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WHEN IS MULTIDIMENSIONAL SCREENING A CONVEX PROGRAM?∗

ALESSIO FIGALLI†, YOUNG-HEON KIM‡ AND ROBERT J. MCCANN§

Abstract. A principal wishes to transact business with a multidimensional distribution of agents

whose preferences are known only in the aggregate. Assuming a twist (= generalized Spence-

Mirrlees single-crossing) hypothesis and that agents can choose only pure strategies, we identify a

structural condition on the preference b(x, y) of agent type x for product type y — and on the prin-

cipal’s costs c(y) — which is necessary and sufficient for reducing the profit maximization problem

faced by the principal to a convex program. This is a key step toward making the principal’s prob-

lem theoretically and computationally tractable; in particular, it allows us to derive uniqueness

and stability of the principal’s optimum strategy — and similarly of the strategy maximizing the

expected welfare of the agents when the principal’s profitability is constrained. We call this con-

dition non-negative cross-curvature: it is also (i) necessary and sufficient to guarantee convexity

of the set of b-convex functions, (ii) invariant under reparametrization of agent and/or product

types by diffeomorphisms, and (iii) a strengthening of Ma, Trudinger and Wang’s necessary and

sufficient condition (A3w) for continuity of the correspondence between an exogenously prescribed

distribution of agents and of products. We derive the persistence of economic effects such as the

desirability for a monopoly to establish prices so high they effectively exclude a positive fraction

of its potential customers, in nearly the full range of non-negatively cross-curved models.
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1. Introduction

The principal-agent paradigm provides a microeconomic framework for modeling non-competitive

decision problems which must be made in the face of informational asymmetry. Such problems range

frommonopolist nonlinear pricing [46] [60] [22] [66] [3] and product line design (“customer screening”)

[54] [37] [50], to optimal taxation [42] [43], labour market signalling and contract theory [58] [59]

[2], regulation of monopolies [5] [38] [32] [28] [4] including public utilities [47] [9], and mechanism

design [23] [39] [45]. A typical example would be the problem faced by a monopolist who wants

to market automobiles y ∈ Y to a population of potential buyers (“agents”) x ∈ X . Knowing the

preferences b(x, y) of buyer x for car y, the relative frequency dµ(x) of different buyer types in the

population, and the cost c(y) she incurs in manufacturing car type y, the principal needs to decide

which products (or product bundles) to manufacture and how much to charge for each of them, so

as to maximize her profits.

In the simplest models, e.g. [58] [54], there are only a finite number of product possibilities

(e.g. with air conditioning, or without) and a finite number of buyer types (e.g. rich, middle-class,

and poor); or possibly a one-dimensional continuum of product possibilities (parameterized, say, by

quality) and of agent types (parameterized, say, by income) [42] [59] [46] [5]. Of course, real cars

depend on more than one parameter — fuel efficiency, comfort, options, reliability, styling, handling

and safety, to name a few — as do car shoppers, who vary in wealth, income, age, commuting

needs, family size, personal disposition, etc. Thus realistic modeling requires multidimensional type

spaces X ⊂ Rm and Y ⊂ Rn as in [39] [65] [44] [51] [7] [16]. Although such models can often be

reduced to optimization problems in the calculus of variations [13] [6], in the absence of convexity

they remain dauntingly difficult to analyze. Convexity — whether manifest or hidden — rules out

critical points other than global minima, and is often the key to locating and characterizing optimal

strategies either numerically or theoretically. The purpose of the present article is to determine

when convexity is present, assuming the dimensions m = n of the agent and product type spaces

coincide.

An archetypal model was addressed by Wilson [66], Armstrong [3], and Rochet and Choné [50]. A

particular example from the last of these studies makes the simplifying hypotheses X = Y = [0,∞[n,

c(y) = |y|2/2, and b(x, y) = 〈x, y〉. By assuming this bilinearity of buyer preferences, Rochet and

Choné were able to show that the principal’s problem can be reduced to a quadratic minimization

over the set of non-negative convex functions — itself a convex set. Although the convexity constraint

makes this variational problem non-standard, for buyers distributed uniformly throughout the unit

square, they exploited a combination of theoretical and computational analysis to show a number

of results of economic interest. Their most striking conclusion was that the profit motive alone

leads the principal to discriminate between three different types of buyers: (i) low-end customers

whom she will not market cars to, because — as Armstrong had already discovered — making cars

affordable to this segment of the market would cost her too much of her mid-range and high-end

profits; (ii) mid-range customers, whom she will encourage to choose from a one-parameter family

of affordably-priced compromise vehicles; (iii) high-end customers, whom she will use both available

dimensions of her product space to market expensive vehicles individually tailored to suit each
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customer’s desires. Whether or not such bunching phenomena are robust is an unanswered question

of considerable interest which — due to their specificity to particular preference functions — the

techniques of the foregoing authors remain unable to address. The possibility of non-robustness

was highlighted in [7]; below we go further to suggest which specific perturbations of the preference

function b(x, y) are most likely to yield robust results. On the other hand, our conclusions confirm

Armstrong’s assertion that what he called the desirability of exclusion is a very general phenomenon

in the models we study (Theorem 4.7). This exclusion however, is not generic when the dimensions

of the type and allocation spaces differ [16]: Deneckere and Severinov gave necessary and sufficient

conditions for exclusion when (m,n) = (2, 1).

For general preferences b(x, y), the principal’s problem can be reformulated as a minimimization

problem over the space of b-convex functions (Definition 3.1), according to Carlier [13]. Such func-

tions generally form a compact but non-convex set, which prevented Carlier from deducing much

more than the existence of an optimal strategy for the principal — a result which can also be

obtained using the method of Monteiro and Page [45]; (for related developments see Basov [7] or

Rochet and Stole [51]). Our present purpose is to identify conditions on the agent preferences which

guarantee convexity of this feasible set (Theorem 3.2). In the setting we choose, the conditions we

find will actually be necessary as well as sufficient for convexity; this necessity imparts a significance

to these conditions even if they appear unexpected or unfamiliar. If, in addition, the principal’s

manufacturing cost c(y) is b∗-convex, for b∗(y, x) := b(x, y), the principal’s problem becomes a

convex program which renders it much more amenable to standard theoretical and computational

techniques. Although the resulting problem retains the complexities of the Wilson, Armstrong, and

Rochet and Choné’s models, we are able to deduce new results which remained inaccessible until

now, such as conditions guaranteeing uniqueness (Theorem 4.5) and stability (Corollary 4.6) of the

principal’s optimum strategy. The same considerations and results apply also to the problem of

maximimizing the total welfare of the agents under the constraint that it remain possible for the

principal to operate without sustaining a loss (Remark 5.1).

The initial impetus for this study emerged from discussions with Ivar Ekeland. RJM is pleased to

express his gratitude to Ekeland for introducing him to the principal-agent problem in 1996, and for

anticipating already at that time that it ought to be tackled using techniques from the mathematical

theory of optimal transportation. This approach was exploited by Carlier [13] in his doctoral thesis,

following earlier works by Rochet [48] [49] and Rochet and Choné [50], and was recently extended to

a different but related class of problems by Buttazzo and Carlier [10]. We are grateful to Giuseppe

Buttazzo and Guillaume Carlier also, for stimulating discussions.

2. Hypotheses: the basic framework

As in Ma, Trudinger and Wang’s work concerning the smoothness of optimal mappings [36], let

us assume the buyer preferences satisfy the following hypotheses. Let X denote the closure of any

given set X ⊂ Rn, and for each (x0, y0) ∈ X × Y assume:

(B0) b ∈ C4
(

X × Y
)

, where X ⊂ Rn and Y ⊂ Rn are open and bounded;

(B1) (bi-twist)
y ∈ Y 7−→ Dxb(x0, y)

x ∈ X 7−→ Dyb(x, y0)

}

are diffeomorphisms onto their ranges;

(B2) (bi-convexity)
Xy0

:= Dyb(X, y0)

Yx0
:= Dxb(x0, Y )

}

are convex subsets of Rn.

Here the subscript x0 serves as a reminder that Yx0
denotes a subset of the cotangent space

T ∗
x0
X= Rn to X at x0. Note (B1) is strengthened form of the multidimensional generalization

[55] [20] [31] of the Spence-Mirrlees single-crossing condition expressed in Rüschendorf, in Gangbo,
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and in Levin. It asserts the marginal utility of buyer type x0 in equation (4.2) determines the

product he selects uniquely and smoothly, and similarly that buyer type who selects product y0 will

be a well-defined smooth function of y0 and the marginal cost of that product; (B1) is much less

restrictive than the generalized single crossing condition proposed by McAfee and McMillan [39],

since the iso-price curves in the latter context become hyperplanes, effectively reducing the problem

to a single dimension. We also assume

(B3) (non-negative cross-curvature)

(2.1)
∂4

∂s2∂t2

∣

∣

∣

∣

(s,t)=(0,0)

b(x(s), y(t)) ≥ 0

for each curve t ∈ [−1, 1] 7−→ (Dyb(x(t), y(0)), Dxb(x(0), y(t))) forming an affinely parameterized

line segment in Xy(0)×Y x(0) ⊂ R2n. If the inequality (2.1) becomes strict whenever x′(0) and y′(0)

are non-vanishing, we say the preference function b is positively cross-curved, and denote this by

(B3u).

Remark 2.1 (Mathematical lineage). Condition (B3) can alternately be defined as in Lemma 6.1

using Definition 4.1; the convexity asserted by that lemma may appear more intuitive and natural

than (B3) from point of view of applications. Historically, non-negative cross-curvature arose as a

strengthening of Trudinger and Wang’s criterion (A3w) guaranteeing smoothness of optimal maps in

the Monge-Kantorovich transportation problem [62]; unlike us, they require (2.1) only if, in addition,

(2.2)
∂2

∂s∂t

∣

∣

∣

∣

(s,t)=(0,0)

b(x(s), y(t)) = 0.

