
 
 

 
 

 
 

 
by 

http://ssrn.com/abstract=2080056 

 

 
Fei Li and Can Tian 

 

 
 
 

“Directed Search and Job Rotation” 
 
 

PIER Working Paper 12-024 

Penn Institute for Economic Research
Department of Economics 
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://economics.sas.upenn.edu/pier 



Directed Search and Job Rotation�

Fei Li

University of Pennsylvania

Can Tian

University of Pennsylvania

June 3, 2012

Abstract

We consider the impact of job rotation in a directed search model in which �rm sizes

are endogenously determined and match quality is initially unknown. A large �rm bene�ts

from the opportunity of rotating workers so as to partially overcome loss of mismatch. As a

result, in the unique symmetric equilibrium, large �rms have higher labor productivity and

lower separation rates. In contrast to the standard directed search model with multi-vacancy

�rms, this model can generate a positive correlation between �rm size and wage without

introducing any ex ante productivity di¤erences or imposing any non-concave production

function assumption.

Keywords: Directed Search, Job Rotation, Firm Size and Wage, Firm Size and Labor

Productivity

JEL Classi�cation Codes: L11; J31; J64

1 Introduction

The practice of job rotation is commonly observed in large �rms. In the literature, it is well

known that a job rotation policy mainly results from learning of pair-wise match quality between

workers and jobs. However, little work has been done to address the impact of job rotation within

�rms on the labor market. One reason is that the study of job rotation requires a framework that
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simultaneously considers the internal labor market of a �rm and the external labor market. Yet, in

the canonical job search model, labor economists�favorite work horse, a �rm is treated as a single

job vacancy, and therefore it is impossible to distinguish between the internal and external labor

market. Recently, many job search papers, including Hawkins (2011), Kaas and Kircher (2011),

Lester (2010) and Tan (2012) have shed light on the endogenous determination of �rm size, which

has the potential to study the interaction between a �rm�s internal and external labor market.

In this paper, we employ a directed search model with multi-vacancy �rms to examine the

role of job rotation in the labor market. In particular, we assume that a �rm can choose its size

by determining the number of job vacancies. A large �rm can hire more workers, which requires

a higher �xed cost. All workers are ex ante identical, but they may be good at di¤erent jobs,

which is initially unknown. The match quality between a worker and a job is uncertain when the

worker is hired but can be learned afterwards through a process of job rotation. Firms can reassign

workers to di¤erent positions to partially overcome the loss of mismatch, and larger �rms have a

higher degree of freedom of reallocation and, therefore, can expect higher revenue per match.

Our main result highlights the impact of job rotation on the labor market. In the unique

symmetric equilibrium, we obtain a positive correlation between �rm size, labor productivity and

wage, which is consistent with stylized facts summarized by Oi and Idson (1999). In addition,

in line with recent empirical �ndings by Papageorgiou (2011), the model sucessfully implies a

negative correlation between �rm size and the separation rate. Without the opportunity of job

rotation, however, the correlation between �rm size, labor productivity and wage is negative for

all parameters, which is the result of a standard directed search model with multi-vacancy.

Our paper is related to the literature in two ways. First, Meyer (1994) and Ortega (2001) point

out the learning role of job rotation in �rms. They provide a justi�cation of job rotation, but both

authors narrow their studies within the boundary of a single �rm. As a step further, we apply

their insight in a competitive labor market model to study the e¤ect of within-�rm job rotation on

the external labor market. Papageorgiou (2011) is the only paper that studies the impact of job

rotation on the labor market but with a di¤erent focus. He pays more attention to the interaction

between tenure e¤ect and job reallocation within a �rm, while, in contrast, we focus on how the

internal labor market in the presence of job rotation a¤ects job allocation in the external labor

market. In his model, �rm sizes are exogenous rather than endogenously determined as in ours. In

addition, he uses a Pissarides-Mortensen model and introduces heterogeneous �rms, so the pricing

mechanism in his paper is Nash bargaining instead of wage posting, and the search is random

rather than directed.

Second, the directed search model we employe follows Montgomery (1991), Peters (1991),

Burdett, Shi and Wright (2001), and their later extension by Lester (2010) to the multi-vacancy
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case. Kaas and Kircher (2011) also study a directed search model with multi-vacancy �rms.

However, none of these papers can generate a relationship between �rm size, wage and labor

productivity that is in line with observations without introducing ex ante exogenously dispersed

random productivity1. In our model, the presence of learning and job rotation creates an ex post

heterogeneity among �rms and, therefore, generates a positive relation between wage and �rm

size. Shi (2002) introduces a frictional product market to overcome this problem. In his paper,

large �rms have more incentives to attract workers since they have a bigger share in the product

market and are anxious to produce enough output. Tan (2012) allows for local convexity in the

production function to generate a positive size-wage di¤erential. Yet, in our model, the production

function is concave.

The rest of this paper is organized as follows. We �rst set up the model and characterize the

unique symmetric equilibrium. Next, we derive the implications of our model and discuss the

result and compare them to the empirical evidence.

2 The Model

2.1 Setup

There are N workers and M �rms on the market, both of which are ex ante identical. Denote

� = M=N as the ratio of �rms to workers. Note that � does not represent the labor market

tightness since the number of vacancies is endogenous in this model. Following the literature, we

�rst consider the individual decision problem given N;M as �nite numbers, then we �x � and take

N;M to in�nity to approximate the equilibrium in a large labor market.

