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Abstract

In a product choice game played between a long lived seller and an in�nite sequence

of buyers, we assume that buyers cannot observe past signals. To facilitate the analysis

of applications such as online auctions (e.g. eBay), online shopping search engines (e.g.

BizRate.com) and consumer reports, we assume that a central mechanism observes all

past signals, and makes public announcements every period. The set of announcements

and the mapping from observed signals to the set of announcements is called a rating

system. We show that, absent reputation e¤ects, information censoring cannot improve

attainable payo¤s. However, if there is an initial probability that the seller is a com-

mitment type that plays a particular strategy every period, then there exists a �nite

rating system and an equilibrium of the resulting game such that, the expected present

discounted payo¤ of the seller is almost his Stackelberg payo¤ after every history. This

is in contrast to Cripps, Mailath and Samuelson (2004), where it is shown that repu-

tation e¤ects do not last forever in such games if buyers can observe all past signals.

We also construct �nite rating systems that increase payo¤s of almost all buyers, while

decreasing the seller�s payo¤.
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ing Reputations, Permanent Reputations.
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Introduction

In some markets trade requires trust. Shopping from an online store, buyers make the

payment before they receive the product, and the store "promises" to deliver the product

on time as advertised. Some goods have characteristics that reveal themselves only after

they are used for some period of time, such as resistance, or endurance. At the time of the

payment a user cannot observe these characteristics. Some examples of such markets are

internet auction sites such as eBay.

Legal punishment systems constitute one way of achieving trust in bilateral trade. The

buyer can go to the court, and claim his rights if the seller cheats. Hence, the seller can

commit himself to following the requirements of the agreement because cheating is costly to

him. However these punishment systems are in general too costly and in some situations it

is di¢ cult to prove that the seller has cheated because of incomplete contracts or imperfect

monitoring.

One notable feature of online markets is that after every transaction the buyer and seller

may leave feedback about the transaction, and this feedback becomes part of their identity

which is publicly available to all users. In most cases, a seller does not encounter with the

same buyer again, so a potential buyer cannot use his own past experience to evaluate the

seller. However, the feedbacks are publicly observable, so the potential buyer learns past

performance of the seller and decides whether to buy the product or not buy the product.

If the seller cheats he receives bad feedback, and future buyers will not be willing to trade

with him. So the seller�s incentive to cheat is weakened or even may be eliminated by the

loss of potential future pro�ts that cheating will cause.

However, feedbacks carry only partial information about the intended action of the

seller. Therefore these settings carry various potential ine¢ ciencies. Imperfect monitoring

may lead to punishments (through no trade) after unlucky bad signals although the seller

didn�t cheat. This in turn will cause ine¢ ciencies that can be as severe as a total breakdown

of all trade activity. Fudenberg and Levine [12], Fudenberg, Levine and Maskin [13] and

Dellarocas [8] study examples of these situations and analyze possible ine¢ ciencies.

Fudenberg and Levine [11] show that in such games even a small amount of uncertainty

about the type of the seller might be enough to sustain cooperation and induce trust, at least

in the early stages of a long-term relationship. The seller can achieve payo¤s arbitrarily

close to what he would get if he could commit himself publicly to playing a particular

strategy in the stage game, even if the actions are observed imperfectly. Their �nding is

very strong however the implications don�t last forever: i) The payo¤ is calculated at the

beginning of the game (�rst period). ii) How the game is going to be played in the distant

rounds of the game is not explored.
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The long run features of the equilibrium play of these games have been explored only

recently by Cripps, Mailath and Samuelson [6] (CMS hereafter). They show that reputa-

tion e¤ects do not last forever in repeated games with one sided private information and

imperfect monitoring: i) The payo¤ of the long run player will eventually be close to an

equilibrium payo¤ of the repeated game without any uncertainty on the type of the long

run player. ii) The play of the game on the equilibrium path will be eventually very similar

to that of the repeated game without any uncertainty on the type of the long run player.

CMS further suggest that one should incorporate some other mechanism into the model

in order to prevent reputation e¤ects from disappearing. The purpose of this paper is

to propose such a mechanism in a model of repeated moral hazard problems with incom-

plete information. The mechanism chooses the information transmission rule to increase

e¢ ciency. One way to alleviate the moral hazard problem would be to design transfers

conditional on signals to alleviate moral hazard problem. However, we don�t observe sellers

being rewarded by monetary transfers for having good reviews by the buyers. In our model,

sellers are punished or rewarded by the promises of the future relationship. In the equilib-

rium we construct, higher ratings correspond to higher equilibrium values for the seller and

higher ratings are gained with more e¤ort. So one motivation for this paper is to explain

why and how information censoring may serve to facilitate (almost) e¢ cient trade forever.

The examples in the literature that sustain non-disappearing reputation e¤ects assume

that the type of the player is governed by a stochastic process through time, rather than

being determined once and for all at the beginning of the game. This is called replacement.

Holmstrom [14], Cole, Dow and English [5], Mailath and Samuelson [21], and Phelan [23]

maintain permanent reputations by assuming particular types of replacement in their mod-

els. Wiseman [25] and [26] also study whether reputations are sustainable in models where

learning is exogenous.

In this paper we propose a new mechanism that determines the information each short

run player observes about the past play of the game. In particular, a central authority that

observes the full sequence of past signals censors the information that the short run players

observe. We show that it is possible to censor the information in a way that enables the

long run player to build reputation at all times.

That decreasing the quality of the observed signals may help facilitate e¢ cient trade

and alleviate moral hazard problem appears also in Kandori and Obara [16]. Kandori [15]

shows that the set of pure-strategy sequential equilibrium payo¤ set of a repeated game

where players have a common discount factor expands when the quality of the signals

observed in each period improves in Blackwell�s sense. The main di¤erence between our

paper and these papers is that in our model there is incomplete information. Moreover, the

information censoring technology we allow for is much richer than these papers study.

3



In contrast to the literature, we assume that a rating system (e.g. a central computer)

observes the play of the game each period (that is either all actions, or the realizations of

the signals). Short run players do not have any information about the past play of the

game other than what the rating system provides. Hence the rating system may censor the

information observed by the short-run players.

Information censoring could be done in many ways. Showing only summary statistics

about past performance data, like the average performance or time weighted average of

past data, showing only the most recent data, re�ning the performance data into a binary

form and showing the sum of the past n performances are some examples. There are

various examples of information censoring in practice. Institutions that make consumer

reports collect data about a product, or a �rm over time, and these data are "processed"

before the customer sees them. Every new piece of information is not re�ected in the

report in its most transparent form. Another example is "shopping search engines". These

engines give scores to online stores based on the information they collect about them either

by customer reviews or by shopping from the stores themselves. The scores are updated

as new information arrives, and usually the customer does not have access to all pieces of

information separately. Online marketplaces such as eBay also provide censored information

about the seller and the buyer. Sometimes they show only feedbacks given during the most

recent month. In other cases each user is given a score, an integer between 1 and 100, that

is the di¤erence between the number of good and bad feedbacks in the last 6 months.

In this paper we focus on a particular censoring method. A �nite rating system describes

past performance with a number from a �nite rating set S = f0; 1; :::; ng as follows. At the
initial period the party to be rated is assigned a random number from the rating set. At the

end of each period the rating may decrease or increase by one, or stay the same depending

on the signal of the current period. If the current rating is already the lowest (highest)

possible rating, then at the end of the period the rating either stays the same or increases

(decreases) by one. The rule governing the transition from one rating to another after an

observed performance level (e.g. signal, feedback, etc.) is called a "transition rule".

Dellarocas [8], Bakos and Dellarocas [4] study a repeated model of bilateral exchange

environment with a moral hazard problem on the long run player�s side. In their model the

seller is the long run player and the buyers are short run players. There is no incomplete

information (such as reputation e¤ects) in their model. Short run players do not observe the

outcomes of past play. Instead, an institution called a reputation mechanism observes past

outcomes with some imperfection, and may disclose some or all of this information. They

use the techniques developed in Fudenberg and Levine [12] to show that maximum e¢ ciency

can be attained by a two state randomization device, and that any attainable payo¤ vector

is bounded away from the Pareto frontier of the stage game. They also show that if the
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monitoring imperfection is su¢ ciently large, then the resulting ine¢ ciency may be as severe

as the destruction of all trade possibilities. A more detailed coverage of reputation models

with moral hazard problems can be found in Bar-Isaac and Tadelis [3] and in Bar-Isaac [2].

In our model there is incomplete information about the type of the long run player.

One of these types is a "normal" type that has the usual payo¤ structure and has the

moral hazard problem. The other types are commitment types that play the same strategy

every period, either for morality reasons or because they are boundedly rational, or simply

because their payo¤ structure is di¤erent.