Necessity of Trudinger and Wang’s condition for continuity was shown by Loeper [33], who (like [25]

[61]) also noted its covariance and some of its relations to the geometric notion of curvature. Their

condition relaxes a hypothesis proposed with Ma [36], which required strict positivity of (2.1) when

(2.2) holds. The strengthening considered here was first studied in a different but equivalent form

by Kim and McCann, where both the original and the modified conditions were shown to corre-

spond to pseudo-Riemannian sectional curvature conditions induced by buyer preferences on X×Y ,

thus highlighting their invariance under reparametrization of either X or Y by diffeomorphism; see

Lemma 4.5 of [25]. Other variants and refinements of Ma, Trudinger, and Wang’s condition have

been proposed and investigated by Figalli and Rifford [19] and Loeper and Villani [35] for different

purposes at about the same time.

Kim and McCann showed non-negative cross-curvature guarantees tensorizability of condition

(B3), which is useful for building examples of preference functions which satisfy it [26]; in suitable

coordinates, it guarantees convexity of each b-convex function, as they showed with Figalli [18]; see

Proposition 4.3. Hereafter we show, in addition, that it is necessary and sufficient to guarantee con-

vexity of the set Vb
Y
of b-convex functions. A variant on the sufficiency was observed simultaneously

and independently from us in a different context by Sei (Lemma 1 of [57]), who was interested in the

function b(x, y) = −d2Sn(x, y), and used it to give a convex parametrization of a family of statistical

densities he introduced on the round sphere X = Y = Sn.

3. Results concerning the principal-agent problem

A mathematical concept of central relevance to us is encoded in the following definition.

Definition 3.1 (b-convex). A function u : X 7−→ R is called b-convex if u = (ub∗)b, where

(3.1) vb(x) = sup
y∈Y

b(x, y)− v(y) and ub∗(y) = sup
x∈X

b(x, y)− u(x).
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In other words, if u is its own second b-transform, i.e. a supremal convolution (or generalized

Legendre transform) of some function v : Y 7−→ R ∪ {+∞} with b. The set of b-convex functions

will be denoted by Vb
Y
. Similarly, we define the set Ub∗

X
of b∗-convex functions to consist of those

v : Y 7−→ R satisfying v = (vb)b
∗

.

Although some authors permit b-convex functions to take the value +∞, our hypothesis (B0)

ensures b-convex functions are Lipschitz continuous and thus that the suprema defining their b-

transforms are finitely attained. Our first result is the following.

Theorem 3.2 (b-convex functions form a convex set). Assuming b : X × Y 7−→ R satisfies (B0)–

(B2), hypothesis (B3) becomes necessary and sufficient for the convexity of the set Vb
Y

of b-convex

functions on X.

To understand the relevance of this theorem to economic theory, let us recall a mathematical

formulation of the principal-agent problem based on [13] and [48] [49]. In this context, each product

y ∈ Y costs the principal c(y) to manufacture, and she is free to market this product to the population

X of agents at any lower semicontinuous price v(y) that she chooses. She is aware that product y

has utility b(x, y) to agent x ∈ X , and that in response to any price menu v(y) she proposes, each

agent will compute his indirect utility

(3.2) u(x) = vb(x) := max
y∈Y

b(x, y)− v(y),

and will choose to buy a product yb,v(x) which attains the maximum, meaning u(x) = b(x, yb,v(x))−

v(yb,v(x)). However, let us assume that there is a distinguished point y∅ ∈ Y representing the null

product, which the principal is compelled to offer to agents at zero profit,

(3.3) v(y∅) = c(y∅),

either because both quantities vanish (representing the null transaction), or because, as in [10], there

is a competing supplier or regulator from whom the agents can obtain this product at price c(y∅). In

other words, u∅(x) := b(x, y∅)− c(y∅) acts as the reservation utility of agent x ∈ X , below which he

will reject the principal’s offers and decline to participate, whence u ≥ u∅. The map yb,v : X 7−→ Y

from agents to products they select will not be continuous except possibly if the price menu v is

b∗-convex; when yb,v(x) depends continuously on x ∈ X we say v is strictly b∗-convex.

Knowing b, c and a (Borel) probability measure µ on X — representing the relative frequency

of different types of agents in the population — the principal’s problem is to decide which lower

semicontinuous price menu v : Y 7−→ R ∪ {+∞} maximizes her profits, or equivalently, minimizes

her net losses:

(3.4)

∫

X

[c(yb,v(x))) − v(yb,v(x))]dµ(x).

Note the integrand vanishes (3.3)–(3.4) for any agent x who elects not to participate (i.e., who

chooses the null product y∅ ∈ Y ).

For absolutely continuous distributions of agents, — or more generally if µ vanishes on Lipschitz

hypersurfaces — it is known that the principal’s losses (3.4) depend on v only through the indirect

utility u = vb, an observation which can be traced back to Mirrlees [42] in one dimension and

Rochet [48] more generally; see also Carlier [13]. This indirect utility u ≥ u∅ is b-convex, due to the

well-known identity ((vb)b
∗

)b = vb; see for instance Exercise 2.35 at page 87 of [63]. Conversely, the

principal can design any b-convex function u ≥ u∅ that she wishes simply by choosing price strategy

v = ub∗ . Thus, as detailed below, the principal’s problem can be reformulated as a minimization

problem (4.5) on the set U0 := {u ∈ Vb
Y
| u ≥ u∅}. Under hypotheses (B0)–(B3), our Theorem 3.2
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shows the set Vb
Y

of such utilities u to be convex, in the usual sense. This represents substantial

progress, even though the minimization problem (3.4) still depends nonlinearly on v = ub∗ . If, in

addition, the principal’s cost c(y) is a b∗-convex function, then Proposition 4.3 and its corollary show

her minimization problem (3.4) becomes a convex functional of u on U0, so the principal’s problem

reduces to a convex program. Necessary and sufficient conditions for a minimum can in principle

then be expressed using Kuhn-Tucker type conditions, and numerical examples could be solved using

standard algorithms. However we do not do this here: unless µ is taken to be a finite combination of

Dirac masses, the infinite dimensionality of the convex set Vb
Y
leads to functional analytic subtleties

even for the bilinear preference function b(x, y) = 〈x, y〉, which have only been resolved with partial

success by Rochet and Choné in that case [50] [14]. If the b∗-convexity of c(y) is strict however, or if

the preference function is positively cross-curved (B3u), we shall show the principal’s program has

enough strict convexity to yield unique optimal strategies for both the principal and the agents in a

sense made precise by Theorem 4.5. These optimal strategies represent a Stackelberg (rather than

a Nash) equilibrium, in the sense that no party has any incentive to change his or her strategies,

given that the principal must commit to and declare her strategy before the agents select theirs.

Of course, it is of practical interest that the principal be able to anticipate not only her optimal

price menu v : Y 7−→ R ∪ {+∞} — also known as the equilibrium prices — but the corresponding

distribution of goods which she will be called on to manufacture. This can be represented as a Borel

probability measure ν on Y , which we call the optimal production measure. It quantifies the relative

frequency of goods to be produced, and is the image of µ under the agents’ best response function

yb,v : X 7−→ Y to the principal’s optimal strategy v. This image ν = (yb,v)#µ is a Borel probability

measure on Y known as the push-forward of µ by yb,v, and is defined by the formula

(3.5) ν(W ) := µ[y−1
b,v(W )]

for each W ⊂ Y . Theorem 4.5 asserts the optimal production measure ν is unique and the optimal

price menu v is uniquely determined ν-a.e.; the same theorem gives a sharp lower bound for v

throughout Y . If the convex domain Xy∅
is strictly convex and the density of agents is Lipschitz

continuous on X , Theorem 4.7 goes on to assert that these prices will be high enough to drive a

positive fraction of agents out of the market, extending Armstrong’s desirability of exclusion [3]

to a rich class of multidimensional models. Thus the goods to be manufactured and their prices

are uniquely determined at equilibrium, and the principal can price the goods she prefers not to

trade arbitrarily high but not arbitrarily low. Theorem 4.5 goes on to assert that the optimal

strategy yb,v(x) is also uniquely determined for µ-almost every agent x by b, c and µ, for each Borel

probability measure µ on X . Apart from Theorem 4.7, these conclusions apply to singular and

discrete measures as well as to continuous measures µ, assuming the tie-breaking conventions of

Remark 4.2 are adopted whenever µ fails to vanish on each Lipschitz hypersurface.

A number of examples of preference functions b(x, y) which satisfy our hypotheses are developed

in [19] [25] [26] [29] [30] [34] [36] [62]. Here we mention just three:

Example 3.3. For single dimensional type and allocation spaces n = 1, hypotheses (B1)–(B2)

are equivalent to asserting that the preference function b(x, y) be defined on a product of two

intervals where its cross-partial derivatives bxy do not vanish. Positive cross-curvature (B3u) asserts

that D2
xyb in turn satisfies a Spence-Mirrlees condition, by having positive cross-partial derivatives:

D2
xy(D

2
xyb) > 0.