A match of a worker-job pair is good with probability � 2 (0; 1] and bad with a complementary
probability. If the match is good, we say the quality is 1, meaning that the worker-job match can

produce 1 unit of revenue; otherwise, it is 0. The match quality is initially unknown and learned

later. We assume the match quality is independent across jobs and workers, even within a multi-job

�rm.

The game has four stages: o¤er posting stage (I), job searching stage (II), learning and rotation

stage (III), and production stage (IV). At Stage I, the job posting stage, each �rm decides how

many vacancies to post, k, and at what wage level, w, where w is potentially a function of k. For

simplicity, we assume that they can create k 2 f1; 2g vacancies with cost C(k), thus the market
tightness, de�ned as the ratio of vacancies to workers, is � 2 [�; 2�]. Without loss of generality,

1In both Lester (2010) and Kaas and Kircher (2011), if �rms have homogenous productivity, the relation between

wage and �rm size is negative.
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we assume a convex cost function with C(1) = 0, C(2) = C, 0 < C < �. We assume that wage,

w 2 [0; 1], does not depend on any further information such as the realized number of applicants
and revealed match quality in Stage III. We assume a �rm can commit to the veri�able wage it

posts, and the �ring strategy, which may depend on the result of learning.2 Consequently, �rms

pay the �rst round of wages to all employees at Stage III and pay the second round only to the

remaining ones at Stage IV.

At Stage II, the job searching stage, each worker observes (k; wk) of every �rm and applies for

the �rms that o¤er the highest expected payo¤. We assume that workers can only apply to a �rm,

instead of a speci�c position in that �rm. If the number of workers that apply for a particular �rm

exceeds the number of vacancies posted, the �rm randomly hires just enough workers; otherwise

the �rm hires all applicants. Then the �rm assigns job positions randomly to employees. Hence,

a worker�s expected payo¤ from applying to a �rm is determined jointly by both the posted wage

and the probability of getting a job.

At Stage III, the learning and rotation stage, a �rm randomly assigns hired worker(s) to its

position(s) and pays the �rst round of wage. If possible, the �rm learns match qualities of all job-

worker pairs by switching workers to di¤erent working positions.3 In particular, a �rm with k jobs

and h employees, 1 � h � k, learns about the match qualities of all P kh = k!= (k � h)! possible
worker-job pairs, which have 2P

k
h possible realizations, and assigns workers to job positions to

deliver the highest revenue. A large �rm with k = 2 has the freedom to assign jobs to employee(s)

to derive the highest revenue, which creates a potential bene�t margin compared to a small �rm

(k = 1). For example, if a �rm posts 2 jobs, A and B, and hires 2 workers I and II, it can observe

the match qualities of pairs {(I; A), (I; B), (II; A), (II; B)}, with the value of, say, f1; 0; 0; 1g.
In this speci�c case, clearly the �rm shall let I do job A and II goes to B to earn 2 as the total

revenue, provided that the �rm pays 2w2 to workers. The job reallocation bene�t can be fully

described as follows. From the point of view of an employee hired by a two-job �rm, his match

quality state is s 2 fAB; �A �B;A �B; �ABg, where AB means his match quality is 1 with both job A
and B, and �A �B means 0 with each, and both A �B; �AB can be interpreted in a similar way. When

2The contract speci�es the wage at Stage III and Stage IV, conditional on workers being employed, and the �ring

rule contingent on revealed match qualities of all employed workers in the same �rm. Without loss of generality,

we focus on the contract space in which (1) the separation and job rotation rule is ex post incentive compatible,

and (2) wage is time-invarying. Speci�cally, a �rm commits to �ring unquali�ed and/or redundant worker(s), and

to paying all of its hired worker(s) the posted wage at Stage III, and paying all remaining worker(s) the same wage

at Stage IV. Since workers and �rms are risk neutral, the optimal contract in this particular form is also optimal in

a larger feasible contract set where �rms can pay time-varying wages, and need not �re unquali�ed and redundant

workers with positive probability.
3We assume that the rotating and learning process serves only to reveal the match qualities but does not generate

any production.
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two workers�states are
�
�AB;A �B

�
, the �rm can match between I and job B and II and job A.

Hence, the probability of overcoming one or two mismatch can generate extra revenue for a large

�rm. Tables 1 to 3 summarize all possible cases for k 2 f1; 2g.

Prob(s) � 1� �
Employee�s s A Ā

Total Payo¤ 1 0

Table 1: (k; h)= (1; 1)

Prob(s) �2 (1� �)2 � (1� �) � (1� �)
Employee�s s AB ĀB̄ AB̄ ĀB

Total Payo¤ 1 0 1 1

Table 2: (k; h)= (2; 1)

Employee I

Prob(sI) �2 (1� �)2 � (1� �) � (1� �)
Prob(sII) sIInsI AB ĀB̄ AB̄ ĀB

�2 AB 2 1 2 2

Employee II (1� �)2 ĀB̄ 1 0 1 1

� (1� �) AB̄ 2 1 1 2

� (1� �) ĀB 2 1 2 1

Table 3: (k; h)= (2; 2)

At Stage IV, the production stage, a �rm is given the option of �ring its employee(s), and then

production takes place depending on the match quality of each worker-job pair. A �rm with k

jobs pays every remaining employee another wk. By separating the unproductive pairs and �ring

associated workers, �rms can avoid paying extra wages.

