the existence proof in Menzio and Shi (2008).

6



retaining his current employment position, which gives him a lifetime utility V . Therefore, the

worker’s lifetime utility at the beginning of the search stage is V +max{0, R(V,ψ)}, where

R(V,ψ) = max
x∈X

p(θ(x, ψ))(x− V ). (2.1)

Denotem(V, ψ) as the solution to the maximization problem in (2.1), and p̃(V,ψ) as the composite

function p(θ(m(V, ψ), ψ)).

Next, consider an unemployed worker at the beginning of the production stage, and denote

as U(ψ) his lifetime utility. In the current period, the worker produces and consumes b units of

output. During the next search stage period, the worker is unemployed and has the opportunity

to look for a job with probability λu. Therefore, the worker’s lifetime utility U(ψ) is equal to

U(ψ) = υ(b) + βEψ̂
h
U(ψ̂) + λumax

n
0, R(U(ψ̂), ψ̂)

oi
. (2.2)

2.4. Firm’s Problem

2.4.1. Dynamic Contracts

Consider a firm that has just met a worker in submarket x. The firm offers to the worker an

employment contract that specifies his wage at every future date as a function of the realized

history of the idiosyncratic productivity of the match, the realized history of the aggregate state of

the economy, and the history of realizations of a two-point lottery that is drawn at the beginning

of every production stage. The firm chooses the employment contract in order to maximize its

profits and provide the worker with the promised lifetime utility x. Charcaterizing the solution

to this problem is difficult because the dimension of the history upon which wages are contingent

grows to infinity with time. However, following the literature on dynamic contracts (e.g. Atkeson

and Lucas, 1992), we can rewrite this problem recursively by using the worker’s lifetime utility

as an auxiliary state variable.13

In the recursive formulation of the problem, the state of the contract at the beginning of each

production stage is described by the worker’s lifetime utility, V , by the state of the aggregate

economy, ψ, and by the idiosyncratic productivity of the match, z. Let s denote (ψ, z). Given V

and s, the firm chooses a two-point lottery over the worker’s wage w in the current period, the

worker’s probability d of becoming unemployed in the next separation stage, and the worker’s

13More precisely, we can prove that the value function of the firm’s contracting problem is the unique solution
to the recursive problem (2.3). Also, we can prove that the firm’s contracting problem yields the same solutions
as the recurive problem (2.3). The proof of these equivalence results is standard. However, all details are available
upon request.
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lifetime utility V̂ at the beginning of the next production stage. That is, the firm chooses a two-

point lottery c = (πi, wi, di, V̂i)
2
i=1, where πi is the probability with which the realization of the

lottery is (wi, di, V̂i). The firm’s choice is subject to a promise-keeping constraint, which requires

c to provide the worker with the lifetime utility V , and to an individual rationality constraint,

which requires the separation probability d to be consistent with the worker’s incentives to quit.

The firm chooses c to maximize the sum of its profits in the current period and its profits from

the next period onward. Therefore, the firm’s maximized value J(V, s) is equal to

J(V, s) = max
πi,wi,d̂i,V̂i

P2
i=1 πi

n
y + z − wi + βEŝ

h
(1− di (ŝ))

³
1− λep̃(V̂i (ŝ) , ψ̂)

´
J(V̂i (ŝ) , ŝ)

io
s.t. πi ∈ [0, 1], wi ∈ R, di : Ψ× Z → [δ, 1], V̂i : Ψ× Z → X, for i = 1, 2,P2

i=1 πi = 1, di (ŝ) =
n
δ if U(ψ̂) ≤ V̂i (ŝ) + λeR(V̂i (ŝ) , ψ̂), 1 else

o
,P2

i=1 πi

n
υ(wi) + βEŝ

h
di (ŝ)U(ψ̂) + (1− di (ŝ))

³
V̂i (ŝ) + λeR(V̂i (ŝ) , ψ̂)

´io
= V.

(2.3)

We denote the optimal policy function associated with (2.3) as c(V, s) = (πi, wi, di, V̂i)
2
i=1, where

πi = πi(V, s), wi = wi(V, s), di = di(V, s, ŝ), and V̂i = V̂i(V, s, ŝ), for i = 1, 2.

2.4.2. Fixed-Wage Contracts

With fixed-wage contracts, we assume that workers are risk averse; i.e., υ(w) = w for all w.

Consider a worker who is employed for a wage of w at the beginning of the production stage,

and denote as H(w,ψ) his lifetime utility. In the current period, the worker consumes w units

of output. During the next separation stage, the worker is forced to become unemployed with

probability δ, and has the option of keeping his job with probability 1− δ. If the worker becomes

unemployed, he does not have the opportunity to look for a new job during the next search stage.

If the workers keeps his job, he has the opportunity to look for a better job with probability λe.

Therefore, the worker’s lifetime utility H(w,ψ) is equal to

H(w,ψ) = w + βEψ̂
n
d(ψ̂)U(ψ̂) + (1− d(ψ̂))

h
H(w, ψ̂) + λemax{0, R(H(w, ψ̂), ψ̂)}

io
,

d(ψ̂) =
n
δ if U(ψ̂) ≤ H(w, ψ̂) + λemax

n
0, R(H(w, ψ̂), ψ̂)

o
, 1 else

o
.

(2.4)

We denote as h(V,ψ) the wage that provides an employed worker with the lifetime utility V .

That is, h(V,ψ) is the solution of the equation H(w,ψ) = V with respect to w.

Next, consider a firm that employs a worker for a wage of w at the beginning of the production

stage, and denote as K(w, s) its lifetime profit. In the current period, the firm’s profit is given

by y + z − w. The discounted sum of profits from the next period onward is (1 − d(ψ̂))(1 −
8



λep̃(H(w, ψ̂), ψ̂))K(w, ŝ). Therefore, K(w, s) is equal to

K(w, s) = y + z − w + βEŝ
h
(1− d(ψ̂))(1− λep̃(H(w, ψ̂), ψ̂))K(w, ŝ))

i
,

d(ψ̂) =
n
δ if U(ψ̂) ≤ H(w, ψ̂) + λemax

n
0, R(H(w, ψ̂), ψ̂)

o
, 1 else

o
.

(2.5)

Finally, consider a firm that has just met a worker in submarket x = V , and denote as

J(V, ψ, z0) its lifetime profit. The firm offers to the worker a two-point lottery over the constant

wage w. The firm’s offer is required to provide the worker with the lifetime utility V (if accepted).

Therefore, the firm’s lifetime profit J(V,ψ, z0) is equal to

J(V, ψ, z0) = max
πi,Ṽi

P2
i=1 πiK(h(Ṽi, ψ), ψ, z0),

s.t. πi ∈ [0, 1], Ṽi ∈ X, for i = 1, 2,P2
i=1 πi = 1,

P2
i=1 πiṼi = V.

(2.6)

We denote the optimal policy function associated with (2.6) as c = (πi, Ṽi)
2
i=1, where πi = πi(V, s)

and Ṽi = Ṽi(V, s), for i = 1, 2.

2.5. Market Tightness

During the search stage, a firm chooses how many vacancies to create and where to locate them.

The firm’s benefit of creating a vacancy in submarket x is the product between the probability

of meeting a worker, q(θ(x, ψ)), and the value of meeting a worker, J(x, ψ, z0). The firm’s cost

of creating a vacancy in submarket x is k. When the benefit is strictly smaller than the cost, the

firm’s optimal policy is to create no vacancies in x. When the benefit is strictly greater than the

cost, the firm’s optimal policy is to create infinitely many vacancies in x. And when the benefit

and the cost are equal, the firm’s profi is independent of the number of vacancies it creates in

submarket x.

In any submarket that is visited by a positive number of workers, the tightness θ(x, ψ) is

consistent with the firm’s optimal creation strategy if and only if

k ≥ q(θ(x, ψ))J(x, ψ, z0), (2.7)

and θ (x, ψ) ≥ 0, with complementary slackness. In any submarket that workers do not visit, the
tightness θ (x, ψ) is consistent with the firm’s optimal creation strategy if and only if q(θ(x, ψ))J(x, ψ, z0)

is smaller than or equal to k. Following most of the literature on directed search, we restrict at-

tention to equilibria in which the tightness θ (x, ψ) satisfies condition (2.7) in all submarkets.14

14See Acemoglu and Shimer (1999), Delacroix and Shi (2006), Menzio (2007), and Shi (2008)
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3. Block Recursive Equilibrium: Definition and Procedure

The previous section motivates the following definition of a recursive equilibrium:

Definition 3.1. ARecursive Equilibrium consists of a market tightness function θ : X×Ψ→ R+,
a search value function R : X × Ψ → R, a policy function m : X × Ψ → X, an unemployment

value function U : Ψ→ R, a firm’s value function J : X ×Ψ×Z → R, a contract policy function
c : X ×Ψ× Z → C, and a transition probability function for the aggregate state of the economy

Φψ̂ : Ψ×Ψ→ [0, 1]. These functions satisfy the following requirements:

(i) θ satisfies (2.7) for all (x,ψ) ∈ X ×Ψ;
(ii) R satisfies (2.1) for all (V, ψ) ∈ X ×Ψ, and m is the associated policy function;

(iii) U satisfies (2.2) for all ψ ∈ Ψ;
(iv) J satisfies (2.3) or (2.6) for all (V,ψ, z) ∈ X×Ψ×Z, and c is the associated policy function;

(v) Φψ̂ is derived from the policy functions, (m, c), and the probability distributions for (ŷ, ẑ).

Solving a recursive equilibrium outside of the steady-state requires solving a system of func-

tional equations in which the unknown functions depend on the entire distribution of workers

across employment states, (u, g). Since this distribution is a large dimensional object (for ex-

ample, it is an infinite dimensional object in the version of the model with dynamic contracts),

solving a recursive equilibrium outside of the steady-state is a difficult task both analytically and

computationally. In contrast, solving the following class of equilibria is much easier because it

involves solving a system of functional equations in which the unknown functions have at most

three dimensions.

Definition 3.2. A Block Recursive Equilibrium (BRE) is a recursive equilibrium such that the

functions {θ,R,m,U, J, c} depend on the aggregate state of the economy, ψ, only through the
aggregate component of productivity, y, and not through the distribution of workers across em-

ployment states, (u, g).

In this paper, we establish existence of a Block Recursive Equilibrium. To this aim, we define

J (X × Y × Z) (henceforth J ) as the set of firm’s value functions J : X ×Y ×Z → R such that:
(J1) For all (y, z) ∈ Y ×Z and all V1, V2 ∈ X, with V1 ≤ V2, the difference J(V2, y, z)−J(V1, y, z)
is bounded between −B̄J(V2 − V1) and −BJ(V2 − V1), where B̄J ≥ BJ > 0 are some constants;

(J2) For all (V, y, z) ∈ X × Y × Z, J(V, y, z) is bounded in [J, J̄ ];15 (J3) For all (y, z) ∈ Y × Z,

15We list this property separately in addition to (J1) to emphasize the fact that the bounds J and J̄ are uniform
for all functions in the set J and for all (V, y, z).
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J(V, y, z) is concave in V . In words, a firm’s value function J in the set J depends on ψ only

through y. Moreover, a firm’s value function J in the set J is bounded; it is strictly decreasing

and weakly concave in V ; and its “derivative” with respect to V is bounded above and below, i.e.

J is bi-Lipschitz continuous in V .16 In Appendix A, we prove that J is a non-empty, bounded,

closed and convex subset of the space of bounded, continuous functions on X × Y × Z, with the

sup norm.17

In Section 4, we take an arbitrary firm’s value function J from the set J . Given J , we prove

that the market tightness function, θ, that solves the equilibrium condition (2.7) depends on

the state of the economy, ψ, only through the aggregate component of productivity, y, and not

through the distribution of workers across employment states, (u, g). Intuitively, since the value

of filling a vacancy in submarket x does not depend on the distribution of workers and the cost

of creating a vacancy is constant, the equilibrium probability of filling a vacancy in submarket x,

and hence the tightness of submarket x, must be independent of the distribution of workers.

Given θ, we prove that the search value function, R, that solves the equilibrium condition

(2.1) depends on ψ only through y. Intuitively, R does not depend on (u, g), because neither the

probability that a worker finds a job in submarket x nor the benefit to a worker from finding a

job in submarket x depends on the employment status of other workers in the economy. Given

R, we prove that the unemployment value function, U , that solves the equilibrium condition

(2.2) depends on ψ only through y. Intuitively, U does not depend on (u, g), because neither

the output of an unemployed worker nor his return to searching depends on the distribution of

workers across different employment states.