Example 3.4. The bilinear preference function b(x, y) = x · y of Armstrong, Rochet and Choné

satisfies (B0)–(B3) provided only that X,Y ⊂ Rn are convex bodies. In this case b- and b∗-

convexity coincide with ordinary convexity. Thus Theorem 4.5 asserts that any strictly convex
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manufacturing cost c(y) leads to unique optimal strategies for the principal and for µ-almost every

agent. This uniqueness is well-known for absolutely continuous measures dµ ≪ dvol [50], and Carlier

and Lachand-Robert have extended Mussa and Rosen’s differentiability result u ∈ C1(X) to n ≥ 1 in

that case [15] [46], but the uniqueness of optimal strategies under the tie-breaking rules described in

Remark 4.2 may be new results when applied, for example, to discrete distributions µ concentrated

on finitely many agent types.

Example 3.5. Ma, Trudinger and Wang’s perturbation b(x, y) = x · y + F (x)G(y) of the bilinear

preference function is non-negatively cross-curved (B3) provided F ∈ C4
(

X
)

and G ∈ C4
(

Y
)

are

both convex [36] [25]; it is positively cross-curved if the convexity is strong, meaning both F (x)−ǫ|x|2

and G(y)−ǫ|y|2 remain convex for some ǫ > 0. It satisfies (B0)–(B1) provided supx∈X |DF (x)| < 1

and supy∈Y |DG(y)| < 1, and (B2) if the convex domains X and Y ⊂ Rn are sufficiently convex,

meaning all principal curvatures of these domains are sufficiently large at each boundary point [36].

On the other hand, b(x, y) = x·y+F (x)G(y) will violate (B3) ifD2F (x0) > 0 holds butD2G(y0) ≥ 0

fails at some (x0, y0) ∈ X × Y .

In the next section we formulate the results mathematically. Let us first highlight one implication

of our results concerning robustness of the phenomena observed by Rochet and Choné. Their

bilinear function b(x, y) = x · y lies on the boundary of the set of non-negatively cross-curved

preference functions, since its cross-curvature (2.1) vanishes identically. Our results show non-

negative cross-curvature (B3) to be a necessary and sufficient condition for the principal-agent

problem to be a convex program: the feasible set Vb
Y

becomes non-convex otherwise, and it is

reasonable to expect that uniqueness of the solution among other phenomena observed in [50] may

be violated in that case. In analogy with the discontinuities discovered by Loeper [33], we therefore

conjecture that the bundling discovered by Rochet and Choné is robust with respect to perturbations

of the bilinear preference function which respect (B0)–(B3), but not generally with respect to

perturbations violating (B3).

4. Mathematical formulation

Any price menu v : Y 7−→ R ∪ {∞} satisfies

(4.1) vb(x) + v(y)− b(x, y) ≥ 0

for all (y, x) ∈ Y × X, according to definition (3.1). Comparison with (3.2) makes it clear that a

(product, agent) pair produces equality in (4.1) if and only if selecting product y is among the best

responses of agent x to this menu; the set of such best-response pairs is denoted by ∂b∗v ⊂ Y ×X; see

also (A.2). We think of this relation as giving a multivalued correspondence between products and

agents: given price menu v the set of agents (if any) willing to select product y is denoted by ∂b∗v(y).

It turns out ∂b∗v(y) is non-empty for all y ∈ Y if and only if v is b∗-convex. Thus b∗-convexity of

v — or of c — means precisely that each product is priced low enough to be included among the

best responses of some agent or limiting agent type x ∈ X . As we shall see in Remark 4.2, assuming

b∗-convexity of v costs little or no generality; however, the b∗-convexity of c is a real restriction

— but plausible when the product types Y ⊂ Rn represent mixtures (weighted combinations of

pure products) which the principal could alternately choose to purchase separately and then bundle

together; this becomes natural in the context of von-Neumann and Morgenstern preference functions

[64] like the one used by Rochet and Choné [50].

Let DomDu ⊂ X denote the set where u is differentiable. If y is among the best responses of

agent x ∈ DomDvb to price menu v, the equality in (4.1) implies

(4.2) Dvb(x) = Dxb(x, y).
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In other words y = yb(x,Dvb(x)), where yb is defined as follows:

Definition 4.1. For each x ∈ X and q ∈ Y x, let us define yb(x, q) to be the unique solution to

(4.3) Dxb(x, yb(x, q)) = q

guaranteed by (B1). The map yb (which is defined on a subset of the cotangent bundle T ∗X and

takes values in Y ) has also been called the b-exponential map [33], and denoted by yb(x, q) = b-Expxq.

The fact that the best response function takes the form y = yb(x,Dvb(x)), and that DomDvb

exhaustsX except for a countable number of Lipschitz hypersurfaces, are among the key observations

exploited in [20] [31] following special cases worked out in [3] [8] [11] [21] [40] [50]. Indeed, vb is

well-known to be a b-convex function. It is therefore Lipschitz and semiconvex, satisfying the bounds

(4.4) |Dvb| ≤ ‖c‖
C1

(

X×Y
), D2vb ≥ −‖c‖

C2

(

X×Y
) inside X.

The second equation above holds in the distributional sense, and implies the differentiability of vb

outside a countable number of Lipschitz hypersurfaces.

Assuming µ assigns zero mass to each Lipschitz hypersurface (and so also to a countable number

of them), the results just summarized allow the principal’s problem (3.4) to be re-expressed in the

form min{L(u) | u ∈ U0}, where the principal’s net losses are given by

(4.5) L(u) :=

∫

X

[u(x) + c(yb(x,Du(x))) − b(x, yb(x,Du(x)))]dµ(x)

as is by now well-known [13]. Here U0 = {u ∈ Vb
Y

| u ≥ u∅} denotes the set of b-convex functions

on X dominating the reservation utility u∅(x) = b(x, y∅)−c(y∅), and the equality produced in (4.1)

by the response yb,v(x) = yb(x,Dvb(x)) for µ-a.e. x has been exploited. Our hypothesis on the

distribution of agent types holds a fortiori whenever µ is absolutely continuous with respect to

Lebesgue measure in coordinates on X . If no such hypothesis is satisfied, the reformulation (4.5) of

the principal’s net losses may not be well-defined, unless we extend the definition of Du(x) to all of

X by making a measurable selection from the relation

∂u(x) := {q ∈ Rn | u(z) ≥ u(x) + q · (z − x) + o(|z − x|) ∀ z ∈ X}

consistent with the following tie-breaking rule, analogous to one adopted, e.g., by Buttazzo and

Carlier in a different but related context [10]:

Remark 4.2. [Tie-breaking rules for singular measures] When an agent x remains indifferent between

two or more products, it is convenient to reduce the ambiguity in the definition of his best response

by insisting that yb,v(x) be chosen to maximize the principal’s profit v(y) − c(y), among those

products y which maximize (3.2). We retain the result yb,v(x) = yb(x,Dvb(x)) by a corresponding

selection Dvb(x) ∈ ∂vb(x). This convention costs no generality when the distribution µ of agent

types vanishes on Lipschitz hypersurfaces in X , since u = vb is then differentiable µ-a.e.; in the

remaining cases it may be justified by assuming the principal has sufficient powers of persuasion to

sway an agent’s choice to her own advantage whenever some indifference would otherwise persist

between his preferred products [42]. After adopting this convention, it costs the principal none of her

profits to restrict her choice of strategies to b∗-convex price menus v = (vb)b
∗

, a second convention

we also choose to adopt whenever µ fails to vanish on each Lipschitz hypersurface.

The relevance of Theorem 3.2 to the principal-agent problem should now be clear: it guarantees

convexity of the feasible set U0 in (4.5). Our next proposition addresses the convexity properties

of the principal’s objective functional. Should convexity of this objective be strict, then the best
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response yb,v(x) selected by the tie-breaking rule above becomes unique — which it need not be

otherwise.

Proposition 4.3 (Convexity of the principal’s objective). If b ∈ C4
(

X × Y
)

satisfies (B0)–(B3)

and c : Y 7−→ R is b∗-convex, then for each x ∈ X, definition (4.3) makes a(q) := c(yb(x, q)) −

b(x, yb(x, q)) a convex function of q on the convex set Y x := Dxb(x, Y ) ⊂ Rn. The convexity of

a(q) is strict if either c is strictly b∗-convex — meaning the efficient allocation yb,c : X 7−→ Y is

continuous — or alternately if

(4.6) q ∈ Y x 7−→ b(x0, yb(x, q))− b(x, yb(x, q))

is a strictly convex function of q for each x, x0 ∈ X. If the preference function b is positively cross-

curved on X × Y , then convexity of a(q) is strong (meaning a(q) − ǫ|q|2/2 remains convex on Y x

for some ǫ > 0).

Strict convexity of (4.6) may subsequently be denoted by (B3s). As an immediate corollary to

Theorem 3.2 and Proposition 4.3, we have convexity of the principal’s optimization problem.

Corollary 4.4 (Convexity of the principal’s minimization). Let the distribution of agent types be

given by a Borel probability measure µ on X ⊂ Rn. Unless µ vanishes on all Lipschitz hypersurfaces,

adopt the tie-breaking conventions of Remark 4.2. If the preference b(x, y) of agent x ∈ X for product

y ∈ Y satisfies (B0)–(B3) and the principal’s manufacturing cost c : Y 7−→ R is b∗-convex, then

the principal’s problem (4.5) becomes a convex minimization over the convex set U0.

As a consequence, we obtain criteria guaranteeing uniqueness of the principal’s best strategy.