2.2 Analysis

The solution concept we adopt is a symmetric rational expectations equilibrium (henceforth,

equilibrium), in which each �rm chooses to be a large one with the same probability and posts

the same contracts, and each worker applies to a large �rm with the same probability. We focus

on this equilibrium selection because it delivers a limiting matching technology that has all of

the properties required by the competitive model. However, as pointed out by Peters (2000), the

selection is interesting for its own sake. One implication of this restriction is that it forces mixed

strategy continuation equilibria, since in Stage I (II), �rms (workers) cannot predict exactly where

the other �rms (workers) are going in a mixed strategy equilibrium, which is compelling in the

large markets considered here. The idea that �rms (workers) should not be able to predict the

behavior of other �rms (workers) is much more convincing. The symmetric equilibria have the
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nice property that they can be interpreted as equilibria in which �rms (workers) choose the best

replies to the average behavior of the other �rms (workers) in the market (and in which �rms

(workers) guess this average correctly). In this sense they have the nice informational properties

of anonymous equilibria in the sense that workers can compute their best replies from aggregate

information about the market. We will solve the game backwards.

Stage IV: Production Stage. At the last stage, �rms �re workers when necessary. Speci�cally,

the optimal �ring choice of a �rm is to �re a worker in one of the two following situations: (1) the

worker is unquali�ed for any position in the �rm, or (2) two workers are quali�ed for the same

position and only one worker is enough to deliver the highest payo¤, 1. In the latter case, the �rm

will randomly �re one of the two workers. A small �rm will keep its only employee and pay the

wage if the match quality is 1, and �re the employee otherwise, so the probability of separation

is simply 1 � �. Alternatively, a large �rm with only one employee decides to keep her if she is

good at either one or two jobs, and to �re her if her match quality turns out to be 0 on both

jobs. In this case, the probability of a worker getting �red is (1� �)2. A large �rm with two

employees keeps both of them and pays wages if the total revenue of 2 can be received, and �re

the one(s) with 0 quality at both jobs. If the two workers are good at the same job and bad at

the other, one will be randomly selected and �red. Combined, the overall probability for either

one of the two workers losing her job is (1� �)2 + �2 (1� �)2. Given any history of Stage II the
job searching stage, which will be de�ned later, a �rm learns about match qualities of all possible

worker-job pairs in Stage III, and then, if possible, it assigns jobs to workers to yield the highest

revenue. Then we step back to Stage II and characterize the equilibrium in this subgame for any

given history in which �rms play symmetric strategies. Then, we will characterize each �rm�s o¤er

posting strategy given the strategies of workers.

Stage III: Learning and Rotation Stage. A �rm with k jobs and h employees, 1 � h � k,

learns about the match qualities of all possible worker-job pairs in this stage through the practice

of job rotation, and pays the promised wage w to employees regardless of the learning results. In

particular, for a small �rm with one job A and one employee, there are only two possibilities: the

employee is either good at the job or not. This employee receives the promised wage w at this

stage for sure, and she will receive the same w at the next stage if the match quality turns out to

be 1, or she will be �red and receive nothing. For the worker, her expected payo¤ at the beginning

of this stage is

V1 (�;w) = (1 + �)w;

where V1 (�;w) denotes the expected payo¤ to a worker in a small �rm with wage level w. De�ne

Fkh (�) the expected total revenue to a �rm with k vacancies and h employees, so

F11 (�) = �:
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A small �rm then takes away the rest, that is, F11 (�)� V1 (�;w) :
The only worker in a large �rm gets promised wage w in this stage, and she takes advantage

of job rotation, and in the next stage, she gets �red only when she is bad at both positions with

probability (1� �)2 < 1� �, so her expected payo¤ is

V21 (�;w) =
�
1 + 2�� �2

�
w

and the expected total revenue is also higher than that of a small �rm,

F21 (�) = 2�� �2 > F11 (�) ;

and the �rm takes away F21 (�)� V21 (�;w). If a large �rm has two employees, then the expected

total revenue is even higher,

F22 (�) = �2�4 + 4�3 � 4�2 + 4� > 2F11 (�) :

Observe that F22 (�) < 2F21 (�), so the marginal labor productivity in a large �rm is decreasing

in the number of employees. Now for the two workers, they will get �red for sure if they are bad

at both jobs, or with equal probability if they are only good at the same job. The payo¤ to each

worker is then

V22 (�;w) =
�
1 + 2�� 2�2 + 2�3 � �4

�
w;

and the �rm gains an expected pro�t F22 (�)� 2V22 (�;w) now that there are two workers.
Given the ex post incentive compatible separation and job rotation rule, and since there is no

strategic interaction at Stages III and IV, matched workers�and �rms�payo¤s are uniquely pinned

down by the contracts they signed. Hence, an equilibrium in our four-stage game is consistent

with an equilibrium in a reduced-form two-stage game that includes Stages I and II in the original

game, and the payo¤ is speci�ed as follows: in a small �rm with wage w, the worker�s payo¤ is

V1 (�;w), and the �rm�s is F11 (�) � V1 (�;w); in a large �rm with wage w and one worker, the

worker�s payo¤ is V21 (�;w), and the �rm�s is F21 (�) � V21 (�;w); in a large �rm with wage w

and two workers, both workers�payo¤s are equally given by V22 (�;w), and the �rm�s payo¤ is

F22 (�) � 2V22 (�;w). In the rest of this paper, we directly solve equilibria of this reduced-form
game as those of the whole game.