In Section 5, we insert J , θ, R, and U in the RHS of the equilibrium condition (2.3) to

construct an update of the firm’s value function, where T maps the function J with which the

above procedure starts into a new function. First, we prove that TJ depends on ψ only through

y. Intuitively, TJ does not depend on (u, g) because the output of a match in the current period,

the probability that a match survives until the next production stage, and the value to the firm

of a match at the next production stage are all independent of the distribution of workers across

employment states. Second, we prove that TJ is bounded between J and J̄ ; it is strictly decreasing

and weakly concave in V ; and its “derivative” with respect to V is bounded between −B̄J and

16A function J (x) is Lipschitz over x ∈ X if |J(x2)− J (x1)| ≤ B1 |x2 − x1| for all x1, x2 ∈ X, where B1 is a
finite constant. The function is bi-Lipschitz if, in addition, |J(x2)− J (x1)| ≥ B2 |x2 − x1| for all x1, x2 ∈ X, where
B2 is a strictly positive constant. We need the firm’s value function J to be bi-Lipschitz in order to ensure the set
J to be closed and convex. In addition, bi-Lipschitz continuity implies that J is strictly decreasing, a property
that will be used to establish important properties such as those of the market tightness.
17Throughout this paper, the norm is the sup norm unless it is specified otherwise.
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−BJ . Intuitively, the firm’s updated value function, TJ , is bounded because the output of the

match is bounded and there is time discounting; TJ is decreasing because a firm finds it costly to

provide a worker with higher lifetime utility; TJ is concave because the contract between a firm

and a worker includes a lottery; and the “derivative” of TJ is bounded because the derivative of

the worker’s utility function is bounded. Third, we prove that TJ is continuous in J .

From the first two properties of TJ above, it follows that the equilibrium operator T maps

the set of firm’s value functions J into itself. From the third property of TJ , it follows that the

equilibrium operator T is continuous in J . From bi-Lipschitz continuity of TJ , it follows that

the family of functions T (J ) is equicontinuous. Overall, the equilibrium operator T satisfies the

assumptions of Schauder’s fixed point theorem (see Stokey and Lucas with Prescott, 1989), and,

hence, there exists a J∗ ∈ J such that J∗ = TJ∗. Applying one more time the above procedure

that leads to the mapping T , but with the firm’s value function J∗, we can construct equilibrium

policy functions θ∗, R∗, m∗, U∗, and c∗. These functions and J∗ constitute a Block Recursive

Equilibrium for the version of the model with dynamic contracts. In Section 6, we use a similar

argument to prove existence of a Block Recursive Equilibrium for the version of the model with

fixed-wage contracts.

4. General Properties of an Equilibrium

4.1. Market Tightness

Start with an arbitrary value function of the firm, J ∈ J , we construct the market tightness
function and analyze its properties. For all (x, ψ) ∈ X ×Ψ such that J(x, y, z0) ≥ k, the solution

to the equilibrium condition (2.7) is given by a market tightness of q−1(k/J(x, y, z0)), where

q−1(k/J(x, y, z0)) is bounded between 0 and θ̄ ≡ q−1(k/J̄). For all (x, ψ) ∈ X × Ψ such that

J(x, y, z0) < k, the solution to the equilibrium condition (2.7) is given by a market tightness of 0.

The condition J(x, y, z0) ≥ k is satisfied if and only if x ≤ x̃(y), where x̃(y) is the solution to the

equation J(x, y, z0) < k with respect to x. From these observations, it follows that the function

θ : X × Y → [0, θ̄] defined as

θ(x, y) =

(
q−1(k/J(x, y, z0)), if x ≤ x̃(y),

0, else,
(4.1)

is the unique solution to the equilibrium condition (2.7) for all (x, ψ) ∈ X ×Ψ.

The market tightness function, θ, has several properties. First, θ depends on the aggregate

state of the economy, ψ, only through the aggregate component of productivity, y, and not

through the distribution of workers across different employment states, (u, g). Second, the market
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tightness function, θ, is strictly decreasing with respect to x. Intuitively, since the firm’s value

from filling a vacancy is lower in a submarket with a higher x, the firm’s probability of filling

a vacancy must be higher. Third, the market tightness function, θ, is Lipschitz continuous in

x for all x, and bi-Lipschitz in x for x < x̃(y). Intuitively, since the firm’s value function, J ,

is bi-Lipschitz continuous in x and the derivative of the function q−1(.) is bounded, the market

tightness function defined in (4.1) is also bi-Lipschitz continuous for all such x that θ (x, y) > 0.

Finally, the probability that a worker meets a vacancy in submarket x, p(θ(x, y)), decreases at

an increasing rate as x increases. This property follows from the concavity of the firm’s value

function J and of the composite function p(q−1(.)). These properties of θ are summarized in the

following lemma and proved in Appendix B.

Lemma 4.1. (i) For all y ∈ Y , the market tightness function, θ, is such that

B̄J

q0(θ̄)k
(x2 − x1) ≤ θ(x2, y)− θ(x1, y) ≤

BJk

q0(0)J̄2
(x2 − x1), if x1 ≤ x2 ≤ x̃(y),

B̄J

q0(θ̄)k
(x2 − x1) ≤ θ(x2, y)− θ(x1, y) ≤ 0, if x1 ≤ x̃(y) ≤ x2,

θ(x2, y)− θ(x1, y) = 0, if x̃(y) ≤ x1 ≤ x2,

(4.2)

where BJ and B̄J are the bi-Lipschitz bounds on all functions in J . (ii) For all y ∈ Y and all

x ∈ [x, x̃ (y)], the composite function p(θ(x, y)) is strictly decreasing and strictly concave in x.

The function θ (x, y) constructed above depends on the arbitrary function J . Consider two

arbitrary functions Jn, Jr ∈ J . Let θn denote the market tightness function computed with
Jn, and θr with Jr. In the following lemma, we prove that, if the distance between Jn and Jr

converges to zero, so does the distance between θn and θr. That is, we prove that the market

tightness function, θ, is continuous with respect to the firm’s value function J with which it is

computed. This result will be used in Sections 5 and 6 to establish that the equilibrium operator

T is continuous.

Lemma 4.2. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kθn − θrk < αθρ, αθ ≡ −B̄J/
£
q0(θ̄)BJk

¤
. (4.3)

Proof: For the sake of brevity, let us suppress the dependence of various functions on (y, z).

Let ρ > 0 be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that

kJn − Jrk < ρ. Let y be an arbitrary point in Y . From property (J1) of the set J , it follows
13



that Jr(x+ B−1J ρ) − Jr(x) ≤ −ρ and, hence, Jr(x)− ρ ≥ Jr(x+ B−1J ρ). From property (J1), it

also follows that Jr(x)− Jr(x−B−1J ρ) ≤ −ρ and, hence, Jr(x) + ρ ≤ Jr(x−B−1J ρ). From these

observations and kJn − Jrk < ρ, it follows that

Jn(x) < Jr(x) + ρ ≤ Jr(x−B−1J ρ),

Jn(x) > Jr(x)− ρ ≥ Jr(x+B−1J ρ).
(4.4)

From the first line in (4.4) and equation (4.1), it follows that θn(x) ≤ θr(x − B−1J ρ). Similarly,

from the second line in (4.4) and equation (4.1), it follows that θn(x) ≥ θr(x+B−1J ρ). Hence,

θn(x)− θr(x) < θr(x−B−1J ρ)− θr(x) ≤ αθρ,

θn(x)− θr(x) > θr(x+B−1J ρ)− θr(x) ≥ −αθρ,

where αθ is defined in (4.3). Thus, |θn (x)− θr (x)| ≤ αθρ. Since this result holds for all (x, y, z) ∈
X × Y × Z, we conclude that kθn − θrk < αθρ. ¥

4.2. Search Problem

Given the firm’s value function J ∈ J , the market tightness function θ defined in (4.1) sat-

isfies the equilibrium condition (2.7). Given θ, the search value function, R, that satisfies

the equilibrium condition (2.1) is equal to maxx∈X f(x, V, y) for all (x, ψ) ∈ X × Ψ, where
f(x, V, y) ≡ p(θ(x, y))(x − V ). Note that, for all (V, ψ) ∈ X × Ψ, the objective function, f ,
depends on the aggregate state of the economy, ψ, through the aggregate component of produc-

tivity, y, and not through the distribution of workers across different employment states, (u, g).

Also, note that the choice set, X, is independent of the aggregate state of the economy, ψ. From

these observations, it follows that the optimal search decision and the search value function, R,

depend on ψ only through y and not through (u, g).

Given θ, a search policy function satisfies the equilibrium condition (2.1) if its value belongs

to argmaxx∈X f(x, V, y) for all (V,ψ) ∈ X × Ψ. For all (V, ψ) ∈ X ×Ψ, the objective function,
f , is negative for all x in the interval [x, V ], strictly positive for all x in the interval (V, x̃(y)),

and equal to zero for all x in the interval [x̃(y), x̄]. Moreover, the objective function is strictly

concave in x for all x in the interval (V, x̃(y)) (Shi, 2008, Lemma 3.1). Therefore, if V < x̃(y),

the argmax is unique and belongs to the interval (V, x̃(y)). If V ≥ x̃(y), the argmax includes any

point between V and x̄. From these observations, it follows that the function m : X × Y → X

defined as

m(V, y) =

(
argmaxx∈X f(x, V, y), if V < x(y),

V, else,
(4.5)
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is the unique solution to the equilibrium condition (2.1).

In Lemma 4.3, we prove that the search value function, R, is decreasing in V . Intuitively,

since the value to a worker from finding a job in submarket x is decreasing in the value of his

current employment position, V , and the probability that a worker finds a job in submarket x is

independent of V , the return to search is decreasing in V . Also, in Lemma 4.3, we prove that the

search policy function, m, is increasing in V . Intuitively, since the marginal rate of substitution

between the value offered by a new job and the probability of finding a new job is decreasing in V ,

the optimal search strategy is increasing in V . Monotonicity of m in V implies that the workers

choose to separate themselves into different submarkets in job search. Moreover, in Lemmas 4.3

and 4.3, we prove that the search value and policy functions are Lipschitz continuous in V . These

results will be used in Sections 5 and 6 to prove that the equilibrium operator T is continuous.

Lemma 4.3. For all y ∈ Y and all V1, V2 ∈ X, V1 ≤ V2, the search value function, R, is such

that

−(V2 − V1) ≤ R(V2, y)−R(V1, y) ≤ 0, (4.6)

and the search policy function, m, is such that

0 ≤ m(V2, y)−m(V1, y) ≤ V2 − V1. (4.7)

Proof: For the sake of brevity, let us suppress the dependence of the functions θ, x̃, m and p

on y. Let V1 and V2 be two arbitrary points in X, with V1 ≤ V2. The difference R(V2) − R(V1)

is such that

R(V2)−R(V1) ≤ f(m(V2), V2)− f(m(V2), V1) ≤ −p(θ(m(V2)))(V2 − V1) ≤ 0,
R(V2)−R(V1) ≥ f(m(V1), V2)− f(m(V1), V1) ≥ −p(θ(m(V1)))(V2 − V1) ≥ −(V2 − V1).

where the first inequality in both lines makes use of the fact that R(Vi) is equal to f(m(Vi), Vi)

and greater than f(m(V−i), Vi) where −i 6= i and i,−i = 1, 2. Thus, (4.6) holds.

Turn to (4.7). If V1 ≥ x̃, then m(V2) = V2 and m(V1) = V1. In this case, (4.7) clearly holds. If

V2 ≥ x̃ ≥ V1, then m(V2) = V2 and m(V1) ∈ (V1, x̃). Also in this case, (4.7) holds.

Now, consider the remaining case where V1 ≤ V2 < x̃. Since f(m(V1), V1) ≥ f(m(V2), V1) and

f(m(V2), V2) ≥ f(m(V1), V2), we have

0 ≥ f(m(V2), V1)− f(m(V1), V1) + f(m(V1), V2)− f(m(V2), V2)

= p(θ(m(V2)))(V2 − V1)− p(θ(m(V1)))(V2 − V1)

= [p(θ(m(V2)))− p(θ(m(V1)))] (V2 − V1).
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Since p(θ(x)) is decreasing in x, the previous inequality implies that m(V2)−m(V1) ≥ 0.

If m(V2) −m(V1) = 0, (4.7) holds. If m(V2) −m(V1) > 0, let ∆ be an arbitrary real number in

the open interval between 0 and (m(V2) −m(V1))/2. Using the definition of R, we can deduce

from the inequality f(m(V1), V1) ≥ f(m(V1) +∆, V1) the following result:

m(V1)− V1 ≥
p(θ(m(V1) +∆))∆

p(θ(m(V1)))− p(θ(m(V1) +∆))
.

Similarly, because f(m(V2), V2) ≥ f(m(V2)−∆, V2), we have

m(V2)− V2 ≤
p(θ(m(V2)−∆))∆

p(θ(m(V2)−∆))− p(θ(m(V2)))
.

Recall that the function p (θ (x)) is decreasing and concave in x for all x ≤ x̃ (y). Since m (V1) +

∆ ≤ m (V2) − ∆, then p(θ(m(V1) + ∆)) ≥ p(θ(m(V2) − ∆)). Similarly, since m (V1) < m (V2),

p(θ(m(V1)))− p(θ(m(V1) +∆)) ≤ p(θ(m(V2)−∆))− p(θ(m(V2))). From these observations and

the inequalities above, it follows that m(V2)−m(V1) ≤ V2 − V1. Hence, (4.7) holds. ¥

Now we turn to the composite function p̃(V, y) = p(θ(m(V, y), y)). The probability p̃ (V, y) is

the probability that an employed worker finds a new job during the matching stage, given that

his current job gives him the lifetime utility V and the aggregate component of productivity is y.