Theorem 4.5 (Criteria for uniqueness of optimal strategies). Assume the notation and hypotheses

of Corollary 4.4. Suppose, in addition, that the manufacturing cost c is strictly b∗-convex, or that the

preference function b is positively cross-curved (B3u), or that b satisfies (B3s), as in (4.6). Then

the equilibrium response of µ-almost every agent is uniquely determined, as is the optimal measure ν

from (3.5); (always assuming the tie-breaking conventions of Remark 4.2 to be in effect if µ does not

vanish on each Lipschitz hypersurface). Moreover, the principal has two optimal strategies u± ∈ U0

which coincide at least µ-almost everywhere, and sandwich all other optimal strategies u ∈ U0 between

them: u− ≤ u ≤ u+ on X. Finally, a lower semicontinuous v : Y 7−→ R ∪ {+∞} is an optimal

price menu if and only if v ≥ ub∗

+ throughout Y , with equality holding ν-almost everywhere.

This theorem gives hypothesis which guarantee — even for discrete measures µ corresponding to

finitely many agent types — that the solution to the principal’s problem is unique in the sense that

optimality determines how many of each type of product the principal should manufacture, what

price she should charge for each of them, and which product will be selected by almost every agent.

A lower bound is specified on the price of each product which she does not wish to produce, to

ensure that it does not tempt any agent. When µ vanishes on Lipschitz hypersurfaces, this solution

represents the only Stackelberg equilibrium balancing the interests of the principal with those of

the agents; for more singular µ, it is possible that other Stackelberg equilibria exist, but if so they

violate the restrictions imposed on the behaviour of the principal and the agents in Remark 4.2.

The uniqueness theorem has as its corollary the following stability result concerning optimal

strategies. Recall that a sequence {µi}
∞
i=1 of Borel probability measures on a compact set X ⊂ Rn

is said to converge weakly-∗ to µ∞ if

(4.7)

∫

X

g(x)dµ∞(x) = lim
i→∞

∫

X

g(x)dµi(x)
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for each continuous test function g : X 7−→ R. This notion of convergence makes the Borel proba-

bility measures P
(

X
)

on X into a compact set, as a consequence of the Riesz-Markov and Banach-

Alaoglu theorems.

Corollary 4.6 (Stability of optimal strategies). For each i ∈ N∪{∞}, let the triple (bi, ci, µi) consist

of a preference function bi : X × Y 7−→ R, manufacturing cost ci : Y 7−→ R, and a distribution

of agent types µi on X satisfying the hypotheses of Theorem 4.5. Let ui : X 7−→ R denote a bi-

convex utility function minimizing the losses of a principal faced with data (bi, ci, µi). Suppose that

bi → b∞ in C2
(

X × Y
)

, ci → c∞ uniformly on Y , and µi ⇀ µ∞ weakly-∗ as i → ∞. Assume

finally that µ∞ vanishes on all Lipschitz hypersurfaces. For µ∞-a.e. agent x ∈ X, the product

Gi(x) := ybi(x,Dui(x)) selected then converges to G∞(x). The optimal measures νi := (Gi)#µi

converge weakly-∗ to ν∞ as i → ∞. And the principal’s strategies converge uniformly in the sense

that limi→∞ ‖ui − u∞‖L∞(X,dµ∞) = 0.

Finally as evidence for the robustness of bunching phenomena displayed by our models, we show

the desirability of exclusion phenomenon found by Armstrong for preference functions b(x, y) =
∑n

i=1 xibi(y) which are linear in x — or more generally homogeneous [3] — extends to the full range

of non-negatively cross-curved models. We assume strict convexity on the domainXy∅
:= Dyb(X, y∅)

(see Remark 4.8), and that the distribution of agent types dµ(x) = f(x)dx has a Sobolev density

— denoted f ∈ W 1,1
(

X
)

and meaning both the function and its distributional derivative Df are

given by Lebesgue integrable densities. This is satisfied a fortiori if f is Lipschitz or continuously

differentiable (as Armstrong assumed). The exclusion phenomenon is of interest, since it confirms

that a positive fraction of customers must be excluded from participation at equilibrium, thus

ensuring elasticity of demand.

Theorem 4.7 (The desirability of exclusion). Let the distribution dµ(x) = f(x)dx of agent types

be given by a density f ∈ W 1,1 on X ⊂ Rn. Assume that the preference b(x, y) of agent x ∈ X for

product y ∈ Y satisfies (B0)–(B3) and the principal’s manufacturing cost c : Y 7−→ R is b∗-convex.

Suppose further that the convex domain Xy∅
= Dxb(X, y∅) has no n − 1 dimensional facets in its

boundary. Then any minimizer u ∈ U0 of the principal’s losses (4.5) coincides with the reservation

utility on a set U0 := {x ∈ X | u(x) = b(x, y∅) − c(y∅)} whose interior contains a positive fraction

of the agents. Such agents select the null product y∅.

Remark 4.8 (Facets and exclusion in different dimensions). A convex domain X ⊂ Rn fails to

be strictly convex if it has line segments in its boundary. These segments belong to facets of

dimension 1 or higher, up to n − 1 if the domain has a flat side (meaning a positive fraction of its

boundary coincides with a supporting hyperplane). Thus strict convexity of Xy∅
is sufficient for

the hypothesis of the preceding theorem to be satisfied — except in dimension n = 1. In a single

dimension, every convex domain X ⊂ R is an interval — hence strictly convex — whose endpoints

form zero-dimensional facets. Thus Theorem 4.7 is vacuous in dimension n = 1, which is consistent

with Armstrong’s observation the necessity of exclusion is a hallmark of higher dimensions n ≥ 2.

More recently, Deneckere and Severinov [16] have argued that necessity of exclusion is specific to the

case in which the dimensions m and n of agent and product types coincide. When (m,n) = (2, 1)

they give necessary and sufficient conditions for the desirability of exclusion, yielding a result quite

different from ours in that exclusion turns out to be more frequently the exception than the rule.

5. Discussion, extension, and conclusions

The role of private information in determining market value has a privileged place in economic

theory, acknowledged by the award of the Nobel Memorial Prize in Economic Sciences to Mirrlees
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and Vickrey in 1996, and to Akerlof, Spence and Stiglitz in 2001. This phenomenon has been deeply

explored in the principal-agent framework, where a single seller (or single buyer) transacts business

with a collection of anonymous agents. In this context, the private (asymmetric) information takes

the form of a characteristic x ∈ X peculiar to each individual buyer which determines his preference

b(x, y) for different products y ∈ Y offered by the principal; x remains concealed from the principal

by anonymity of the buyer — at least until a purchase is made. Knowing only the preference function

b(x, y), the statistical distribution dµ(x) of buyer types, and her own manufacturing costs c(y), the

principal’s goal is to fix a price menu for different products which maximizes her profits.

Many studies involving finite spaces of agent and product types X and Y have been carried out,

including Spence’s initial work on labour market signalling [58] and Stiglitz paper with Rothschild

on insurance [54]. However for a principal who transacts business with a one-dimensional continuum

of agents X ⊂ R, the problem was solved in Mirrlees’ celebrated work on optimal taxation [42], and

in Spence’s study [59], assuming the contract types y ∈ Y ⊂ R are also parameterized by a single

real variable. (For Mirrlees, y ∈ R represented the amount of labour an individual chooses to do

facing a given tax schedule, while for Spence it represented the amount of education he chooses to

acquire facing a given range of employment possibilities, x ∈ R being his intrinsic ability in both

cases). In the context of nonlinear pricing discussed above, the one-dimensional model was studied

by Mussa and Rosen [46]. The challenge of resolving the multidimensional version X,Y ⊂ Rn of this

archetypal problem in microeconomic theory has been highlighted by many authors [39] [65] [44] [51]

[7]. When only one side of the market displays multidimensional types, analyses have been carried out

by Mirman and Sibley [41], Roberts [47] and Spence [60], who allow multidimensional products, and

by Laffont, Maskin and Rochet [27], Araujo, Gottlieb and Moreira [2], and Deneckere and Severinov

[16] who model two-dimensional agents choosing from a one-dimensional product line. When both

sides of the market display multidimensional types, existence of an equilibrium has been established

by Monteiro and Page [45] and by Carlier [13], who employed a variational formulation; see also the

control-theoretic approach of Basov [6] [7]. However, non-convexities have rendered the behaviour of

this optimization problem largely intractable [24] — unless the preference function b(x, y) = x·G(y) is

assumed to depend linearly on agent type [66] [3] [50]. Moreover, the presence of convexity typically

depends on a correct choice of coordinates, so is not always easy to discern. The present study treats

general Borel probability measures µ on X ⊂ Rn, and provides a unified framework for dealing with

discrete and continuous type spaces, by invoking the tie-breaking rules of Remark 4.2 in case µ is

discrete. Assuming b∗-convexity of c, we consider preferences linear in price (3.2) (sometimes called

quasilinear), which satisfy a generalized Spence-Mirrlees single crossing condition (B0)-(B1) and

appropriate convexity conditions on its domain (B2), and we identify a criterion (B3) equivalent to

convexity of the principal’s optimization problem (Theorem 3.2). This criterion is a strengthening of

Ma, Trudinger and Wang’s necessary [33] and sufficient [36] [62] condition for continuity of optimal

mappings. Like all of our hypotheses, it is independent of the choice of parameterization of agent

and/or product types — as emphasized in [25]. We believe the resulting convexity is a fundamental

property which will eventually enable a more complete theoretical and computational analysis of the

multidimensional principal-agent problem, and we indicate some examples of preference functions

which satisfy it in Examples 3.3–3.5; the bilinear example b(x, y) = x ·y of Rochet and Choné lies on

the boundary of such preference functions. If either the cross-curvature inequality (B3) holds strictly

or the b∗-convexity of c(y) is strict — meaning the efficient solution yb,c(x) depends continuously

on x ∈ X — we go on to derive uniqueness and stability of optimal strategies (Theorem 4.5 and its

corollary). Under mild additional hypotheses we confirm that a positive fraction of agents must be

priced out of the market when the type spaces are multidimensional (Theorem 4.7). We conjecture
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that non-negative cross-curvature (B3) is likely to be necessary and sufficient for robustness of

Armstrong’s desirability of exclusion [3] and the other bunching phenomena observed by Rochet

and Choné [50].