Information disclosure by rating systems serves a dual role in our model. The �rst one is

learning the type of the long run player and transmitting this information to the short run

players. This will enable the short run players to learn the true type of the seller they are

facing with a high probability. Unless the seller fully mimics a commitment type the rating

system learns his true type after observing su¢ ciently many signals. If this information is

fully disclosed to the buyers, and if it turns out that the seller is not a commitment type

with high probability, then the equilibrium play is almost like that of complete information

game, and ine¢ ciency is inevitable. The rating system�s second role in our model is to

"forget" some of the past data, and allow the normal type of the long run player to build

a reputation even in the distant future.

In theorem 0, we show that without the possibility of commitment types, the equilibrium

payo¤ of the long run player can�t be improved by the introduction of a rating system.

When combined with the ine¢ ciency results in repeated moral hazard games with imperfect

monitoring (see for instance Fudenberg and Levine [12]), this theorem highlights that rating

systems can facilitate inde�nite e¢ cient play only when there is incomplete information.

In theorem 1, we construct a particular �nite rating system. We show that under a

mild assumption on the commitment types, our rating system allows the long run player to

get almost his Stackelberg payo¤ after every history in an equilibrium of the game. In the

reputation literature, there are very few equilibrium constructions and the properties of the

equilibrium play in such games is not yet well understood. We are also able to construct the

equilibrium itself and along the equilibrium long-run player plays his Stackelberg strategy

at almost every period. Our main contribution is to show that information censoring can

provide a mechanism by which reputation gives commitment power to the agent even in the

distant future.

Theorem 2 is about the payo¤s of the short run players. This is a crucial point ignored

in previous studies on reputation. Theorem 2 says that for su¢ ciently low frequencies of

the commitment type(s), the seller can be made to commit to any e¤ort level less than the

e¤ort level of the most hard working commitment type available in the type space. We also

show that for each point on the Pareto frontier of the underlying game, there exists a �nite
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rating system that implements that point in the long run.

Next we introduce our model with and without incomplete information. We present

our main results on permanent reputations and welfare of buyers. We conclude with a

discussion of the assumptions of our model.

Model

We study an in�nitely repeated moral hazard game between one long run player (player 1)

and an in�nite sequence of short run players. Each short run player lives for one period and

serves as player 2 in the following stage game.

The Stage Game

Let A1 = fL;Hg, A2 = fB;Ng be the set of actions available to player 1 and player 2 in
the stage game. An action a1 2 A1 describes player 1�s e¤ort level. Player 1 can either

exert high e¤ort H or low e¤ort L. The action a2 2 A2 speci�es whether player 2 buys the
product or does not buy the product. Players move simultaneously in the stage game.

Let A = A1 � A2 be the set of action pro�les. For any �nite set X, let �(X) denote

the set of all probability distributions over X. In particular, �(Ak) is the set of all mixed

strategies in the stage game for k 2 f1; 2g. Let sk denote a generic element of �(Ak). We
will refer to s1(H) as player 1�s e¤ort level. Without risk of confusion we write ak 2 Ak to
denote the mixed strategy sk such that sk(ak) = 1.

Player k receives payo¤Uk(s) when the stage game strategy pro�le is s = (s1; s2), where

Uk(s) =
P
(a1;a2)2A uk(a1; a2)s1(a1)s2(a2) and uk : A! R. Let B2 denote the best response

correspondence of player 2. That is,

B2(s1) = fs2 2 �(A2)jU2(s1; s2) � U2(s1; s
0
2) for all s

0
2 2 �(A2)g:

Let V1(s1) denote the best commitment payo¤ for player 1 given s1. That is;

V1(s1) = max
s22B2(s1)

U1(s1; s2)

Similarly, we de�ne follower�s payo¤ as V2(s1) = maxs22�(A2) U2(s1; s2). Let V
s
1 denote the

Stackelberg payo¤ for player 1: V s1 = maxs12�(A1) V1(s1).

The following conditions on the payo¤s characterize the moral hazard games we consider.

We discuss why we focus on such games and require the conditions in the Discussion section.

Condition 1 (constant e¤ort cost) u1(L; a2)� u1(H; a2) = c > 0 for a2 2 A2.
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Condition 1 says that exerting high e¤ort is costly and the cost is constant across all

actions of player 2. This condition implies that exerting low e¤ort is a dominant strategy

for player 1.

Condition 2 u1(a1; B)� u1(a1; N) > 0 for each a1 2 A1.

Condition 2 says that holding player 1�s e¤ort level �xed, he prefers that player 2 buys

the product.

Condition 3 9�s 2 (0; 1) s.t. for s1(H) > �s; B2(s1) = fBg and for s1(H) < �s;

B2(s1) = fNg.

This condition says that if player 1 exerts enough e¤ort, then player 2 buys the product.

Observe that conditions 1 and 3 imply that in the unique Nash Equilibrium of the moral

hazard game, player 1 exerts low e¤ort and player 2 does not buy.

Condition 4 u1(H;B) > u1(L;N).

Condition 4 says that player 1 would prefer committing to exerting high e¤ort to the

unique Nash equilibrium payo¤. Moreover Conditions 1, 3 and 4 imply that the Stackelberg

strategy is unique and puts probability �s to the action H.

Signal Structure

Short run players do not observe the action of player 1, but observe a public signal that

is correlated with player 1�s action. The public signal is denoted y, and is drawn from a

�nite set of realizations, Y . Let �a1 2 �(Y ) denote the probability distribution of the signal
given player 1�s action a1.1 Hence the probability of observing signal y given a1 is �a1(y).

Note that perfect monitoring model is a special case of our model. We impose the following

condition on the signal structure.

Assumption 1 (Identi�cation) If a1 6= a01 then �a1 6= �a01.

This assumption implies that if the long run player chooses the same action in each

stage game, then an outside observer would eventually be able to learn this action.

1We implicitly assume that the signal distribution is independent of player 2�s action. This is purely for
expositional simplicity and to make the construction of the rating system relatively simpler.
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Repeated Game with Rating System

The stage game described above is in�nitely repeated. Player 1�s discount factor is � < 1.

Each short run player (player 2) can only observe the outcome in his own period.

A rating system observes the action of player 2, and the signal y every period. The

rating system delivers a message r 2 R to the current period players before they play the

stage game. The set of messages R is a countable set. We depart from the literature by

assuming that a short run player cannot observe past play of the game. However, before

the stage game is played, he learns the public announcement made by the rating system (r)

that may provide some information about the past play. Player 1 knows his own actions,

public announcements, and the actions of the short run players.

Player 1, before playing period t action has a private history, consisting of the messages,

actions, and signals. Let H0
1 = R, and a private history for player 1 is de�ned recursively

as ht1 2 Ht
1 � (R�A� Y )�Ht�1

1 for t � 1. Player 2 at period t � 0 has a private history
ht2 2 H2 � R. The timing of the �ow of information and actions at period t is summarized

below:

1- Rating system makes a public announcement r 2 R.
2- Player 1 and player 2 choose their actions simultaneously.

3- A signal y 2 Y is realized.

Signal y can be interpreted in various ways. It can be a payo¤ relevant variable (e.g.

quality of a product, how satisfactory the service was) or a payo¤ irrelevant variable (e.g.

feedbacks from player 2, outcomes of auditing reports). In our model, it is crucial that the

signal is not observed by the population. Therefore we focus on applications in which this

assumption is more easily satis�ed, such as online markets or consumer reports.

A rating system maps histories that consist of past actions of player 2, signals, and its

own past messages into a probability distribution over a set of messages. Among several

such mechanisms, we will look for an information transmission mechanism that facilitates

(almost) e¢ cient trade. For our results it will be su¢ cient to focus on those that have a

Markovian structure. In particular, we will use rating systems whose message at period

t (rt) evolves according to a Markov process that we call a Markov transition rule. In

general, the transition probabilities will depend on the action of the short run player and

the observed signal, however, for our results it will su¢ ce to consider transition probabilities

that only depend on the observed signal. Below we give the formal de�nition of a Markov

transition rule.

De�nition 1 Let R be a countable set. A map � : R � Y ! �(R) is called a Markov

transition rule.2

2Note that more generally a Markov transition rule is a mapping � : R � A2 � Y ! �(R). Since we
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Formally, a rating system consists of a set of messages called a rating set, an initial

distribution on the rating set and a Markov transition rule on the rating set. At time 0,

the rating is determined by the initial distribution, and every period the rating is publicly

announced before players take their actions. After the actions are taken, the new rating is

determined by the previous rating and the outcome of the play.

De�nition 2 A triplet � = (R; � ; p0) is called a rating system where R is a countable set,

� is a Markov transition rule, and p0 2 �(R).

At time 0, a rating system announces a message r0 drawn according to an initial dis-

tribution p0. At the end of each period t, the random variable rt+1 2 R is realized by the

transition rule � , the signal at period t, and rt 2 R . At the beginning of period t+ 1, rt+1

is announced to period t + 1 players. We say that a rating system is �nite if the message

space R is a �nite set.

