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Abstract

This paper examines many-player many-action global games with multidimensional

state parameters. It establishes that the notion of noise-independent selection introduced

by Frankel, Morris and Pauzner (Journal of Economic Theory 108 (2003) 1- 44) for one-

dimensional global games is robust when the setting is extended to the one proposed by

Carlsson and Van Damme (Econometrica, 61, 989-1018). More precisely, our main result

states that if an action profile of some complete information game is noise-independently

selected in some one-dimensional global game, then it is also noise-independently selected

in all multidimensional global games.

Keywords: equilibrium selection, global games, strategic complementarities, robustness.

Journal of Economic Litterature: Classification Numbers: C72, D82.

∗I am very grateful to Sylvain Chassang, Laurent Mathevet, Stephen Morris, Daisuke Oyama, Olivier

Tercieux and Nicolas Vieille for helpful comments and suggestions. Of course, all errors or omissions are mine.
†University of Cergy-Pontoise, THEMA, F-95000 Cergy-Pontoise, e-mail: marion.oury@u-cergy.fr, tele-

phone number: +33 1 34 25 22 57.

1



1 Introduction

The global games framework, first proposed in Carlsson and Van Damme [2] (henceforth

”CVD”) for two-player two-action games, has been widely used to predict behaviour in games

with strategic complementarities1. A global game extends a complete information game g by

a payoff function u that depends on an additional state parameter t. In this approach, each

agent receives a noisy private signal about the true state. Hence, at equilibrium, he’s uncertain

not only about his own payoff function but also -and more importantly- about other agents’

beliefs and behavior. CVD’s first result is that the set of rationalizable strategies shrinks to a

unique equilibrium as the noise in private signals vanishes. They also established, as a second

result, that the selected equilibrium is to play the risk-dominant strategy (Harsanyi and Selten

[4]). Frankel, Morris and Pauzner [3] (henceforth ”FMP”) extended CVD’s approach to many-

player many-action games with strategic complementarities by showing that as the amplitude

of the noise goes to zero, the limit uniqueness result of CVD holds: agents coordinate on some

action profile that is a Nash equilibrium of the complete information game g. Nevertheless,

in contrast with CVD, they restrict their analysis to settings where the state parameters

belong to the real line and assume that actions are linearly ordered so that higher states lead

to higher actions. Such an assumption is restrictive since agents involved in such complex

coordination problems as speculative attacks often have to examine not only one but several

criteria. In addition, the one-dimensional setting implies in particular that if the switch from

one state to another gives to one agent an incentive to play a higher action, then it must also

be the case for all the other agents. Yet, in most economic applications, it is not possible

to exclude that different agents may focus on different criteria. In other terms, restricting to

one-dimensional settings may imply too much homogeneity among the agents.

Regarding the second result of CVD, FMP provide a counter-example which shows that,

unfortunately, in many-player many-action games, the selected action profile may depend on

the fine details of the noise distribution. They thus define the notion of noise-independent

selection: an action profile is said to be noise-independently selected at some state parameter

if it is played at this state parameter regardless of the noise structure. Not being noise-

independent is a weakness for a given selection since the global games approach considers

situations where the noise shrinks to zero : in general, there is no specific rationale for

1For a survey of the applied literature, see Morris and Shin [6] and Morris [5].
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choosing a noise structure rather than another. In a recent contribution, Basteck, Daniels and

Heinemann [1] provide several positive results on the notion of noise-independent selection.

First, they show that it is an intrinsic property of a complete information game : if a game

of strategic complementarities is noise-independent under one (one-dimensional) global game

embedding then it is also noise-independent under every other (one-dimensional) global game

embedding. Second, they give simple sufficient conditions for noise-independent selection. In

particular, they show that if an equilibrium is ”robust to incomplete information”, as defined

by Kajii and Morris [5], then it will be noise-independently selected2. They also establish

that the global game selection in a complete information game g may be noise-independent

if g can be suitably decomposed into smaller noise-independent games. This result gives a

simple tool to extend binary action environments to many-action games.

The present paper considers a setting generalizing both the framework of CVD and that

of FMP: the complete information game g has an arbitrary number of players and actions

and the state parameter t is multidimensional. In addition, in contrast with FMP, it is not

assumed that for each state parameter t in the support of the prior distribution, the complete

information game associated with t is supermodular. Our main result shows the coherence

and robustness of the notion of noise-independent selection: if the action profile a? is noise-

independently selected in one-dimensional global games, then it is also noise-independently

selected in all multidimensional global games.

2 Setting and Definitions

In this paper, we consider games with a finite set of players I, who have finite and linearly

ordered action sets Ai∈I . We write C for the cardinal of the set ∪i∈IAi. We define the joint

action space A as Πi∈IAi and write A−i for Πj 6=iAj . We say that a = (ai)i∈I ∈ A is weakly

greater than a′ = (a′i)i∈I ∈ A if ai ≥ a′i for all i ∈ I and write a ≥ a′.
2In 2 × 2 games, the risk-dominant equilibrium is robust. Characterizations for more general games have

been given by Morris and Ui [8] and Oyama and Tercieux [9]. A heuristic argument establishing that robustness

implies noise-independence may be found in Morris and Shin [7]. Oyama and Takahashi [10] showed recently

that noise-independent selection (for one-dimensional global games) does not imply robustness.
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2.1 N-dimensional Global Games

Fix N ≥ 1. For all x ∈ RN , we write ||x|| for the euclidean norm of x and for each µ > 0,

we write Bµ(x) for the closed ball of radius µ around x. A global game Gν(u, φ, ψ) is an

incomplete information game where payoffs depend on a random variable t ∈ RN , called the

state parameter, which is distributed according to a continuous density ψ, called the prior

distribution. The individual payoffs are given by ui(ai, a−i, t), where ai denotes i’s action

and a−i denotes the opposing action profile. They are assumed to be continuous in the state

parameter t. φ is a tuple of atomless densities that we refer to as the noise structure. Each

player i ∈ I observes a N -dimensional private signal xi = t + νηi about t, where ν > is a

scale factor and ηi an error that is distributed according to the density φi whose support is

a subset of B
1
2 (0). The random variables {t, η1, . . . , ηI} are independently distributed.