Remark 5.1 (Maximizing social welfare under profitability constraints). Before concluding this pa-

per, let us briefly mention an important class of related models to which the same considerations

apply: namely, the problem of maximizing the expected welfare of the agents under a profitability

constraint on the principal. Such a model has been used by Roberts [47] to study energy pricing by

a public utility, and explored by Spence [60] and Monteiro and Page [45] in other contexts. Suppose

the welfare of agent x ∈ X is given by a concave function w(u(x)) of his indirect utility (3.2). Intro-

ducing a Lagrange multiplier λ for the profitability constraint L(u) ≤ 0, the problem of maximizing

the net social welfare over all agents becomes equivalent to the maximization

W (λ) := max
u∈U0

−λL(u) +

∫

X

w(u(x))dµ(x)

for some choice of λ ≥ 0. Assuming (B0)–(B3), and b∗-convexity of c, for each λ ≥ 0 this amounts

to a concave maximization on a convex set, as a consequence of Theorem 3.2, Proposition 4.3 and

the concavity of w. Theorem 4.5 and its corollary give hypotheses which guarantee uniqueness and

stability of its solution uλ; if the concavity of w is strict, we obtain uniqueness µ-a.e. of uλ more

directly under the weaker hypotheses of Corollary 4.4. Either way, once the uniqueness of uλ has

been established, standard arguments in the calculus of variations show the convex function W (λ)

to be continuously differentiable, and that each value of its derivative W ′(λ) = −L(uλ) corresponds

to a possibly degenerate interval λ ∈ [λ1, λ2] on which uλ is constant; see e.g. Corollary 2.11 of [12].

Uniqueness of a social welfare maximizing strategy subject to any budget constraint in the range

]L(u0), L(u∞)[ is therefore established; this range contains the vanishing budget constraint as long

as L(u0) > 0 > L(u∞); here u0 represents the unconstrained maximizer whereas u∞ ∈ U0 minimizes

the principal’s losses (4.5). All of our results — except for the desirability of exclusion (Theorem

4.7) — extend immediately to this new setting. This sole exception is in accord with the intuition

that it need not be necessary to exclude any potential buyers if one aims to maximize social welfare

instead of the monopolist’s profits.

6. Proofs

Let us recall a characterization of non-negative cross-curvature from Theorem 2.11 of [26], inspired

by Loeper’s characterization [33] of (A3w). We recall its proof partly for the sake of completeness,

but also to extract a criterion for strong convexity.

Lemma 6.1 (Characterizing non-negative cross-curvature [26]). A preference function b satisfying

(B0)–(B2) is non-negatively cross-curved (B3) if and only if for each x, x1 ∈ X

(6.1) q ∈ Y x 7−→ b(x1, yb(x, q))− b(x, yb(x, q))

is a convex function. If the preference function is positively cross-curved, then (6.1) will be strongly

convex (meaning its Hessian will be positive definite).

Proof. Fix x, x1 ∈ X and set qt := (1 − t)q0 + tq1 and f(·, t) := b(·, yb(x, qt)) − b(x, yb(x, qt)) for

t ∈ [0, 1]. Given t0 ∈ [0, 1], use (B1)–(B2) to define the curve s ∈ [0, 1] 7−→ xs ∈ X for which

(6.2) Dxb(xs, yt0) = (1− s)Dxb(x, yt0) + sDxb(x1, yt0),

and set g(s) = ∂2f
∂t2 (xs, t0). The convexity of (6.1) will be verified by checking g(1) ≥ 0. Let us

start by observing s ∈ [0, 1] 7−→ g(s) is a convex function, as a consequence of property (B3) and
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(6.2); (according to Lemma 4.5 of [25], inequality (2.1) follows from (B3) whenever either of the

two curves s ∈ [0, 1] 7−→ (Dyb(x(s), y(0)) or s ∈ [0, 1] 7−→ Dxb(x(0), y(s))) is a line segment). We

next claim g(s) is minimized at s = 0, since

g′(s) =
∂2

∂t2

∣

∣

∣

∣

t=t0

〈Dxb(xs, yb(x0, (1− t)q0 + tq1)), ẋs〉

vanishes at s = 0, by the definition (4.3) of yb. Thus g(1) ≥ g(0) = 0, establishing the convexity of

(6.1). If b is positively cross-curved, then g′′(s) > 0 and the desired strong convexity follows from

g(1) > g(0) = 0.

Conversely, if the convexity of (6.1) fails we can find x1 ∈ X and s0, t0 ∈ [0, 1] for which the

construction above yields g′′(s0) < 0. In view of Lemma 4.5 of [25], this provides a contradiction to

(2.1). �

We shall also need to recall two basic facts about b-convex functions from e.g. [21]: any supremum

of b-convex functions is again b-convex, unless it is identically infinite; and for each y ∈ Y and λ ∈ R,

the function

(6.3) x ∈ X 7−→ b(x, y)− λ

is b-convex. Functions of the form either y ∈ Y 7−→ b(x, y) − λ or (6.3) are sometimes called

mountains below.

Proof of Proposition 4.3. The b∗-convexity of the manufacturing cost c = (cb)b
∗

asserts

c(y) = sup
x∈X

b(x, y)− cb(x)

is a supremum of mountains, whence

a(q) := c(yb(x, q)) − b(x, yb(x, q)) = sup
x0∈X

b(x0, yb(x, q)) − b(x, yb(x, q)) − cb(x0)

for all x ∈ X and q ∈ Y x. According to Lemma 6.1, we have just expressed a(q) as a supremum

of convex functions, thus establishing convexity of a(q). The functions under the supremum are

strictly convex if (4.6) holds, and strongly convex if b is positively cross-curved, thus establishing

the strict or strong convexity of a(q) under the respective hypotheses (B3s) and (B3u).

The remainder of the proof will be devoted to deducing strict convexity of a(q) from strict b∗-

convexity of c(y) assuming only (B3). Recall that strict b∗-convexity was defined by continuity of the

agents’ responses yb,c : X 7−→ Y to the principal’s manufacturing costs (as opposed to the prices the

principal would prefer to select). Fix x ∈ X and use the C3 change of variables q ∈ Y x 7−→ yb(x, q) ∈

Y to define b̃(·, q) := b(·, yb(x, q))− b(x, yb(x, q)) and c̃(q) := c(yb(x, q))− b(x, yb(x, q)) = a(q). As in

[18], it is easy to deduce that b̃ satisfies the same hypotheses (B0)–(B3) on X × Y x as the original

preference function — except for the fact that b̃ ∈ C3 whereas b ∈ C4. For the reasons explained

in [18] this discrepancy shall not trouble us here: we still have continuous fourth derivatives of b̃

as long as at least one of the four derivatives is with respect to a variable in X, and at most three

derivatives are with respect to variables in Y x. Note also that c̃b̃ = cb and the continuity of the

agents’ responses yb̃,c̃ in the new variables follows from their presumed continuity in the original

variables, since yb̃,c̃(·) = Dxc(x, yb,c(·)).

The advantage of the new variables is that for each x0 ∈ X, the mountain q ∈ Y x 7−→ b̃(x0, q)

is a convex function, according to Lemma 6.1; (alternately, Theorem 4.3 of [18]). To produce a

contradiction, assume convexity of c̃(q) fails to be strict, so there is a segment t ∈ [0, 1] 7−→ qt ∈ Y x

given by qt = (1 − t)q0 + tq1 along which c̃ is affine with the same slope p ∈ ∂c̃(qt) for each
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t ∈ [0, 1]. In fact, the compact convex set ∂c̃(qt) is independent of t ∈]0, 1[, so taking p to be an

extreme point of ∂c̃(qt) allows us to find a sequence qt,k ∈ Yx ∩DomDc̃ converging to qt such that

p = limk→∞ Dc̃(qt,k), by Theorem 25.6 of Rockafellar [53]. On the other hand, b∗-convexity implies

c̃(q) is a supremum of mountains: thus to each t ∈ [0, 1] and integer k corresponds some xt,k ∈ X

such that (xt,k, qt,k) ∈ ∂ b̃∗ c̃, meaning

(6.4) c̃(q) ≥ b̃(xt,k, q)− b̃(xt,k, qt,k) + c̃(qt,k)

for all q ∈ Y x. Since qt,k ∈ DomDc̃, saturation of this bound at qt,k impliesDc̃(qt,k) = Dq b̃(xt,k, qt,k).

Compactness of X allows us to extract a subsequential limit (xt,k, qt,k) → (xt, qt) ∈ ∂ b̃∗ c̃ satisfying

p = Dq b̃(xt, qt). This first order condition shows the curve t ∈ [0, 1] 7−→ xt ∈ X to be differentiable,

with derivative

(6.5) ẋt = −D2
qxb̃(xt, qt)

−1D2
qq b̃(xt, qt)q̇t,

by the implicit function theorem and (B1). On the other hand, both c̃(·) and b̃(xt, ·) are convex

functions of q ∈ Y x in (6.4), so both must be affine along the segment qt. This implies q̇t = q1− q0 is

a zero eigenvector of D2
qq b̃(xt, qt), which in turn implies xt = const from (6.5). On the other hand,

the efficient response qt = yb̃,c̃(xt) of agent xt to price menu c̃ is not constant, since the endpoints

q0 6= q1 of the segment are distinct. This produces the desired contradiction and establishes strict

convexity of c̃. �

Combining Proposition 4.3 with the following standard lemma will allow us to establish our

necessary and sufficient criteria for convexity of the feasible set U0.

