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Abstract

In economies subject to uninsurable idiosyncratic risks, competitive equilibrium allocations

are constrained inefficient: reallocations of assets support Pareto superior allocations. This is

the case even if the asset market for the allocation of aggregate risks is complete.
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Idiosyncratic risk does not affect the allocation of resources at Pareto optimal allocations.1

Competitive equilibrium allocations inherit this property if the asset market for the insurance

of idiosyncratic risk is complete. But, if realizations of idiosyncratic shocks are publicly unob-

servable or unverifiable, idiosyncratic risk may well not be insurable; indeed, this is a standard

assumption in macroeconomics.2

In abstract, two-period economies where financial markets are incomplete, competitive equi-

librium allocations are constrained inefficient, generically in the spaces of economies, as demon-

strated by [10].3 This result, however, does not imply that constrained inefficiency holds for

economies with idiosyncratic risk, as the particular structure of these economies is non-generic:

the economies considered in the literature on incomplete financial markets allow for individual

perturbations of preferences and endowments; but if one is to distinguish between idiosyncratic

and aggregate risk, one must impose that some individuals, given an aggregate shock, face

exactly the same idiosyncratic shocks and have the same preferences.

Thus, there is a gap between the type of model usually considered in macroeconomics

and the generic results obtained in the literature on incomplete financial markets. The goal

of this paper is to illustrate how these two strands of literature can be brought together.

We do this in two ways. On one hand, we show that in the set of two-period economies

with uninsurable idiosyncratic risk, competitive equilibrium allocations are, indeed, generically

constrained suboptimal: reallocations of assets support Pareto superior allocations. In other

words, we extend the generic results from the incomplete markets literature to the type of

risk that is of most interest in macroeconomics: in most economies where idiosyncratic risk is

uninsurable, a reallocation of the financial assets that permit insurance against aggregate risk

can be used to make all types of individuals in the economy ex-ante better off. Importantly,

this result does not depend on the assumption that there exists some aggregate shock against

which the individuals cannot insure.4

On the other hand, we use a series of examples to emphasize the mechanism by which a

reallocation of assets brings about a Pareto improvement: the ability of the policy to perturb

future relative prices. This mechanism, which lies at the core of our general argument, is

made explicit in an example for an exchange economy with ex-ante heterogeneous consumers,

but also in two-period production economies with ex-ante homogeneous individuals. In this

latter case, we show that the presence of uninsurable idiosyncratic risk leads to inefficiently

high levels of savings at equilibrium, under standard assumptions. Importantly, the same

mechanism we show operates in an economy of overlapping generations with individuals who

are homogenous when young but face uninsurable, idiosyncratic labor shocks when old. Of

course, in this type of economy equilibrium allocations are subject to the standard problem of

1 See [3], [16] and [17].
2 See [14] and [13].
3 Also, [6] and [7].
4 In fact, for the sake of simplicity, we prove our results for the case in which there is only idiosyncratic

risk. But it is important to note that the result also holds in the presence of aggregate risk, and that the
mathematical argument would be, as a matter of fact, simpler in that case, although it would require a more
complicated notation. Also, the result holds whether the asset market for the allocation of aggregate risk is
complete or not.
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dynamic inefficiency, even under certainty.5 What our example shows is how, in the presence

of idiosyncratic risk, the ability to perturb relative prices through perturbations to savings

decisions must be compounded with standard recommendation derived from the problem of

dynamic inefficiency. Importantly, in an economy in which the equilibrium interest rate is below

the rate of population growth, a policy that forces individuals to invest more (the standard

Golden Rule recommendation) may leave all generations worse off in lifetime utility.

This paper is related to the work of [8], where an infinite-horizon, one-sector neoclassical

economy is considered, under the assumption that idiosyncratic income and wealth shocks are

uninsurable. There, in a calibration to US data, it is shown that at competitive equilibrium the

economy underinvests in steady state.6 It is also related to [11], where a two-period economy

with idiosyncratic risk is used to study the welfare effects of taxation of labor and capital

income, which occur through its impact on capital accumulation.

The demonstration that competitive equilibria in economies with uninsurable idiosyncratic

shocks are constrained suboptimal makes an important methodological point relevant for eco-

nomic policy. Intervention is often said to be counterproductive because competitive equilibrium

cannot be Pareto improved; our theorem shows that such a view is untenable.7

The paper is organized as follows: The first section presents two examples that illustrate the

mechanism by which the general result of constrained suboptimality holds. The first of these

examples is for an economy exactly like the one for which we will prove general results, while

the second example extends the analysis for the case of a storage economy. The following

two sections introduce the general kind of economies in which our analysis holds, and define

competitive equilibrium and Pareto efficiency for this kind of economies. Section 4 introduces

the definition of constrained inefficiency for economies with uninsurable idiosyncratic risk, and

states the main theorem, whose proof requires a construction and argument that are given in

Section 5. Then, Section 6 presents two more examples of constrained suboptimality; the first

extends the analysis to an economy with a production technology more general than storage,

while the second example considers an economy of overlapping generations, and briefly assesses

the extent to which the classical Golden Rule applies in the presence of idiosyncratic risk. A

technical appendix completes the paper.

1 Some examples

Two simple examples that illustrate the main result of the paper: in the absence of insurance

opportunities for idiosyncratic risk, competitive markets typically induce constrained subop-

timal allocations of commodities. The first example considers a simplified economy with two

5 See [9].
6 For other values of the parameterization, they show that at equilibrium the economy will overinvest. For

related work, see [2], who studies the effects of asset market incompleteness on the equilibrium levels of interest
rates and capital stock.

7 The identification of Pareto improving asset reallocations from market data remains an issue: because of
the particular aggregation structure of idiosyncratic shocks, neither the positive identification results of [15] and
[4], nor the negative results of [5] apply.
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types of individuals, one of whom faces uninsurable idiosyncratic risk; the example is simple

enough to allow for the computation of a closed-form solution that illustrates the mechanism

by which a Pareto improvement may be induced after an asset reallocation policy. The second

example illustrates how this result can be extended to the case where a storage technology is

available; this example is presented for general preferences first, but a specific functional form

is used, again, for the purpose of obtaining an explicit solution. Storage allows constrained sub-

optimality to prevail even in the absence of (ex ante) heterogeneity among individuals. Storage

or, more generally, production are not encompassed by the abstract model that follows. But,

importantly, the logic that underlies constrained suboptimality remains unchanged and the

examples can be understood as leads for further work.

1.1 A heterogeneous exchange economy

One commodity is exchanged and consumed in the first period, date 0, while two commodities

are exchanged and consumed at date 1, the second period. Quantities of the date-zero com-

modity are x; for simplicity, the two commodities of date 1 are l = a, b and their quantities xa
and xb.

There are two types of individuals, i = α, β, and each type consists of a continuum of

individuals of unit mass. The intertemporal utility function of an individual of type β is

uβ(x, xa, xb) = x+ (1− γ) lnxa + γ lnxb,

where, 0 < γ < 1, and his endowment at date 1 consists of b units of commodity b.8 The

intertemporal utility function of an individual of type α is

uα(x, xa, xb) = x+ γ lnxa + (1− γ) lnxb,

and his endowment at date 1 consists only of commodity a; but, importantly, it is subject to

idiosyncratic shocks: it is a± ε, with equal probability.9

Importantly, at date 0 individuals can trade only in the consumption good and a risk-free

bond that matures at date 1. The consumption good be numèraire in the first period, and q is

the price of the bond. At date 1, individuals only trade on the two commodities; commodity a

is numèraire, and the price of commodity b is p.

By direct computation, if holdings of the bond are y for individuals of type α and −y for

individuals of type β, the equilibrium price at date 1 is

p(y) =
(1− γ)a+ (1− 2γ)y

(1− γ)b
, (1)

which depends non-trivially on asset holdings as long as γ 6= 1/2, a condition that we now

impose. At date 1, then, the marginal utility of revenue for individuals of type β is

λβ =
1

pb− y
,

8 With quasi-linear preferences, it is not necessary to specify the endowments of individuals at date 0.
9 At date 1, equal proportions of individuals of type α have endowments a+ε and a−ε, and, as a consequence,

the aggregate endowment of commodity a is guaranteed to be a, without any risk.
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while for individuals of type α it varies with the realization of the idiosyncratic shock – the

personal state of an individual – and is

λα(ε) =
1

a+ ε+ y

or

λα(−ε) =
1

a− ε+ y
,

with equal probability. The optimization of individuals of type β at date 0 requires, therefore,

that

q =
1

pb− y
=

(1− γ)

(1− γ)a− γy
,

while optimization of individuals of type α requires that

q = (
1

2
)

1

a+ ε+ y
+ (

1

2
)

1

a− ε+ y
=

a+ y

(a+ y)2 − ε2
.

As a consequence, at equilibrium,

y =
−a+

√
a2 + 4ε2(1− γ)

2
. (2)

A policy intervention perturbs assets holdings and makes revenue transfers at date 0: policy

is a pair (dx, dy) of transfers of revenue and bonds to individuals of type α. The welfare effects

of a policy are

duα = dx+ qdy − 1

2
(λα(ε)xαb (ε) + λα(−ε)xαb (−ε))p′dy,

and

duβ = −dx− qdy − λβ(xβb − b)p
′dy.