The Incomplete Information Game

A type space W = f0; 1; :::; lg is a �nite set. Prior to time t = 0, nature chooses a type for
player 1 according to a probability distribution � 2 �(W ). We will use �j for �(j), and
assume without loss of generality that �j > 0 for j = 0; 1; :::; l. The normal type of player 1

has the payo¤ structure as described in the stage game, and type 0 represents the normal

type. Each type j > 0 represents a commitment type that plays H with a probability �j

every period. Let the index set be ordered such that �j > �j�1 for j = 2; 3:::l. We will

call the strategies of the commitment types sj , that is sj 2 �(A1) where sj(H) = �j . We

call � = (W;�) a type model and assume that B2(s1) = fBg. Also, when we use the term
player 1 without specifying a type, we mean type 0 of player 1.

Let H =
S1
t=0H

t
1 be the set of all �nite histories of player 1. Player 1�s strategy is

a map �1 : H ! �(A1). Player 2�s strategy is a collection of maps �2 = f�t2g1t=0 where
�t2 : R! �(A2). The strategy spaces of players 1 and 2 are �1 and �2 respectively.

For a given rating system �, each strategy pro�le (�1; �2) together with the type model

� induces a probability distribution P over all action pro�les, signals and messages. The

payo¤ to player 1 and period-t player 2 of a strategy pro�le (�1; �2) are:

U1(�1; �2) = EP ((1� �)
1P
t=0

�tu1(a1; a2)jplayer 1�s type is 0)

U2t(�1; �2jrt) = EP (u2(a1; a2)jrt)

assumed that the probability distribution function on the signals, �, is independent of player 2�s actions,
and the constant cost of exerting high e¤ort, a transition rule that depends only on the observed signal is
su¢ cient to both learn the type of player 1 and give the incentives to player 1 to exert high e¤ort.
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We also de�ne the payo¤ of player 1 after a history ht1 2 Ht
1 as:

U1(�1; �2jht1) = EP ((1� �)
1P
t0=t

�t
0�tu1(a1; a2)jht1;player 1�s type is 0)

We will call a game G(�;W; �; �), that has the payo¤s and strategy spaces as described

above, a repeated incomplete information game with rating system �. We will use G(�;�; �)

interchangeably with G(�;W; �; �), where � = (W;�).

Having described the payo¤s and the strategy spaces, we can now de�ne the equilibrium

concept we will be using. For a history h 2 H of player 1, we denote the latest message in

h by r(h).

De�nition 3 Strategies (�1; �2) are Perfect Bayesian equilibrium of G(�;�; �) if 8t =
0; 1; :::;

i) U1(�1; �2jht1) � U1(�
0
1; �2jht1) 8 �01 2 �1 ,8ht1 2 H.

ii) U2t(�1; �2jrt) � U2t(�1; �
0
2jrt) 8�02 2

P
2; 8rt 2 R with P (rt) > 0.

iii) Let h(rt) = fht1 2 Ht
1jr(ht1) = rtg. If P (rt) = 0 and h(rt) 6= f;g, �2t(rt) is a best

response to a belief � where � 2 �(h(rt)), and player 1�s type is 0.

This is a game of incomplete information therefore the proper solution concept is Perfect

Bayesian equilibrium. Players are required to update their beliefs using Bayes�rule whenever

possible. Player 1 knows his type, and there is no incomplete information on his side,

thus he does not perform any Bayesian updating. However, short run players learn some

information about the type of player 1 through the messages delivered by the rating system.

They use the message to form their beliefs about player 1�s type. But Bayesian updating

is not possible after histories with probability zero. In our game, the rating system is not

a player, so any deviation from the equilibrium is attributed to players�past behavior. We

require the short run players to play a best response to some arbitrary belief on player 1�s

histories that are consistent with the message they observed (if possible), and a belief that

player 1�s type is the normal type.3

The equilibrium restriction (iii) might seem weak because it gives too much freedom in

how we can choose beliefs of the short run players. Therefore the equilibrium set might

be larger than a more strict equilibrium concept such as sequential equilibrium. However,

we will design our rating systems in such a way that all histories for player 2 occur with

positive probability given any strategy pro�le. So we will not make use of out of equilibrium

beliefs to support equilibria we construct.

3Obviously the beliefs are not de�ned after messages that are not reachable by any history. Note that
there are some messages that wouldn�t be possible regardless of players�strategies. For example, suppose
the rating system starts at rating 1 at period 0, and moves either one rating up or stays the same after any
signal. Then a rating of 3 is not possible at period 1.
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Complete Information Case

In this section we analyze the complete information case of our model. This section serves

as a benchmark to see the e¤ects of information censoring on the equilibrium payo¤ set

when there is no room for reputation formation. Information censoring can only decrease

the equilibrium payo¤ set compared to a model in which information is not censored at all

under complete information.

Most of the literature on repeated games assumed that short run players could observe

all of the past signals.4 However, we drop this assumption and instead assume that there

is a rating system that observes signals every period and conveys some information to the

short run players every period. In fact these models are special cases of our model, where

the rating system delivers all information about past signals to every short run player.

These rating systems are called transparent rating systems and are denoted ��. The formal

de�nition of transparent rating systems (that is, message space, transition rule, and initial

state) is given in the appendix.

The messages of a transparent rating system include all information about past signals

of the game. We allow for public randomizations and each short run player observes the

outcomes of these randomizations as well. When a rating system is transparent, the infor-

mational assumptions of our model coincide with those in the standard reputation literature

where all past signals and actions of player 2 are observable by the current period players.

If there is no incomplete information about player 1�s type, Perfect Bayesian equilibrium

puts the same restrictions as Perfect equilibrium.

Theorem 0 Let � be a rating system, and W = f0g. The payo¤ to the long run player
in any Perfect Bayesian equilibrium of G(�;W; �; �) is no more than the highest payo¤ he

can get in some Perfect Bayesian equilibrium of G(�;W; �; ��) for some transparent rating

system ��.

Proof. See appendix.
This result says that rating systems can do no better than disclosing all information if

there is no incomplete information about the type of player 1. The strength of this theorem

is most emphasized when used with theorem 6.1 of Fudenberg, Levine [12], which says

that the payo¤ to the long run player is generically bounded away from his most preferred

commitment payo¤. We use this result as a benchmark for discussing reputation e¤ects in

our model.5

4Liu [19] and Liu and Skrzypacz [20] assume a di¤erent information structure than the earlier models.
Liu [19] assumes that a short run player pays a cost to learn about previous signals, and Liu and Skrzypacz
[20] assume that each short run player can recall only a �nite number of past signals.

5Although theorem 0 focuses on rating systems, the result is still valid if we allowed for more complicated
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Permanent Reputations with Rating Systems

Having discussed the inability of rating systems to increase e¢ ciency under complete in-

formation, we will now assume that the type space W has commitment types. Each of

these types plays a particular stage game strategy every period, independent of the history.

When there is incomplete information about the type of player 1, he will be able to build

a reputation by imitating a certain type, or trying not to look like a particular type. Our

result is that rating systems are able to give commitment power to the long run player

forever. First a de�nition of a subset of type space is given.

De�nition 4 A type space W is called a Stackelberg space if �l > �s.

Stackelberg spaces have a commitment type that exerts more e¤ort than the Stackelberg

strategy. We present our main result below.

Theorem 1 For any Stackelberg space W , �, and u < V s1 , there exists � < 1 such that for

� � � there is a �nite rating system �, and a Perfect Bayesian equilibrium of G(�;W; �; �)

where the payo¤ to the normal type of the long run player is at least u after every history.

Proof. See appendix.
The result says that with a suitable choice of a �nite rating system, there is a Perfect

Bayesian equilibrium of the game in which the long run player can get almost his most

preferred commitment payo¤ after every history. This does not mean that his stage game

payo¤s are always almost his commitment payo¤ after every history. On the equilibrium

path, the long run player may get period payo¤s that are less than his Stackelberg payo¤.

However these periods do not follow each other frequently enough, so his discounted payo¤

calculated at the beginning of every history becomes almost his Stackelberg payo¤.

Although Theorem 1 is stated at the payo¤ level it has corresponding behavioral im-

plications as well. On the equilibrium path, the frequency with which the long run player

exerts his most preferred commitment e¤ort level is almost 1 after every history. So rep-

utation never ceases to give the long run player commitment power when information is

censored. In reputation models it is very di¢ cult to construct equilibria and most of the

literature studies the payo¤s of players in these games. Since our proof is by construction,

we actually specify the equilibrium strategies of players during the play of the game. On the

equilibrium path the long run player plays his Stackelberg strategy at most of the periods.

information transmission mechanisms, in particular all public institutions. A public institution is one that
provides precisely the same information about its future behavior to a period�s players. Every rating system
is public, because the future information transmission rule is common knowledge among player 1 and period-
t player 2 at period t. If the transition rule depends on some information that is not in the history of player
2 but is in the history of player 1, then the corresponding institution fails to be a public institution.
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Previous studies approximated the payo¤ of the long run player by a payo¤ he could

get by mimicking a particular commitment type in the support of the prior distribution of

commitment types. However in our model, we only require the existence of a commitment

type that exerts more e¤ort than the Stackelberg strategy. The rating system and the

equilibrium has the property that at the lowest rating there is no trade, and at all other

ratings there is trade. At the highest rating, player 1 exerts low e¤ort, and player 2 still

buys the product. Observe that existence of such a "reward" phase would be impossible if

there were no commitment types.