The following corollary states that the function p̃ (V, y) is decreasing and Lipschitz continuous in

V :

Corollary 4.4. For all y ∈ Y and all V1, V2 ∈ X, V1 ≤ V2, the quitting probability p̃ is such that

−B̄p(V2 − V1) ≤ p̃(V2, y)− p̃(V1, y) ≤ −Bp (V2 − V1) , (4.8)

where B̄p = −p0(0)B̄J/
£
q0(θ̄)k

¤
> 0 and Bp = 0.

Proof: Let y be an arbitrary point in Y , and let V1, V2 be two points in X with V1 ≤ V2. From

Lemma 4.3, it follows that the difference m(V2, y)−m(V1, y) is greater than 0 and smaller than

V2 − V1. From Lemma 4.1, it follows that the difference θ(m(V2, y), y)− θ(m(V2, y), y) is greater

than (V2 − V1)B̄J/
£
q0(θ̄)k

¤
and smaller than 0. Finally, since p is a concave function of θ, the

difference p(θ(m(V2, y), y))− p(θ(m(V2, y), y)) is such that

p0(0)B̄J/
£
q0(θ̄)k

¤
(V2 − V1) ≤ p(θ(m(V2, y), y))− p(θ(m(V1, y), y)) ≤ 0.

These are the bounds in (4.8). ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn denote the market tightness

function computed with Jn, Rn and mn the search value and policy functions computed with
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θn, and p̃n (V, y) the composite function p(θn(mn(V, y), y)). Similarly, let θr denote the market

tightness function computed with Jr, Rr and mr the search value and policy functions computed

with θr, and p̃r (V, y) the composite function p(θr(mr(V, y), y)). In the following lemma, we prove

that, if the distance between Jn and Jr converges to zero, so does the distance between Rn and

Rr and the distance between p̃n and p̃r. That is, we prove that the search value function R and

the separation probability p̃ are continuous with respect to the firm’s value function J . These

results will be used in Sections 5 and 6 to establish that the equilibrium operator T is continuous.

Lemma 4.5. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kRn −Rrk < αRρ, αR ≡ p0(0)αθ(x̄− x), (4.9)

kp̃n − p̃rk < αp (ρ) , αp (ρ) ≡ max{2B̄pρ
1/2 + p0 (0)αθρ, 2αRρ

1/2}. (4.10)

As ρ→ 0, αp (ρ)→ 0.

Proof: For the sake of brevity, let us suppress the dependence of various functions on V and

y. Let ρ > 0 be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that

kJn − Jrk < ρ. Let (V, y) be an arbitrary point in X × Y . The distance between Rn(V, y) and

Rr(V, y) is such that

|Rn −Rr| ≤ max
x∈X

|[p(θn(x))− p(θr(x))] (x− V )|

≤
½
max
x∈X

|p(θn(x))− p(θr(x))|
¾½

max
x∈X

|x− V |
¾

≤
½
max
x∈X

¯̄̄R θn(x)
θr(x)

p0(t)dt
¯̄̄¾
(x̄− x) < p0(0)αθ(x̄− x)ρ,

where the last inequality makes use of the bounds in (4.3). Since this result holds for all (V, y) ∈
X × Y , we conclude that kRn −Rrk < αRρ.

Now, consider the function p̃. Without loss of generality, assume mr(V, y) ≤ mn(V, y). (If

mr (V, y) > mn (V, y), just switch the roles of mn and mr in the proof below.) First, consider the

case where p(θr(mr)) ≤ p(θn(mn)). In this case, the distance between p(θn(mn)) and p(θr(mr))

is such that

(0 ≤) p (θn (mn))− p (θr (mr)) ≤ p (θn (mr))− p (θr (mr)) < p0 (0)αθρ,

where the first inequality makes use of the fact that p(θn(x)) is decreasing in x and mn ≥ mr,

and the second inequality makes use of the bounds in (4.3).

17



Second, consider the case where p(θr(mr)) > p(θn(mn)) and mn − 2ρ1/2 ≤ mr ≤ mn. In this

case, the distance between p(θn(mn)) and p(θr(mr)) is such that

(0 <) p (θr (mr))− p (θn (mn))

= p (θr (mr))− p (θr (mn)) + p (θr (mn))− p (θn (mn))

< 2B̄pρ
1/2 + p0 (0)αθρ,

where the last inequality makes use of the bounds in (4.8) and in (4.3). Note that this bound is

larger than the one in the previous case.

Finally, consider the remaining case where p(θr(mr)) > p(θn(mn)) and mr < mn − 2ρ1/2 < mn.

First, note thatmr ≥ V , becausemr ∈ (V, x̃r) if V < x̃r, andmr = V if V ≥ x̃r. This observation

implies that mn > V + ρ1/2, because if mn ≤ V + ρ1/2 then mr < V − ρ1/2 < V , which is a

contradiction. Second, note that mn > V implies mn < x̃n, because mn ∈ (V, x̃n) if V < x̃n, and

mn = V if V ≥ x̃n. This observation implies that mn < x̃n.

Note that p(θn(mn))(mn − V ) ≥ p(θn(mn − ρ1/2))(mn − ρ1/2 − V ), because mn is the optimal

search decision when J = Jn. Therefore, we have

p(θn(mn))ρ
1/2 ≥

£
p(θn(mn − ρ1/2))− p(θn(mn))

¤ ¡
mn − ρ1/2 − V

¢
≥

£
p(θn(mr))− p(θn(mr + ρ1/2))

¤ ¡
mn − ρ1/2 − V

¢
≥

£
p(θn(mr))− p(θn(mr + ρ1/2))

¤ ¡
mr + ρ1/2 − V

¢
.

To obtain the second inequality we have used the facts that p(θn(x)) is concave in x for all

x ∈ [x, x̃n], that mr+ρ1/2 < mn < x̃n, and that mn−ρ1/2−V > 0. To obtain the third inequality

we have used the facts that mr + ρ1/2 < mn − ρ1/2, and that p(θn(mr))− p(θn(mr + ρ1/2)) > 0.

Next, note that p(θr(mr))(mr − V ) is greater than p(θr(mr + ρ1/2))(mr + ρ1/2 − V ). Therefore,

we have

p(θr(mr))ρ
1/2 ≤

h
p(θr(mr))− p(θr(mr + ρ1/2))

i ³
mr + ρ1/2 − V

´
.

Subtracting this inequality from the previous result and dividing by ρ1/2, we obtain

(0 <) p(θr(mr))− p(θn(mn))

≤ ρ−1/2
£
p(θr(mr))− p(θn(mr)) + p(θn(mr + ρ1/2))− p(θr(mr + ρ1/2))

¤ ¡
mr + ρ1/2 − V

¢
< 2p0(0)αθρ1/2 (x̄− x) = 2αRρ,

where the last line makes use of the fact that the distance between p(θr(m)) and p(θn(m)) is

smaller than p0(0)αθρ, and that mr + ρ1/2 − V is smaller than x̄− x.

Overall, we have established that the distance between p(θr(mr)) and p(θn(mn)) is such that

|p(θr(mr))− p(θn(mn))| < max{2B̄pρ
1/2 + p0 (0)αθρ, 2αRρ

1/2} = αp(ρ)

Since this result holds for all (V, y) ∈ X × Y , we conclude that ||p̃r − p̃n|| < αp(ρ). ¥
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4.3. Unemployment Value

Given the firm’s value function J ∈ J , the solution to the equilibrium condition (2.7) is the

market tightness, θ, defined in (4.1). Given θ, the solution to the equilibrium condition (2.1) is

the search value function, R, defined as R(V, y) = maxx∈X f(x, V, y). Given R, an unemployment

value function is a solution to the equilibrium condition (2.2) if and only if it is a fixed point of

the mapping TU defined as

(TUϕ)(ψ) = υ(b) + βEψ̂
n
ϕ(ψ̂) + λumax{0, R(ϕ(ψ̂), ŷ)}

o
. (4.11)

In the next lemma, we prove that there exists a unique fixed point of the mapping TU within

the set C(Y ) of bounded continuous functions ϕ : Y → R. Therefore, there exists a unique
unemployment value function, U ∈ C(Y ), that satisfies the equilibrium condition (2.2), and that

depends on the aggregate state of the economy, ψ, only through the aggregate component of

productivity, y, but not through the distribution of workers across different employment states,

(u, g).

Lemma 4.6. (i) There exists a unique function U ∈ C(Y ) such that U = TUU . (ii) For all y ∈ Y ,

U(y) ∈
£
U, Ū

¤
, where U = (1− β)−1υ(b) > x and Ū = υ(b) + βx̄ < x̄.

Proof: In Appendix C. ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn denote the market tightness function
computed with Jn, Rn the search value function computed with θn, and Un the unemployment

value function computed with Rn. Similarly, let θr denote the market tightness function computed

with Jr, Rr the search value function computed with θr, and Ur the unemployment value function

computed with Rr. In the following lemma, we prove that, if the distance between Jn and Jr

converges to zero, so does the distance between Un and Ur.

Lemma 4.7. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kUn − Urk < αUρ, αU ≡ βλuαR/ (1− β) . (4.12)

Proof: For the sake of brevity, let us suppress the dependence of various functions on ŷ. Let ρ > 0

be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that kJn − Jrk < ρ.

Let y be an arbitrary point in Y . The distance between Un(y) and Ur(y) is such that

|Un(y)− Ur(y)|
≤ βEŷ {|[Un + λuRn(Un)]− [Ur + λumaxRn(Ur)]|+ λu |Rn(Ur)−Rr(Ur)|}
< β kUn − Urk+ βλuαRρ.
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To obtain the second inequality we have used the fact that the distance between Un + λuRn(Un)

and Un+λuRn(Un) is smaller than the distance between Un and Ur. Since the above result holds

for all y ∈ Y , it follows that kUn − Urk < αuρ. ¥

5. Block Recursive Equilibrium with Dynamic Contracts

5.1. Updated Value Function of the Firm

In the previous section, we have chosen an arbitrary firm’s value function, J ∈ J . Given J , we

have computed the market tightness function, θ, that satisfies the equilibrium condition (2.7).

Given θ, we have computed the search value and policy functions, R and m, that satisfy the

equilibrium condition (2.1). Given R, we have computed the unemployment value function, U ,

that satisfies the equilibrium condition (2.2). In this section, we insert J , θ, R, m and U into the

right hand side of the equilibrium condition (2.3) to compute an update, J̃ , of the firm’s value

function J . This process implicitly defines a mapping T through J̃ = TJ . More specifically, J̃ is

given by18

J̃(V, y, z)

= max
πi,wi,d̂i,V̂i

P2
i=1 πi

n
y + z − wi + βEŝ

h
(1− di (ŷ, ẑ))(1− λep̃(V̂i (ŷ, ẑ) , ŷ))J(V̂i (ŷ, ẑ) , ŷ, ẑ)

io
s.t. πi ∈ [0, 1], wi ∈ R, di : Y × Z → [δ, 1], V̂i : Y × Z → X, for i = 1, 2,P2

i=1 πi = 1, di (ŷ, ẑ) =
n
δ if U(ŷ) ≤ V̂i (ŷ, ẑ) + λeR(V̂i (ŷ, ẑ) , ŷ), 1 else

o
,P2

i=1 πi

n
υ(wi) + βEŝ

h
di (ŷ, ẑ)U(ŷ) + (1− di(ŷ, ẑ))(V̂i (ŷ, ẑ) + λeR(V̂i (ŷ, ẑ) , ŷ))

io
= V.

(5.1)

The updated value function of the firm, J̃ , has four important properties. First, J̃ depends

on the aggregate state of the economy, ψ, only through the aggregate component of productivity,

y, and not through the distribution of workers across different employment states, (u, g). This

property follows immediately from the fact that both the objective function and the choice set on

the right hand side of (5.1) depend on y but not on (u, g). Second, the updated value function, J̃ ,

is bi-Lipschitz continuous in V . More specifically, for all (y, z) ∈ Y × Z and all V1, V2 ∈ X, with

V1 ≤ V2, the difference J̃(V2, y, z)−J̃(V1, y, z) is bounded between −(V2−V1)/υ0 and −(V2−V1)/ῡ0

(see part (i) in the proof of Lemma 5.1). Third, J̃ is bounded in
£
J, J̄

¤
, where the bounds J and

18In a Block Recursive Equilibrium, the distribution of workers across employment states in the next period,
(û, ĝ), is uniquely determined by the realization of the aggregate component of productivity in the next period,
ŷ, and by the state of the economy in the current period, ψ. Therefore, in the contracting problem (5.1), next
period’s separation probability, di, and continuation value, V̂i, can be written as functions of ŷ only.
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J̄ are independent of J and J̃ (see (5.2) below). Finally, J̃ is concave in V , as a result of the use

of the lottery in the contract (see part (iii) in the proof of Lemma 5.1).

The bounds BJ , B̄J , J , and J̄ are set as

B̄J =
1

υ0
, BJ =

1

ῡ0
,−J = J̄ = max

(¯̄
ȳ + z̄ − υ−1(x− βx̄)

¯̄
1− β(1− δ)

,

¯̄
y + z − υ−1(x̄− βx)

¯̄
1− β(1− δ)

)
. (5.2)

With these bounds, J̃ satisfies conditions (J1)-(J3) and, hence, belongs to the set J , as stated in
the next lemma.

Lemma 5.1. Set the bounds BJ , B̄J , J , and J̄ as in (5.2). Then, the updated value function,

J̃ , belongs to the set J .