Lemma 6.2 (Identification of supporting mountains). Let u be a b-convex function on X. Assume

u is differentiable at x0 ∈ X and Dxu(x0) = Dxb(x0, y) for some y ∈ Y . Then, u(x) ≥ m(x) for all

x ∈ X, where m(·) = b(·, y)− b(x0, y) + u(x0).

Proof. By b-convexity of u, there exists y0 ∈ Y such that u(x0) = b(x0, y0)− ub̄(y0) and also u(x) ≥

b(x, y0)−ub̄(y0) for all x ∈ X . Since u is differentiable at x0, this implies Dxu(x0) = Dxb(x0, y0). By

the assumption (B1), we conclude y = y0. This completes the proof sincem(·) = b(·, y0)−ub̄(y0). �

Proof of Theorem 3.2. Let us first show the sufficiency. It is enough to show that for any two b-

convex functions u0 and u1, the linear combination ut := (1− t)u0 + tu1 is again b-convex, for each

0 ≤ t ≤ 1. Fix x0 ∈ X. Since b-convex functions are defined as suprema of mountains, there exist

y0, y1 ∈ Y such that

mx0

i (·) := b(·, yi)− b(x0, yi), i = 0, 1,

satisfy ui(x) ≥ mx0

i (x) + ui(x0) for all x ∈ X. Clearly equality holds when x = x0. Let us consider

the function

mx0

t (·) = b(·, yt)− b(x0, yt),

where yt defines a line segment

t ∈ [0, 1] 7−→ Dxb(x0, yt) = (1− t)Dxb(x0, y0) + tDxb(x0, y1) ∈ Rn.

Note that (i) mx0

t (x0) = 0. We claim that (ii) ut(·) ≥ mx0

t (·) + ut(x0). Notice that

ut(·) ≥ (1− t)mx0

0 (·) + tmx0

1 (·) + ut(x0).

Thus the claim follows from the inequality (1 − t)mx0

0 + tmx0

1 ≥ mx0

t , which is implied by (B3)

according to Lemma 6.1. The last two properties (i) and (ii) enable one to express ut as a supremum

of mountains

ut(·) = sup
x0∈X

mx0

t (·) + ut(x0),
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hence ut is b-convex by the remark immediately preceding (6.3).

Conversely, let us show the necessity of (B3) for convexity of Vb
Y
. Using the same notation

as above, recall that each mountain mx0

i , i = 0, 1 is b-convex. Assume the linear combination

ht := (1−t)mx0

0 +tmx0

1 is b-convex. SinceDxh(x0) = (1−t)Dxb(x0, y0)+tDxb(x0, y1)) = Dxmt(x0),

Lemma 6.2 requires that mx0

t ≤ ht for every 0 ≤ t ≤ 1. This last condition is equivalent the property

characterizing nonnegative cross-curvature in Lemma 6.1. This completes the proof of necessity and

the proof of the theorem. �

Let us turn now to the convexity of the principal’s problem.

Proof of Corollary 4.4. Corollary 4.4 follows by combining the convexity of the set U0 of feasible

strategies proved in Theorem 3.2 with the convexity of a(q) from Proposition 4.3. If µ fails to

vanish on each Lipschitz hypersurface, a little care is needed to deduce convexity of the principal’s

objective L(u) from that of a(q), by invoking the conventions adopted in Remark 4.2 as follows. Let

t ∈ [0, 1] 7−→ ut = (1− t)u0 + tu1 denote a line segment in the convex set U0. If q ∈ ∂ut(x) for some

x ∈ X , then yb(x, q) ∈ ∂but(x) by Theorem 3.1 of Loeper [33]; (a direct proof along the lines of

Lemma 6.1 may be found in [25]). So yb(x, q) is among the best responses of x to price menu vt = ub∗

t .

For each t ∈ [0, 1] select Dut(x) ∈ ∂ut(x) measurably to ensure min{c(yb(x, q)) − b(x, yb(x, q)) |

q ∈ ∂ut(x)} is achieved at q = Dut(x). Then a(Dut(x)) ≤ a((1 − t)Du0(x) + tDu1(x)) since

(1− t)Du0(x) + tDu1(x) ∈ ∂ut(x). The desired convexity of L(u) follows. �

Next we establish uniqueness of the principal’s strategy.

Proof of Theorem 4.5. Suppose both u0 and u1 minimize the principal’s net losses L(u) on the

convex set U0. Define the line segment ut = (1 − t)u0 + tu1 and — in case µ fails to vanish

on each Lipschitz hypersurface — the measurable selection Dut(x) ∈ ∂ut(x) as in the proof of

Corollary 4.4. The strict convexity of a(q) asserted by Proposition 4.3 removes all freedom from this

selection. Under the hypotheses of Theorem 4.5, the same strict convexity implies the contradiction

L(u1/2) <
1
2L(u0)+

1
2L(u1) = L(u1) unless Du0 = Du1 holds µ-a.e. This establishes the uniqueness

µ-a.e. of the agents’ equilibrium strategies yb,v(x) := yb(x,Du1(x)), and of the principal’s optimal

measure ν := (yb,v)#µ in (3.5).

Let sptµ denote the smallest closed subset of X containing the full mass of µ. To identify

u0 = u1 on sptµ and establish the remaining assertions is more technical. First observe that the

participation constraint u1/2(x) ≥ b(x, y∅) − c(y∅) =: u∅(x) on the continuous function u1/2 ∈ U0

must bind for some agent type x0 ∈ sptµ; otherwise for ǫ > 0 sufficiently small, max{u1/2 − ǫ, u∅}

would belong to U0 and reduce the principal’s losses by ǫ, contradicting the asserted optimality of

u1/2. Since u1/2 is a convex combination of two other functions obeying the same constraint, we

conclude u0(x0) = u1(x0) coincides with the reservation utility u∅(x0) for type x0. Now use the map

yb,v := yb ◦Du1 from the first paragraph of the proof to define a joint measure γ := (id × yb,v)#µ

given by γ[U × V ] = µ[U × y−1
b,v (V )] for Borel U × V ⊂ X × Y , and denote by spt γ the smallest

closed subset S ⊂ X × Y carrying the full mass of γ. Notice spt γ does not depend on t ∈ [0, 1], nor

in fact on u0 or u1; any other optimal strategy for the principal would lead to the same γ.

Since the graph of yb,v lies in the closed set ∂bu1 ⊂ X×Y , the same is true of S := {(x0, y∅)}∪spt γ.

Thus S is b-cyclically monotone (A.1) by the result of Rochet [49] discussed immediately before

Lemma A.1. Lemma A.1 then yields a minimal b-convex function u− satisfying u−(x0) = b(x0, y∅)−

c(y∅) for which S ⊂ ∂bu−. The fact that (x0, y∅) ∈ S implies some mountain b(·, y∅) + λ bounds

u−(·) from below with contact at x0. Clearly λ = −c(y∅) whence u− ∈ U0.



16 ALESSIO FIGALLI†, YOUNG-HEON KIM‡ AND ROBERT J. MCCANN§

Now we have ui ≥ u− for i = 0, 1 with equality at x0. Also, yb,v(x) ∈ ∂bu−(x) for µ almost all

x, whence u− must be an optimal strategy: it is smaller in value than ui and produces at least as

favorable a response as ui from almost all agents. Finally since

L(ui)− L(u−) ≥

∫

X

(ui(x)− u−(x))dµ(x) ≥ 0,

the fact that ui minimizes the losses of the principal implies the continuous integrand vanishes

µ-almost everywhere. Thus ui ≥ u− on X , with equality holding throughout sptµ as desired.

Since u0 was arbitrary, we have now proved that all optimal u ∈ U0 coincide with u1 on sptµ.

Optimality of u also implies spt γ ⊂ ∂bu; if in addition the participation constraint u(x) ≥ b(x, y∅)−

c(y∅) binds at x0, then u ≥ u− on X. Although u− appears to depend on our choice of x0 ∈ sptµ

in the construction above this is not actually the case: u(x0) = u1(x0) shows the participation

constraint binds at x0 for every optimal strategy and u− is therefore uniquely determined by its

minimality among optimal strategies u ∈ U0.

Now, since any supremum of b-convex functions (not identically infinite) is again b-convex, define

u+ ∈ U0 as the pointwise supremum among all of the principal’s equilibrium strategies u ∈ U0. The

foregoing shows u+ = u− on sptµ, while (x, y) ∈ spt γ ⊂ ∂bu implies

u+(·) ≥ u(·) ≥ u(x) + b(·, y)− b(x, y)

= u+(x) + b(·, y)− b(x, y)

on X, whence spt γ ⊂ ∂bu+. From here we deduce L(u+) ≤ L(u), hence u+ is itself an optimal

strategy for the principal.

Finally, v : Y 7−→ R ∪ {+∞} is an equilibrium price menu in Carlier’s reformulation [13] if

and only if u := vb minimizes L(u) on U0, in which case u− ≤ u ≤ u+ throughout X implies

ub∗

+ ≤ (vb)b
∗

≤ ub∗

− throughout Y . Moreover, u− = u+ on sptµ implies ub∗

+ = ub∗

− on spt ν, since

yb,v(x) ∈ ∂bu±(x) for µ-a.e. x implies ub∗

± (yb,v(x)) = b(x, yb,v(x)) − u±(x). We therefore conclude

that if v is an equilibrium price menu, then v ≥ (vb)b
∗

≥ ub∗

+ on Y , with both equalities holding

ν-a.e. Conversely, if v : Y 7−→ R ∪ {+∞} satisfies v ≥ ub∗

+ with equality ν-a.e., we deduce the same

must be true for its b-convex hull (vb)b
∗

, the latter being the largest b-convex function dominated

by v. Thus (vb)b
∗

(y∅) = c(y∅) and vb ∈ U0 and vb ≤ u+ throughout X with equality holding µ-a.e.