However note that even when there are commitment types, if they are not likely, then

player 2 would not buy the product if the normal type were to exert low e¤ort. The

rating system, along with the equilibrium strategies separate the normal type from the

commitment types, and the probability of the commitment type being at a reward phase is

much higher than the probability with which the normal type is at a reward phase. Hence

even if the initial probability of a commitment type is very low, observing the reward phase

player 2 will believe that her opponent is most likely the commitment type.

The rating systems we construct are �nite. Therefore the rating system and the equi-

librium we construct are not very complex. We consider the simplicity of our reputation

equilibria as a virtue.

The reason why our payo¤ result holds after every history is that the �nite rating system

is a stochastic automaton with �nite states, hence player 2�s beliefs about her opponent�s

types stay bounded away from the boundaries of the unit simplex. To contrast with CMS�s

result, the posterior beliefs of short run players converge to the boundaries, therefore after

some time the amount of uncertainty required to generate a reputation result for the �xed

discount factor vanishes eventually. In our model however, the beliefs always stay away from

the boundaries with a �nite number of ratings. Obviously it is not true that every rating

system that prevents beliefs from hitting the boundaries can give the correct incentives to

player 1 to exert e¤ort. In theorem 1 we construct the rating systems that achieve this.

Example and sketch of proof

There are 2 actions available for each player, A1 = fH;Lg and A2 = fB;Ng. The actions
are perfectly observed, hence the signals are the actions of player 1.

Player 1 is the row player, player 2 is the column player in the stage game with the

payo¤ matrix given below:

B N

H 1; 2 �1; 0
L 2;�2 0; 0

13



In this game, the Stackelberg strategy of player 1 is to play H with probability 0.5, and

his Stackelberg payo¤ is 1.5. The type space is W = f0; 1g where type 0 is the normal type
of player 1 and has the payo¤ structure above. Type 1 plays action H at every period of

the game. The prior probability distribution of the type of player 1 is � 2 �(W ), where
�(0) = 2=3, and �(1) = 1=3.6

In the repeated game with complete information, the highest payo¤ that player 1 can get

in any equilibrium is 1 if he is su¢ ciently patient. Moreover in the game with incomplete

information, if all past actions are observed by the current player 2, then player 1�s highest

equilibrium payo¤ is bounded above by � + 2(1� �) which tends to 1 as � tends to 1.7 Our
theorem says that for any payo¤ u < 1:5, there exists a rating system and an equilibrium

of the game where player 1�s payo¤ is at least u after every history of the game if player 1

is su¢ ciently patient.

Let S = f1; 2; :::;Kg be the rating set. Since the set of signals and the set of player
1�s actions A1 are the same for this example, we de�ne the transition rule to be a map

� : S � A1 ! �(S). The transition rule will depend on the discount factor �, however we

will �rst construct the transition rule for � = 1, and then we will specify how to modify it

for � < 1.

step 1: Constructing � for � = 1 : In the table below, the vector in each cell corresponds

to the probability of downgrade, no rating change and upgrade respectively. The term NA

corresponds to "Not Available" and means that a downgrade when the rating is 1 and

an upgrade when the rating is K are not de�ned. For example the cell with the vector

(1=8; 5=8; 1=4) means that �(s;H)(s� 1) = 1=8, �(s;H)(s) = 5=8 and �(s;H)(s+1) = 1=4.

� s = 1 s 2 f2; :::;K � 1g s = K

y = H (NA; 5=8; 3=8) (1=8; 5=8; 1=4) (1=8; 7=8; NA)

y = L (NA; 5=8; 3=8) (1=8; 7=8; 0)10 (1=8; 7=8; NA)
Table 1: Transition Rule.

step 2: Equilibrium strategies Consider the strategies �1 : S ! [0; 1] indicating the

probability of H for player 1 and �2 : S ! [0; 1] indicating the probability of B for player 2:

�1(1) = 0 and �1(K) = 0 and �1(s) = 0:5 for s 2 f2; 3; :::;K � 1g:
6Note that in this game the actions are perfectly observed, and hence CMS�s result is not applicable.

However we chose this example for expositional simplicity.
7To see this, observe that player 1�s continuation payo¤ at any history where he played L at least once is

at most 1, and the highest stage game payo¤ player 1 can receive while playing H is at most 1. Therefore,
until he plays L he gets at most 1 per period, and when he plays L he gets at most 2 for that period and 1
for the continuation payo¤ delivering the bound.
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�2(1) = 0 and �2(s) = 1 for s 2 f2; 3; :::;Kg:

The equilibrium that we are constructing can be thought of as having 3 phases: a punish-

ment phase, a normal phase and a reward phase.

Rating 1 serves as the punishment phase. At this rating, the transition rule doesn�t

depend on the observed signals, therefore player 1 plays L, and player 2 plays N .

The middle ratings serve as the ratings where player 1 is indi¤erent between actions H

and L. In the equilibrium we construct, player 1 plays H and L with equal probabilities

(Stackelberg strategy) in these ratings. This strategy, together with the transition rule

implies that the probability of an upgrade (which is 1=8) is equal to the probability of a

downgrade (1=8) for the normal type of player 1. The strategy of the commitment type is

�xed (play H w.p. 1), therefore the probability of an upgrade (1=4) is strictly higher than

the probability of a downgrade (1=8) for the commitment type in this set of ratings.

RatingK serves as the reward phase for player 1. In this rating the normal type of player

1 plays L and player 2 still plays B. This is possible since in equilibrium the frequency with

which the commitment type visits the reward rating is much more than that of the normal

type. In this rating the transition rule is insensitive to the signals, hence L is optimal for

player 1.

step 3: Number of ratings The transition rule when coupled with the equilibrium

strategies of the normal type and the commitment type induce two Markov transition

matrices P 0 and P 1 on the set of ratings. In particular P k[i; j] is the probability that type

k moves from rating i to rating j.

P 0 [i; j] = �1(i)�(i;H)(j) + (1� �1(i))�(i; L)(j)

P 1 [i; j] is as above where �1(i) is replaced by 1. These matrices are positive recurrent

and irreducible, so unique stationary distributions �0 and �1 exist for P 0 and P 1. In the

long run, player 2 calculates the probability p(s) that player 1 plays action H at rating s

as below:

p(s) =
�1(s)�(1)

�0(s)�(0) + �1(s)�(1)
1 +

�0(s)�(0)

�0(s)�(0) + �1(s)�(1)
�1(s)

Let pr(k; s) = �k(s)�(k)
�0(s)�(0)+�1(s)�(1)

be the probability a short run player who observes a rating

s assigns to player 1 being a type k. The reputation of player 1 for being a commitment

type is pr(1; s), and is increasing in the rating s. �2 would be (strictly) optimal for player

2 if pr(1;K) > 0:5 and pr(1; 1) < 0:5.11 We will choose next the number of ratings, K, in a

11Note that player 2 plays B only if she believes that player 1 plays H w.p. at least 1=2. Since we want
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way that makes the conditions pr(1;K) > 0:5 and pr(1; 1) < 0:5 true.

For Markov chains where there are no jumps in the transitions, the following fact will

be very useful:

�k(s)P k [s; s+ 1] = �k(s+ 1)P k [s+ 1; s] (1)

Since P 0 [s; s+ 1] = P 0 [s+ 1; s] for s 2 f2; 3; :::;K � 2g, �0(s) = �0(s0) for s; s0 2
f2; :::;K � 1g using equation 1. Therefore �0(s) < 1=(K � 2) for s 2 f2; 3; :::;K � 1g.
Moreover since P 0 [K � 1;K] = 1=8 and P 0 [K;K � 1] = 1=8, �0(K) = �0(K � 1) <
1=(K � 2).

For the commitment type, P 1 [s; s+ 1] = 2P 1 [s+ 1; s] for s 2 f2; 3; :::;K�2g, P 1 [1; 2] =
3P 1 [2; 1] and P 1 [K � 1;K] = 2P 1 [K;K � 1]. Note that as the number of ratings K in-

creases �1(K) tends to a strictly positive number but �0(K) tends to zero.12 Therefore

limK!1
�1(K)
�0(K)

= 1, and for su¢ ciently large K, pr(1;K) becomes larger than 0:5. More-
over, �1(1) tends to zero faster than �0(1), hence pr(0; 1) tends to 1 as K gets very large.