Proof: For all (V, y, z) ∈ X × Y × Z, J̃(V, y, z) is equal to maxγ∈Γ F (γ, V, y, z), where γ is

defined as the tuple (π1, Ṽ1, V̂1, V̂2); Γ is defined as the set of γ’s such that π1 ∈ [0, 1), Ṽ1 ∈ R,
V̂1 : Y × Z → X, and V̂2 : Y × Z → X; and F (γ, V, y, z) is defined as

F (γ, V, y, z) =
P2

i=1 πi

n
y + z − wi + βEŝ

h
(1− di (ŷ, ẑ))(1− λep̃(V̂i (ŷ, ẑ) , ŷ))J(V̂i (ŷ, ẑ) , ŷ, ẑ)

io
,

s.t. π2 = 1− π1, Ṽ2 = (V − π1Ṽ1)/π2,

di(ŷ, ẑ) =
n
δ if U(ŷ) ≤ V̂i(ŷ, ẑ) + λeR(V̂i(ŷ, ẑ), ŷ), 1 else

o
,

wi = υ−1
³
Ṽi − βEŝ

h
di(ŷ, ẑ)U(ŷ) + (1− di(ŷ, ẑ))(V̂i(ŷ, ẑ) + λeR(V̂i(ŷ, ẑ), ŷ))

i´
.

(5.3)

Let F 0(γ, V, y, z) denote the derivative of F (γ, V, y, z) with respect to V . It is immediate to verify

that

F 0(γ, V, y, z) = − 1

υ0(w2)
∈
∙
− 1
υ0
,− 1

ῡ0

¸
.

(i) First, we want to prove that J̃ satisfies property (J1) of the set J . To this aim, let (y, z) be an
arbitrary point in Y ×Z, and let V1, V2 be two points in X with V1 ≤ V2. The distance between

J̃(V2, y, z) and J̃(V1, y, z) is such that¯̄̄
J̃(V2, y, z)− J̃(V1, y, z)

¯̄̄
≤ maxγ∈Γ |F (γ, V2, y, z)− F (γ, V1, y, z)|

≤ maxγ∈Γ
¯̄̄R V2

V1
F 0(γ, t, y, z)dt

¯̄̄
≤ maxγ∈Γ

R V2
V1
|F 0(γ, t, y, z)| dt ≤ |V2 − V1| /υ0.

The inequality above implies that the function J̃ is Lipschitz continuous in V . Therefore, it

is absolutely continuous and almost everywhere differentiable with respect to V (see Royden,
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1988, page 112). The function F is differentiable with respect to V . Therefore, at any point of

differentiability, the derivative of J̃ with respect to V is equal to F 0(γ∗(V, y, z), V, y, z), where

γ∗(V, y, z) belongs to argmaxγ∈Γ F (γ, V, y, z) (see Milgrom and Segal, 2003, Theorem 1). From

these properties of J̃ , it follows that the difference J̃(V2, y, z)− J̃(V1, y, z) is such that

J̃(V2, y, z)− J̃(V1, y, z) =

Z V2

V1

F 0(γ∗(t, y, z), t, y, z)dt ∈
∙
−V2 − V1

υ0
,−V2 − V1

ῡ0

¸
.

(ii) Next, we want to prove that J̃ satisfies property (J2) of the set J . To this aim, let (V, y, z)
be an arbitrary point in X × Y × Z. Also, let γ0 denote the tuple (π1,0, Ṽ1,0, V̂1,0, V̂2,0), where

π1,0 = 0, Ṽ1,0 = x̄, V̂1,0 = V̂2,0 = x. The firm’s value J̃(V, y, z) is such that

J̃(V, y, z) ≤ ȳ + z̄ + βδJ̄ −min(πi,Ṽi)
nP2

i=1 πiυ
−1(Ṽi − βx̄), s.t.

P2
i=1 πiṼi = V

o
≤ ȳ + z̄ + βδJ̄ − υ−1(x− βx̄) ≤ J̄ ,

where the first inequality makes use of the bounds on y, z, w and J , and the second inequality

makes use of the convexity of υ−1(.). Also, the firm’s value J̃(V, y, z) is such that

J̃(V, y, z) ≥ F (γ0, V, y, z) ≥ y + z − υ−1(x̄− βx) + βδJ ≥ J,

where the first inequality makes use of the fact that γ0 belongs to Γ, and the second inequality

makes use of the bounds on y, z,w and J .

(iii) In Appendix F, we prove that J̃ is concave with respect to V . Hence, J̃ satisfies property

(J3) of the set J . ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn, Rn, p̃n, Un, Fn and J̃n denote

the functions computed with Jn. Similarly, let θr, Rr, p̃r, Ur, Fr and J̃r denote the functions

computed with Jr ∈ J . The next lemma proves that as the distance between Jn and Jr converges
to zero, the distance between J̃n and J̃r converges to zero as well. That is, the mapping T is

continuous.

Lemma 5.2. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kJ̃n − J̃rk < βλeαp (ρ) J̄ + αJρ, (5.4)

where
αJ ≡ αw + β

£
(1 + λe)

¡
1 + B̄JαV̂

¢
+ λeB̄pαV̂ J̄

¤
,

αV̂ ≡ (λeαR + αU + 1)/ (1− λe) , αw ≡ β
¡
αU + αV̂ + λeαR

¢
/υ0.
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Proof: For the sake of brevity, suppress the dependence of various functions on (ŷ, ẑ). Let ρ > 0

be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that kJn − Jrk <
ρ. Let (V, y, z) to an arbitrary point in X × Y × Z. Without loss in generality, assume that

J̃n(V, y, z) ≤ J̃r(V, y, z). (If J̃n(V, y, z) > J̃r(V, y, z), just switch the roles of J̃n and J̃r in the

proof below).

Denote as γr = (π1,r, Ṽ1,r, V̂1,r, V̂2,r) a tuple such that γr ∈ Γ and Fr(γr, V, y, z) = J̃r(V, y, z). Also,

denote as wi,r and di,r the wage and the separation probability implied by (5.3) for F (γ, V, y, z) =

Fr(γr, V, y, z). Denote as γn the tuple (π1,n, Ṽ1,n, V̂1,n, V̂2,n), where π1,n = π1,r, Ṽ1,n = Ṽ1,r, and

V̂i,n =

⎧⎪⎪⎨⎪⎪⎩
V̂i,r, if [V̂i,r + λeRn(V̂i,r)− Un][V̂i,r + λeRr(V̂i,r)− Ur] > 0,

Un − λeRn(V̂i,n) + ρ, if V̂i,r + λeRn(V̂i,r) ≤ Un, V̂i,r + λeRr(V̂i,r) ≥ Ur,

Un − λeRn(V̂i,n)− ρ, if V̂i,r + λeRn(V̂i,r) ≥ Un, V̂i,r + λeRr(V̂i,r) < Ur.

(5.5)

Let wi,n and di,n denote the wage and separation probability implied by (5.3) for F (γ, V, y, z) =

Fn(γn, V, y, z). Note that (5.5) implies di,n = di,r.

First, we want to bound the distance ||V̂i,n − V̂i,r||. To this aim, let (ŷ, ẑ) denote an arbitrary
point in Y × Z. Consider the case in which V̂i,r + λeRn(V̂i,r) − Un has the same sign as V̂i,r +

λeRr(V̂i,r)−Ur. In this case, V̂i,n = V̂i,r and, hence, ||V̂i,n− V̂i,r|| < αV̂ ρ. Next, consider the case

in which V̂i,r + λeRn(V̂i,r)− Un has a different sign from V̂i,r + λeRr(V̂i,r)− Ur. In this case, the

absolute value of V̂i,r + λeRn(V̂i,r)− Un is such that¯̄̄
V̂i,r + λeRn(V̂i,r)− Un

¯̄̄
≤
¯̄̄
V̂i,r + λeRn(V̂i,r)− Un − (V̂i,r + λeRr(V̂i,r)− Ur)

¯̄̄
≤ (λeαR + αU ) ρ,

(5.6)

where the second inequality makes use of the bounds in (4.9) and (4.12). Moreover, the absolute

value of V̂i,r + λeRn(V̂i,r)− Un is such that¯̄̄
V̂i,r + λeRn(V̂i,r)− Un

¯̄̄
=
¯̄̄
V̂i,r + λeRn(V̂i,r)− Un − (V̂i,n + λeRn(V̂i,n)− Un)

¯̄̄
− ρ

≥ (1− λe)
¯̄̄
V̂i,r − V̂i,n

¯̄̄
− ρ,

(5.7)

where the equality makes use of the definition of V̂i,n in (5.5), and the inequality makes use of

the bounds in (4.6). From (5.6) and (5.7), it follows that (0 <) V̂i,n − V̂i,r < αV̂ ρ and, hence,

|V̂i,n − V̂i,r| < αV̂ ρ. Since these results hold for all (ŷ, ẑ) ∈ Y × Z, we have

||V̂i,n − V̂i,r|| < αV̂ ρ. (5.8)

Second, we want to bound the distance |wi,r − wi,n|. From the definitions of wi,r and wi,n, it
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follows that υ(wi,r) and υ(wi,n) are

υ(wi,r) = Ṽi,r − βEŝ
h
di,rUr + (1− di,r)(V̂i,r + λeRr(V̂i,r))

i
,

υ(wi,n) = Ṽi,n − βEŝ
h
di,nUn + (1− di,n)(V̂i,n + λeRn(V̂i,n))

i
= Ṽi,r − βEŝ

h
di,rUn + (1− di,r)(V̂i,n + λeRn(V̂i,n))

i
,

where the last line makes use of the fact that, by construction, Ṽi,n = Ṽi,r and di,n = di,r. From

the previous equations, it follows that the distance between υ(wi,n) and υ(wi,r) is such that

|υ(wi,n)− υ(wi,r)| ≥ υ0 |wi,n − wi,r| ,

|υ(wi,n)− υ(wi,r)| ≤ βEŝ
n
|Un − Ur|+

¯̄̄h
V̂i,n + λeRn(V̂i,n)

i
−
h
V̂i,r + λeRn(V̂i,r)

i¯̄̄o
+βEŝ

n¯̄̄h
V̂i,r + λeRn(V̂i,r)

i
−
h
V̂i,r + λeRr(V̂i,r)

i¯̄̄o
< β

¡
αU + αV̂ + λeαR

¢
ρ,

(5.9)

where the last inequality makes use of the bounds in (4.12), (5.8) and (4.9). Taken together, the

two inequalities in (5.9) imply that

|wi,n − wi,r| < αwρ. (5.10)

Third, we want to bound the distance between (1−λep̃n(V̂i,n))Jn(V̂i,n) and (1−λep̃r(V̂i,r))Jr(V̂i,r)
To this aim, note that the distance between Jn(V̂i,n) and Jr(V̂i,r) is such that¯̄̄

Jn(V̂i,n)− Jr(V̂i,r)
¯̄̄
≤
¯̄̄
Jn(V̂i,n)− Jn(V̂i,r)

¯̄̄
+
¯̄̄
Jn(V̂i,r)− Jr(V̂i,r)

¯̄̄
<
¡
1 + B̄JαV̂

¢
ρ, (5.11)

where the last inequality makes use of the bounds in (5.8). Also, note that the distance between

p̃n(V̂i,n)Jn(V̂i,n) and p̃r(V̂i,r)Jr(V̂i,r) is such that¯̄̄
p̃n(V̂i,n)Jn(V̂i,n)− p̃r(V̂i,r)Jr(V̂i,r)

¯̄̄
≤ p̃n(V̂i,n)

¯̄̄
Jn(V̂i,n)− Jr(V̂i,n)

¯̄̄
+ p̃n(V̂i,n)

¯̄̄
Jr(V̂i,n)− Jr(V̂i,r)

¯̄̄
+
¯̄̄
Jr(V̂i,r)

¯̄̄ ¯̄̄
p̃n(V̂i,n)− p̃n(V̂i,r)

¯̄̄
+
¯̄̄
Jr(V̂i,r)

¯̄̄ ¯̄̄
p̃n(V̂i,r)− p̃r(V̂i,r)

¯̄̄
<

¡
1 + B̄JαV̂ + B̄pαV̂ J̄

¢
ρ+ αp (ρ) J̄ ,

(5.12)

where we have used Lemma 4.10 to bound the last difference. From (5.11) and (5.12), it follows

that ¯̄̄
(1− λep̃n(V̂i,n))Jn(V̂i,n)− (1− λep̃r(V̂i,r))Jr(V̂i,r)

¯̄̄
≤

¯̄̄
Jn(V̂i,n)− Jr(V̂i,r)

¯̄̄
+ λe

¯̄̄
p̃n(V̂i,n)Jn(V̂i,n)− p̃r(V̂i,r)Jr(V̂i,r)

¯̄̄
< λeαp (ρ) J̄ +

£
(1 + λe)

¡
1 + B̄JαV̂

¢
+ λeB̄pαV̂ J̄

¤
ρ.