Stage II: Job Searching Stage. The realization of �rms�job posting at Stage I can be sum-

marized by a history vector H = ((kj; wj)
M
j=1) listing the number of vacancies and the wages of

all M �rms. Let H be the set of all possible H�s. In principle, a worker�s strategy is de�ned as


 : H ! [0; 1]M . Given a history H, a worker chooses a vector 
 such that (1) 
j is the probability

that he applies to �rm j 2 f1; 2; ::Mg and (2)
PM

j=1 

j = 1.
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Consider the problem of worker i who is deciding whether and to which �rm to apply. Firm

j posts kj positions and wage wj, for j 2 f1; 2; ::Mg. If kj = 1, �rm j promises its prospective

worker the expected payo¤ V1 (�;wj) = (1 + F11 (�))w
j; if kj = 2, the expected payo¤ depends

on how many workers �rm j eventually gets, and it is either V21 (�;wj) = (1 + F21 (�))w
j or

V22 (�;w
j) = (1 + F22 (�) =2)w

j. When the rest N � 1 workers play identical strategies 
, this
worker i chooses strategy 
̂ to maximize her expected utility( P

j s.t. kj=1 
̂
j
1(


j)V1 (�;w
j)

+
P

j s.t. kj=2 
̂
j [
21(


j)V21 (�;w
j) + 
22(


j)V22 (�;w
j)]

)
(1)

where 
1 (
j) stands for the probability that this worker is hired if she applies to �rm j which

posts kj = 1 positions, that is,


1(

j) =

�
1� 
j

�N�1
+
N�1X
n=1

�
(n� 1)!

n!(N � 1� n)!

� �

j
�n
(1� 
j)N�1�n 1

n+ 1
(2)

=
1

N
j
�
1� (1� 
j)N

�
;

if she is the only applicant, she gets the job for sure; otherwise all applicants get the job with equal

probability. The number of applicants at �rm j has a binomial distribution. Similarly, 
21 (
j) is

the probability that this worker is the only applicant at the large �rm j and gets a job for sure,


21(

j) = (1� 
j)N�1; (3)

and 
21 (
j) is the probability that this worker needs to work with someone else in the large �rm

j,


22(

j) =

N�1X
n=1

�
(n� 1)!

n!(N � 1� n)!

� �

j
�n
(1� 
j)N�1�n 2

n+ 1
(4)

=
2

N
j
[1� (1� 
j)N ]� 2(1� 
j)N�1:

A symmetric equilibrium at this stage is such that every worker chooses the same application

probability vector 
, and moreover, a worker applies to �rms of the same size and wage with equal

probabilities. Given any history H =
�
(kj; wj)

M
j=1

�
, 
� (H) is the symmetric solution if 
� (H)

is a solution to (1) and 
�j (H) = 
�l (H) if (kj; wj) =
�
kl; wl

�
, j 6= l. As mentioned before, we

require symmetry across all workers�behavior to ensure an equilibrium that consists of only mixed

strategies. In a large market, it is impossible for an individual worker to be fully informed about

other workers�job application choices; therefore, modeling it by a mixed-strategy equilibrium is
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more plausible. More important, we assume that a worker applies to �rms with identical (k; w)

to ensure the anonymity of �rms in that workers distinguish between �rms only by their sizes and

posted wages instead of their names, j. This plays the role of search friction in our model. The

symmetry is preserved when we take M and N to in�nity.

To model a large market, we will follow the literature and let M ! 1 and N ! 1 such

that � = M=N remains constant. De�ne � (k; w) = limM!1

�PM
j=1 1f(kj ;wj)=(k;w)g

�
=M . At the

limit, a history is described by an o¤er distribution �. De�ne the queue length at �rm j as

qj = limN!1 

jN . Using (2), (3) and (4), it is straightforward to establish the hiring probabilities

as functions of queue lengths at the limit. If �rm j posts one vacancy, then


1(q
j) =

1

qj

�
1� e�qj

�
;

otherwise, �rm j decides to become a large �rm and posts two job openings,


21(q
j) = e�q

j

;


22(q
j) =

2

qj

�
1� e�qj � qje�qj

�
:

In a symmetric equilibrium, given � (k; w), all workers play an identical strategy and receive the

same and highest utility level denoted as U . Speci�cally, a worker applies to a small �rm j with

positive probability only if


1(q
j)V1

�
�;wj

�
= U ; (5)

similarly, a worker applies to a large �rm j with positive probability only if


21(q
j)V21

�
�;wj

�
+ 
22(q

j)V22
�
�;wj

�
= U: (6)

Here, U is referred to as the market utility level in the literature. Solving these two equations

gives qj�s as functions of wj and U . Dropping �, de�ne Q1 (U;wj) as the greater value between the

unique qj as the solution to (5) and zero; de�ne Q2 (U;wj) by doing the same to (6). Combined,

we have Qkj (U;wj), which determines the equilibrium queue length at �rm j with (kj; wj), when

the market utility is U .