If µ vanishes on Lipschitz hypersurfaces, then Dvb = Du+ agree µ-a.e., so L(vb) = L(u+) and

vb is a optimal strategy for the principal as desired. If, on the other hand, µ does not vanish on

all Lipschitz hypersurfaces, then we may assume v is its own b∗-convex hull by Remark 4.2. Any

mountain which touches ub∗

+ from below on spt ν also touches v ≥ ub∗

+ from below at the same

point, thus ∂b∗ub∗

+ ⊂ ∂b∗v; since v is b-convex this is equivalent to ∂bu+ ⊂ ∂bvb. This shows the

best response of x facing price menu ub∗

+ is also one of his best responses facing price menu v: he

cannot have a better response since his indirect utility vb ≤ u+. The constraint on the agent’s

behaviour imposed by Remark 4.2 now implies L(vb) ≤ L(u+); equality must hold since u+ is one

of the principal’s optimal strategies. This confirms optimality of vb and concludes the proof of the

theorem. �

To show stability of the equilibrium requires the following convergence result concerning Borel

probability measures P
(

X × Y
)

on the product space.

Proposition 6.3 (Convergence of losses and mixed strategies). Suppose a sequence of triples

(b∞, c∞, µ∞) = limi→∞(bi, ci, µi) satisfy the hypotheses of Corollary 4.6. Let Li(u) denote the net

losses (4.5) by a principal who adopts strategy u facing data (bi, ci, µi). If any sequence ui of bi-convex

functions converge uniformly on X, then their limit u∞ is b∞-convex and L∞(u∞) = limi→∞ Li(ui).
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Furthermore, there is a unique joint measure γ∞ ∈ P
(

X × Y
)

supported in ∂b∞u∞ with left mar-

ginal µ∞, and any sequence of joint measures γi ∈ P
(

X × Y
)

vanishing outside ∂biui and with left

marginal µi, must converge weakly-∗ to γ∞.

Proof. Assume a sequence ui → u∞ of bi-convex functions converges uniformly on X. Topologizing

the continuous functions C
(

Z
)

by uniform convergence, where Z = X,Y or X × Y , makes the

transformation (b, u) 7−→ ub∗ given by (3.1) continuous on C
(

X × Y
)

× C
(

X
)

. This fact allows

us to take i → ∞ in the relation u
b∗i bi
i = ui to conclude b∞-convexity of u∞. From the semi-

convexity (4.4) of u∞ we infer its domain of differentiability DomDu∞ exhausts X apart from

a countable collection of Lipschitz hypersurfaces, which are µ∞-negligible by hypothesis. Define

the map G∞(x) = yb∞(x,Du∞(x)) on DomDu∞. Since ∂b∞u∞ ∩ (DomDu∞ × Y ) coincides with

the graph of G∞, any measure γ∞ supported in ∂b∞u∞ with left marginal µ∞ is given (6.6) by

γ∞ := (id×G∞)#µ∞ as in, e.g., Lemma 2.1 of Ahmad et al [1]. This specifies γ∞ uniquely.

Now suppose γi ≥ 0 is a sequence of measures supported in ∂biui having left marginal µi. Com-

pactness allows us to extract from any subsequence of γi a further subsequence which converges

weakly-∗ to some limit γ̄ ∈ P
(

X × Y
)

. Since µi ⇀ µ∞ the left marginal of γ̄ is given by µ∞. More-

over, since ui(x) + u
b∗i
i (y) ≥ bi(x, y) throughout X × Y with equality on spt γi, uniform convergence

of this expression yields spt γ̄ ⊂ ∂b∞u∞. The uniqueness result of the preceding paragraph then

asserts γ̄ = γ∞ independently of the choice of subsequence, so the full sequence γi ⇀ γ∞ converges

weakly-∗.

Finally, use the measurable selection Dui(x) ∈ ∂ui(x) of Remark 4.2 to extend Dui(x) from

DomDui to X so as to guarantee that Gi(x) := ybi(x,Dui(x))) ∈ ∂biui(x). Use the Borel map

Gi : X 7−→ Y to push µi forward to the joint probability measure γi := (id × Gi)#µi on X × Y

defined by

(6.6) γi[U × V ] := µi[U ∩G−1
i (V )]

for each Borel U × V ⊂ X × Y . Notice γi is supported in ∂biui and has µi for its left marginal,

hence converges weakly-∗ to γ∞. Moreover, our choice of measurable selection guarantees that the

net losses (4.5) of the principal choosing strategy ui coincide with

(6.7) Li(ui) =

∫

X×Y

(ci(y)− u
b∗i
i (y))dγi(x, y).

Weak-∗ convergence of the measures γi ⇀ γ∞ couples with uniform convergence of the integrands

to yield the desired limit

lim
i→∞

Li(ui) =

∫

X×Y

(c∞(y)− u
b∗∞
∞ (y))dγ∞(x, y) = L∞(u∞)

and establish the proposition. �

Proof of Corollary 4.6. Let U i
0 denote the space of bi-convex functions u(·) ≥ bi(·, y∅) − ci(y∅), and

Li(u) denote the net loss of the principal who chooses strategy u facing the triple (bi, ci, µi). The

Li-minimizing strategies ui ∈ U i
0 are Lipschitz and semiconvex, with upper bounds (4.4) on |Dui|

and −D2ui which are independent of i since ‖bi− b∞‖C2 → 0. The Ascoli-Arzelà theorem therefore

yields a subsequence ui(j) which converges uniformly to a limit ū on the compact set X. Since

the functions ui have a semiconvexity constant independent of i, it is a well-known corollary that

their gradients also converge Dui(j)(x) → Dū(x) pointwise on the set of common differentiability

(DomDū)∩(∩∞
i=1 DomDui). This set exhausts X up to a countable union of Lipschitz hypersurfaces

— which is µ∞-negligible by hypothesis. Setting Gi(x) = ybi(x,Dui(x)), it is not hard to deduce

yb∞(x,Dū(x)) = limj→∞ Gi(j)(x) on this set from Definition 4.1. If we can now prove ū minimizes
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L∞(u) on U∞
0 , the uniqueness of equilibrium product selected by µ∞-a.e. agent x ∈ X in Theorem 4.5

will then imply that limj→∞ Gi(j)(x) = G∞(x) converges to a limit independent of the subsequence

chosen, hence the full sequence Gi(x) converges µ∞-a.e.

To see that ū minimizes L∞(u) on U∞
0 , observe u ∈ U∞

0 implies ub∗∞bi ∈ U i
0 is Li-feasible,

being the bi-transform of a price menu ub∗∞(·) agreeing with c∞(·) at y∅. Moreover, ub∗∞bi → ub∗∞b∞

uniformly as i → ∞ (by continuity of the b-transform asserted in the first paragraph of the preceding

proof). The optimality of ui therefore yields Li(ui) ≤ Li(u
b∗∞bi). Proposition 6.3 allows us to

deduce L∞(ū) ≤ L∞(u) by taking the subsequential limit j → ∞. Since the same proposition

asserts b∞-convexity of ū, we find ū ∈ U∞
0 is the desired minimizer after taking the limit j → ∞

in ui(j)(·) ≥ bi(j)(·, y∅) − ci(j)(y∅). This concludes the proof of µ∞-a.e. convergence of the maps

G∞(x) = limi→∞ Gi(x).

Turning to the optimal measures: as in the preceding proof, a measurable selection Dui(x) ∈

∂ui(x) consistent with the tie-breaking hypotheses of Remark 4.2 may be used to extend the Borel

map Gi(x) = yb(x,Dui(x)) from DomDui to X and define a joint measure γi := (id × Gi)#µi

supported on ∂biui as in (6.6). The left marginal of γi is obviously given by µi, and its right

marginal coincides with the unique optimal measure νi given by Theorem 4.5. Proposition 6.3 then

yields weak-∗ convergence of γi ⇀ γ∞ and hence of νi ⇀ ν∞. Theorem 4.5 also asserts the two

minimizers u∞ = ū agree µ∞-a.e. In this case the uniform limit ū is independent of the Ascoli-Arzelà

subsequence, hence we recover convergence of the full sequence ui → u∞ in L∞(X, dµ∞) . �

Finally, let us extend Armstrong’s desirability of exclusion to our model. Our proof is inspired

by Armstrong’s [3], but differs from his in a number of ways.

Proof of Theorem 4.7. Use the C3-smooth diffeomorphism x ∈ X 7−→ p = Dyb(x, y∅) ∈ Xy∅
pro-

vided by (B0)–(B2) and its inverse p ∈ Xy∅
7−→ x = xb(y∅, p) ∈ X to reparameterize the space of

agents over the strictly convex set Xy∅
. Then ũ(p) := u(xb(y∅, p)) − b(xb(y∅, p), y∅) + c(y∅) defines

a non-negative b̃-convex function, where b̃(p, y) := b(xb(y∅, p), y) − b(xb(y∅, p), y∅) + c(y∅). In other

words, the space U0 corresponds to the space Ũ0 of non-negative b̃-convex functions on Xy∅
in the

new parameterization. This subtraction of the reservation utility from the preference function does

not change any agent’s response to a price menu v offered by the principal, since preferences between

different agent types are never compared. However, it does make the preference function b̃(p, y) a

convex function of p ∈ Xy∅
, as is easily seen by interchanging the roles of x and y in Lemma 6.1.