Hence we can choose a K such that pr(1;K) > 0:5; and pr(1; 1) < 0:5. For the rest of the

proof we �x K large enough so that pr(1;K) > 0:5; and pr(1; 1) < 0:5.

step 4: Perturbing � to give the correct incentive to player 1 If the beliefs of player

2 are as above, then �2 is a strict best response, so even if they are not exactly as above

but very close, �2 is still a strict best response. For the normal type of player 1 however

for � < 1, the equilibrium strategy proposed above is not optimal. We will construct a new

transition rule, � �, so that the di¤erence in the continuation values of adjacent ratings is

exactly equal to 4(1� �)=�. This is indeed the di¤erence in the continuation values in the

normal region that is necessary to make player 1 indi¤erent between playing H and L.13

Let � �(s; �)(s� 1) = �(s; �)(s� 1) + (K � s)(1� �)=� and � �(s; �)(s) = �(s; �)(s)� (K �
s)(1 � �)=� for s > 1, and � �(1; �)(2) = �(1; �)(2) � (K � 1)(1 � �)=� and � �(1; �)(1) =
�(1; �)(1) + (K � 1)(1 � �)=� . First observe that the perturbed transition probabilities

above are well de�ned for � su¢ ciently close to 1.14 Since we already �xed K, � � ! � when

rating K to be a reward phase where player 2 plays B, and player 1 plays L, we need pr(1;K) > 1=2 in
order to be able to sustain such a behavior in equilibrium.
12To see this more clearly, note that �1(s) = �1(K)(1=2)K�s for s > 1 and �1(1) = �1(K)(1=2)K�2(1=3).

Since
P

s2S �
1(s) = �1(K)(

PK
s=2(1=2)

K�s + (1=2)K�2(1=3)) = 1, limK!1 �
1(K) > 0:

13To see that this is true we need to calculate the di¤erence between expected continuation values to
player 1 from playing H and L. When player 1 plays H, the rating is upgraded w.p. 1=4 and downgraded
w.p. 1=8; when he plays L the rating is upgraded w.p. 0 and downgraded w.p. 1=8. The expected di¤erence
in the �nal rating under two actions is (1=4 � 0) = 1=4, and the expected di¤erence in the continuation
values is (1=4)� (4(1� �)=�) = (1� �)=�. This is exactly the continuation value di¤erence needed to make
player 1 indi¤erent between incurring a cost of 1 today and not incurring any cost.
14That is, each transition probability is between 0 and 1, and the transition probabilities from every rating

sum up to 1 for � su¢ ciently high.
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� ! 1, and if player 1 plays according to the equilibrium strategy, the unique stationary

distribution of the transition matrices induce beliefs over actions of player 1 such that �2
is still optimal when � is close to 1.

Let�s show that the strategy �1 is optimal in the long run. The strategy pro�le (�1; �2)

is Markovian, so the probability distribution of the stream of future payo¤s depends on the

current state. Let V (s) denote the expected present discounted value of the strategy pro�le

to player 1 when the state is s 2 S. These values are determined by the following recursive
equations:

V (s) =
�
(1� �)u1(�1(s); �2(s)) + �E(V (s0)js))

�
where

E(V (s0)js) =

�1(s)

"X
s02S

� �(s;H)(s0)V (s0)

#
+

(1� �1(s))
"X
s02S

� �(s; L)(s0)V (s0)

#

We use the method of guess and verify to �nd V (s). Our guess is V (s) = 1:5� 4(1��)
� (K�

s) and this can be veri�ed by putting these values in the above system of equations.15 Once

we know the continuation values, it is straightforward to check that �1 is indeed optimal.

step 5: Initial periods and convergence to the long run By now we have con-

structed a rating system, and showed that an equilibrium strategy pro�le is long-run opti-

mal, that is if the game started at �1 and has been going on for a long time and if the

normal type of player 1 followed the strategy �1, then the belief of player 2 about the type

of his opponent after observing a rating s would be the same as pr(1; s). However when

the game starts at period 0, player 2 believes that his opponent is a commitment type with

a probability �(1) = 1=3 independent of the initial rating of player 1. Then if player 2

observes rating K during the early rounds of the game, �2 is not optimal given that the

normal type plays action L with probability 1. We proceed as follows: Fix a large T where

the �rst T periods serve as experimentation periods. During the experimentation periods,

the normal type of player 1 plays �1, and when T is large enough, after period T the beliefs

of player 2 are within an arbitrarily small neighborhood of pr(1; s). The di¢ culty is to

give player 1 the right incentives in these periods to play �1 since player 2 doesn�t play

15To see this, one should calculate the payo¤s at the 3 phases. We�ll show how to calculate this for the
normal region here: At rating s in the normal region, V (s) = 2(1� �) + �(p�V (s� 1) + p+V (s+ 1) + (1�
p� � p+)V (s)) where p� = 1=8 + (K � s) (1��)

�
; p+ = 0.
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�2. We get around this by "banking" the payo¤ losses and gains of player 1 from what he

would get otherwise if player 2 played �2. At the end of period T , the payo¤ gains and

losses are calculated. Note that this number is bounded above by T (1� �)2, where 2 is the
maximum payo¤ di¤erence for player 1 in the stage game. We perturb the rating system

after time T slightly so that the continuation payo¤ of player 1 exactly compensates for

the losses and gains during the experimentation periods. 16By using lemma 1 below about

uniform convergence of Markov transition matrices, we make sure that �2 is still optimal in

this slightly perturbed rating system. The amount of perturbation is at the order of 1� �,
therefore the limit result holds.

The strategy of player 2 is a pure strategy, and is a strict best response. So when the

distribution of types across ratings is close to the stationary distributions, the strategy �2
is still a best response. Therefore, after a �nite time T , �2 becomes optimal. We will de�ne

the transition rule in the initial periods in a way that player 1�s strategy is still a best

response at all times, and player 2 plays potentially a di¤erent strategy than �2 for the �rst

T periods, but plays according to �2 after time T. We explain a precise de�nition of the

transition rule and equilibrium strategies during these initial periods in the Appendix.

Lemma 1 Let S be a �nite set, and P be an irreducible and positive recurrent transition

matrix on S with a stationary distribution � 2 4(S). For every " > 0, there exists a " > 0
and a T such that for any set of T +1 irreducible and positive recurrent transition matrices

fP �i gi=1;:::;T+1 such that k P �i � P k 17 < ", and for any probability distribution p 2 4(S),

k p(
TQ
i=1

P �i )(P
�
T+1)

t � � k< " for every positive integer t.

Proof. Let �T+1 be the unique stationary distribution of P �T+1. We can choose T and

" such that k p(
TQ
i=1

P �i ) � �T+1 k< "=2 for every p 2 4(S). Also we can choose " such

that k � � �T+1 k� "=2. We have k p(
TQ
i=1

P �i )(P
�
T+1)

t � � k�k p(
TQ
i=1

P �i )(P
�
T+1)

t � �T+1 k

+ k �T+1 � � k�k p(
TQ
i=1

P �i ) � �T+1 k + k �T+1 � � k� ". These inequalities follow from

triangular inequality.

Lemma 1 says that for any irreducible and positive recurrent transition matrix P on a

�nite state space S, starting from any initial distribution, if we apply transition matrices

very close to P for a number of periods T long enough, and then we continue by applying

another transition matrix P 0 close to P , we will always stay close to �.

16Note that T is a �nite number, and hence we can de�ne the transition rule during the experimentation
periods and after period T as part of a rating system with a large �nite state space. Therefore our rating
systems don�t violate time independency.
17The metric is the total variation metric.
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The Fate of Short run Players

So far studies concentrated on when and how reputation gives commitment power to the

long run player. In many circumstances we care about the fate of the short run players,

even those in the distant future. We may want to regulate the long run player to exert more

e¤ort than his most preferred commitment e¤ort level. In our online shopping example, the

rater might be interested in regulating the store to be trustable not only as much as is

enough to induce the customers to buy, but more. The interests of a consumer report might

be more aligned with those of the customers than those of �rms.

The regulating power of rating systems depend on the type space. In general, the

higher �l, the larger is the set of implementable payo¤s. We present our results when the

probability of commitment types is very small.

De�nition 5 For a type space W; the set CP (W ) = f(V1(s1); V2(s1)) : s1(H) < �lg is
called the commitment payo¤ set of W . The set IRP (W ) is the convex hull of CP (W ), and

is a subset of the set of individually rational payo¤s of the stage game.

IRP (W ) is the set of payo¤ vectors obtained when player 1 plays H with a probability

� < �l, and player 2 plays a best response to �.