(5.13)
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Finally, we want to bound the distance between J̃r(V, y, z) and J̃n(V, y, z). To this aim, note

that the difference J̃r(V, y, z)− J̃n(V, y, z) is positive (by assumption). Also, note that the differ-

ence J̃r(V, y, z) − J̃n(V, y, z) is smaller than Fr(γr, V, y, z) − Fn(γn, V, y, z) because J̃r(V, y, z) =

Fr(γr, V, y, z) and Fn(γn, V, y, z) ≤ J̃n(V, y, z). From these observations and the bounds (5.8),

(5.10) and (5.13), it follows that

0 ≤ J̃r(V, y, z)− J̃n(V, y, z) ≤ Fr(γr, V, y, z)− Fn(γn, V, y, z)

≤
P2

i=1 πi,r

n
|wi,n − wi,r|+ βEŝ

h¯̄̄
(1− λep̃n(V̂i,n))Jn(V̂i,n)− (1− λep̃r(V̂i,r))Jr(V̂i,r)

¯̄̄io
< βλeαp (ρ) J̄ +

©
αw + β

£
(1 + λe)

¡
1 + B̄JαV̂

¢
+ λeB̄pαV̂ J̄

¤ª
ρ,

Since the above inequality holds for all (V, y, z) ∈ X × Y × Z, it implies the result stated in the

lemma. ¥

5.2. Existence of a Block Recursive Equilibrium

Now, we are in the position to establish the paper’s main result.

Theorem 5.3. There exists a Block Recursive Equilibrium.

Proof: First, fix ε > 0 to be an arbitrary real number. Let ρε be the unique positive solution

for ρ of the equation βλeαp (ρ) J̄ +αjρ = ε. For all Jn, Jr ∈ J such that kJn − Jrk < ρε, Lemma

5.2 implies that kTJn − TJrk < ε. Hence, the equilibrium operator T is continuous. Next, let ρy

denote the minimum distance between distinct elements of the set Y , and ρz the minimum distance

between distinct elements of the set Z, i.e. ρy = minY |yi − yj | and ρz = minZ |zi − zj |.19 Also,
let k.kE denote the standard norm on the Euclidean space X ×Y ×Z. Let ρ̃ε = min{υ0ε, ρy, ρz}.
For all (V1, y1, z1), (V2, y2, z2) ∈ X × Y × Z such that k(V2, y2, z2)− (V1, y1, z1)kE < ρ̃ε and all

J ∈ J , Lemma 5.1 implies that TJ satisfies the property (J1) of the set J and, consequently,

|(TJ)(V2, y2, z2) − (TJ)(V2, y2, z2)| < ε. Hence, the family of functions T (J ) is equicontinuous.
Finally, Lemma 5.1 implies that the equilibrium operator T maps the set of functions J into

itself.

From these properties, it follows that the equilibrium operator T satisfies the conditions of

Schauder’s fixed point theorem (Stokey and Lucas with Prescott, 1989, Theorem 17.4). There-

fore, there exists a firm’s value function J∗ ∈ J such that TJ∗ = J∗. Denote as θ∗ the market

tightness function computed with J∗. Denote as R∗ and m∗ the search value and policy func-

tions computed with θ∗. Denote as U∗ the unemployment value function computed with R∗.

19If Y contains only one element, we can set ρy = 1. Similarly, if Z contains only one elemet, set ρz = 1.
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Denote as c∗ the contract policy function computed with J∗, θ∗, R∗, m∗, and U∗. The functions

{θ∗, R∗,m∗, U∗, J∗, c∗} satisfy the conditions (i)—(v) in the definition of a recursive equilibrium.
The functions {θ∗, R∗,m∗, U∗, J∗, c∗} depend on the aggregate state of the economy, ψ, only
through the aggregate component of productivity, y, and not through the distribution of workers

across different employment states, (u, g). Hence, the functions {θ∗, R∗,m∗, U∗, J∗, c∗} constitute
a Block Recursive Equilibrium. ¥

Directed search is necessary for existence of a Block Recursive Equilibrium. To see this

necessity clearly, suppose that search is random. Then the equilibrium condition (2.7) is replaced

by

k ≥ max
x∈X

q(θ(ψ))I (x, ψ)J(x,ψ, z0), (5.14)

and θ(ψ) ≥ 0, with complementary slackness. The term on the LHS of (5.14) is the cost of

creating a vacancy. The expression on the RHS of (5.14) is the maximized benefit of creating a

vacancy. The first term on the RHS is the probability that a firm meets a worker. The second

term denotes the probability that a worker met by a firm is willing to accept an employment

contract that provides him with the lifetime utility x. The third term is the value to the firm

of being matched with a worker to whom it has promised the lifetime utility x. With random

search, x is a random draw from the offer distribution, and so a worker’s acceptance probability of

a new match depends on the distribution of workers across employment states. The equilibrium

condition (5.14) holds only if the distribution affects also the equilibrium market tightness or

the firm’s value function. In either case, the equilibrium fails to be block recursive with random

search. In contrast, directed search eliminates the dependence of the acceptance probability on

the distribution of workers because a worker always accepts a job that he chooses to search for;

that is, I (x∗, ψ) = 1 where x∗ = m (V, ψ).20

For the sake of completeness, let us list three other assumptions about the production tech-

nology and the search process that are necessary for existence of a Block Recursive Equilibrium:

the linear production function, the vacancy cost independent of the aggregate vacancy rate, and

a matching technology with constant returns to scale. If the production function were either con-

cave or convex, the distribution of workers across different employment states would affect the

output of a match and, in turn, the firm’s value function, the market tightness function and the

value of unemployment. If the vacancy cost depends the aggregate vacancy rate, the distribution

of workers across different employment states would affect the aggregate vacancy rate, the vacancy

20When m (V,ψ) is strictly increasing in V , the workers are endogenously separated into different submarkets
in the search process. This endogenous separation is a common feature of directed search (e.g., Moen, 1997, and
Acemoglu and Shimer, 1999), and it also holds in the presence of ex ante heterogeneity (e.g., Shi, 2001).
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cost and, ultimately, the equilibrium market tightness. Finally, if the matching process between

vacancies and applicants exhibits non-constant returns to scale, the distribution of applicants

across different submarkets (and, hence, the distribution of workers across different employment

states) would affect the market tightness function and, in turn, the firm’s and worker’s value

functions. We emphasize that these assumptions are standard and that they alone do not lead

to block recursivity of an equilibrium. For example, they are maintained in the models of search

on the job by Burdett and Mortensen (1998), Postel-Vinay and Robin (2002), and Burdett and

Coles (2003), where the equilibrium fails to be block recursive because search is undirected.

6. Block Recursive Equilibrium with Fixed-Wage Contracts

In the model with fixed-wage contracts, the equilibrium operator T may not be continuous. For

example, the search value function, Rn, and the unemployment value function, Un, computed with

the firm’s value function Jn may be such that the worker prefers being employed at the wage w

than being unemployed. However, given a firm’s value function Jr that is arbitrarily close to Jn,

the search value function, Rr, and the unemployment value function, Ur, may be such that the

worker’s preference ordering between employment at the wage w and unemployment is reversed.

When this is the case, the probability with which a worker leaves a job that pays the wage w is

not continuous in J and, hence, the firm’s value from employing a worker at the wage w, K(w, s)

defined in (2.5), and the firm’s updated value function, TJ , are not continuous in J .21

Since the equilibrium operator T may not be continuous, we cannot appeal to Schauder’s

theorem in order to prove existence of a fixed point of T , and, in turn, existence of a Block

Recursive Equilibrium. Instead, we adopt the following strategy. We consider a proxy of the

model with fixed-wage contracts in which a worker is not allowed to voluntarily quit his jobs

during the separation stage. Formally, in this proxy model, the equilibrium conditions (2.4) and

(2.5) are replaced by

H(w,ψ) = w + βEψ̂
n
δU(ψ̂) + (1− δ)

h
H(w, ψ̂) + λemax{0, R(H(w, ψ̂), ψ̂)}

io
, (6.1)

and

K(w, s) = y + z − w + β (1− δ)Eŝ
h
(1− λep̃(H(w, ψ̂), ψ̂))K(H(w, ψ̂), ŝ)

i
. (6.2)

We prove that the equilibrium operator associated with the proxy model admits a fixed point

because it satisfies all the conditions of Schauder’s theorem (including continuity). Finally, we

21This discontinuity does not occur with dynamic contracts, because the future wage path (i.e., the promised
future value) can be adjusted to ensure that job separation rates are close to each other whenever the firm’s value
functions are close to each other. See the proof of Lemma 5.2.
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use the fixed point to construct a Block Recursive Equilibrium of the proxy model. If, along the

equilibrium path, a worker never has the incentive to quit his job during the separation stage,

the BRE of the proxy model is also a BRE of the original model.

6.1. Employment Value

Given an arbitrary firm’s value function J ∈ J , let R denote the search value function that

solves the equilibrium condition (2.1), and U the unemployment value function that solves the

equilibrium condition (2.2). Given R and U , an employment value function is a solution to the

equilibrium condition (6.1) if and only if it is a fixed point of the mapping TH defined as

(THϕ)(w,ψ) = w + βEψ̂
n
δU(ŷ) + (1− δ)

h
ϕ(w, ψ̂) + λemax{0, R(ϕ(w, ψ̂), ŷ)}

io
. (6.3)

In Lemma 6.1, we prove that there exists a unique fixed point of the mapping TH within the set

C(W×Y ) of bounded continuous functions ϕ :W×Y → R (whereW is defined below). Therefore,

there exists a unique employment value function, H, that satisfies the equilibrium condition (6.1),

and depends on the aggregate state of the economy, ψ, only through the aggregate component of

productivity, y. Moreover, in Lemma 6.1, we prove that H is strictly decreasing and bi-Lipschitz

continuous in w.

Lemma 6.1. Let W = [w, w̄], where w̄ is given by [1 − β(1 − δ)]x̄ − βδU and w by x − β[1 −
β(1 − δ)]−1(w̄ + βδŪ). (i) There exists a unique function H ∈ C(W × Y ) such that H = THH.

(ii) For all y ∈ Y and all w1, w2 ∈W , w1 ≤ w2, H is such that

w2 − w1 ≤ H(w2, y)−H(w1, y) ≤ (w2 − w1) / [1− β(1− δ)] . (6.4)

(iii) For all y ∈ Y , H is such that

H(w, y) ≤ x, x̄ ≤ H(w̄, y), all y ∈ Y . (6.5)

Proof: In Appendix D. ¥

From the properties of the employment value function, H, we can derive some properties of

the wage function, h, which is the solution of the equation H(w,ψ) = V with respect to w. First,

since H is strictly increasing in w, h is well-defined. Second, since H is strictly increasing and

bi-Lipschitz continuous in w, h is strictly increasing and bi-Lipschitz in V . More specifically, for

all y ∈ Y and all V1, V2 ∈ X, with V1 ≤ V2, we have

[1− β(1− δ)](V2 − V1) ≤ h(V2, y)− h(V1, y) ≤ V2 − V1. (6.6)
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Finally, since H is strictly increasing in w and satisfies property (6.5), h(V, y) belongs to the

interval W for all (V, y) ∈ X × Y .

Now, consider two arbitrary functions Jn, Jr ∈ J . Let Rn, Un, Hn and hn denote the functions

computed with Jn. Similarly, let Rr, Ur, Hr and hr denote the functions computed with Jr ∈ J .
Lemma 6.2 proves that as the distance between Jn and Jr converges to zero, the distance between

Hn and Hr and the distance between hn and hr both converge to zero. That is, H and h are

continuous in J .

Lemma 6.2. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kHn −Hrk < αhρ, khn − hrk < αhρ,

αh ≡ β (αu + λeαR) / (1− β) .
(6.7)

Proof: Let ρ > 0 be an arbitrary real number; let Jn and Jr be arbitrary functions in J such

that kJn − Jrk < ρ. Let (w, y) be an arbitrary point in W × Y . Then, the distance between

Hn(w, y) and Hr(w, y) is such that

|Hn(w, y)−Hr(w, y)|
≤ βEŷ {|Un(y)− Ur(y)|+ λe |max{0, Rn(Hn(w, ŷ), ŷ)}−max{0, Rr(Hn(w, ŷ), ŷ)}|}
+ βEŷ {|Hn(w, ŷ) + λemax{0, Rr(Hn(w, ŷ), ŷ)}−Hr(w, ŷ)− λemax{0, Rr(Hr(w, ŷ), ŷ)}|}
< β (αu + λeαR) ρ+ β kHn −Hrk ,

where the last inequality makes use of the bounds in (4.12), (4.9), and (4.6). Since the above

result holds for all (w, y) ∈ W × Y , the RHS is an upper bound on kHn −Hrk. Re-arranging
terms yields the bound on kHn −Hrk given by (6.7).