De�nition 1. Given an o¤er distribution � (kj; wj), a symmetric equilibrium of the Stage II game
is characterized by (qj; U) such that

1. qj = Qkj (U;wj) for all j, and

2.
R
Qkj (U;w

j) d� (kj; wj) = 1=�.
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Hence, workers are indi¤erent between applying to any �rm j as long as qj > 0. At the same

time, zero queue length implies that this �rm cannot provide the market utility level to workers.

Stage I: O¤er Posting Stage. Now take one step back and consider a �rm�s problem at the limit.

Expecting the form of Qk (U;w) and U , �rm j�s strategy is to choose a probability distribution �j

over f1; 2g�R+, where �j (k; w) is the probability that �rm j posts k vacancies and a wage w. If
the �rm posts a single vacancy, it chooses w1 to maximize the expected pro�t,

��1 (U) = max
w1

f�1 (U;w1) = �1 (Q1 (U;w1)) (F11 (�)� V1 (�;w1))g ; (7)

where �1 (q1) = q1
1 (q1) = 1�e�q1 is the probability that a small �rm successfully hires a worker
at in�nity, and F11 (�) � V1 (�;w1) is the expected pro�t to the �rm. The market utility level U
is taken as given, and the �rm can attract applicants only if it can provide U level of expected

utility to its potential worker(s). At the same time, the representative �rm solves the problem

associated with a large one,

��2 (U) = max
w2

(
�2 (U;w2) =

"
�21 (Q2 (U;w2)) [F21 (�)� V21 (�;w2)]

+�22 (Q2 (U;w2)) [F22 (�)� 2V22 (�;w2)]� C

#)
(8)

where �21 (q2) = q2
21 (q2) = q2e�q2 is the probability that a large �rm gets only one applicant,

and �22 (q2) = (q2=2)
22 (q2) = 1� e�q2 � q2e�q2 is the probability it gets at least two applicants
and therefore two employees. De�ne

�� (U) = max f��1 (U) ; ��2 (U)g : (9)

Naturally, to get coexistence of both small and large �rms, it requires that �� = ��1 = �
�
2, which

is feasible in certain parameter subspaces.

De�nition 2. A symmetric equilibrium of the Stage I game consists of a distribution �� (k; w), a

market utility level U�, and queue lengths qj, satisfying

1. �j (k; w) = �� (k; w),

2. �kj (U�; wj) = �� (U�) if d�� (kj; wj) > 0,

3. �kj (U�; wj) � �� (U�) if d�� (kj; wj) = 0,

4. (qj; U�) is the equilibrium of the job application game.

Equilibrium Characterization. In the following proposition, we show that in the unique equi-

librium, the only realized history contains identical small �rms and/or identical large ones: in a
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small �rm�s contract, the proposed wage is w�1, in a large �rm�s contract, it is w
�
2, and the asso-

ciated equilibrium queue lengths in small and large �rms are q�1 and q
�
2, respectively. Let �

� be

the equilibrium probability of becoming a small �rm. As a result, the proportion of small �rms

is � (1; w�1) = �
�, and � (2; w�2) = 1 � �� for large ones. Since workers play a symmetric strategy,

they will ignore �rms�identity if they proposed the same contract. Hence, we can use �� as the

probability of applying to the group of small �rms, and 1 � �� to the large �rms. Immediately,
we have

�� = ���q�1;

1� �� = � (1� ��) q�2;

where �� is the equilibrium probability that a �rm becomes a small �rm. Given the equilibrium

queue lengths q�1 and q
�
2, (�

�; ��) can be uniquely pinned down. Combining all of the four stages,

we can characterize the equilibrium in the following proposition.

Proposition 1. There exists a list of functions: c (�) 2 (0; �), � (C; �) > 0, and �� (C; �) > 0.

Fix a set of parameters (�;C; �) such that C 2 (c (�) ; �) and � 2
�
� (C; �) ; �� (C; �)

�
. There

exists a unique equilibrium in which large �rms and small ones coexist. The equilibrium can be

characterized by a list of functions (��; w�1; w
�
2; �

�) such that: There exists a unique pair of (q�1; q
�
2),

the queue lengths at a small �rm and at a large one, and (��; ��) 2 (0; 1)� (0; 1) such that

�� =
q�2 � 1=�
q�2 � q�1

; �� = �q�1�
� =

�q�1 (q
�
2 � 1=�)

q�2 � q�1
; q�2 > q

�
1 > 0;

and the wages in small and large �rm markets are given by

w�1 =
F11 (�) q

�
1e
�q�1

(1 + F11 (�)) (1� e�q�1 )
;

w�2 =
F21 (�) + q

�
2 [F22 (�)� F21 (�)]

1 + F21 (�) + (eq
�
2 � 1� q�2) (F22 (�) + 2) =q�2

.