Theorem 2 For every � > 0, (U; V ) 2 IRP (W ), there exists �0 < 1, a natural number T ,
� < 1; such that for � � �; 1 > �0 > �0 there is a �nite rating system �, and a Perfect

Bayesian equilibrium of G(�;W; �; �) satisfying the following:

i) the payo¤ to the normal type of the long run player is at least U � � after every history.

ii) unconditional expected payo¤ of every short run player after period T is at least V��.18

Proof. See appendix.
The very idea behind reputation is that a small amount of uncertainty on the type of

the long run player can give him his commitment power. Our theorem says that if the

uncertainty is indeed small enough, then we can regulate the long run player to exert any

e¤ort level � that is less than the e¤ort level of the most hard working commitment type,

�l. Moreover, short run players distant enough in the future get an expected payo¤ of what

they can get at best when the long run player�s e¤ort level is �. The short run players in

the early rounds of the play do not get as much payo¤ as the ones in the distant future,

because they are informationally inferior to them. The type of the long run player is almost

revealed through the signals during these rounds, and in the distant future the e¤ort level

becomes close to �.
18Here unconditional refers to unconditional on the type of the long run player and on the rating at time

T .
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Discussion

In this paper we show that reputations can be sustained permanently if information about

the past play of the game is regulated by a central mechanism. Recent results in the

reputation literature pointed out that reputation e¤ects do not last long if past outcomes of

a long term play is observed by all players. We show that in a class of moral hazard games,

reputations can be sustained and moral hazard can be alleviated (forever) if information is

censored by a rating system.

The class of games we consider are restricted. We assume condition 1 (constant e¤ort

cost) in order to make the construction simpler. Together with the assumption that public

signals don�t depend on player 2�s actions, this condition enables us to choose the transition

rule of the rating system independent from player 2�s actions. The number of actions

available to buyers is restricted to two. When short run players have more than 2 actions

available to them, then keeping track of their actions at every belief that can be generated

in equilibrium becomes a very hard task.19 Conditions 1,2 and 4 imply that we can have

a reward phase where player 1 enjoys the play of the action pro�le (N;B). Condition 3

puts a monotonic relation between player 2�s best response set and her beliefs about the

probability with which player 1 plays H. This monotonicity allows us to more easily keep

track of player 2�s optimal bahavior when the rating system has a one jump at a time

property.
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APPENDIX

DEFINITIONS

De�nition 6 Let D be a countable set. A set of all �nite histories is HI(D) = [1t=0(D �
A2 � Y )t �D.

De�nition 7 Let D be a countable set. A transition rule � : HI(D)�A2�Y ! �(HI(D))

is a transparent transition rule if
P
d2D �(h; a2; y)((h; a2; y; d)) = 1 for every h 2 HI(D);

a2 2 A2 and y 2 Y .

De�nition 8 A rating system � = (HI(D); � ; p0) where � is a transparent transition rule,

and support of p0 is D is called a transparent rating syatem, and is denoted ��.

Proof of Theorem 0

We will show that for each equilibrium strategy pro�le (�1; �2) of the game G(�;W; �; �),

there exists a transparent rating system �� whose public randomization outcomes are the

messages of the rating system �, and there exists a strategy pro�le (�01; �
0
2) that yields the

same payo¤ to players 1 and 2, and is an equilibrium of the game G(�;W; �; ��).

Let (�1; �2) be a perfect equilibrium of G(�;W; �; �). For � = (R; � ; p0); let D = R,

�� : HI(D) � A2 � Y ! �(HI(D)) such that, ��(h; a2; y)((h; a2; y; r0)) = �(r(h); a2; y)(r
0)

where r(h) 2 R represents the last message r 2 R in h.
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�� is a transparent transition rule, and �� is a transparent rating system where �� =

(HI(D); �
�; p00). The support of p

0
0 is the same as the support of p0, and p

0
0(d) = p0(d) for

each d 2 D. Let Ht
k and H

t0
k be the set of histories of length t, Hk and H

0
k be the set of all

�nite histories for player k in the game G(�;W; �; �) and G(�;W; �; ��) respectively. The

histories in the latter game include the histories in the former game, let { : H 0
1 ! H1 be a

map where {(h01) is the actions, signals and messages of � observed by player 1 in a history
in H 0

1. We will construct an equilibrium in the latter game that yields the same payo¤s to

both players as in the former game.

De�ne �02(h
0
2) = �2(r(h

0
2)). De�ne �

0
1 as follows:

�01(h
0
1) = �1(h

0
1) for h

0
1 2 H0

1 = H00
1

Let  1(r) 2 �({(h101 )) be the belief of player 2 at period 1 about the histories of length
1 that player 1 observes when player 2 observes the message r in the former game.

�01(h
10
1 ) =

P
h112{(h101 )

 1(r(h
10
1 ))(h

1
1)�1(h

1
1)

At any period t > 1,

�01(h
t0
1 ) =

P
ht12{(ht01 )

 1(r(h
t0
1 ))(h

t
1)�1(h

t
1)

It is straightforward to check that �01; �
0
2 is a perfect equilibrium of G(�;W; �; ��), and

yields the same payo¤s to players 1 and 2 as in the former game.

Proofs of Theorems 1-2

Proof of Theorem 1

Theorem 1:
For any Stackelberg space W , �, and u < V s1 , there exists � < 1 such that for � � �

there is a �nite rating system �, and a Perfect Bayesian equilibrium of G(�;W; �; �) where

the payo¤ to the normal type of the long run player is at least u after every history.

Proof: We will construct the rating system in 5 steps: In steps 1,2,3 and 4 we construct a

set of ratings, a transition rule and a set of strategies with the property that: if the repeated

game were played from time t = �1 with the rating system and proposed strategies, then

at time 0 player 1�s equilibrium payo¤at any rating would be more than u, and the proposed

strategies would constitute an equilibrium. In step 5, we construct a new rating system that

is used to prove theorem 1. This new rating system uses the rating system we construct in

the �rst 4 steps. Since step 5 is used exactly in the same way for the proof of theorem 2,

we defer this step of the proof to the end of the appendix.
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Step 1: Ratings and Transition Rule

1) We will use V1(�) to refer to V1(s1) where s1(H) = �. Fix W; � and u < V s1 . Choose

�� 2 (0; 1) such that: i) �� > �s, @j : �s < �j < ��, ii) V1(��) > u.

Our assumptions ensure that such an �� exists. Moreover, V1(��) > V1(�
j) for each j > 0.

In the equilibrium we will construct, player 1 is going to play H with probability �� most

of the time.

Let S = f1; 2; :::;Kg be a set of ratings. The rating set S and the transition rule � :

Y � S ! �(S) is going to be the rating system. For the rest of the analysis, �(y; s; s0)

denotes �(y; s)(s0), i.e. the probability that the rating changes from s to s0 when the signal

is y. �(a1; y) denotes �a1(y), i.e. the probability that the signal is y if player 1 plays action

a1.

2) By identi�cation assumption, there exists a y� 2 Y such that �(H; y�) > �(L; y�).

3) Let m = maxf c
[�(H;y�)��(L;y�)]=2 ; 2(V1(�

�)� u1(L;N))g. Recall that c is the e¤ort cost of
player 1.

4) Let �� = [�(H; y�)�� + �(L; y�)(1� ��)] c
m[�(H;y�)��(L;y�)] < 1=2

5) i) For s 2 f2; 3; ::;K � 1g :
�(y; s; s � 1) = �� 8y 2 Y , �(y�; s; s + 1) = c

m[�(H;y�)��(L;y�)] , �(y; s; s + 1) = 0 8y 2
Y nfy�g and �(y; s; s) = 1��(y; s; s�1)��(y; s; s+1) 8y 2 Y . Note that �(y�; s; s+1) � 1=2
by de�nition of m in item 3):

ii) For s = 1 :

�(y; 1; 2) = V1(��)�u1(L;N)
m and �(y; 1; 1) = 1 � �(y; 1; 2) 8y 2 Y . Note that �(y; 1; 2) �

1=2 by de�nition of m in item 3):

iii) For s = K :

�(y;K;K � 1) = ��c
m and �(y;K;K) = 1� �(y;K;K � 1) 8y 2 Y .