Pareto improving interventions exist if the matrix(
1 q − 1

2
(λα(ε)xαb (ε) + λα(−ε)xαb (−ε))p′

−1 −q − λβ(xβb − b)p′

)
(3)

is nonsingular, which is the case for any ε 6= 0.10

In order to find the type of policy that induces a Pareto improvement, we write

dy =
duα + duβ

(Λα + Λβ)p′
,

10 Singularity of the matrix would occur if, and only if,

1
2
λα(ε)xαb (ε) +

1
2
λα(−ε)xαb (−ε) = −λβ(xβb − b),

which is equivalent to
1− γ
p

= − 1
pb− y

(
γ(pb− y)

p
− b
)
,

and, hence, to y = 0, which occurs only in the absence of idiosyncratic shocks, with ε = 0.
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where

Λα = −1

2
(λα(ε)xαb (ε) + λα(−ε)xαb (−ε))

and

Λβ = −λβ(xβb − b).

By direct computation, Λα + Λβ > 0 if, and only if,

1

p
<

b

pb− y
, (4)

which is the case since y > 0. It follows, then, that the sign of a Pareto improving dy is the

same as the sign of p′, namely positive if γ < 1/2, and negative if γ > 1/2.

1.2 A storage economy

The setting is again of two-periods, but, now, there is only a continuum of ex-ante identical

individuals. One commodity is available for exchange and consumption in date 0, and, impor-

tantly, it is storable. At date 1 there are two commodities: individuals trade and consume what

they have stored of the first commodity, along with any further endowment they may have, and

they also exchange and consume a second commodity.

The amount of commodity that is stored by each individual at date 0 is k, and e2 is the

endowment of commodity 2 they all receive at date 1. But assume the endowment of commodity

1 is subject to idiosyncratic risk: for an individual in personal state s, the endowment of

commodity 1 is e1,s. The proportion of individuals in state s is πi,s and, for simplicity of

notation, e1 = E[e1,s].
11

With Bernoulli utility indices vs, the individual’s von Neumann-Morgen- stern ex-ante utility

is

u(k, x) = −k + E[vs(xs)],

where xs = (x1,s, x2,s) denotes the individuals’ consumption at date 1 in state s. If commodity

1 is numèraire at date 1, so that prices can be denoted by (1, p), then the nominal wealth of an

individual in personal state s is e1,s+k+pe2. If the marginal utility of income in personal state

s is λs, then the first-order condition for optimization at date 0 is that E[λs] = 1, and, as a

consequence, the ex-ante utility impact of an infinitesimal perturbation to the level of savings,

dk, around its competitive equilibrium level, is

du = −dk + E[λs((−x2,s + e2)dp+ dk)] = E[λs(−x2,s + e2)]dp. (5)

Under certainty, market-clearing implies that E[λs(−x2,s + e2)] = 0, so it is impossible to

improve ex-ante utility by the implementation of levels of savings different from the ones chosen

under competitive equilibrium. But, if date 1 spot prices depend on the effective endowment of

commodity 1, then the equilibrium utility level can be improved upon if E[λs(−x2,s + e2)] 6= 0.

11 Throughout the paper, the probability measure with respect to which the expectation is taken is left
implicit; that is E[e1,s] = Eπ[e1,s].
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As in the previous example, a simple structure allows for a closed-form solution. First, the

Bernoulli indices are state-independent and are defined by

v(xs) = ln x1,s + lnx2,s.

By direct computation, given savings of k, equilibrium prices are

p = (e1 + k)/e2, (6)

an expression that depends positively on k. Also, then, λs = 2/(e1,s + e1 + 2k) and

e2 − x2,s =
e2

2
(
e1 − e1,s

e1 + k
),

so that, if, further there are only two personal states, e1,s = e1± ε, and these states occur with

equal probability, then

E[λs(e2 − x2,s)] =
1

e1 + k
(

ε2

4(e1 + k)2 − ε2
).

Now, at the equilibrium level of savings, it must be true that E[λs] = 1. By direct compu-

tation, this implies that

E[λs(es − x2,s)] =
ε2

4(e1 + k)2
> 0, (7)

which means that in this economy individuals underinvest at competitive equilibrium.

1.3 The mechanism

Note the two features that are necessary for the existence of Pareto improving policies in the

first example, by the looking at Eq. (3). First, it requires that the relative price depend

nontrivially on the date-1 wealth of the individuals, namely that p′ 6= 0. Second, it requires

that (
1

2
(λα(ε)xαb (ε) +

1

2
λα(−ε)xαb (−ε))

)
+ λβ(xβb − b) 6= 0,

for otherwise the matrix is singular. In words, effectiveness of the policy requires that the

aggregate, across individual states and types of individuals, of individual commodity trades

weighted by the product of the marginal utility of income and the probability of the individual

states does not vanish.

Since we can compute a closed-form solution for that economy, we can directly observe that

these two requirements are satisfied generically in the space of economies: (i) from Eq. (1),

one has that the first condition hods generically on preferences (as long as γ 6= 1/2); and (ii) it

follows from Eq. (2) and Eq. (4) that the second condition holds generically on endowments

(as long as ε 6= 0).

This example corresponds precisely to the general result that is presented below. The second

example illustrates how this result can be extended to an ex-ante homogeneous economy with

storage, through the possibility of a Pareto improving perturbation to the equilibrium levels

6



of saving in the economy. In the argument of this example, note from Eq. (5) that the

possibility that du 6= 0 requires precisely the two features described above: that dp 6= 0 and

that E[λs(−x2,s + e2)] 6= 0.12

2 The economy

The economy evolves over two dates, 0 and 1. Individuals are of different types, i = 1, . . . , I,

and within each type there is a continuum of individuals of mass 1. Individuals of a given type

are ex-ante identical, but can face different idiosyncratic shocks at date 1: each individual may

find herself in any one of a set of different personal states, s = 1, . . . , S. The distribution of

individuals of type i across personal states is πi = (πi1, . . . , π
i
S)� 0: in date 1, a fraction πis of

individuals of type i shall find themselves in personal state s.

There is a finite number of commodities in the economy, l = 1, . . . , L, and individuals

consume these commodities in both dates. At date 0, the endowment of an individual depends

on her type, and the bundle of commodities is ei0. At date 1, individual endowments depend

on the type and are subject to idiosyncratic risk: in personal state s, an individual of type i is

endowed with a bundle eis. Thus, ei = (ei0, . . . , e
i
s) denotes the endowment of an individual;13 it

strictly positive at date 0 and in all personal states at date 1.

While the date 1 endowment of an individual depends on her type and on the idiosyncratic

shock, at the macroeconomic level there is no risk:14 the aggregate endowment of the economy

is
∑

i

∑S
s=1 π

i
se
i
s.

An individual’s consumption plan is x = (x0, . . . , xS), where each xs is a bundle of commodi-

ties. The preferences of an individual over consumption plans are represented by the utility

function15

ui(x) = ui0(x0) +
S∑
s=1

πisu
i
1(xs),

where the temporal, cardinal utility indices, ui0 and ui1, belong to the class of strictly monotonic,

strongly concave, C3 functions v : RL
++ → R, that satisfy the following interiority condition: if

a sequence (xn)∞n=1 of strictly positive consumption bundles converges to a boundary bundle,

then ||Dv(xn)||−1Dv (xn) ·xn → 0 and ||Dv(xn)||−1 →∞. We denote this class of functions by

U , and endow it with the topology of C3, uniform convergence on compacta.16

12 When we use specific functional forms to obtain an explicit solution, it is clear from Eq. (6) that relative
prices depend on the level of savings, and from Eq. (7) that the weighted aggregate of trades does not vanish,
generically (as long as ε 6= 0).

13 For simplicity of notation, state s = 0 refers to date 0, whenever there is no possibility of confusion.
14 All the results in the paper are true in the presence of aggregate risk, even if this risk is fully insurable,

as long as idiosyncratic risk remains uninsurable. With aggregate risk, the presentation of the problem and the
results is more cumbersome, but the proofs of the theorems are, in fact, simpler.

15 Again, the arguments would be simpler without additively separability, and if the date-1 Bernoulli indices
are state-dependent. On the other hand, the result of the paper continue to hold if the Bernoulli indices of each
type of individuals are the same in the two periods, but in this case the proof becomes slightly more complicated.

16 See [1, §3.17].
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An economy is completely described by the profile of endowments and preferences, (e, u) =

((e1, u1), . . . , (eI , uI)).17 The space of economies is endowed with the product topology.

The economy is sufficiently heterogeneous: (i) individuals are ex-ante heterogeneous, I ≥ 2;

(ii) idiosyncratic risk exists, as S ≥ 2; and (iii) the set of commodities is diverse, L ≥ 2.

3 Competitive equilibrium and Pareto efficiency

Allocations of commodities treat all individuals of the same type symmetrically. Thus, an

allocation for economy (e, u) is a profile x = (x1, . . . , xI) that specifies a consumption plan

for each type; the allocation is feasible if
∑

i x
i
0 =

∑
i e
i
0 and

∑
i

∑S
s=1 π

i
sx
i
s =

∑
i

∑S
s=1 π

i
se
i
s.