Now, let (V, y) be an arbitrary point in X × Y . The distance between hn(V, y) and hr(V, y) is

such that
|hn(V, y)− hr(V, y)| ≤ |Hn(hn(V, y), y)−Hn(hr(V, y), y)|

= |Hr(hr(V, y), y)−Hn(hr(V, y), y)| < αhρ,

where the first inequality uses the fact that Hn(w, y) satisfies condition (6.4), and the equality

uses the fact that Hn(hn(V, y), y) = Hr(hr(V, y), y) = V . Since the above result holds for all

(V, y) ∈ X × Y , the RHS is an upper bound on khn − hrk, as given by (6.7). ¥

6.2. Value Function of the Firm

Let H and p̃ denote the employment value function and the separation probability computed

with an arbitrary function J ∈ J . Given H and p̃, a firm’s value function is a solution to the
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equilibrium condition (6.2) if and only if it is a fixed point of the mapping TK defined as

(TKϕ)(w, s) = y + z −w + β (1− δ)Eŝ [(1− λep̃(H(w, ŷ), ŷ))ϕ(w, ŝ)] . (6.8)

In Lemma 6.3, we prove that there exists a unique fixed point of the mapping TK within the set

C(W × Y × Z) of bounded continuous functions ϕ : W × Y × Z → R. Therefore, there exists a
unique firm’s value function, K, that satisfies the equilibrium condition (6.2), and that depends

on the aggregate state of the economy, ψ, only through the aggregate component of productivity,

y. Then, we prove that K is bounded between K and K̄, where

−K = K̄ = max

( ¯̄
y + z − w̄

¯̄
1− β(1− δ)

,
|ȳ + z̄ − w|
1− β(1− δ)

)
.

Finally, we prove that K is bi-Lipschitz continuous in w. That is, for all w1 ≤ w2, the difference

K(w2, y, z)−K(w1, y, z) is bounded between −B̄K(w2 − w1) and −BK(w2 − w1), where

BK =
1− β (1− δ)

¡
1 + λeB̄pK̄

¢
[1− β (1− δ)] [1− β(1− δ)(1− λe)]

, B̄K =
1− β(1− δ)(1 + λeB̄pK)

[1− β(1− δ)]2
,

In the remainder of this section, we will assume that the parameters of the model are such that

0 < BK ≤ B̄K <∞.22

Lemma 6.3. (i) There exists a unique function K ∈ C(W × Y × Z) such that K = TKK. (ii)

For all (y, z) ∈ Y × Z and all w1, w2 ∈W , with w1 ≤ w2, K is such that

−B̄K(w2 − w1) ≤ K(w2, y, z)−K(w1, y, z) ≤ −BK (w2 −w1) , (6.9)

(iii) For all (w, y, z) ∈W × Y × Z, K is such that

K(w, y, z) ∈ [K, K̄]. (6.10)

Proof: In Appendix E. ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let Rn, Un, Hn, hn and Kn denote the

functions computed with Jn. Similarly, let Rr, Ur, Hr, hr and Kr denote the functions computed

with Jr ∈ J . Lemma 6.4 proves that as the distance between Jn and Jr converges to zero, the

distance between Kn and Kr goes to zero as well.

22It is immediate to verify that the condition 0 < BK ≤ B̄K <∞ is satisfied as long as the probability λe that
an employed worker has the opportunity of searching is not too large.
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Lemma 6.4. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kKn −Krk < αK(ρ),

αK(ρ) ≡ β(1− δ)λeK̄
¡
B̄pαhρ+ αp(ρ)

¢±
[1− β(1− δ)] .

(6.11)

Proof: Let ρ > 0 be an arbitrary real number; let Jn and Jr be arbitrary functions in J such

that kJn − Jrk < ρ. Let (w, y, z) be an arbitrary point in W × Y × Z. The distance between

Kn(w, y, z) and Kr(w, y, z) is such that

|Kn(w, y, z)−Kr(w, y, z)|
≤ β(1− δ)Eŝ {|Kn(w, y, z)−Kr(w, y, z)|}
+ β(1− δ)λeK̄Eŝ {|p̃n(Hn(w, ŷ), ŷ)− p̃n(Hr(w, ŷ), ŷ)|+ |p̃n(Hr(w, ŷ), ŷ)− p̃r(Hr(w, ŷ), ŷ)|}
< β(1− δ)

£
kKn −Krk+ λeK̄ (Bpαhρ+ αp(ρ))

¤
,

where the last inequality makes use of the bounds in (6.7), (6.9) and (4.4). Since this result holds

for all (w, y, z) ∈ W × Y × Z, the RHS is an upper bound on kKn −Krk. Re-arranging terms
yields the bound on kKn −Krk given by (6.11). ¥

6.3. Existence of a Block Recursive Equilibrium

In the previous subsections, we have computed the employment value function, H, the wage

function, h, and the firm’s value function, K, associated with an arbitrary J ∈ J . In this

subsection, we insert K and h into the right hand side of the equilibrium condition (2.6), and we

compute an update, J̃ = TJ , for the value function J . More specifically, J̃ is given by

J̃(V, y, z) = max
πi,Ṽi

P2
i=1 πiK(h(Ṽi, y), y, z),

s.t. V =
P2

i=1 πiṼi,

πi ∈ [0, 1], π1 + π2 = 1, Ṽi ∈ X.

(6.12)

The updated function, J̃ , has four properties. First, J̃ depends on the aggregate state of

the economy, ψ, only through the aggregate component of productivity, y. This property follows

immediately from the fact that both the objective function and the choice set on the right hand

side of (5.1) depend on ψ only through y. Second, the updated value function, J̃ , is bi-Lipschitz

continuous in V . More specifically, for all (y, z) ∈ Y × Z and all V1, V2 ∈ X, with V1 ≤ V2, the

difference J̃(V2, y, z)−J̃(V1, y, z) is bounded between−B̄K(V2−V1) and−BK(1−β(1−δ))(V2−V1)
(see part (i) in the proof of Lemma 6.5). Third, J̃ is bounded in

£
J, J̄

¤
for some bounds J and

J̄ that are independent of J and J̃ . More specifically, for all (V, y, z) ∈ X × Y × Z, J̃(V, y, z)

is greater than K and smaller than K̄ (see part (ii) in the proof of Lemma 6.5). Finally, J̃ is
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concave in V (see part (iii) in the proof of Lemma 6.5). Therefore, given the appropriate choices

of BJ , B̄J , J , and J̄ , the updated value function, J̃ , satisfies conditions (J1), (J2) and (J3) and,

hence, it belongs to the set J . This argument is formalized in the following lemma:

Lemma 6.5. Set J = K, and J̄ = K̄. Set BJ = BK(1 − β(1 − δ)) and B̄J = B̄K . Then, the

updated value function, J̃ , belongs to the set J .

Proof: (i) Let (V, y, z) be an arbitrary point in X × Y × Z. Then, J̃(V, y, z) is such that

J̃(V, y, z) ≤ maxṼ1∈X K(h(Ṽ1, y), y, z) ≤ maxw∈W K(w, y, z) ≤ K̄,

J̃(V, y, z) ≥ minṼ1∈X K(h(Ṽ1, y), y, z) ≤ minw∈W K(w, y, z) ≥ K,

where we used the fact that if Ṽ1 ∈ X then h(Ṽ1, y) ∈ W . The above inequalities imply that J̃

satisfies property (J1) of the set J .

(ii) Let (y, z) be an arbitrary point in Y × Z, and V1, V2 two arbitrary points in X, with

V1 ≤ V2. Let {πi,1, Ṽi,1}2i=1 denote the maximizer of (6.12) for V = V1, and {πi,2, Ṽi,2}2i=1 the
maximizer of (6.12) for V = V2. Let {∆i,1}2i=1 be a vector such that Σ2i=1πi,1(Ṽi,1 +∆i,1) = V2

and ∆i,1 ∈ [0, x̄ − Vi,1]. Also, let {∆i,2}2i=1 be a vector such that Σ2i=1πi,2(Ṽi,2 −∆i,2) = V1 and

∆i,2 ∈ [0, Vi,2 − x]. Note that {πi,1, Ṽi,1 +∆i,1}2i=1 belongs to the choice set of (6.12) for V = V2.

Therefore,

J̃(V2, y, z)− J̃(V1, y, z) ≥
P2

i=1 πi,1

h
K(h(Ṽi,1 +∆i,1, y), y, z)−K(h(Ṽi,1, y), y, z)

i
≥ −B̄K

hP2
i=1 πi,1

³
h(Ṽi,1 +∆i,1, y)− h(Ṽi,1, y)

´i
= −B̄K(V2 − V1).

Next, note that {πi,2, Ṽi,2 −∆i,2}2i=1 belongs to the choice set of (6.12) for V = V2. Therefore,

J̃(V2, y, z)− J̃(V1, y, z) ≤
P2

i=1 πi,2

h
K(h(Ṽi,2, y), y, z)−K(h(Ṽi,2 −∆i,2, y), y, z)

i
≤ −BK

hP2
i=1 πi,2

³
h(Ṽi,2, y)− h(Ṽi,2 −∆i,2, y)

´i
= −BK(1− β(1− δ))(V2 − V1).

The above inequalities imply that J̃ satisfies property (J2) of the set J .

(iii) Finally, Appendix F shows that J̃ is concave with respect to V . Hence, J̃ satisfies property

(J3) of the set J . ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . LetHn, hn, Kn and J̃n denote the functions

computed with Jn. Similarly, let Hr, hr, Kr and J̃r denote the functions computed with Jr ∈ J .
32



Lemma 6.4 proves that as the distance between Jn and Jr converges to zero, the distance between

J̃n and J̃r goes to zero as well.

Lemma 6.6. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

||J̃n − J̃rk < αJ(ρ), αJ(ρ) ≡ αK(ρ) + B̄Kαhρ. (6.13)

Proof: Let ρ > 0 be an arbitrary real number; let Jn and Jr be arbitrary functions in J such

that kJn − Jrk < ρ. Denote as Hn, hn and Kn the functions computed with Jn, and Hr hr and

Kr the functions computed with Jr. Let (V, y, z) be an arbitrary point in X × Y × Z. The

distance between J̃n(V, y, z) and J̃r(V, y, z) is such that¯̄̄
J̃n(V, y, z)− J̃r(V, y, z)

¯̄̄
≤ maxṼ1∈X

h¯̄̄
Kn(hn(Ṽ1))−Kn(hr(Ṽ1))

¯̄̄
+
¯̄̄
Kn(hr(Ṽ1))−Kr(hr(Ṽ1))

¯̄̄i
≤ maxV1∈X

£
B̄K khn − hrk+ kKn −Krk

¤
≤ αK(ρ) + B̄Kαhρ,

where the last inequality makes use of the bounds in (6.7), (6.9) and (6.11). Since this result

holds for all (V, y, z) ∈ X × Y × Z, the RHS is an upper bound on ||J̃n − J̃r||. ¥

Lemma 6.5 implies that the equilibrium operator T maps the set J into itself. Moreover,

since the functions in the set J are bi-Lipschitz and the sets Y and Z are finite, Lemma 6.5

implies that the family of functions T (J ) is equicontinuous. In addition, Lemma 6.6 implies that
the operator T is continuous. Since these properties of the operator T are sufficient to apply

Schauder’s fixed point theorem, there exists a function J∗ ∈ J such that TJ∗ = J∗. Clearly, the

firm’s value function J∗, together with the associated tightness function θ∗, search value function

R∗, search policy functionm∗, and unemployment value function U∗, constitute a Block Recursive

Equilibrium. This completes the proof of the following theorem:

Theorem 6.7. There exists a Block Recursive Equilibrium for the proxy of the model with

fixed-wage contracts.

For any Block Recursive Equilibrium of the proxy model, we can compute the worker’s value

of unemployment, U∗(y), and the worker’s value of employment at the beginning of the search

stage, H∗(w, y) + λemax{0, R∗(H∗(w, y), y)}. A BRE of the proxy model is a BRE of the original
model if

U∗(y) ≤ H∗(w, y) + λemax{0, R∗(H∗(w, y), y)} (6.14)

for all equilibrium wages w and for all realizations of the aggregate component of productivity

y. This condition implicitly restricts the parameter values of the model. We do not explicitly
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characterize this restriction here. However, notice that, since unemployed workers search for jobs

that offer lifetime utility H∗(w, y) greater than U∗(y) and since employed workers search for even

better jobs, (6.14) is likely to be satisfied as long as aggregate productivity shocks are sufficiently

small. This is the case in the calibrated example below.

7. A Calibrated Example

In Sections 5 and 6, we have established existence of a Block Recursive Equilibrium for our

stochastic model of directed search on the job. In this section, we want to illustrate additional

properties of a BRE. To this aim, we calibrate the parameters of the model using the data on

the US labor market. Given the calibrated parameters, we construct the equilibrium operator T

and we apply it to an arbitrary value function, J ∈ J , until we reach a fixed point, J∗. Then,
we construct a BRE by computing the agents’ value functions, policy functions and the market

tightness function associated with J∗. For the sake of brevity, we report our findings only for the

version of the model with fixed-wage contracts.

The workers’ preferences are described by the discount factor β, and the value of leisure b.

The search technology is described by the probability that an unemployed worker is able to look

for a job, λu, by the probability that an employed worker is able look for a job, λe, and by the

job-finding probability function, p(θ). We assume that p(θ) is of the form θ(1 + θγ)−1/γ . The

production technology is described by the vacancy creation cost k, the exogenous job-destruction

probability δ, and the stochastic processes for the idiosyncratic and the aggregate components

of productivity. We assume that the idiosyncratic component of productivity, z, is always equal

to zero, and that the aggregate component of productivity, y, obeys a two-state Markov process,

with y ∈ {0.95, 1.05}. The unconditional mean of y is normalized to 1.