If C; � and/or � lie outside the speci�ed region, which can be decomposed into three regions,

there is no heterogeneity in realized �rm sizes. The intuition behind these three situations is

simple. If C 2 (c (�) ; �) and � is either too small or too large, �rms are also the same size. When
� is too small, there are so few �rms in the market relative to workers such that it is easy to hire

two workers and to take advantage of job rotation. In equilibrium, no �rm chooses to become a

small one. Similarly, when � is too large, there are so many �rms and vacancies that it is not only

costly to post an extra vacancy, but also hard to �ll both of them in a large �rm. In equilibrium,

no �rm wants to be a large one. The coexistence of small and large �rms is only possible when

11



C is high enough compared to �, and � 2
�
� (C; �) ; �� (C; �)

�
. The region in which C � c (�)

corresponds to the case of U� � � = F11 (�), and the market utility is so high that a small �rm
cannot earn a positive pro�t. As a result, in this region, all �rms are the same size. There are

two possible cases here: either all �rms choose to randomize between being large and not entering

by paying an unacceptable wage, or all �rms choose to randomize between being small and not

entering. The outcome relies on the value of �. Neither of these two possibilities is of interest.

In the following subsection, we focus on the coexistence case and characterize the impact of job

rotation on labor market variables.

2.3 Implications

In this subsection, we look at the implications of the unique symmetric equilibrium. The model

simultaneously gives predictions on relationships between �rm size and productivity, separation

rate, wage, which are roughly in line with empirical �ndings.

Size and Job Rotation Rate. In our model, the job rotation rate is trivially increasing in �rm

size. We can generalize our model one step further and allow �rms to post 1; 2; ::; K vacancies.

Now that a larger �rm can overcome the mismatch loss even more via reassignment of jobs, a

higher rotation rate will appear. This is consistent with the empirical �nding of Papageorgiou

(2011). We will see how this higher job rotation bene�t of larger �rms a¤ects the labor market.

Size and Labor Productivity. The average labor productivity of a small �rm is simply F11 (�) =

�, and that of a large �rm is a convex combination �22F (�; 2; 2)=2+�21F (�; 2; 1), which is greater

than � since F (�; 2; 2) > 2� and F (�; 2; 1) > � for any � 2 (0; 1). As stated before, the marginal
labor productivity of a large �rm is decreasing in size measured as the number of employees,

F (�; 2; 2) < 2F (�; 2; 1), and therefore the production function of a large �rm is concave in labor.

Size and Separation Rate. In a recent empirical work, Papageorgiou (2011) analyzes the Survey

of Income and Program Participation data, and �nds that workers in larger �rms are less likely to

be separated from their �rms even conditional on workers�wages. In our paper, for tractability,

we assume that after a �rm learns the quality of all possible matches between its workers and

positions, it has the option to �re incapable employees and create separations. Due to the job

rotation feature, large �rms have a lower overall separation rate than small �rms in our model. In

particular, given the speci�c form of contract, as discussed in the previous section, workers in small

�rms su¤er a separation rate at rS1 = 1� � in Stage IV, and those in large �rms working without
or with co-workers face the separation rate at rS21 = (1� �)

2 or rS22 = (1� �)
2 + �2 (1� �)2. It is

obvious that rS21 < r
S
22 < r

S
1 for any � 2 (0; 1). Therefore, we have the following result established.

Proposition 2. The separation rate in a large �rm is smaller than that in a small �rm.

12



Size and Wage Di¤erential. In standard directed search models with multi-vacancy �rms, it

is well known that small �rms always post higher wage in the unique equilibrium4. However,

this contradicts the observations on the labor market;5 it is the large �rms that pay higher wages

to workers. In our model, large �rms have the opportunity to reallocate workers over jobs and

partially overcome the mismatch between workers and jobs. This job rotation feature creates two

simultaneous forces that drive the size-wage di¤erential in di¤erent directions. The �rst e¤ect

lies in the increased expected productivity of large �rms. When their expected productivity is

higher, large �rms may be able and willing to pay higher wages to their workers, which makes

their job o¤ers more attractive to workers. The second e¤ect is due to the reduced job sep-

aration rate in large �rms. Lower unemployment risk in large �rms works together with the

�rst e¤ect to pull up the expected utility that large �rms promise to their applicants, that is,

V2 = (
21V21 + 
22V22) = (
21 + 
22) > V1. However, the smaller separation rate can potentially

push wages down. Taking both e¤ects into consideration, we claim that, when the mismatch risk is

high compared to the extra cost of becoming a large �rm, large �rms can provide higher promised

utility; and when the mismatch risk is even higher so that the �rst e¤ect dominates, large �rms

pay higher wages.

Result 1. Large �rms o¤er lower wages than small �rms if there is no mismatch, � = 1. For

any � 2 (0; 1), there exists a �c (�) 2 (c (�) ; �] such that for any C 2 (c (�) ; �c (�)), V2 > V1.

Furthermore, when � and C are small enough, there exist a set of (�; C) such that w�2 > w
�
1.

We provide a numerical illustration of this result due to di¢ cult derivation of an analytical

proof. In Figure 1, we illustrate how w1=w2 and V1=V2 depend on C and �. When � = 1, we

replicate the result of a standard directed search model with multi-vacancy �rms, simply because

there is no risk of mismatch. In this case, large �rms o¤er lower wages for any positive C. When

� is small, it is possible to obtain the wage premium of large �rms. The intuition is as follows.