The definition of a Pareto efficient allocation is the usual one, restricted to the class of type-

symmetric allocations. 18

In order to consider the effects of uninsurable idiosyncratic risk, only a riskless asset can be

traded: there is only one financial asset in the economy; it pays one unit of commodity 1 at

date 1. There is no trade in other assets, in particular in assets that insure against idiosyncratic

risk. Holdings of the asset are y, while its price is q.

Besides assets, individuals trade commodities in spot markets. Prices of commodities are

p0 = (1, . . . , p0,l, . . .) at date 0, and p1 = (1, . . . , p1,l, . . .) at date 1;19 across dates, prices of

commodities are p = (p0, p1). Commodity 1 is the numèraire of the economy at each spot, and

its price is 1. All other prices are strictly positive, and P is the set of normalized spot prices,

so that, across date events, p ∈ P2.

At prices p and q, an individual chooses a consumption plan that maximizes her ex-ante

utility, and holdings of the asset that make her consumption plan financially feasible. That

is, an individual of type i will choose a plan x and holdings y subject to the constraints that:

(i) at date zero, she must be able to afford her portfolio along with current consumption:

p0(ei0 − x0) = qy; and (ii) in each personal state at date 1, the return of the portfolio, which

is simply her asset holdings, must cover the value of her planned consumption, beyond her

endowments: p1(xs − eis) = y, for each personal state s.20

17 The distributions of individuals of a given type across personal states are fixed, and it is not necessary to
include these parameters in the definition of an economy.

18 The usual intuition that at Pareto efficient allocations individual utility functions must have collinear
gradients carries over to the present context, but applies in a strong sense: at efficient allocations idiosyncratic
risk is fully shared, so (i) for a given type, consumption must be invariant across personal states; and (ii) across
types, gradients must be collinear, even for different personal states, given an aggregate state. Formally it
suffices to observe that if allocation x is Pareto efficient, then there are strictly positive numbers γi, one for
each type, such that γiDui0(xi0) = γi

′
Dui

′

0 (xi
′

0 ) and γiDui1(xis) = γi
′
Dui

′

1 (xi
′

s′), for all pairs of types, i and i′,
and all pairs of personal states, s and s′.

19 For simplicity of notation, price vectors and gradients of utility functions are taken as row vectors, whereas
quantities are taken as column vectors.

20 The unique optimizer for individuals of type i, (xi, yi) is characterized by the following first-order conditions:
for a vector λi = (λi0, . . . , λ

i
S)� 0,

(i) Dui0(xi0) = λi0p0, and πisDu
i
1(xis) = λisp1 for all s = 1, . . . , S;

(ii) λi0q =
∑S
s=1 λ

i
s; and

(iii) p0(ei0 − xi0) = qyi, and p1(xis − eis) = yi at all s = 1, . . . , S.
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The (S + 1)× L(S + 1) matrix

Ψ(p) :=


p0 0 . . . 0

0 p1 . . . 0
...

...
. . .

...

0 0 . . . p1


and the (S + 1) × 1 vector R(q) := (−q, 1, . . . , 1)T simplify the statement of the optimization

problem of an individual. It is simply

max
x,y

ui(x) : Ψ(p)(x− ei) = R(q)y,

and the first-order necessary and sufficient conditions are that for some strictly positive vector

λi = (λi0, . . . , λ
i
S), we have that Dui(xi) = λiΨ(p) and λiR(q) = 0, while Ψ(p)(xi−ei) = R(q)yi.

For an economy (e, u), a competitive equilibrium consists of an allocation of commodities,

one of asset holdings, a vector commodity prices and a price for the riskless asset, such that all

the types of individuals optimize and all markets clear. For a more operational characterization

of equilibria, it is convenient for us to make the vectors of individual marginal utilities of income

part of the definition of equilibrium, and to let the first-order conditions of the optimization

problems account for individual rationality. Formally, if21

F(x, λ, y, p, q, e, u) :=



...

(Dui(xi)− λiΨ(p))T

R(q)yi −Ψ(p)(xi − ei)
(λiR(q))T

...∑
i(ẽ

i
0 − x̃i0)∑

i,s π
i
s(ẽ

i
s − x̃is)∑

i y
i


,

where, here and henceforth, ẽ and x̃ exclude the numèraire commodity at all states, an equi-

librium for the economy (e, u) is a 5-tuple (x, λ, y, p, q) such that F(x, λ, y, p, q, e) = 0.

A competitive equilibrium exists for any economy. Importantly, given any profile of prefer-

ences, there are only finitely many competitive equilibria, generically in endowments.

Theorem 1 For any profile of preferences, the set of profiles of endowments for which the

economy has finitely many equilibria is open and has full Lebesgue measure.

21 The domain of F is

RI(S+1)L
++ × RI(S+1)

++ × RI × P2 × R× RI(S+1)L
++ × U2I ;

it maps into
(R(S+1)L

++ × RS+1
++ × R)I × R2(L−1)

++ × R.
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Proof: This argument is well known. The result follows from the fact that, given u, F(·, u) is

transverse to 0, and from the Transversality Theorem (See, for example, [12] or [18]. 2

A subset of a finite-dimensional Euclidean space is strongly generic if it is open and has full

Lebesgue measure (its complement has null measure), and a subset of an abstract metric space

is generic if it is open and dense.

It follows that the model under consideration preserves the standard positive properties of

the GEI model with numèraire assets: equilibrium always exists, and there are only finitely

many equilibria in a strongly generic set of endowments, for any given profile of preferences.

Since idiosyncratic shocks are nontrivial (and uninsurable), it is reasonable to expect that

competitive equilibria be inefficient. Indeed, also generically, the inefficiency of competitive

equilibrium holds in a strong sense: since idiosyncratic risk is nontrivial, generically in endow-

ments equilibrium consumption depends on all idiosyncratic shocks, for all types of individuals,

and is therefore Pareto inefficient.

Theorem 2 For any profile of preferences, there exists a strongly generic subset of profiles

of endowments for which at every competitive equilibrium allocation, x, one has that λis/π
i
s 6=

λis′/π
i
s′ and xis 6= xis′, for all types i and all personal states s, s′ = 1, . . . , S, s 6= s′.

Proof: For each type i, and each pair of date-1 personal states, s 6= s′, the mapping

(x, y, λ, p, q, e) 7→

(
F(p, q, x, y, λ, e, u)

λis
πis
− λi

s′
πi
s′

)
,

by direct computation, is transverse to 0; thus, on a strongly generic set of endowments, the

mapping is transverse to 0 as a function of (x, y, λ, p, q) only. Since (x, y, λ, p, q) contains one

fewer argument than the mapping has components, this implies implies that λis/π
i
s 6= λis′/π

i
s′

whenever F(x, y, λ, p, q, e, u) = 0. By the first-order conditions of individual optimization, it

follows that xis 6= xis′ at every equilibrium allocation for endowments in this strongly generic

set. The intersection the sets constructed in this way for all (i, s, s′) is strongly generic. 2

4 Constrained inefficiency

The fact that an allocation is Pareto inefficient says that a reallocation of consumption plans

that is feasible from the point of view of the aggregate resources available to the society can

improve ex-ante wellbeing for all types. This does not imply, however, that one such reallocation

exists which can be implemented through the existing financial instruments.

An allocation x is constrained-inefficient if there exist commodity prices p̂, a commodity

allocation x̂, date-zero revenue transfers (τ̂ 1, . . . , τ̂ I) and an asset allocation (ŷi, . . . , ŷI) such

that

1. revenue transfers are balanced:
∑

i τ̂
i = 0;

2. the asset allocation is feasible:
∑

i ŷ
i = 0;

10



3. individual consumptions are optimal (given prices and wealth): for every i, x̂i0 solves the

problem

max
x′

ui0(x′) : p̂0x
′ ≤ p̂0e

i
0 + τ̂ i,

and each x̂is solves

max
x′

ui1(x′) : p̂1x
′ ≤ p̂1e

i
s + ŷi;

4. all markets clear:
∑

i(e
i
0 − x̂i0) = 0 and

∑
i

∑S
s=1 π

i
s(e

i
s − x̂is) = 0; and

5. every individual is ex-ante better off at x̂: for every i, ui(x̂i) > ui(xi).

This is, an allocation is constrained inefficient if a reallocation of wealth, via revenue at date

zero and the riskless asset at date one, and competitive trade in the commodity markets can

make all types of individual ex-ante better off (condition 5). Conditions 1 and 2 imply that the

reallocation is balanced, condition 3 implies that all individuals are rational in the commodity

markets, which clear by condition 4.

The main result of this paper is that, typically, equilibrium allocations are constrained

inefficient. The theorem has the important implication that just by trading the risk-free asset

differently, all types of individuals in the society could be made ex-ante strictly better off.

Theorem 3 There exists a generic subset of economies, D, where every equilibrium allocation

is constrained inefficient: for every (e, u) ∈ D, if (x, λ, y, p, q) is an equilibrium for (e, u), then

x is constrained inefficient.

The proof of the theorem exploits the idea of [10]: by perturbing the Hessians of the utility

functions, in a local, finite-dimensional subspace of economies, we can change the shape of the

demand functions, without changing their level at given prices and endowments (which is makes

the set of equilibria invariant in the subspace). These perturbations are used to imply that,

generically, relative prices can induce income reallocations beyond the span of the existing asset.

For the argument to hold, sufficiently many relative prices (hence commodities) are needed.