We set the model period to be one quarter. We set β equal to 0.987, so that the annual interest

rate in the model is 5 percent. We set k, δ, and λe equal to 0.001, 0.045, and 0.3 respectively,

so that the average transition rates between employment, unemployment, and across employers

are the same in the model as in the US data.23 We normalize λu to 1. We tentatively set γ

equal to 0.5, which implies an the elasticity of substitution between vacancies and applicants of

2/3. Finally, we set b equal to 0.7, so that the consumption value of leisure is 70 percent of the

consumption value of work (a figure that is empirically supported by Hall and Milgrom, 2008).

Given these parameter values, we compute a BRE of the proxy model. In Figure 1, we plot the

market tightness as a function of the value offered by the firms to the workers, x, and conditional

23The data used for the calibration are described in Section 5 of Menzio and Shi (2008).
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on the realization of the aggregate component of productivity, y. In accordance with Lemma 4.1,

we find that the market tightness is decreasing with respect to x. Moreover, we find that the

market tightness is higher when the aggregate component of productivity is higher. Intuitively,

when y is higher, firms create more vacancies per applicant because the value of filling a vacancy

is higher.

In Figure 2, we plot the worker’s optimal search strategy as a function of the value, V , of

his current employment position, and conditional on the realization of the aggregate component

of productivity, y. In accordance with Lemma 4.3, we find that the worker seeks jobs that offer

more generous terms of trade (and are harder to get) when the value of his current employment

position is higher. Moreover, we find that the worker seeks jobs that offer more generous terms

of trade and are easier to get when the aggregate component of productivity is higher (see Figure

3).

In Figure 4, we plot the worker’s employment value as a function of the wage w, conditional on

the realization of the aggregate component of productivity, y. Similarly, in Figure 5, we plot the

firm’s value of employing a worker as a function of the wage w, conditional on y. We find that the

worker’s value of being employed is increasing in w, while the firm’s value of having an employee

is decreasing in w. Moreover, we find that the worker’s and firm’s values are both increasing with

respect to the the aggregate component of productivity. Intuitively, when y is higher, the worker’s

value is higher because the value of unemployment and the return to searching are higher. The

firm’s value is higher because its periodical profit (conditional on the survival of the employment

relationship) is higher. From these properties of H∗ and K∗, it follows immediately that the

firm’s value of filling a vacancy in submarket x is decreasing in x, and increasing in y (see Figure

6).

The equilibrium functions θ∗, m∗, and H∗ illustrate that the BRE preserves some attractive

qualitative features of the models by Burdett and Mortensen (1998), Postel-Vinay and Robin

(2002) and Burdett and Coles (2003). For example, the BRE generates residual wage inequality

because, if ex-ante homogeneous workers have different luck with their job searches, they will be

employed at different wages. The BRE features a positive return to tenure because workers who

are employed at lower wages search in tighter submarkets and, hence, have a higher probability

of leaving their job. For the very same reason, the BRE also features a negative relationship

between tenure and job hazard.

Finally, using the equilibrium functions θ∗, m∗, H∗, K∗, J∗ and U∗, we simulate the life of an

unemployed worker. We find that, whenever the worker is employed, he prefers keeping his job
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than moving into unemployment. That is, we find that condition (6.14) is satisfied everywhere

along the equilibrium path. Therefore, the BRE of the proxy model is also a BRE of the original

model with fixed-wage contracts.

8. Conclusions

In this paper, we prove existence of a Block Recursive Equilibrium for a general model of directed

search on the job, which allows for aggregate shocks, idiosyncratic shocks, risk aversion, and

different specifications of the contractual environment. The BRE of our model preserves a number

of attractive qualitative properties of the models of random search on the job by Burdett and

Mortensen (1998), Postel-Vinay and Robin (2002), and Burdett and Coles (2003). That is,

the BRE features flows of workers between employment, unemployment, and across different

employers; it features residual wage inequality, and a positive return to tenure and experience.

However, the BRE of our model differs from these models in that it takes into account directed

search and that it is tractable for studying dynamics. In the equilibrium of the random search

models, the distribution of workers across different employment states is an infinite-dimensional

object which non-trivially affects the agents’ value and policy functions. In the BRE of our model,

the distribution of workers across different employment states does not affect the agents’ value

and policy functions. For this reason, while solving the equilibrium of the random search model

in a stochastic environment is a difficult task both computationally and analytically, solving the

BRE of our model is as easy as solving a representative agent model. These properties of the

BRE make our model both a useful and a practical tool for studying labor market dynamics.
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Appendix

A. Properties of the Set of Functions J

Lemma A.1. J is a non-empty, bounded, closed and convex subset of the space of bounded,

continuous functions on X × Y × Z, with the sup norm.

Proof: (i) Clearly, the set J is non-empty and bounded.

(ii) Next, we need to prove that the set J is closed. To this aim, let {Jn}∞n=1 be an arbitrary
sequence with Jn ∈ J for every n, and with Jn → J (in the sup norm). Note that, since Jn → J ,

for every ε > 0, there exists N(ε) ≥ 1 such that n ≥ N(ε) =⇒ kJn − Jk < ε.

For arbitrary (y, z) ∈ Y ×Z and arbitrary V1, V2 ∈ X, with V1 ≤ V2, suppose that the difference

J(V2, y, z) − J(V1, y, z) is strictly smaller than −B̄J(V2 − V1). Let ε > 0 be one third of the

difference between −B̄J(V2−V1) and [J(V2, y, z)−J(V1, y, z)]. Let n be a natural number greater
than N (ε). Since ||Jn − J || < ε, the difference Jn(V2, y, z)− Jn(V1, y, z) is such that

Jn(V2, y, z)− Jn(V1, y, z) < J(V2, y, z)− J(V1, y, z) + 2ε

= 1
3 [J(V2, y, z)− J(V1, y, z)]− 2

3B̄J(V2 − V1)

< −B̄J(V2 − V1).

The last inequality contradicts Jn ∈ J . Therefore, J(V2, y, z) − J(V1, y, z) is greater than

−B̄J(V2−V1) for all (y, z) ∈ Y ×Z and all V1, V2 ∈ X, with V1 ≤ V2. Using a similar argument,

we can prove that J(V2, y, z)−J(V1, y, z) is smaller than −BJ(V2−V1) for all (y, z) ∈ Y ×Z and

all V1, V2 ∈ X, with V1 ≤ V2. That is, J satisfies property (J1) of the set J .

For all (V, y, z) ∈ X × Y × Z, it is immediate to verify that J(V, y, z) ∈ [J, J̄ ]. Hence, J satisfies
property (J2) of the set J . For arbitrary (y, z) ∈ Y ×Z, arbitrary V1, V2 ∈ X, and arbitrary α ∈
[0, 1], suppose that J(Vα, y, z) is strictly smaller than αJ(V1, y, z)+(1−α)J(V2, y, z), where Vα =
αV1+(1−α)V2. Let ε > 0 be one third of the difference between [αJ(V1, y, z) + (1− α)J(V2, y, z)]

and J(Vα, y, z). n be a natural number greater than N (ε). Since ||Jn − J || < ε, we have

Jn(Vα, y, z) < J(Vα, y, z) + ε

= αJ(V1, y, z) + (1− α)J(V2, y, z)− 2ε
< αJn(V1, y, z) + (1− α)Jn(V2, y, z)− ε

< αJn(V1, y, z) + (1− α)Jn(V2, y, z).

The last inequality contradicts Jn ∈ J . Therefore, J(Vα, y, z) is greater than αJ(V1, y, z) + (1−
α)J(V2, y, z) for all (y, z) ∈ Y × Z, all V1, V2 ∈ X and all α ∈ [0, 1]. That is, J satisfies property
(J3) of the set J . This establishes that J ∈ J and, hence, that the set J is closed.
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(iii) Finally, we need to prove that the set J is convex. To this aim, consider arbitrary J1,

J2 ∈ J and an arbitrary α ∈ [0, 1]. Denote Jα(V, y, z) = αJ1(V, y, z) + (1− α)J2(V, y, z). For all

(y, z) ∈ Y × Z and all V1, V2 ∈ X, with V1 ≤ V2, the difference Jα(V2, y, z)− Jα(V1, y, z) is such

that
Jα(V2, y, z)− Jα(V1, y, z)

= α [J1(V2, y, z)− J1(V1, y, z)] + (1− α) [J2(V2, y, z)− J2(V1, y, z)]

∈
£
−BJ(V2 − V1),−B̄J(V2 − V1)

¤
.

Hence, Jα satisfies property (J1) of the set J . For all (V, y, z) ∈ X×Y ×Z, it is immediate to verify
that Jα(V, y, z) ∈ [J, J̄ ]. Hence, Jα satisfies property (J2) of the set J . For all (y, z) ∈ Y × Z,

V1, V2 ∈ X, and ζ ∈ [0, 1], let Vζ = ζV1 + (1− ζ)V2. Then, Jα(Vζ , y, z) is such that

Jα(Vζ , y, z)

= αJ1(Vζ , y, z) + (1− α)J2(Vζ , y, z)

≥ α [ζJ1(V1, y, z) + (1− ζ)J1(V2, y, z)] + (1− α) [ζJ2(V1, y, z) + (1− ζ)J2(V2, y, z)]

= ζJα(V1, y, z) + (1− ζ)Jα(V2, y, z).

Hence, Jα satisfies property (J3) of the set J . This establishes that Jα ∈ J and, hence, that the

set J is convex. ¥

B. Proof of Lemma 4.1

(i) For the sake of brevity, let us suppress the dependence of various functions on y and z. Let y

be an arbitrary point in Y , and let x1, x2 be two points in X with x1 ≤ x2. First, consider the

case in which x1 ≤ x2 ≤ x̃. In this case, the difference θ(x2)− θ(x1) is equal to

θ(x2)− θ(x1) = q−1(k/J(x2))− q−1(k/J(x1)) =

Z k/J(x2)

k/J(x1)
q−10(t)dt, (B.1)

where the first equality makes use of (4.1), and the second equality makes use of the fact that

J(x1) ≥ J(x2) ≥ k > 0. For all x ∈ [x, x̃], the derivative of the inverse function q−1(.) evaluated

at k/J(x) is equal to 1/q0(θ(x)) ∈ [1/q0(θ̄), 1/q0(0)], where 1/q0(θ̄) ≤ 1/q0(0) < 0. Therefore, the

last term in (B.1) is such that

1

q0(θ̄)

µ
k

J(x2)
− k

J(x1)

¶
≤
Z k/J(x2)

k/J(x1)
q−10(t)dt ≤ 1

q0(0)

µ
k

J(x2)
− k

J(x1)

¶
. (B.2)

The difference k/J(x2)− k/J(x1) is equal to

k

J(x2)
− k

J(x1)
=

Z J(x1)

J(x2)

k

t2
dt.
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For all x ∈ [x,x̃], J(x) is strictly decreasing in x and it is bounded between J̄ and k. Therefore,

the integral on the RHS above is such thatZ J(x1)

J(x2)

k

t2
dt ≤ 1

k
[J(x1)− J(x2)] ≤

B̄J

k
(x2 − x1),Z J(x1)

J(x2)

k

t2
dt ≥ k

J̄2
[J(x1)− J(x2)] ≥

BJk

J̄2
(x2 − x1).

(B.3)

Taken together, (B.2) and (B.3) imply that the difference θ(x2)− θ(x1) is such that

B̄J

q0(θ̄)k
(x2 − x1) ≤ θ(x2)− θ(x1) ≤

BJk

q0(0)J̄2
(x2 − x1). (B.4)

Next, consider the case in which x1 ≤ x̃ ≤ x2. In this case, the difference θ(x2) − θ(x1) is such

that

θ(x2)− θ(x1) = θ(x̃)− θ(x1) ≤
BJk

q0(0)J̄2
(x̃− x1) ≤ 0,

θ(x2)− θ(x1) = θ(x̃)− θ(x1) ≥
B̄J

q0(θ̄)k
(x̃− x1) ≥

B̄J

q0(θ̄)k
(x2 − x1),

where the first equality in both lines makes use of the fact that θ(x2) = θ(x̃), and the first

inequality in both lines makes use of the bounds in (B.4). Finally, consider the case in which

x̃ ≤ x1 ≤ x2. In this case, (4.1) implies that θ(x1) = θ(x2) = 0.

(ii) The function p(θ) is strictly increasing in θ. The function θ(x) is strictly decreasing in x for

all x ∈ [x, x̃]. Therefore, the composite function p (θ (x)) is strictly decreasing in x for x ∈ [x, x̃].
In order to prove that the composite function p (θ (x)) is strictly concave in x for x ∈ [x, x̃],
consider arbitrary x1, x2 ∈ [x, x̃], with x1 6= x2, and an arbitrary number α ∈ (0, 1). Let

xα = αx1 + (1 − α)x2. Since the function J(x) is concave in x and the function k/x is strictly

convex in x, we have

k

J(xα)
≤ k

αJ(x1) + (1− α)J(x2)
< α

k

J(x1)
+ (1− α)

k

J(x2)
.