The indirect utility ũ(p) = vb̃(p) is then also convex, being a supremum (3.1) of such preference

functions.

In the new variables, the distribution of agents f̃(p)dp = f(x)dx is given by f̃(p) = f(xb(y∅, p)) det[∂x
i
b(y∅, p)/∂pj].

The principal’s net losses L̃(ũ) = L(u) are given as in (4.5) by

L̃(ũ) =

∫

Xy∅

ã(Dũ(p), ũ(p), p)f̃(p)dp,

where ã(q, s, p) = c(yb̃(p, q)) − b̃(p, yb̃(p, q)) + s is a convex function of q on Ỹp := Dpb̃(p, Y ) for

each fixed p and s, according to Proposition 4.3; (recall that b̃ ∈ C3
(

Xy∅
× Y

)

satisfies the same

hypotheses (B0)–(B3) as b ∈ C4
(

X×Y
)

, except for the possibitity that four continuous derivatives

with respect to variables in Xy∅
fail to exist, which is irrelevant as already discussed). This convexity

implies

ã(q, s, p) ≥ ã(q0, s, p) + 〈Dq ã(q0, s, p), q − q0〉

for all q, q0 ∈ Ỹ p. With p still fixed, the choice q0 = Dpb̃(p, y∅) = 0 shows ã(0, s, p) = s whence

ã(q, s, p) ≥ 〈Dqã(0, s, p), q〉 for s = ũ(x) ≥ 0.
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Now suppose ũ ∈ Ũ0 minimizes L̃(ũ). For ǫ ≥ 0, define the continuously increasing family of

compact convex sets Ũǫ := {p ∈ Xy∅
| ũ(p) ≤ ǫ}. Observe that Ũ0 must be non-empty, since

otherwise for ǫ > 0 small enough Ũǫ would be empty, and then ũ − ǫ ∈ Ũ0 is a better strategy,

reducing the principal’s losses by ǫ. We now claim the interior of the set Ũ0 — which corresponds to

agents who decline to participate — contains a non-zero fraction of the total population of agents.

Our argument is inspired by the strategy Armstrong worked out in a special case [3], which was to

show that unless this conclusion is true, the profit the principal extracts from agents in Ũǫ would

vanish at a higher order than ǫ > 0, making ũǫ := max{ũ − ǫ, 0} ∈ Ũ0 a better strategy than ũ for

the principal when ǫ is sufficiently small.

For ǫ > 0, the contribution of Ũǫ to the principal’s profit is given by

−L̃ǫ(ũ) := −

∫

Ũǫ

ã(Dũ(p), ũ(p), p)f̃(p)dp

≤ −

∫

Ũǫ

〈Dq ã(0, ũ(p), p), Dũ(p)〉f̃(p)dp

=

∫

Ũǫ

ũ(p)∇p · (f̃(p)Dqã(0, ũ(p), p))dp−

∫

∂Ũǫ

ũ(p)〈Dq ã, n̂〉f̃(p)dS(p)(6.8)

where n̂ = n̂Ũǫ
(p) denotes the outer until normal to Ũǫ at p, and the divergence theorem has been

used. Here ∂Ũǫ denotes the boundary of the convex set Ũǫ, and dS(p) denotes the n− 1 dimensional

surface (i.e. Hausdorff) measure on this boundary. (For Sobolev functions, the integration by parts

formula that we need is contained in §4.3 of [17] under the additional restriction that the vector field

ũ(·)Dqa(0, ũ(·), ·) be C1 smooth, but extends immediately to Lipschitz vectors fields by approxima-

tion; the operation of restricting f̃ to the boundary of Ũǫ is there shown to give a bounded linear

map from W 1,1(Uǫ, dp) to L1(∂Uǫ, dS) called the boundary trace.) As ǫ → 0, we claim both integrals

in (6.8) vanish at rate o(ǫ) if the interior of Ũ0 is empty. To see this, note ũ = ǫ on ∂Ũǫ ∩ intXy∅
, so

∫

∂Ũǫ

ũ(p)〈Dq ã, n̂〉f̃(p)dS(p)

= ǫ

∫

∂Ũǫ

〈Dqã, n̂〉f̃(p)dS(p) +

∫

∂Ũǫ∩∂Xy∅

[ũ(p)− ǫ]〈Dqã, n̂〉f̃(p)dS(p)

= ǫ

∫

Ũǫ

∇p · (f̃(p)Dq ã(0, ũ(p), p))dp+

∫

Ũǫ∩∂Xy∅

[ũ(p)− ǫ]〈Dqã, n̂〉f̃(p)dS(p).

Since 0 ≤ ũ ≤ ǫ in Ũǫ, we combine the last inequality with (6.8) to obtain

(6.9) −
L̃ǫ(ũ)

ǫ
≤

∫

Ũǫ

∣

∣∇p · (f̃(p)Dqã(0, ũ(p), p))
∣

∣dp+

∫

Ũǫ∩∂Xy∅

∣

∣〈Dqã, n̂〉f̃(p)
∣

∣dS(p).

Notice that domain monotonicity implies the ǫ → 0 limit of the last expressions above is given by

integrals over the limiting domain Ũ0 = ∩ǫ>0Ũǫ. Assume now the interior of the convex set Ũ0 is

empty, so that Ũ0 has dimension at most n−1. Then the volume |Ũǫ| = o(1), hence the first integral

in the right hand side dwindles to zero as ǫ → 0, (recalling that ũ is Lipschitz, f̃ ∈ W 1,1 and ã ∈ C3).

Concerning the second term, if the convex set Ũ0 has dimension n− 1 then its relative interior must

be disjoint from the boundary of the convex body Xy∅
, since the latter is assumed to have no n− 1

dimensional facets. Either way Ũ0 ∩ ∂Xy∅
has dimension at most n− 2, which implies that

∫

Ũǫ∩∂Xy∅

dS(p) = o(1)
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as ǫ → 0. All in all, we have shown Lǫ(ũ) = o(ǫ) as ǫ → 0 whenever Ũ0 has empty interior, which

— as was explained above — contradicts the asserted optimality of the strategy ũ. However, even

if Ũ0 has non-empty interior, more must be true to avoid inferring the contradictory conclusion

Lǫ(ũ) = o(ǫ) as ǫ → 0 from (6.9): one of the two limiting integrals
∫

Ũ0

|∇p · (f̃(p)Dqã(0, ũ(p), p))|dp > 0 or

∫

Ũ0∩∂Xy∅

|〈Dqã, n̂〉|f̃(p)dS(p) > 0

must be non-vanishing. In either case, the W 1,1 density f̃ must be positive somewhere in Ũ0, whose

interior therefore includes a positive fraction of the agents. Since ũ is differentiable with vanishing

gradient on the interior of Ũ0, there is no ambiguity in the strategy of these agents: they respond

to ũ by choosing the null product. �

Appendix A. Minimal b-convex potentials

The purpose of this appendix is to establish a mathematical result (and some terminology) needed

in the last part of the uniqueness proof, Theorem 4.5. In particular, we establish a minimality

property enjoyed by Rochet’s construction of a b-convex function for which ∂bu contains a prescribed

set [49]; Rochet’s construction is modeled on the analogous construction by Rockafellar of a convex

function u whose subdifferential ∂u contains a given cyclically monotone set [52].

Recall a relation S ⊂ X × Y is b-cyclically monotone if for each integer k ∈ N and k-tuple of

points (x1, y1), . . . , (xk, yk) ∈ S, the inequality

(A.1)

k
∑

i=1

b(xi, yi)− b(xi+1, yi) ≥ 0

holds with xk+1 := x1. For a function u : X 7−→ R ∪ {+∞}, the relation ∂bu ⊂ X × Y consists of

those points (x, y) such that

(A.2) u(·) ≥ u(x) + b(·, y)− b(x, y)

holds throughout X. Rochet’s generalization of Rockafellar’s theorem asserts that S ⊂ X × Y is

b-cyclically monotone if and only if there exists a b-convex function u : X 7−→ R ∪ {+∞} such that

S ⊂ ∂bu; see also [21] [31] [56]. Here we need to extract a certain minimality property from its proof.

Lemma A.1. Given a b-cyclically monotone S ⊂ X × Y and (x0, y0) ∈ S, there is a b-convex

function u vanishing at x0 and satisfying S ⊂ ∂bu, which is minimal in the sense that u ≤ ũ for all

ũ : X 7−→ R ∪ {+∞} vanishing at x0 with S ⊂ ∂bũ.

Proof. Given a b-cyclically monotone S ⊂ X×Y and (x0, y0) ∈ S, Rochet [49] verified the elementary

fact that the following formula defines a b-convex function u for which S ⊂ ∂bu:

(A.3) u(·) = sup
k∈N

sup
(x1,y1),...,(xk,yk)∈S

b(·, yk)− b(x0, y0) +

k
∑

i=1

b(xi, yi−1)− b(xi, yi).

Taking k = 0 shows u(x0) ≥ 0, while the opposite inequality u(x0) ≤ 0 follows from b-cyclical

monotonicity (A.1) of S. Now suppose ũ(x0) = 0 and S ⊂ ∂bũ. For each k ∈ N and k-tuple in S, we

claim ũ(·) exceeds the expression under the supremum in (A.3). Indeed, (xi, yi) ∈ S ⊂ ∂bũ implies

ũ(xi+1) ≥ ũ(xi) + b(xi+1, yi)− b(xi, yi).

and ũ(xi) < ∞, by evaluating (A.2) at xi and at x0. Summing the displayed inequalities from

i = 0, . . . , k, arbitrariness of xk+1 ∈ X yields the desired result: ũ(xk+1) ≥ u(xk+1). �
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