The argument, which invokes the Transversality Theorem once more, is applied on the finite-

dimensional subspace, locally, to obtain constrained inefficiency in a strongly generic subset of

that subspace; for the global space of economies, the latter local result implies denseness and

hence genericity.

We apply this idea using the technique developed by [6],22 which allows us to relax a re-

quirement that [10] imposed on the number of commodities: indeed, as in [6], we only require

the existence of two commodities.

5 Genericity of constrained inefficiency

A series of properties hold generically at equilibrium and are useful in the proof of Theorem 3.

With these properties, for any economy in a generic set, there is associated a lower-dimensional

22 See, also, [20].
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neighborhood of economies. In order to prove that the set of economies where all equilibrium

allocations are constrained inefficient is dense, it suffices to show that, for any economy in the

generic set, there is an economy in the lower-dimensional neighborhood, arbitrarily close to it,

where the property holds.

5.1 A characterization of constrained suboptimality

The function defined by

H(x, λ, p, y, τ, e, u) :=



...

ui(xi)
...

(Dui(x)− λΨ(p))T

Ψ(p)(xi − ei)− (τ i, 1, . . . , 1)T

...∑
i(ẽ

i
0 − x̃i0)∑

i

∑S
s=1 π

i
s(ẽ

i
s − x̃is)∑

i τ
i∑

i y
i



.

plays a role similar to F , in the sense that it will make the definition of constrained ineffi-

ciency operational, but three differences deserve mention. First, the price of the asset is not an

argument, and the block of components that includes the first-order conditions of consumers

does not include no-arbitrage conditions for assets: in the alternative plan that makes an allo-

cation constrained inefficient, asset holdings are not being traded or determined by individual

optimization. Second, the first I components of H are the types’ utility levels, which did not

appear in F ; these components will be used to determine the welfare effects of asset realloca-

tions. Finally, the previous-to-last component of H captures whether date-0 revenue transfers

are balanced.

Lemma 1 If (x, λ, y, p, q) is an equilibrium for economy (e, u) and the matrix

Dx,λ,p,y,τH(x, λ, p, y, (−qyi)Ii=1, e, u)

has full (row) rank, then allocation x is constrained inefficient.

The proofs of this and all other lemmas are in an appendix.

5.2 Finite-dimensional subspaces of economies

All results so far have been independent of the assumption that the economy is commodities

are heterogeneous, which implies that there exist relative prices at date 1. The assumption is,

nevertheless, important for what follows.
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Lemma 2 For any profile of preferences, on a strongly generic subset of endowments,∑
i

S∑
s=1

λis
λi0

(ẽis − x̃is) 6= 0

at every competitive equilibrium.

Another auxiliary function is obtained by looking only at the lower block of components of

the function H, namely the conditions that define competitive equilibrium in commodity trades

only, for a given, feasible, allocation of date-0 revenue and holdings of the riskless asset; it is

defined by

G(x, λ, p, y, τ, e, u) :=



...

(Dui(x)− λΨ(p))T

Ψ(p)(xi − ei)− (τ i, 1, . . . , 1)T

...∑
i(ẽ

i
0 − x̃i0)∑

i,s π
i
s(ẽ

i
s − x̃is)∑

i τ
i∑

i y
i


.

The set of economies defined in the following lemma will be the basis of the local analysis later.

Lemma 3 There exists a generic subset of economies, Dr, where there is only a finite number

of equilibria and, at every equilibrium,

1. the matrix Dx,λ,y,p,qF(x, λ, y, p, q, e, u) has full rank;

2. for every i, s and s′, s 6= s′, λis/π
i
s 6= λis′/π

i
s′ and xis 6= xis′;

3.
∑

i

∑S
s=1

λis
λi0

(ẽis − x̃is) 6= 0; and

4. the matrix Dx,λ,p,y,τG(x, λ, p, y,−(qyi)Ii=1, e, u) has full rank.

5.3 Finite-dimensional subspaces of economies

For any given economy that satisfies the properties of Lemma 3, there is a neighborhood of

economies where the set of equilibria is the same. These economies have the same endowments,

but different preferences; the change in preferences is only in their second derivatives at equi-

librium consumptions, which implies the invariance of equilibria. The construction first fixes

a set of commodity bundles at which it perturbs the utility functions; then, it introduces the

perturbations.

The construction is local, so we start by fixing an economy (ē, ū) in the set Dr defined in

Lemma 3. Let E denote the set of competitive equilibria of this economy, and notice that, since

this set is finite, we can isolate its points in open balls of sufficiently small radius: in particular,

let ε̄ > 0 be such that the open balls of radius 2ε̄ around each equilibrium contain no other

equilibria.23

23 That is, that for every equilibrium (x̄, λ̄, ȳ, p̄, q̄) ∈ E , one has that B2ε̄(x̄, λ̄, ȳ, p̄, q̄) ∩ E = {(x̄, λ̄, ȳ, p̄, q̄)}.
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5.3.1 Step 1: Bundles where preferences are perturbed

Perturbations of the utility functions are restricted to neighborhoods of particular consumption

levels. For the construction of the perturbations, X i
0 and X i

1, are for each type, be the levels of

date 0 and date 1 consumption bundles at some equilibrium: formally,

X i
0 := {x ∈ RL|x̄i0 = x for some (x̄, λ̄, ȳ, p̄, q̄) ∈ E}

and

X i
1 := {x ∈ RL|x̄is = x for some (x̄, λ̄, ȳ, p̄, q̄) ∈ E and some s = 1, . . . , S}.

By the properties of economy (ē, ū), all sets X i
0 and X i

1 are finite, and there are εi > 0 such

that the open balls of radius 2εi isolate these points from one another.24

5.3.2 Step 2: Perturbations of preferences

For each ε > 0, ρε : RL → [0, 1] denotes a C∞ function such that ρε(δ) = 1 in Bε(0) and

ρε(δ) = 0 outside B2ε(0).25 Also, (∆x̄)x̄∈Xi
0

is an array of symmetric, L × L matrices with

norm less than δ > 0;26 this array contains one matrix for each of the equilibrium levels of

consumption of individuals of type i at date 0. For δ small enough, the function

ui0(x) = ūi0(x) +
1

2

∑
x̄∈Xi

0

ρεi(x− x̄) · (x− x̄)T∆x̄(x− x̄)

satisfies all properties of utility functions (that is, it lies in the class U). Of course, the same

holds for date 1 preferences: for an array (∆x̄)x̄∈Xi
1
, containing a symmetric matrix for each

date-1 equilibrium consumption, the associated admissible date 1 utility function is

ui1(x) = ūi1(x) +
1

2

∑
x̄∈Xi

1

ρεi(x− x̄) · (x− x̄)T∆x̄(x− x̄).

As a result, there is, for each individual, a new ex-ante utility function ui(x) = ui0(x0) +∑S
s=1 π

i
su

i
1(xs), which varies smoothly simply with the arrays of matrices ∆.

More formally, Ūδ is the set of all profiles of ex-ante utility functions that can be obtained by

perturbing the corresponding ūi0 and ūi1 functions as described; this set is a finite-dimensional

submanifold of U2I , parameterized by

Bδ :=
∏
i

(Bδ(0)#Xi
0 ×Bδ(0)#Xi

1),

with each open ball taken in RL(L+1)/2. Importantly, if one restricts F to profiles of preferences

defined in Ūδ and adopts this parameterization, then F is twice continuously differentiable.

Also, for profiles in this set,

24 As before, B2εi(x̄) ∩Xi
0 = {x̄}, for each x̄ ∈ Xi

0, and similarly for bundles in Xi
1.

25 [12], or [6].
26 Formally, each matrix is a real vector with L(L+ 1)/2 components; their norms are computed by treating

them as vectors.
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1. for any bundle x, there exists at most one perturbation that is “active” in the sense that

there is at most one x̄ ∈ X i
0 such that

ui0(x) = ūi0(x) +
1

2
r · (x− x̄)T∆x̄(x− x̄),

for r > 0, and similarly, for ui1; and

2. at every the equilibrium of the economy (ē, ū) the perturbations affect only the Hessian

of the utility functions, and these are perturbed exactly by the corresponding matrix: for

each (x̄, λ̄, ȳ, p̄, q̄) ∈ E ,

ui0(x̄i0) = ūi0(x̄i0), Dui0(x̄i0) = Dūi0(x̄i0) and D2ui0(x̄i0) = D2ūi0(x̄i0) + ∆x̄i0
,

and

ui1(x̄is) = ūi1(x̄is), Du
i
1(x̄is) = Dūi1(x̄is) and D2ui1(x̄is) = D2ūi1(x̄is) + ∆x̄is

for every date-1 state s.

5.3.3 Invariance of equilibria

By the Implicit Function Theorem, equilibria are locally invariant.

Lemma 4 There exist δ̃ > 0 and ε̃ > 0 such that, for every profile of preferences u in the set

Ūδ̃ and for every equilibrium (x̄, λ̄, ȳ, p̄, q̄) in E,

F(x, λ, y, p, q, ē, u) = 0 and (x, λ, y, p, q) ∈ Bε̃(x̄, λ̄, ȳ, p̄, q̄)

for, (x, λ, y, p, q) = (x̄, λ̄, ȳ, p̄, q̄) and only there.