Smaller � implies a higher probability of mismatch and, consequently, a greater job rotation bene�t

and a higher wage premium; thus the wage premium is decreasing in �. There are four relevant

regions. Region I corresponds to the case of C � c (�) ; which is not of interest. In region II, C is
relatively high so becoming a large �rm is costly, and � is large and the advantage of rotation is

limited; thus, small �rms provide more promising o¤ers in the equilibrium, V1 > V2. In region III,

(�; C) is moderate and the advantage of rotation raises large �rms�expected productivity so that

their o¤er become more attractive than those of small �rms�, and V2 > V1. However, since workers

in large �rms face smaller unemployment risk, when (�; C) belongs to this region, to provide higher

4See the discussion in Shi (2002) and Tan (2012).
5For example, Brown and Medo¤ (1989) and Oi and Idson (1999) point out that there exists a positive size-wage

di¤erential in the labor market.
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Figure 1: Decomposition of (�; C)-space. I: C � c (�), no co-existence of �rms of two sizes. II

V1 > V2 and w1 > w2. III V1 < V2 and w1 > w2. IV V1 < V2 and w1 < w2.

expected utility, large �rms do not need to pay high wages, so w�2 < w
�
1. In region IV, (�; C) is

small enough, and the di¤erence in unemployment risk is limited, hence w�2 > w
�
1.

For standard directed search models to generate a positive correlation between �rm size and

wage, an exogenous productivity di¤erence is required. In particular, Kaas and Kircher (2011) and

Lester (2010) assume that �rms randomly draw their productivity levels from a pre-determined

distribution before they enter the labor market, and high productivity �rms decide to be large and

low productivity �rms choose otherwise. If the ex ante distribution of productivity is dispersed

enough, this technology di¤erence can overcome the frictional e¤ect of coordination failure and can

generate a reasonable size-wage di¤erential. In their models, large �rm size and a wage premium

are the consequence of high productivity. Our model suggests a somewhat reversed direction of

such a relationship: even with ex ante homogeneity assumed, large �rms may emerge, taking

advantage of the opportunity of job rotation, which in turn induces high productivity and a wage

premium.

Size and Vacancy Yield.6 Let �k be the equilibrium vacancy yield of �rms posting k vacancies,

which is the probability of �lling a position in these �rms. In our benchmark model, we have

�1 = �1 (q
�
1), 2�2 (1� �2) = �21 (q

�
2), and (�2)

2 = �22 (q
�
2). In other words, �2 = �22 (q

�
2) +

�21 (q
�
2) =2. Our simulation implies that the equilibrium vacancy yield is greater in large �rms

for any � 2 (0; 1] and C 2 (c (�) ; �). This is a typical result in directed search models, for

example, Lester (2010), because wages play an allocative role in the workers�application decision.

However, in comparison to a model without the opportunity of job rotation, � = 1, our model here

predicts a greater disparity between the vacancy yields of �rms with one vacancy and those with

6We thank an associate editor for encouraging us to investigate this issue in our framework.
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multiple vacancies, i.e., the di¤erence between �2 and �1 is ampli�ed as � becomes smaller. This

is inconsistent with the empirical relation between vacancy yield and �rm size. We believe our

implication on the relation between vacancy yield and �rm size is inconsistent with the empirical

evidence because of an important factor argued by Davis, Faberman, and Haltiwanger (2010),

a heterogeneity in job recruiting standard across �rms with di¤erent sizes, is missing in most

directed search models including ours. In practice, �rms are heterogeneous in terms of size before

they make wage posting and hiring decisions, workers also have both unobservable and observable

heterogeneities, and therefore, this two-sided ex ante heterogeneity may induce heterogeneous

hiring standards across �rms. Since our model is static and all vacancies and workers are assumed

to be ex ante homogeneous, this preexisting heterogeneity cannot be captured. Introducing two-

sided heterogeneity into a directed search model is not tractable. To avoid this intractability and

to capture the idea of a heterogenous job recruiting standard, in the extension section, we consider

the possibility that large �rms have a di¤erent job recruiting standard from small �rms, and show

that a negative relation between �rms size and vacancy yield can be generated.

3 Extensions and Discussions

Informative Interview. In our main model, we assume vacancies are ex ante homogeneous across

�rms. Now we extend our main model to investigate the possibility that large �rms have a di¤erent

job recruiting standard from small �rms. Suppose a large �rm, by paying an extra cost, can a¤ord a

more sophisticated human resources department and, therefore, can draw an informative but noisy

signal about the match quality between potential employees and their positions. We introduce a

heterogeneity of interview technology among �rms of di¤erent sizes to capture the idea, proposed

by Davis, Faberman, and Haltiwanger (2010), that large �rms have higher job recruiting standards

than small �rms. To simplify the analysis, we focus on the following signal generating technology.