This speci�cation of � is chosen to satisfy three properties:

i) Suppose we manage to make the di¤erence in the continuation values of player 1 at

adjacent ratings to be exactly m(1��)
� (which we will manage to do in step 4). Then at

a rating s 2 Snf1;Kg, player 1 is indi¤erent between actions H and L. To see this, the

probability of an upgrade when player 1 plays H is �(H; y�)�(y�; s; s+1) and when he plays

L is �(L; y�)�(y�; s; s + 1). The di¤erence in these two probabilities is exactly c
m . Hence,

the expected value of the continuation values of player 1 di¤er by c
m
m(1��)

� = c (1��)� across

playing H and L. Similarly in the initial rating and last rating playing L is optimal since

the transition rule is insensitive to signals at these ratings.

ii) If the di¤erence in the continuation values of every 2 adjacent ratings s + 1 and s is
m(1��)

� , then the transition rules ensure that the continuation value of being at rating s to

player 1 is V1(��).20 To see this, let v be the equilibrium value to player 1 of being at rating
20Obviously in this sentence the conclusion contradicts the supposition if � < 1, since then the payo¤ at
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s 2 S=f1;Kg. From i) we see that he is indi¤erent between playing H and L. If he plays

L, he gets u1(L;B) for the period, gets downgraded w.p. �� = [�(H; y�)�� + �(L; y�)(1�
��)] c

m[�(H;y�)��(L;y�)] and gets upgraded w.p.
c

m[�(H;y�)��(L;y�)]�(L; y
�), and remains at the

same rating with the remaining probability. The expected change in his rating, �s, is

c

m[�(H; y�)� �(L; y�)]�(L; y
�)� [�(H; y�)�� + �(L; y�)(1� ��)] c

m[�(H; y�)� �(L; y�)]

=
c

m[�(H; y�)� �(L; y�)]�
�(�(L; y�)� �(H; y�)) = ��� c

m

Hence, the expected change in his continuation value will be:

�v = ��� c
m

m(1� �)
�

= ���c(1� �)
�

:

We have therefore,

v = (1� �)u1(L;B) + �(v � ��c
(1� �)
�

)

and consequently,

v = u1(L;B)� ��c = V1(�
�)

The other cases, s = 1 and s = K can be checked similarly.

iii) At a rating s 2 Snf1;Kg, the probability of an upgrade for a normal type who plays H
w.p. �� is exactly the same as the probability of a downgrade. This follows from the choice

of �� in item 4).

Step 2: Equilibrium Strategies

For the normal type of player 1, consider the strategy �1 : S ! [0; 1] that chooses the

probability of playing action H at each state.

�1(1) = �1(K) = 0 and �1(s) = ��; 8s 2 Snf1;Kg:

For player 2, consider the strategy �2 : S ! [0; 1] that chooses the probability of playing

action B at each state.

�2(1) = 0 and �2(s) = 1; 8s 2 Snf1g:

every rating would be V (��) and the continuation values of adjacent ratings would not di¤er by m(1��)
�

. We
modify the transition rules slightly in step 4 to get the desired di¤erence.
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Step 3: Determination of Number of Ratings

In this subsection, we determine the number of ratings K in S. Let P k+ = P k[s; s+ 1] and

P k� = P k[s; s � 1] for s 2 Snf1;Kg denote the probability of an upgrade and downgrade
over the ratings for type k that is induced by the strategies �1, W and � . In particular,

P k+ = P k(s; s+1) = 1
2 [p(H; y

�)�k + p(L; y�)(1��k)] for s > 1 and P k� = P k(s; s� 1) = ��

for s < K. Let �kK(s) denote the joint probability that player 1�s type is k and visits rating

s in the long run when the rating set has K ratings.21 The following is a known fact about

Markov chains that have transitions having a one step at a time property:

�kK(s)P
k[s; s+ 1] = �kK(s+ 1)P

k[s+ 1; s], 8s < K:

Hence �kK(K � 1) = �kK(K)
Pk(K;K�1)

Pk+
, �kK(s � 1) = �kK(s)

Pk�
Pk+

for s 2 f2; 3; :::;K � 1g

and �kK(1) = �kK(2)
Pk�

Pk(1;2)
. Combining, we have:

�kK(K)[1+
Pk(K;K�1)

Pk+
(1+(

Pk�
Pk+
) + (

Pk�
Pk+
)2+:::+ (

Pk�
Pk+
)K�3+(

Pk�
Pk+
)K�3

Pk�
Pk(1;2)

)] = �(k) (2)

Since P k+ > P k� for k > 1 and P 0+ = P 0�, limK!1 �kK(K) > 0, limK!1 �0K(s) = 0 for

s � K and limK!1
�kK(1)

�0K(1)
= 0. Therefore there exists a K such that for any K > K we

have �0K(1)Pl
k=0 �

k
K(1)

> (1��s) and �lK(K)�
lPl

k=0 �
k
K(K)

> ��. We choose the number of ratings K such

that the above two inequalities hold.

Step 4: "; � transition rules for � < 1

In this step, we change the transition rule � constructed in step 1 slightly to make player

1�s strategy long-run optimal by making the values of adjacent ratings to di¤er by exactly
m(1��)

� and to give him a di¤erent but very close payo¤ to V1(��). If player 2 plays according

to �2 and the transition rules are as described as below, then the present discounted payo¤

to player 1 of a rating s is V1(��)�"� (K�s) (1��)m� for " su¢ ciently small and � su¢ ciently

close to 1.

� ";� : Y � S ! �(S) is such that:

� ";�(y; s; s� 1) = �(y; s; s� 1) + (K � s) (1��)� + "
m 8y 2 Y , 8s > 1,

� ";�(y; s; s
0) = �(y; s; s0) 8y 2 Y , 8s > 1, and s0 6= s� 1

� ";�(y; 1; 2) = �(y; 1; 2)� (K � 1) (1��)� � "
m 8y 2 Y , s = 1

� ";�(y; 1; s
0) = �(y; 1; s0) 8y 2 Y and 8s0 6= 2

21 In particular, the probability that the stationary distribution of P k places on rating s multiplied by
�(k), the probability of type k.
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Note that in this de�nition, we perturb the transition rule � "slightly" without changing

the rating set S. The probability of upgrades or downgrades are changed by the same

amount across all signals, therefore the "sensitivity" of rating changes to actions is the

same as that of � , preserving the optimality of player 1�s behavior as proposed in step 2.

Moreover, � ";� is a well de�ned transition rule for " su¢ ciently small and � su¢ ciently close

to 1.

Lemma 2 Let �k";�(s) be the steady state joint distribution of type k visiting rating s when
the transition rule is � ";� and players use strategies proposed in step 2. Then 9� < 1 and

" > 0 such that 8� > �, " < ", if player 2 assigned probability pk(s) =
�k";�(s)Pl
k=0 �

k
";�(s)

to his

opponent being type k when she observes rating s, then

i) �2 is a strict best response to �1

ii) Player 1�s expected discounted present value at rating s is V1(��)�"� (K�s)
(1� �)m

�

iii) �1 is a best response to �2.

Proof. i) At step 3, K is chosen such that �0(1)Pl
k=0 �

k(1)
> (1� �s) and �l(K)�lPl

k=0 �
k(K)

> ��. By

continuity of the steady state distributions with respect to the transition matrices, 9� < 1
and " > 0 such that 8� > �, " < " we have

�0";�(1)Pl
k=0 �

k
";�(1)

> (1 � �s) and
�l";�(K)�

lPl
k=0 �

k
";�(K)

> ��.

Since �1(1) = 0, the total probability with which player 1 plays H at rating 1 is strictly less

than 1� �s, and hence �2(1) = 0 is a strict best response. Similarly, the total probability

that player 1 plays H at rating K is at least
�l";�(K)�

lPl
k=0 �

k
";�(K)

> ��, hence �2(K) = 1 is a strict

best response. Since each type of player 1 puts a probability strictly more than �s at the

ratings s 2 Snf1;Kg, �2(s) = 1 is a strict best response.
ii) We�ll use the method of guess and verify to argue that player 1�s expected discounted

present value with strategies �1 and �2 is V (s) = V1(�
�)� "� (K � s) (1��)m� at a rating s

with the transition rule � ";�.

At rating K,

V (K) = (1� �)u1(L;B) + �((
��c

m
+

"

m
)V (K � 1) + (1� ��c

m
� "

m
)V (K))

Note also that V1(��) = u1(L;B)���c, combining this with our guess V (K�1) = V1(�
�)�

"� (1��)m
� veri�es that V (K) = V1(�

�)� ".
At ratings s 2 Snf1;Kg, let p� = (�� + "

m + (K � s) (1��)� )

V (s) = (1� �)(u1(L;B)� ��c) + �(p�V (s� 1) + (��)V (s+ 1) + (1� �� � p�)V (s))
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We use our values from the guess on the right hand side of the equation and verify that

V (s) = V1(�
�)� "� (K � s) (1��)m�

At rating 1, let p+ = (V1(�
�)�u1(L;N)
m � (K � 1) (1��)� � "

m)

V (1) = (1� �)u1(L;N) + �(p+V (2) + (1� p+)V (1))

Again putting the guess values on the r.h.s. veri�es that V (1) = V1(�
�)� "� (K�1)(1��)m

� .

iii) Since the ratings are insensitive to the signals at ratings 1 and K, �1(1) = �1(K) = 0

is straightforward. For s 2 Snf1;Kg, adjacent ratings di¤er in values by (1��)
� m, and

the probability of upgrades di¤er by c
m[�(y�;H)��(y�;L)](�(y

�;H)� �(y�; L)) = c
m , hence the

impact on continuation values of action H compared to action L when discounted to present

is exactly (1� �)c which is the period cost of action H.