The importance of this construction is the invariance of equilibria with respect to the per-

turbations of preferences.

Proposition 1 There exists δ > 0 such that for every profile of preferences u in Ūδ, the set

of competitive equilibria of economy (ē, u) is exactly E.

Proof: Let ε := min{ε̄, ε̃} > 0. By continuity of F , there exists δ̄ > 0 such that, for every

∆ ∈ Bδ̄(0), F(x, λ, y, p, q, ē,∆) = 0 implies that

(x, λ, y, p, q) ∈ ∪(x̄,λ̄,ȳ,p̄,q̄)∈EBε(x̄, λ̄, ȳ, p̄, q̄).

If δ := min{δ̄, δ̃}, and if ∆ ∈ Bδ, then, by Lemma 4, the set of equilibria of economy (ē,∆) is a

subset of E . The other inclusion is immediate. 2
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5.3.4 The local subspace of economies

Given any economy in Dr, the argument for denseness of the set of economies where all equi-

librium allocations are constrained inefficient will look for economies where this property holds

in the following “neighborhood” of the given economy.

Lemma 5 Given an economy, (ē, ū), and a profile of utility perturbations ∆ ∈ Bδ, there is a

system of equations

1. for every i and every s = 1, . . . , S,

1

λi0
πisDū

i
1(xis) + πis(D

2ūi1(xis) + ∆i
s)β

i
s − γispT

1 + πisĨTµ = 0;

2. for every i and every s = 1, . . . , S, p1 · βis = 0;

3.
∑

i

∑S
s=1 λ

i
sĨβis +

∑
i

∑S
s=1 γ

i
s(˜̄e

i
s − ˜̄x

i
s) = 0; and

4. for every i,
∑S

s=1 γ
i
s + η = 0,

where µ ∈ R, η ∈ R, βis ∈ RL and γis ∈ R, such that, if (ē, ū) ∈ Dr and δ is chosen as in

Proposition 1, then there exists a subset of Ūδ of preferences that is

1. strongly generic (as subset of Ūδ), and

2. such that if (x, λ, y, p, q) is a competitive equilibrium of economy (ē,∆), then the system

above has no solution.27

5.4 The proof of Theorem 3

The claim is that the set of economies where all equilibrium allocations are constrained inef-

ficient is dense. Since Dr is generic, it suffices to show that for each (ē, ū) ∈ Dr there is an

economy (e, u), arbitrarily close to (ē, ū), where the property holds. For this, the endowments

is fixed, e = ē, and alternative preferences are in the lower-dimensional “neighborhood” of ū

that is defined by Lemma 5. This neighborhood is N . Since N has full measure, as a subset of

the local subspace of economies constructed around (ē, ū), if, generically in N , all equilibrium

allocations of (ē,∆) are constrained inefficient, then the Theorem follows.

Lemma 6 The function28

M(x, λ, y, p, q,∆, θ) :=

 F(x, λ, y, p, q, ē,∆)

Dx,λ,p,y,τH(x, λ, p, y, (−qyi)Ii=1, ē,∆)Tθ
1
2
(θTθ − 1)

 .

27 The profile of matrices ∆ identifies the profile of ex-ante preferences constructed as in §5.3.2 above, given
(ē, ū) ∈ Dr.

28 It maps
RI(S+1)L

++ × R(S+1)I
++ × RI × P2 × R×N × RI+I(S+1)L+I(S+1)+2(L−1)+1+1

into
RI(S+1)L × RI(S+1) × RI × R2(L−1) × R× RI(S+1)L × RI(S+1) × R2(L−1) × R2I × R.
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is transverse to 0.

By the Transversality Theorem, Lemma 6 implies that for a generic subset of N , one has

that M(·,∆) t 0. Now, the matrix Dx,λ,y,p,q,θM has

I(S + 1)L+ I(S + 1) + I + 2(L− 1) + 1 + I(S + 1)L+ I(S + 1) + 2(L− 1) + 2I + 1

rows, and only

I(S + 1)L+ (S + 1)I + I + 2(L− 1) + 1 + I + I(S + 1)L+ I(S + 1) + 2(L− 1) + 1 + 1

columns, and, since I ≥ 2, it follows that it cannot have full row rank. Then, it must be that

on a strongly generic subset of N , the function M(·,∆) is never zero, which means that, in

that set, whenever F(x, λ, y, p, q, ē,∆) = 0, it is also true that the matrix

Dx,λ,p,y,τH(x, λ, p, y, (qyi)Ii=1, ē,∆)

has full row rank. It follows then from Lemma 1 that x is constrained inefficient, whenever

F(x, λ, y, p, q, ē,∆) = 0.

6 Further examples

The mechanism by which a reallocation of assets can induce a Pareto improvement in Theorem

3 relies precisely on the two effects illustrated in the examples of Section 1. Recall that the

requirements for effectiveness of a policy intervention in those examples were the ability of the

policy to affect date-1 commodity relative prices, and that the aggregate of date-1 commodity

trades weighted by probabilities and marginal utilities of income did not vanish. In the proof of

Theorem 3, these two features remain critical. To see this, note the third and fourth properties

guaranteed to hold, generically on endowments, by Lemma 3. The third condition is precisely

the second feature illustrated by the examples, and allows us to prove Lemma 5, and, hence,

Lemma 6.29 The fourth condition allows the policy intervention to affect relative prices; it is

used in the proof of Lemma 6 directly.30

The two further examples given next illustrate how the general result extends to economies

with richer structures. The first example is similar to the case presented in subsection 1.2, but

introduces a more general production technology. The second example extends the argument

to an economy with overlapping generations. While we leave the general argument for these

structures as a subject for future research, it is important to note that the mechanism why a

policy can affect ex-ante utility levels in these two cases is exactly the same as in the general

result and the two examples above, which we remark at the end of this section.

29 See the proof of Claim 2 in the appendix.
30 See the proof of Claim 1 in the appendix.
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6.1 A production economy

As in the example presented in Subsection 1.2, a two-period economy is populated by a con-

tinuum of mass 1 of identical individuals. Again, a single commodity is available in the first

period, and it can be either consumed or invested: the amount of this commodity that is saved

by the individuals becomes their endowment for the second period; we denote this amount by

k. In the second period, this level k of capital is combined with a second production factor,

labor, to produce a consumption good; denote by l and c, respectively, the amounts of labor

used and of consumption good produced at date 1.

In the first period, individuals only consume and save. In the second period, they are

endowed with l̄ units of labor that they supply inelastically, together with their savings k, in

exchange for the consumption good. Initially, there is no risk, so that all the individuals are

endowed with l̄ at date 1. The over-all utility of the individuals is

u(k, c) = −k + v(c),

where v is the person’s utility index for consumption in the second period. If the consumption

good is numèraire of the second period, and if the price of capital as 1+r and the price of labor

as w, then the date-1 budget of the individuals is

τ(k) = (1 + r)k + wl̄,

which they use to buy consumption, so c = τ(k).

The technology of production is

y = f(k, l) + (1− δ)k,

where function f is assumed to exhibit constant returns to scale. It is immediate, then, from

the maximization of profits, that (1 + r) = fk + (1 − δ) and w = fl, while, as response to a

perturbation,31 dr = fkkdk and dw = flkdk = fkldk.

From the optimization of the individuals, it must be that λ(1 + r) = 1, where λ represents

the marginal utility of consumption at date 1. This implies that32

du = −dk + λ(kdr + l̄dw + (1 + r)dk) =
kdr + l̄dw

1 + r
=
kfkk + l̄fkl

1 + r
dk,

which, since fk is homogeneous of degree 0, is du = 0. This equality that confirms that, under

certainty, the privately determined level of investment cannot be improved upon.

31 In these expressions and henceforth, it is simpler to omit the arguments, (k, l̄), of function f .
32 In this case, since there is only one commodity at date 1, the computation of λ is immediate. In the case

of multiple commodities, one would express the indirect utility of the individual as V (τ) = v(c(p, τ)) and use
λ = V ′. In general, also, with a consumption plan c, endowment e and prices p, one would have

du = −dk + λ(−cdp+ edp+ (1 + r)dk).
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Now, the endowment of labor in the second period is subject to idiosyncratic risk, and is

l̄s = l̄ + εs in personal state s, which occurs with probability πs. As before, E[εs] = 0, and

τs(k) = (1 + r)k + wl̄s

is the individuals’ nominal wealth in personal state s. With ex-ante preferences

u(k, c) = −k + E[vs(cs)],

if λs is the marginal utility of revenue in state s, the first-order condition of the individuals at

date 0 is that (1 + r)E[λs] = 1. As a consequence,

du = E[λs(kfkk + l̄sfkl)]dk = E[λsεs]fkldk = cov(λs, εs)fkldk, (8)

where cov(λs, εs) denotes the covariance of the two random variables. The equilibrium allocation

is thus constrained suboptimal, as long as cov(λs, εs) 6= 0. In particular, with state-independent,

strictly concave Bernoulli indices, the marginal utility of income is anti-comonotone with the

level of consumption, which implies that cov(λs, εs) < 0, provided that idiosyncratic risk is non-

degenerate; in this case, since fkl > 0, the expression above implies that individuals overinvest

at date 0: if dk < 0, then du > 0.33

Once again, for a closed-form solution, the Bernoulli index is

vs(cs) =
β

γ
cγs ,

where β > 0 and γ < 1. In this case, the marginal utilities of income are given by

λs = βcγ−1
s = β(y + εsfl)

γ−1,

so the first-order condition of the individuals’ optimization problem is

1

1 + r
= βE[(y + εsfl)

γ−1]

while

du = βE[(y + εsfl)
γ−1εs]fkldk.