Since p(q−1(.)) is strictly decreasing and weakly concave, the previous inequality implies that

p(q−1 (k/J(xα)) > p(q−1(αk/J(x1) + (1− α)k/J(x2)))

≥ αp(q−1(k/J(x1))) + (1− α)p(q−1(k/J(x2))).
(B.5)

Since q−1(k/J(x)) is equal to θ(x) for all x ∈ [x, x̃], (B.5) can be rewritten as

p(θ(xα)) > αp(θ(x1)) + (1− α)p(θ(x2)). (B.6)

This establishes that the composite function p (θ (x)) is strictly concave in x for all x ∈ [x, x̃].
¥
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C. Proof of Lemma 4.6

(i) For all ϕ1, ϕ2 ∈ C(Y ), with ϕ1 ≤ ϕ2, the difference TUϕ2 − TUϕ1 is such that

(TUϕ2)(y)− (TUϕ1)(y)
= βEψ̂ {ϕ2(ŷ)− ϕ1(ŷ) + λu [max{0, R(ϕ2(ŷ), ŷ)}−max{0, R(ϕ1(ŷ), ŷ)}]} ≥ 0,

(C.1)

where the last inequality uses the fact that the function V +λumax{0, R(V )} is increasing in V .

For all ϕ ∈ C(Y ) and all a ≥ 0, TU (ϕ+ a) is such that

[TU (ϕ+ a)] (y) = (TUϕ)(y) + βEψ̂ {a+ λu [max{R(ϕ+ a), 0}−max{R(ϕ), 0}]}

≤ (TUϕ)(y) + βa,
(C.2)

where, for the sake of brevity, we have suppressed the dependence of various variables from the

aggregate state ŷ. Conditions (C.1) and (C.2) are sufficient to prove that the operator TU is a

contraction mapping (Stokey and Lucas with Prescott, 1989, Theorem 3.3). Hence, there exists

one and only one U such that TUU = U .

(ii) Let ϕ ∈ C(Y ) be a function that is bounded between U and Ū . Then, TUϕ is such that

(TUϕ)(y) ≥ υ(b) + βU = U ,

(TUϕ)(y) ≤ υ(b) + βx̄ = Ū ,
(C.3)

where the first line makes use of the facts that ϕ ≥ U and R(ϕ(ŷ), ŷ) ≥ 0; and the second line
makes use of the fact that ϕ+λumax{0, R(ϕ(ŷ), ŷ)} ≤ x̄. From the inequalities in (C.3), it follows

that the operator TU maps the set of functions that are bounded between U and Ū into itself.

Since the operator TU is a contraction, it follows that its fixed point, U , is bounded between U

and Ū . ¥

D. Proof of Lemma 6.1

(i) For all ϕ1, ϕ2 ∈ C(W × Y ), with ϕ1 ≤ ϕ2, the difference THϕ2 − THϕ1 is such that

(THϕ2)(w, y)− (THϕ1)(w, y)

= β(1− δ)Eŷ
∙
ϕ2(w, ŷ) + λemax{0, R(ϕ2(w, ŷ), ŷ)}
−ϕ1(w, ŷ)− λemax{0, R(ϕ1(w, ŷ), ŷ)}

¸
≥ 0,

(D.1)

where the last inequality uses the fact that the function V + λemax{0, R(V, ŷ)} is increasing in
V . For all ϕ ∈ C(W × Y ) and all a ≥ 0, TH(ϕ+ a) is such that

[TH(ϕ+ a)] (w, y) = w + βEŷ {δU + (1− δ) [ϕ(w, ŷ) + λemax{0, R(ϕ(w, ŷ), ŷ)}]}
+β(1− δ)Eŷ {a+ λemax{0, R(ϕ(w, ŷ), ŷ)}− λemax{0, R(ϕ(w, ŷ) + a, ŷ)}}
≤ (THϕ)(w, y) + β(1− δ)a,

(D.2)

42



where the last inequality uses the fact that R(V, ŷ)−R(V +a, ŷ) ≤ 0. Conditions (D.1) and (D.2)
are sufficient to prove that the operator TH is a contraction mapping. Hence, there exists one

and only one H such that THH = H.

(ii) Let ϕ ∈ C(W × Y ) be a function that satisfies condition (6.4). Let y be an arbitrary point

in Y , and w1, w2 two arbitrary points in W with w1 ≤ w2. For all ŷ ∈ Y , the difference

f(w2, ŷ)− f (w1, ŷ) is bounded between 0 and [1− β(1− δ)]−1(w2 − w1). Therefore,

(THϕ)(w2, y)− (THϕ)(w1, y)

= w2 − w1 + β(1− δ)Eŷ
∙
ϕ(w2, ŷ) + λemax{0, R(ϕ(w2, ŷ), ŷ)}
−ϕ(w1, ŷ)− λemax{0, R(ϕ(w1, ŷ), ŷ)}

¸
∈ [1, 1/[1− β(1− δ)]] (w2 −w1) .

(D.3)

The bounds in (D.3) imply that the operator TH maps functions that satisfy (6.4) into functions

that satisfy (6.4). Since TH is a contraction, its unique fixed point H satisfies (6.4).

(iii) Let V̄ denote
¡
w̄ + βδŪ

¢
/[1− β (1− δ)]. Let ϕ ∈ C(W × Y ) be an arbitrary function such

that (THf) (w̄, y) ∈ [x̄, V̄ ] for all y ∈ Y . The function THϕ is such that (THϕ) (w̄, y) ∈ [x̄, V̄ ] for
all y ∈ Y , because

(THϕ) (w̄, y) ≥ w̄ + βδU + β (1− δ) x̄ = x̄,

(THϕ) (w̄, y) ≤ w̄ + βδŪ + β (1− δ) V̄ = V̄ .

Therefore, the fixed point, H, is such that H (w̄, y) ∈ [x̄, V̄ ] for all y ∈ Y . Moreover, H(w, y) ≤ x

for all y ∈ Y , because

H(w, y) ≤ w + β
£
δŪ + (1− δ)Eŷ

£
V̄ + λemax{0, R(V̄ , ŷ)}

¤¤
≤ x. ¥

E. Proof of Lemma 6.3

(i) It is immediate to verify that, for all ϕ1, ϕ2 ∈ C(W × Y ×Z), if ϕ1 ≤ ϕ2 then TKϕ1 ≤ TKϕ2.

It is also immediate to verify that, for all ϕ ∈ C(W × Y ×Z) and all a > 0, TK(ϕ+ a) is smaller

than TKϕ+βa. These two conditions are sufficient to prove that the operator TK is a contraction

mapping. Hence, there exists one and only one K ∈ C(W × Y × Z) such that TKK = K.

(ii)-(iii) Let ϕ ∈ C(W ×Y ×Z) satisfy conditions (6.9)—(6.10). Let (y, z) be an arbitrary point in

Y × Z, and w1, w2 arbitrary points in W with w1 ≤ w2. The difference between (TKϕ)(w2, y, z)
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and (TKϕ)(w1, y, z) is such that

(TKϕ)(w2, y, z)− (TKϕ)(w1, y, z)
= w1 − w2 + β(1− δ)Eŝ {[1− λep̃(H(w2, ŷ), ŷ)] [ϕ(w2, ŷ, ẑ)− ϕ(w1, ŷ, ẑ)]}
+ β(1− δ)Eŝ {λe [p̃(H(w1, ŷ), ŷ)− p̃(H(w2, ŷ), ŷ)]ϕ(w1, ŷ, ẑ)}

≤ −
n
1 + β(1− δ)(1− λe)BK − [1− β (1− δ)]−1 β(1− δ)λeB̄pK̄

o
(w2 − w1)

= −BK(w2 − w1),

(E.1)

where the first inequality makes use of the bounds in (6.6), (6.9), (4.8) and (6.10). Moreover, the

difference between (TKϕ)(w2, y, z) and (TKϕ)(w1, y, z) is such that

(TKϕ)(w2, y, z)− (TKϕ)(w1, y, z)

≥ −
n
1 + β(1− δ)B̄K − [1− β (1− δ)]−1 β(1− δ)λeB̄pK

o
(w2 −w1)

= −B̄K(w2 − w1),

(E.2)

where the first inequality makes use of the bounds (6.6), (6.9), (4.8) and (6.10).

Let w be an arbitrary point in W . Then, TKϕ is such that

(TKϕ)(w, y, z) ≤ ȳ + z̄ − w + β(1− δ)K̄ ≤ K̄,

(TKϕ)(w, y, z) ≥ y + z − w̄ + β(1− δ) (1− λe)K ≥ K.
(E.3)

Inequalities (E.1)—(E.3) imply that the operator TK maps functions that satisfy conditions (6.9)—

(6.10) into functions that satisfy (6.9)—(6.10). Since the operator TK is a contraction, its unique

fixed point, K, satisfies conditions (6.9)—(6.10). ¥

F. Two-Point Lotteries and Concavity of the Value Function

Let K (x) be a continuous function, where x ∈ [x, x̄]. Consider the following problem with a

two-point lottery:

J (V ) = max(π,x1,x2) [πK (x1) + (1− π)K (x2)]

s.t. πx1 + (1− π)x2 = V , x1 ≤ V ≤ x2, π ∈ [0, 1] .
(F.1)

The above problem encompasses the maximization problems in (5.1) and (6.12) as special cases.

(In these problems, the lottery is contingent on the realizations of aggregate and match-specific

shocks, (y, z), which is suppressed here.)

We want to prove that J (V ) is concave. To this end, consider arbitrary V ∈ (x, x̄). Let (x∗1, x∗2)
be the solution for (x1, x2) in (F.1). If K (V ) is strictly convex at V , it must be true that
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x∗1 < V < x∗2. Thus, if x
∗
1 = x∗2, then J (V ) = K (V ) must be concave at V . In the remainder

of the proof, it suffices to examine the case where x∗1 < x∗2. For any arbitrary x1, x2 ∈ (x, x̄),
x1 < x2, denote the line segment connecting K(x1) and K(x2) as x1x2, and denote the slope of

x1x2 as

L(x1, x2) ≡
K(x2)−K(x1)

x2 − x1
.

Using the constraint in (F.1) to express π = (x2 − V )/(x2 − x1), we can rewrite J(V ) in the

following equivalent forms:

J(V ) = max
(x1,x2)

[K (x2)− (x2 − V )L(x1, x2)] = max
(x1,x2)

[K(x1) + (V − x1)L(x1, x2)] .

The following results hold:

(A) For all x ∈ [x, x̄], K(x) must lie on or below the extension of x∗1x∗2, i.e., K(x) ≤ K(x∗1) +

L(x∗1, x
∗
2)(x− x∗1);

(B) If x∗2 > V , then x∗1 = argminx≤x∗2 L(x, x
∗
2) and x∗2 = argmaxx≥x∗1 L(x

∗
1, x).

Proofs of (A) and (B). For (A), consider first the case x ∈ [x∗1, x∗2]. (We will return to the case
x /∈ [x∗1, x∗2] after proving (B).) Result (A) holds trivially when x = x∗1 or x = x∗2. To show that

(A) also holds for x ∈ (x∗1, x∗2), suppose to the contrary that (A) is violated by some x0 ∈ (x∗1, x∗2).
Then, K(x0) > K(x∗1) + L(x∗1, x

∗
2)(x0 − x∗1). If x0 = V , then (x0, x0) is optimal. If x0 < V , then

(x0, x
∗
2) is feasible and dominates (x

∗
1, x

∗
2). If x0 > V , then (x∗1, x0) is feasible and dominates

(x∗1, x
∗
2). The result in each of these cases contradicts the optimality of (x

∗
1, x

∗
2).

For (B), we only prove the first part, i.e., the part for x∗1, since the proof of the result for x
∗
2 is

similar. From the first rewritten form of the maximization problem, L(x∗1, x
∗
2) ≤ L(x, x∗2) for all

x ≤ V . For x ∈ (V, x∗2), K(x) is on or below the line connecting K(x∗1) and K(x∗2) (see the proven
part of (A) above), and so L(x∗1, x

∗
2) ≤ L(x, x∗2). Thus, (B) holds.

Now we prove that (A) also holds for x /∈ [x∗1, x∗2]. If (A) did not hold for some x0 < x∗1, then

L(x0, x
∗
2) < L(x∗1, x

∗
2), which would contradict (B). If (A) did not hold for some x0 > x∗2, then

L(x∗1, x0) > L(x∗1, x
∗
2), which would again contradict (B). ¥

Lemma F.1. J (V ) is a concave function.

Proof. Let V1 and V2 be two arbitrary values in [x, x̄], and let Vα = αV1 + (1 − α)V2, where

α ∈ (0, 1). Denote (x∗1i, x∗2i) as the solution to the maximization problem when V = Vi, where

i ∈ {1, 2, α}. We show that J(Vα) ≥ αJ(V1) + (1− α)J(V2).
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Applying (A) to any x ∈ [x∗11, x∗21], we know that K(x) cannot lie above the extension of x∗1αx∗2α.
Thus, all points on x∗11x

∗
21 must lie on or below the extension of x∗1αx

∗
2α. This implies that

J(V1) ≤ J(Vα)−Lα(Vα−V1), where Lα = L(x∗1α, x
∗
2α). Similarly, applying (A) to any x ∈ [x∗12, x∗22]

yields: J(V2) ≤ J(Vα) + Lα(V2 − Vα). Thus,

αJ(V1) + (1− α)J(V2) ≤ J(Vα) + Lα [α (V1 − Vα) + (1− α) (V2 − Vα)] = J(Vα).

This completes the proof of the lemma. ¥
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Figure 2: Optimal Search Strategy
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Figure 1: Market Tightness
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Figure 4: Value of Employment
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Figure 5: Value of an Employee
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Figure 6: Firm's Value Function
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Figure 3: Job Finding Probability
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