Proof of Theorem 2

Theorem 2:
For every � > 0, (U; V ) 2 IRP (W ), there exists �0 < 1, a natural number T , � < 1;

such that for � � �; 1 > �0 > �0 there is a rating system �, and a Perfect Bayesian

equilibrium of G(�;W; �; �) satisfying the following: i) the payo¤ to the normal type of the

long run player is at least U � � after every history. ii) unconditional expected payo¤ of

every short run player after period T is at least V � �.
Proof

We will implement payo¤s in CP (W ). By an initial randomization over the payo¤s in

CP (W ), we can generate any payo¤ in the convex hull of IRP (W ). Fix W; and (U; V ) 2
CP (W ). Then there is an �� < �l, �1; �2 > 0 such that U � �2

2 < V1(�
�), V � �2

2 <

U2(�
� � �1; B); @�k � �� � �1. Such an �� exists because of the structure of the games we

are analyzing.

De�ne the set of ratings S, transition rule � as in step 1 of the proof of theorem 1.

Strategy �2 is the same as in theorem 1, but,

�1(1) = �1(K) = 0 and �1(s) = �� � �1; 8s 2 Snf1;Kg:

Using equation 2, let limK!1
�kK(K)

�(k) = �k and limK!1
�kK(1)

�(k) = �k. Note that as �1
goes to zero, �0 goes to zero as well, hence we can make �0 arbitrarily small by choosing �1
small enough. In particular let �1 be such that U2((1� �k)(�� � �1); B) > V � �2.

Steps 4 and 5 remain unaltered. The number of ratings and the cuto¤ for the probability

of the normal type, �0, is chosen in step 3 as below.
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Step 3: Determination of Number of Ratings and choice of �0

Let k� be the largest integer with �k < ��, then P k+ < P k� for k � k� and for k > k�,

P k+ > P k�. Therefore we have �
k = 0 and �k > 0 for k � k� and �k > 0 and �k = 0 for

k > k�. Therefore there exists �1 > 0, �0 < 1 such that for �(0) > �0:

i) For s 2 �(A1) with s(H) =
Pl
k=1 �

k�(k)�k+�0�(0)0Pl
k=0 �

k�(k)
, B2(s) = fBg;

ii) for s 2 �(A1) with s(H) =
Pl
k=1 �

k�(k)�k+�0�(0)0Pl
k=0 �

k�(k)
, B2(s) = fNg;

iii) For s(H) > (�(0)� �0)(�� � �1), U2(s;B) > V � �2.
Moreover for every type space and the prior probability distribution function � such

that �(0) > �0, there exists an integer K
� such that for K > K� we have for sK(H) =Pl

k=1 �
k
K(K)�

kPl
k=0 �

k
K(K)

; B2(sK) = fBg and sK(H) =
Pl
k=1 �

k
K(1)�

kPl
k=0 �

k
K(1)

; B2(sK) = fNg and U2((�(0) �
�0K(1)� �0K(K))(�� � �1); B) > V � �2.

Lemma 3 Let �k";�(s) be the steady state joint distribution of type k visiting rating s when
the transition rule is � ";� and players use strategies proposed in the beginning of the proof of

theorem 2. Then 9� < 1 and " > 0 such that 8� > �, " < ", If player 2 assigned probability

pk(s) =
�k";�(s)Pl
k=0 �

k
";�(s)

to his opponent being type k when she observes rating s, then i) �2 is

a strict best response to �1 ii) Player 1�s expected discounted present value at rating s is

V1(�
�) � "� (K � s) (1��)m� iii) �1 is a best response to �2.iv) Player 2�s ex-ante expected

value is at least V � �2

Proof. Proofs of ii) and iii) are exactly the same as in the proof of lemma 2. For i) note that
in step 3, the choice of the number of ratings, and the choice of �(0) ensures that at rating 1,

the relative frequency of the normal type is high enough that N is a strict best response for

player 2 observing rating 1. At rating K, the relative frequency of type l is high enough that

B is a best response, and at all other ratings every type puts as much e¤ort as is required

to make it strictly optimal for player 2 to play B. For iv) note that the ex-ante expected

probability with which player 1 plays action H is at least (�(0)� �0K(1)� �0K(K))(��� �1)
and hence player 2�s payo¤ is at least V � �2 from step 3.

Step 5 of Theorem 1 and 2: Experimentation Periods (Convergence Path)

In the early stages of the game �2 described above is not necessarily optimal. Therefore the

continuation values we speci�ed for player 1 in order to make him indi¤erent between H and

L will not hold true in the early periods of the game. To deal with this we do the following

trick: At any period t, if the state is (s) and player 2 plays a2 that is possibly di¤erent

than �2(s), we "bank" the di¤erence in the �ow payo¤ to player 1 to be paid back at the

end of the experimentation periods; in particular (1��)(u1(�1(s); �2(s))�u1(�1(s); �t2(s)))
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is what player 1 needs to get back. We de�ne a string zt which is a string of 0�s and 1�s

such that at period t + 1 a new string zt+1 is formed by attaching a 0 or 1 to zt. Which

of the numbers is attached will be determined by a probability distribution that takes into

account period t �ow payo¤ di¤erence. The di¤erence in the continuation values of player

1 from having a 1 attached or a 0 attached is a small but �xed number. Since the period

t �ow di¤erence is at the order of (1 � �), a probability distribution that di¤ers from the

one that attaches 0 w.p. 1=2 and 1 w.p. 1=2 at an order of (1� �) is enough to give player
1 the right incentives and expected continuation payo¤s. Formally we proceed as follows:

Choose T and " in the de�nition of lemma 1 applied to the transition matrices induced by

(� ; �1;W ) and " as de�ned in lemmas 2 and 3.

For t � 1, let Zt = f0; 1gt and Z0 = �. Let p0 2 �o(S) be the initial probability
distribution over the ratings with full support. Moreover let �t2 : S ! A2 be a pure strategy

best response to �1 and the beliefs of player 2 about player 1�s types, that�s obtained

recursively and concurrently with the de�nition of � t below:

� t : Y � S � Zt ! �(S � Zt+1) is de�ned recursively such that:
� t(y; s; z

t; s0; (zt; 1)) = � ";�(y; s; s
0)[1=2 +

(1��)(u1(�1(s);�2(s))�u1(�1(s);�t2(s)))�T�t
("=T ) ] and

� t(y; s; z
t; s0; (zt; 0)) = � ";�(y; s; s

0)[1=2� (1��)(u1(�1(s);�2(s))�u1(�1(s);�t2(s)))�T�t
("=T ) ].

�T : Y � S � ZT ! �(S) be such that:

�T (z
T ) = �

(1�n(zT )
T

)";�
for zT 2 ZT where n(zT ) is the number of occurrences of 1 in the

string zT .

Finally we�ll de�ne the rating system �";�. Let �";� : [Tt=0Zt � S � Y ! �([Tt=0Zt � S)
be the transition rule on the rating set [Tt=0Zt � S and for z 2 Zt where t < T de-

�ne �";�(y; s; z) = � t(y; s; z) and for z 2 ZT let �";�(y; s; z; s
0; z) = �T (y; s; z; s

0) and

�";�(y; s; z; s
0; z0) = 0 for when z 6= z0.

Next we prove theorem 1 using lemma 2. Proof of theorem 2 is very similar, and the

main di¤erence is to use the constructions for theorem 2, and applying lemma 3 instead of

lemma 2.

Theorem: For every � > 0 there exists " > 0, � < 1 such that for � > �, there exists a

perfect Bayesian Nash equilibrium of G(�";�; �;W; �) where player 1�s payo¤ is more than

V1(�
�)� � after every history.

Proof. Choose " = �=2, and � large enough such that (K � 1)1��
�
m < �=2. Let P�1 be

the probability distribution over [Tt=0Zt � S � f0; 1; :::g �W and P�1(s; z; t; k) denote the

probability of player 1 being type k, the rating at time t being (s; z). Next de�ne the strategy

��1(s; z) = �1(s), and �t2(s; z) 2 B2(
P
k>0 P��1(w = kjs; z; t)�k + P��1(w = 0js; z; t)�

�
1(s; z)).

Note that the strategies are stationary for t � T . Let the average discounted payo¤ of the

repeated game to player 1 be V (zt; s). It is easy to check that V (zT ; s) = V1(�
�) � (K �

s)1��� m � (1 � n(zT )
T )" (from lemma 2). Moreover, one can easily verify that V (zt; s) =
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V1(�
�)� (K � s)1��� m� �T�t("(1� [n(zt) + (T � t)1=2])). Once we know the continuation

values, we can check that there is no pro�table deviation for player 1 at any history (after

time t = T this follows from lemma 2. For t < T , the transition rules on the string zt

ensures that incentives are correct). To check that strategy of player 2 is optimal, note that

until T , �t2 is a best response (by de�nition above), and after T the beliefs are " close to

the steady state beliefs generated by (� ; �1;W ), and hence applying lemma 2 delivers the

result.
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