If further, there are two equally probable personal states, with εs = ±ε, then the first order

condition becomes
1

2
β(y + εfl)

γ−1 +
1

2
β(y − εfl)γ−1 =

1

1 + r

which implies, since ε > 0 and γ < 1, that

1

2
β(y − εfl)γ−1 >

1

1 + r
.

Since in this case, by substitution,

E[λsεs] =
1

2
β(y + εfl)

γ−1(ε) +
1

2
β(y − εfl)γ−1(−ε) = βε(1− (y − εfl)γ−1) < 0, (9)

which verifies that individuals overinvest at date 0.
33 For instance, in the case when there only are two equally probable personal states, with εs = ±ε, by

concavity it must be that λ(−ε) > λ(ε), so it follows immediately that Eπ[λsεs] = ε(λ(ε)− λ(−ε))/2 < 0.
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6.2 Overlapping generations

Finally, the economy is one of overlapping generations, as in [9], where each generation lives

for two periods, and the population grows at a constant rate n ≥ 0. Suppose, also, that the

productive sector is as in the previous example.

Initially, individuals of the economy are endowed with l̄ units of labor in each of the two

periods they live, which they supply inelastically. Using the same notation as in the previous

example, their ex-ante utility is given by

u(k) = l̄w − k + v(l̄w + (1 + r)k),

and the effects of a perturbation are

du = l̄dw − dk + λ(kdr + l̄dw + (1 + r)dk).

In this case, the first-order conditions of individual optimization are that (1 + r)λ = 1, and, by

direct substitution,

du =
(2 + r)l̄dw + kdr

1 + r
.

On the other hand, since the total supply labor is (2 + n)l̄, we get, from the fact that the

production technology is of constant returns to scale, that

(2 + n)l̄dw + kdr = 0,

so

du =
r − n
1 + r

l̄flkdk,

which establishes the Golden Rule criterion: if the interest rate is above (resp. below) the rate

of population growth, in equilibrium the economy underinvests (resp. overinvests).

Alternatively, the endowment of labor in the second period is subject to idiosyncratic risk,

and is l̄s = l̄ + εs with probability πs, where E[εs] = 0. As before, if λs be the marginal utility

of income in state s, the first-order condition for optimization is that (1 + r)E[λs] = 1, and,

hence, the welfare effects of a perturbation are

du = l̄dw − dk + E[λs(kdr + l̄sdw + (1 + r)dk)] =

(
r − n
1 + r

l̄ + cov(λs, εs)

)
flkdk. (10)

With state-independent, strictly concave Bernoulli indices, cov(λs, εs) < 0, and it follows from

the latter expression that when the interest rate is below the rate of population growth the

competitive equilibrium implies overinvestment (as in the case of certainty). But now, in the

presence of idiosyncratic risk, the second prescription of the Golden Rule may fail, and in an

economy where the interest rate is higher than the growth of population, it may be that a

Pareto improvement requires for every generation to save less.

If the Bernoulli indices are state-independent and equal to

v(c) =
β

γ
cγ,
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as in the previous example, and

f(k, l) = kαl1−α,

then, from the first-order condition, we can solve for the optimal level of investment as

k = α
1

1−αγ [(2 + n)l̄]
(1−α)γ
1−αγ ∆

1
1−αγ ,

where ∆ = βE[(α + δs(1− α))γ−1] and

δs =
l̄ + εs

(2 + n)l̄
.

Also,

λs = βcγ−1
s = β(y − (1 + n)l̄w + εsw)γ−1,

so if we further take that εs = ±ε with probability 1/2, then the first-order condition becomes

E[λs] =
1

2
β(y − (1 + n)l̄w + εw)γ−1 +

1

2
β(y − (1 + n)l̄w − εw)γ−1 =

1

1 + r
,

which implies that
1

2
β(y − (1 + n)l̄w − εw)γ−1 >

1

1 + r
.

By substitution,

E[λsεs] = ε

(
1

1 + r
− β(y − (1 + n)l̄w − εw)γ−1

)
< 0. (11)

Moreover, using the equilibrium value of k, in order to determine whether the presence of

idiosyncratic risk reverses the classical prescription of the golden rule, it suffices to compute we

can compute E[λsεs]. If the values of the different parameters are α = γ = 0.5, l̄ = 1.4, ε = 0.6

and β = 0.95. Table 1 gives the policy prescription, in terms of the sign a Pareto improving

perturbation dk, for different values of n.

With these values, if n ≤ 0.01, from the third column of the table, du/dk > 0, namely

that the economy underinvests at equilibrium – and for these values, since r > n, the Golden

Rule prescribes, similarly, that the economy should invest more. For values of n ≥ 0.06,

then du/dk < 0, so that the Pareto improvement should be induced by a reduction in capital

accumulation, which agrees with the recommendation of the Golden Rule, for in these cases

r < n. But the same is not true for values of 0.02 ≤ n ≤ 0.05, where the actual du/dk < 0

implies that the economy should accumulate less capital, while the Golden Rule prescribes the

opposite, since r > n.

6.3 The mechanism

The demonstration that these examples illustrate general results is left for future research.

Importantly, though, one must note that the mechanism behind the effectiveness of these policy

interventions is exactly the same as in the general argument of the paper – and in the two

examples given in the introduction.
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Table 1: Welfare effects of a policy perturbation

n r−n
1+r

l̄ r−n
1+r

l̄ + cov(λs, εs)

0 0.062004539 0.020834359

0.01 0.050169498 0.009184415

0.02 0.038357781 -0.002443666

0.03 0.026569236 -0.014050019

0.04 0.014803712 -0.02563478

0.05 0.003061059 -0.037198082

0.06 -0.008658872 -0.048740058

0.07 -0.020356227 -0.060260838

0.08 -0.03203115 -0.071760553

0.09 -0.043683786 -0.08323933

For the ex-ante homogeneous economy with general production, note from Eq. (8) that a

perturbation to the capital stock affects ex-ante utility if, and only if, fkl 6= 0 and cov(λs, εs) 6= 0.

The first requirement guarantees that the perturbation has effects on the date-1 wage, the

relevant relative price in this one-good economy. The second requirement is the condition

that the aggregate, across personal states, of commodity trades weighted by the product of the

probability and the marginal utility of revenue does not vanish. In the case of specific functional

forms, note from Eq. (9) that effectiveness of the policy requires that ε 6= 0, which is a generic

conditions endowments.34

The lesson in the case of the OLG economy is slightly different, for in this case the equilib-

rium allocation may fail Pareto efficiency even in the absence of uncertainty. Our point in this

case is that uncertainty introduces a new mechanism by which a policy perturbation can affect

ex-ante welfare, and that the standard recommendation derived from the Golden Rule may be

invalid. But, again, for this to be the case, two conditions have to be met: from Eq (10), it

requires that fkl 6= 0 and cov(λs, εs) 6= 0. These two requirements have the same interpretation

as before, and it follows from the computations for specific functions, in particular from Eq.

(11), that the result requires that ε 6= 0.

7 Concluding remarks

The positive properties of the standard general equilibrium model hold in an economy of ag-

gregate and uninsurable idiosyncratic risks. For every profile of endowments and preferences,

equilibria exist and, for profiles of preferences in a strongly generic set, the number of equilibria

is finite (Theorem 1).

Pareto efficiency requires marginal rates of substitution for commodities to be independent

34 It also requires that β 6= 0, for otherwise the individuals’ utilities are constant. This condition is, obviously,
generic on preferences.
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of the individual and of the idiosyncratic shocks; since these shocks are uninsurable, for any

profile of preferences, on a strongly generic set of endowments all competitive equilibrium

allocations are Pareto inefficient (Theorem 2).

But Pareto efficiency ignores the existence of financial constraints – in particular, the fact

that idiosyncratic risks may be uninsurable. A more interesting question is whether the existing

assets, which only allow for (perfect) insurance against aggregate shocks, can be used to in-

duce a Pareto improvement over the equilibrium allocations, without requiring that commodity

markets be closed. Following the definition of constrained suboptimality ([19], [10]), a simple

characterization of equilibria in which that type of social improvement is possible is given by

the technique of [6], which we apply here (Lemma 1).

Given a profile of preferences and a profile of endowments where there are finitely many equi-

libria and all of them are Pareto inefficient (a strongly generic condition), a finite-dimensional

space of preferences where the set of equilibria (for the fixed profile of endowments) does not

change is constructed (Proposition 1). This space is parameterized by perturbations to the

Hessians of the utility functions that do not change their gradients at the equilibrium points

(changes to the shape of individual demands that do not change their levels at equilibrium

prices). On this finite-dimensional space of preferences, a strongly generic subset has the prop-

erty that all equilibria are constrained inefficient; this implies that on an open and dense subset

of the space of economies, every competitive equilibrium allocation is constrained inefficient

(Theorem 3). The result requires that commodities be diverse enough (Lemma 2); this is

because the Pareto improvement is generated by the response of relative prices to the pertur-

bation in asset portfolios, which yields transfers of revenue across states of the world which

are not available directly from the existing assets: they create insurance opportunities against

idiosyncratic risk.