If a worker is good at neither position, a bad signal is realized with probability 1 � �; where
� 2 (0; 1) :7 Hence, conditional on being matched with a large �rm, the probability that a worker
passes the interview is

� = 1� (1� �)2 (1� �) < 1;
7We assume that large �rms cannot acquire workers�match quality information position by position, which

implies that �rms will randomly allocate a quali�ed employee over positions. Since our interest is not in studying

the e¤ect of interviews on �rms� job assignment to new workers, we believe this assumption does not lose any

generality.
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which is close to zero when �; � ! 0. If a worker passes the interview, his posterior of being good

at each position is given by

�� =
�

�+ (1� �) (� + � (1� �)) 2 (�; 1):

Similar analysis yields the equilibrium wages w�1 in small �rms and w
�
2 (��)

8 in large ones, and

vacancy yields in small and large �rms are given by

�1 = �1;

�2 = � (�22 + �21=2) :

When � is small (the signal is precise), large �rms are very selective, and therefore, the vacancy

yield in large �rms can be smaller than that in small �rms. Figure 2 shows some numerical

examples. For small � and C, when � is small, �2 < �1, and w�1 < w
�
2. Since a match is good with

probability �� > � in large �rms, both the productivity di¤erence and the separation rate di¤erence

between large �rms and small �rms are ampli�ed. On the other hand, the interview e¤ect will

decrease the possibility of job rotation. However, in our model, since the job rotation rate in small

�rms is always zero, our prediction on the relation between job rotation rate and �rm size still

holds.

We assume that large �rms can only draw signal from matched workers. What if they could

draw signals from all applicants? The result will not change qualitatively. The reason is as follows.

In equilibrium, a large �rm faces �nitely many applicants. Even though there are more than 2

applicants, the probability that the �rm cannot hire enough workers is always positive if � 2 (0; 1).
When both � and � are small, the vacancy yield can be arbitrarily small. Hence, our prediction

on the relation between vacancy yield and �rm size still holds.

Contract Forms. In our model, we assume �rms can only commit to a time-invarying wage.

The time-invarying wage assumption is without loss of generality because (1) the goal of this

exercise is to explain the cross-sectional empirical link between �rm sizes and wages, instead of

comparing the dynamics of wages paid by �rms of various sizes, and (2) the optimal contract

in this restricted domain is also an optimal contract in the contract space where wage can be

time-varying.

Time Consuming Learning. In our model, �rms immediately learn workers�match quality in

all positions. The only cost of learning is the �rst period wage paid by �rms. In practice, learning

is time consuming, and the time for learning is increasing in the number of objects. As a result, it

seems more reasonable to assume that a large �rm needs more time to learn its employees�match

8The wages in large �rms, w�2 (��) is obtained by replacing � by �� in the expression of w
�
2 in Proposition 1.
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Figure 2: Vacancy Yield and Wage Ratio at Di¤erent �; C; and �.

quality in both vacancies than a small �rm, which will weaken the advantage of job rotation in

large �rms. However, when � is small, the job rotation e¤ect is strong enough to overcome this

heterogenous learning e¤ect. Consequently, our results still hold.

4 Conclusion

We modi�ed a standard directed search model to explain the size-wage di¤erential observed

in the labor market, highlighting the e¤ect of the practice job rotation. However, in contrast to

the standard directed search model with multi-vacancy �rms, our modi�ed model can generate a

positive correlation between �rm size and wage without introducing any ex ante exogenous produc-

tivity heterogeneity or imposing any non-concave production function assumptions. We assume

ex ante homogeneous �rms and workers and initially unknown match quality that determines la-

bor productivity. Firm sizes are endogenously determined. By paying an extra cost, a large �rm

bene�ts from the opportunity of rotating workers so as to partially overcome the loss of mismatch.

As a result, in the unique symmetric equilibrium, large �rms have higher labor productivity and

wages, and a lower separation rate. In future research, we would like to study the interaction

between internal labor markets and external labor markets in a fully dynamic model.
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Appendix

Proof of Proposition 1. By (5), we have

w1 =
q1U

�

(1 + �) (1� e�q1) for q1 > 0;

and w1 is not well-de�ned when q1 = 0. So there is a one-to-one and negative relation between w1
and q1 when q1 > 0. The maximization problem (7) is therefore equivalent to the following,

��1 = max
q1>0

f��1 (q1)� q1U�g (10)

Similarly, by (6), we have

w2 = U
�
�
e�q2 (F21 (�) + 1) +

1

q2

�
1� e�q2 � q2e�q2

�
(F22 (�) + 2)

��1
for q2 > 0

So the problem of (8) can also be re-written so that q2 is the control variable,

��2 = max
q2>0

f�21 (q2)F21 (�) + �22 (q2)F22 (�)� q2U� � Cg : (11)

The �rst-order conditions to (10) and (11) are

U� � �e�q1 ; (12)

U� � e�q2F21 (�) + q2e
�q2 (F22 (�)� F21 (�)) ; (13)

where the equalities hold when q1; q2 > 0. We focus on the situation where both small and large

�rms coexist, so we combine (12) and (13) at equalities and obtain the necessary condition for

interior solutions (q�1; q
�
2) ;

q�1 = q
�
2 � ln

�
1

�
[F21 (�) + q

�
2 (F22 (�)� F21 (�))]

�
; and q�1 > 0: (14)

This also implies that q�2 > q
�
1. Moreover, the necessary condition for coexistence requires �

� =

��1 = �
�
2, which implies

�
�
1� e�q�1 � q�1e�q

�
1
�

=
�
1� e�q�2 � q�2e�q

�
2
�
F22 (�)� (q�2)

2 e�q
�
2 (F22 (�)� F21 (�))� C: (15)

These two equations give the unique solution (q�1; q
�
2) when it exists. Then (w

�
1; w

�
2) can be expressed

as functions of (q�1; q
�
2) by using (5), (6), (12) and (13). Q.E.D.
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