The general argument is motivated by two introductory examples, which illustrate the mech-

anism by which a financial policy can make all the individuals in the economy ex-ante better

off. It requires that the policy be able to perturb future relative prices, and it requires that in

the competitive equilibrium individuals fail to perfectly insure their idiosyncratic risk. Loosely

speaking, the first requirement is satisfied generically on preferences, while the second one holds

generically on endowments. In our general argument, these effects are crucial in the proof of the

main result in the paper,35 and, importantly, they constitute the mechanism by which the ideas

of the paper can be extended to economies with general production technologies (even if ex-ante

homogeneous) and to economies of overlapping generations, as illustrated by the examples of

the paper.

Our argument does not answer the question of what information is necessary for the deter-

mination of a Pareto improving financial intervention; it only says that one such intervention

typically exists. Existing results on the identification of unobservable fundamentals of the

economy, both positive and negative, do not apply to the structure of idiosyncratic risk, so

this question remains open. But our argument says that the view that intervention in financial

markets cannot induce a Pareto improvement is untenable; it is a different argument to say

35 They are captured by the third and fourth conditions in Lemma 3, which allow us to prove Lemmas 5 and
6; this last lemma is the main argument for Theorem 3.
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that productive intervention is impossible because of the inherent difficulty in determining the

right policy.
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Appendix: Proofs of the Lemmas

Proof of Lemma 1: Since the partial Jacobean has full rank, it follows from the Inverse Func-
tion Theorem that H(·, e, u) maps a neighborhood of (x, λ, p, y, (qyi)Ii=1) onto a neighborhood of
H(x, λ, p, y, (qyi)Ii=1, e, u). It follows that for a small enough δ > 0, there exists (x̂, λ̂, p̂, ŷ, τ̂) such that

H(x̂, λ̂, p̂, ŷ, τ̂ , e, u) = (u1(x1) + δ, . . . , uI(xI) + δ, 0, . . . , 0)T,

which means that x is constrained inefficient. 2

Proof of Lemma 2: Fix a profile of preferences u. Let π := (π1
1, . . . , π

1
S , π

2
1, . . . , π

I
S)T, and define the

function

(x, λ, y, p, q, e) 7→

(
F(x, λ, y, p, q, e, u)∑
i

∑S
s=1

λis
λi0

(ẽis − x̃is)

)
,

for e in the generic subset of Theorem 2.
Suppose that (x, λ, y, p, q, e) 7→ 0. With arguments in the order

(x1, λ1, y1, . . . , xI , λI , yI , e1, . . . , eI),

its (partial) Jacobean writes as

D2u1(x1) −Ψ(p)T 0 . . . 0 0 0 0 . . . 0
−Ψ(p) 0 R(q) . . . 0 0 0 Ψ(p) . . . 0

0 R(q)T 0 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . D2uI(xi) −Ψ(p)T 0 0 . . . 0
0 0 0 . . . −Ψ(p) 0 R(q) 0 . . . Ψ(p)
0 0 0 . . . 0 R(q)T 0 0 . . . 0

Φ1 0 0 . . . ΦI 0 0 −Φ1 . . . −ΦI

0 0 1 . . . 0 0 1 0 . . . 0
L1 z1 0 . . . LI zI 0 −L1 . . . −LI


,

where, for each i,

Φi :=
(

Ĩ 0 . . . 0
0 πi1Ĩ . . . πiS Ĩ

)
and Li :=

(
λi1
λi0

Ĩ . . .
λiS
λi0

Ĩ
)
,

where Ĩ denotes the L-dimensional identity matrix, with its first row removed. We now argue that
this matrix has full row rank, in two steps.
Step 1: By standard arguments, the submatrix without the last superrow and the supercolumns
(e2, . . . , eI) has full row rank.
Step 2: When we add last superrow and the (e2, . . . , eI) supercolumns, we add (L − 1) rows and
(I − 1)(S + 1)L > L− 1 columns. Notice that, by Theorem 2, matrix(

π2
1 π2

S

λ2
1 λ2

S

)
has full rank. Fix any l = 2, . . . L. Multiply the columns e2

l,1 and e2
l,S , respectively, by α(e2

l,1) and
α(e2

l,S) such that (
π2

1 π2
S

λ2
1 λ2

S

)(
α(e2

l,1)
α(e2

l,S)

)
=
(

0
1

)
,
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and multiply the columns e2
1,1 and e2

1,S , respectively, by −α(e2
l,1)/pl and −α(e2

l,S)/ pl. Leaving all other
columns unperturbed, this product gives 1 at the l-th entry of the last superrow and 0 everywhere
else. Doing this for all l = 2, . . . , L gives that the whole matrix has full row rank.

The latter implies that the mapping is transverse to 0 and, hence, that the set of endowments on
which it is transverse to 0, as a function of (x, λ, y, p, q) only, has full measure. Since the mapping has
I(S+ 1)L+ I(S+ 1) + I + 2(L− 1) +L components and (x, λ, y, p, q) contains only I(S+ 1)L+ I(S+
1) + I + 2(L− 1) + 1 arguments, and since L ≥ 2, it follows that this mapping can be transverse to 0
only if it never takes the value 0. 2

Proof of Lemma 3: Theorems 1 and 2 and Lemma 2 give strongly generic sets of endowments where
equilibria are finite and satisfy, respectively, the first three properties. For the fourth property, as in
Theorem 1, it suffices to observe that G(·, u) t 0, and then to invoke the Transversality Theorem, to
conclude that, for any profile of preferences u, in a strongly generic set of endowments, G(·, e, u) t 0.
With this result, genericity of the Dr follows by taking the intersection of these four generic sets. 2

Proof of Lemma 4: This follows immediately from the first property of Lemma 3, by the Implicit
Function Theorem. 2

Proof of Lemma 5: Consider the function

F(x, λ, y, p, q, ē,∆)
...

1
λi0
πisDū

i
1(xis) + πis(D

2ūi1(xis) + ∆i
s)β

i
s − γispT

1 + πisĨTµ
p1 · βis

...∑
i

∑S
s=1 λ

i
sĨβis +

∑
i

∑S
s=1 γ

i
s(˜̄e

i
s − ˜̄xis)

...∑S
s=1 γ

i
s + η

...



.

We are going to show that this matrix is transverse to 0. For this, we first establish that when the
function takes value 0, βis 6= 0 for every i and every s = 1, . . . , S. To see that this is the case, suppose,
for instance, that β1

1 = 0. Then, it is immediate that

1
λ1

0

π1
1Dū

1
1(x1

1) + π1
1 ĨTµ = 0,

and hence, since π1
1Dū

1
1(x1

1) = λ1
1p1 and p1,1 = 1, and since the first column of Ĩ is null, we have that

λ1
1/λ

1
0 = γ1

1 and, hence, that µ = 0. Now, the latter implies that for every i and s,

1
λi0
πisDū

i
1(xis) + πis(D

2ūi1(xis) + ∆i
s)β

i
s − γispT

1 = 0,

so, pre-multiplying by βis, and since, by construction, πisDū
i
1(xis) = λisp1 and p1 · βis = 0, we have that

πis(β
i
s)

T(D2ūi1(xis) + ∆i
s)β

i
s = 0,

which implies that βis = 0, and then that λis/λ
i
0 = γis for all i and s. Now, by condition (3), the latter

implies that
∑

i

∑S
s=1(λis/λ

i
0)(˜̄eis − x̃is) = 0, while F(x, λ, y, p, q, ē,∆) = 0, which contradicts the fact

that ∆ ∈ Bδ, by the third condition of Lemma 3.
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Now, we need to show that the Jacobean of the function has full row rank when the function takes
value of 0. Since, in this case, by construction and Proposition 1, D∆F(·) = 0, it suffices to show that
the Jacobean of the rest of the components of the function (i.e., excluding the first component, F)
give a full-row-rank Jacobean with respect to (β, γ, µ, η,∆). With the arguments in the order

(β1
1 , γ

1
1 , . . . , β

I
S , γ

I
S ,∆

1
1, . . . ,∆

I
S),

the Jacobean writes as

π1
1(D2ū1

1(x1
1) + ∆1

1) −pT
1 . . . 0 0 N(β1

1) . . . 0
−p1 0 . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . πIS(D2ūI1(xIS)∆I
S) −pT

1 0 . . . N(βIS)
0 0 . . . −p1 0 0 . . . 0
λ1

1Ĩ ˜̄e1
1 − x̄1

1 . . . λIS Ĩ ˜̄eIS − x̄IS 0 . . . 0
0 1T . . . 0 1T 0 . . . 0


,

where for t ∈ RL, N(t) denotes the L× L(L+ 1)/2 matrix
t1 t2 t3 . . . tL 0 0 . . . 0 . . . 0
0 t1 t2 . . . 0 t2 t3 . . . tL . . . 0
0 0 t1 . . . 0 0 t2 . . . 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

. . .
...

0 0 0 . . . t1 0 0 . . . t2 . . . tL

 ,

which has full row rank if (and only if) t 6= 0. We argue that the Jacobean has full row rank in a
series of steps.
Step 1: The submatrix consisting of the first 2(IS) superrows and supercolumns is invertible, by a
standard arguments; when we add the other supercolums and superrows, we add more columns than
rows, so it suffices to show that we can perturb the added superrows without perturbing the initial
ones, which we do in the following steps.
Step 2: Fix l = 2, . . . , L, and define the vector α as follows: α(βi1,l) = 1/λ1

1, α(β1
1,1) = −p1,l/λ

1
1, and

α(χ) = 0 for every other argument except for ∆1
1, for which we fix α(∆1

1) such that

N(β1
1)α(∆1

1) = −π1
1(D2Ū1

1 (x1
1) + ∆1

1)α(β1
1),

which we can do since N(β1
1) contains an invertible L × L submatrix, given that β1

1 6= 0. Then, the
postmultiplication of the Jacobean by α gives 0 in every component, except in the one corresponding
to the l-th commodity in the term

∑
i

S∑
s=1

λisĨβis +
∑
i

S∑
s=1

γis(˜̄e
i
s − ˜̄xis),

where it gives 1.
Step 3: Fix i = 1, . . . , I, and define the vector α as follows: α(γi1) = 1, for all l = 2, . . . , L α(βi1,l) =
−(ēi1,l − xi1,l)/λil, while α(βi1,1) =

∑L
l=2 p1,l(ēi1,l − xi1,l)/λil, and α(χ) = 0 for every other argument,

except for ∆i
1, where α(∆i

1) is fixed so that

N(βi1)α(∆i
1) = −πi1(D2Ū i1(xi1) + ∆i

1)α(βi1),
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which we can do since N(βi1) contains an invertible L×L submatrix, given that βi1 6= 0. As before, the
postmultiplication of the Jacobean by α gives 0 in every component, except in the one corresponding
to the term

∑S
s=1 γ

i
s + η, where it gives 1.

It follows that the function is transverse to 0, and, hence, that for ∆ fixed on subset of Ūδ with full
Lebesgue measure (relative to Ūδ itself), the function is transverse to 0 in the rest of the arguments.
But, as in other arguments, this function has more components than arguments: fixing ∆, it has only

I(S + 1)L+ I(S + 1) + I + 2(L− 1) + 1 + ISL+ IS + (L− 1) + 1

arguments, and consists of

I(S + 1)L+ I(S + 1) + I + 2(L− 1) + 1 + ISL+ IS + (L− 1) + I

equations. It follows, then, that the only way in which the function can be transverse to 0, for fixed
∆, is for it to never take the value 0, which proves the result. 2

Proof of Lemma 6: Suppose that M(x, λ, y, p, q,∆, θ) = 0. By Proposition 1, it must be that
F(x, λ, y, p, q, ē, ū) = 0, so, by construction,

ui0(xi0) = ūi0(xi0), Dui0(xi0) = Dūi0(xi0) and D2ui0(xi0) = D2ūi0(xi0) + ∆i
0,

and
ui1(xis) = ūi1(xis), Du

i
1(xis) = Dūi1(xis) and D2ui1(xis) = D2ūi1(xis) + ∆i

s

for every i and s.36

Let us name the rows of DH by37

(u1, . . . , uI, f1, b1, . . . , fI, bI, c0, c1, a, t),

so that we can denote θ by

θT := (θu1, . . . , θuI , θ
T
f1, θ

T
b1, . . . , θ

T
fI , θ

T
bI , θ

T
c0, θ

T
c1, θa, θt),

where θui ∈ R, θfi ∈ R(S+1)L, θbi ∈ RS+1, θc0 ∈ RL−1 θc1 ∈ RL−1, θt ∈ R and θa ∈ R. For these
vectors, we will further denote by a superindex the state and/or the commodity they correspond to,
if applicable (for instance, θsfi ∈ RL and θs,lfi ∈ R).

System Dx,λ,p,y,τH(x, λ, p, y, (qyi)Ii=1, ē,∆)Tθ = 0 can be rewritten as follows:

1. for each i,
θuiDū

i
0(xi0)T + (D2ūi0(xi0) + ∆i

0)θ0
fi − θ0

bip
T
0 + Ĩθc0 = 0,

and
θuiπ

i
sDū

i
1(xis)

T + πis(D
2ūi1(xis) + ∆i

s)θ
s
fi − θsbipT

1 + πisĨTθc1 = 0

for every s = 1, . . . , S;

2. for each i, p0θ
0
fi = 0 and p1θ

s
fi = 0 for for every s = 1, . . . , S;

36 Here, for simplicity, we are adopting the notation ∆i
s for ∆i

xi
s
. Also, in what follows we will only consider

utility perturbations that are “active” at the given equilibrium, so we take the profile ∆ as simply ((∆i
s)
S
s=0)Ii=1.

37 The logic for this choice is the following: the components of vector θ are identified with the equations of
function H; then, ui refers to the utility level of type-i individuals, fi and bi to their first-order and budget-
balance conditions, c0 and c1 to commodity market clearing in both dates, and a and t to the balance required
for asset allocations and revenue transfers.
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3. at date 0, ∑
i

λi0Ĩθ0
fi +

∑
i

θ0
bi(˜̄e

i
0 − x̃i0) = 0,

while ∑
i

S∑
s=1

λisĨθsfi +
∑
i

S∑
s=1

θsbi(˜̄e
i
s − x̃is) = 0

at date 1; and

4. for every i, θ0
bi + θt = 0 and

∑S
s=1 θ

s
bi + θa = 0.

We establish three key properties of this system, by the following claims:

Claim 1 For at least one type of individuals i, we have that θui 6= 0.

Proof: Suppose, by way of contradiction, that θui = 0 for every type. By substituting in condition (1)
of the system, this would imply that

Dx,λ,p,y,τG(x, λ, p, y, (qyi)Ii=1, ē,∆)Tθ̃ = 0,

for
θ̃ := (θT

f1, θ
T
b1, . . . , θ

T
fI , θ

T
bI , θ

T
c0, θ

T
c1, θa, θt)

T.

Since G(x, λ, p, y, (qyi)Ii=1, ē,∆) = 0 and (ē,∆) ∈ Dr, it follows from the fourth property of Lemma 3
that θ̃ = 0 and hence that θ = 0, which contradicts the fact that θTθ − 1 = 0. 2

Claim 2 For every type i and date-1 state s = 1, . . . , S, we have that θsfi 6= 0.

Proof: The argument is the same as in the proof that every βis 6= 0 in Lemma 5, invoking Lemma 2,
so details are omitted. 2

Claim 3 For every type i, we have that θ0
fi 6= 0.

Proof: As in the proof of Claim 2, if θ0
fi = 0 for some i, then θc0 = 0 and θ0

fj = 0 for every j = 1, . . . , I.
This implies, by condition (1), that θuiλi0 = θ0

bi, and then, by condition (4), that θuiλi0 = −θt for all
i and s = 1, . . . , S. By Claim 1, it must be that θt 6= 0, so we can define µ = −θ−1

t θc1, η = −θ−1
t θa,

βis = −θ−1
t θsfi and γis = −θ−1

t θsbi. By construction, since θt 6= 0, vector (β, γ, µ, η) solves the system
defined in Lemma 5, which is impossible. 2

Now, to see that M t 0, notice that DM(x, λ, y, p, q,∆, θ) writes as Dx,λ,y,p,qF(x, λ, y, p, q, ē,∆) 0 0
M N(θ) Dx,λ,p,y,τH(x, λ, p, y, (qyi)Ii=1, ē,∆)T

0 0 θT

 ,

where

N(θ) :=


N(θ0

f1) 0 . . . 0
0 N(θ1

f1) . . . 0
...

...
. . . . . .

0 0 . . . N(θSfI)


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for N(t) defined as in the proof of Lemma 5. Since Dx,λ,y,p,qF(x, λ, y, p, q, ē,∆) has full rank, because
(ē,∆) ∈ Dr, it suffices that matrix(

N(θ) Dx,λ,p,y,τH(x, λ, p, y, (qyi)Ii=1, ē,∆)T

0 θT

)
have full row rank for DM(x, λ, y, p, q,∆, θ) to have full row rank. By Claims 2 and 3, it follows that
N(θsfi) has full row rank for all type i and all state, present and future, s = 0, . . . , S. An argument
similar to the one given in Lemma 5 for transversality of the mapping defined there shows that this
matrix has full row rank, and, hence, that matrix DM(x, λ, y, p, q,∆, θ) has full row rank. 2
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[15] F. Kübler, P.-A. Chiappori, I. Ekeland, H. Polemarchakis, The identification of preferences from
the equilibrium prices of commodities and assets, J. Econ. Theory 102 (2002), 403-420.

[16] E. Malinvaud, The allocations of small risks in large markets, J. Econ. Theory 4 (1973), 312-328.

[17] E. Malinvaud, Markets for an exchange economy with individual risks, Econometrica 41 (1973),
383-410.

[18] J.W. Milnor, Topology from the Differentiable Viewpoint, Princeton University Press, 1965.

[19] J. Stiglitz, The inefficiency of stock market equilibrium, Rev. Econ. Stud. 49 (1982), 241-261.

[20] A. Villanacci, L. Carosi, P. Benevieri, A. Battinelli, Differential Topology and General Equilibrium
with Complete and Incomplete Markets, Kluwer, 2002.

31