A strategy for player i is a measurable function si : RN → Ai and a strategy profile s is

a tuple of such strategies, s = (si)i∈I . A strategy profile s is increasing if each component si

is increasing and left (right)-continuous if each si is left (right)-continuous. If x is a tuple of

signals (xi)i∈I , then s(x) denotes the action profile (si(xi))i∈I . Slightly abusing notation, for

x ∈ R, we also denote the action profile given by (si(x))i∈I by s(x). We say that the strategy

profile s is weakly greater than the strategy profile s′ if s(x) ≥ s′(x) for all x ∈ R and write

s ≥ s′.

As in FMP, our main solution concept is iterative strict dominance. First we eliminate

pure strategies that are strictly dominated, as rational players will never pick (i.e., put positive

weight on) such strategies. Then we eliminate a player’s pure strategies that are strictly

dominated if her opponents are known to mix only over the pure strategies that survived the

prior round of elimination; and so on.

2.2 Embedding a Complete Information Game in a Global Game

Let a complete information game g be specified by its payoff function gi∈I(ai, a−i) with gi :

A→ R for each player i. For each i ∈ I, ai, a
′
i ∈ Ai and a−i ∈ A−i, we note ∆gi(ai → a′i, a−i)

for the difference in payoff of player i from playing a′i versus ai when the action profile of his

opponents is a−i, that is,

∆gi(ai → a′i, a−i) = gi(a
′
i, a−i)− gi(ai, a−i).
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A game g is a game of strategic complementarities if greater opposing action profiles make

greater action more appealing, or more precisely, if for all i, ai ≥ a′i and a−i ≥ a′−i,

∆gi(ai → a′i, a
′
−i) ≥ ∆gi(ai → a′i, a−i).

We say that the global game Gν(u, φ, ψ) embeds the complete information game g at state

parameter t? if there exist t̃? ∈ [0, 1] and a continuous function θ : [0, 1] → RN such that (i)

θ(t̃?) = t? and (ii) the four assumptions below are satisfied.

By a slight abuse of notation, for each µ > 0, we write Bµ(Θ) for the set of y ∈ RN such

that there exists t̃ ∈ [0, 1] with: ||y − θ(t̃)|| ≤ µ.

Assumption 1. There exists µ̄ > 0 such that for all state parameters t ∈ Bµ̄(Θ), ψ(t) > 0.

Assumption 2. For all t ∈ Bµ̄(Θ), the complete information game associated with the payoff

function u(·, t) is a game of strategic complementarities.

For each player i, write uθi : A×[0, 1]→ R for the function defined by uθi (a, t̃) = ui(a, θ(t̃)),

for all a ∈ A and t̃ ∈ [0, 1].

Assumption 3. The payoff function uθ satisfies strict monotonicity. That is, there is a

K > 0 such that for all i, a−i, ai < a′i and t̃, t̃′ ∈ [0, 1] with t̃′ > t̃,

∆uθi (ai → a′i, a−i, t̃
′)−∆uθi (ai → a′i, a−i, t̃) ≥ K(t̃′ − t̃).

Assumption 4. Extreme values of t̃ make the extreme actions dominant choices. More

precisely, there exists L such that if t̃ < L then, for each player i, each action ai \minAi and

each action profile a−i ∈ A−i,

∆uθi (ai → minAi, a−i, t̃) > 0.

Symmetrically, if t̃ > 1− L then, for each player i, each action ai \maxAi and each action

profile a−i ∈ A−i,

∆uθi (ai → maxAi, a−i, t̃) > 0.

2.3 Noise-Independent Selection in One-dimensional Global Games

In this subsection, we assume that N = 1. In this specific case, it is easily checked that the

framework presented in Subsection 2.2 is equivalent to the one proposed by FMP and their

main result applies:
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Theorem 1 (FMP, Theorem 1). The global game Gν(u, φ, ψ) has an essentially unique

strategy profile surviving iterative strict dominance in the limit as ν → 0. More precisely,

there exists an increasing pure strategy profile s? such that if, for each ν > 0, sν is a pure

strategy profile that survives iterative strict dominance in Gν(u, φ, ψ), then for each player i,

limν→0 sν,i(xi) = s?i (xi) for all xi, except possibly at the finitely many discontinuities of s?i .

We also recall the definition that FMP introduced for noise-independent selection.

Definition 1. We say that the action profile a? is noise-independently selected at some state

parameter t? if s?(t?) = a?, regardless of the noise structure φ.

FMP established that s? does not depend on the prior distribution ψ. In addition, Basteck,

Daniels and Heinemann [1] showed that the global game selection is independent of the

payoff function u of the global game embedding. Consequently, noise-independence (for one-

dimensional global games) is an intrinsic property of a complete information game.

3 Main Result

When N > 1, the argument of FMP for limit uniqueness does not hold and we cannot use

the strategy profile s? for the definition of noise-independence. Hence, we adopt instead the

following equivalent formulation.

Definition 2. We say that the action profile a? is noise-independently selected in N-dimensional

global games embedding the complete information game g if for each N-dimensional global

game Gν(u, φ, ψ) embedding g at a state parameter t?, there exists ν̄ > 0 such that for

each ν < ν̄ and each strategy profile sν surviving iterative strict dominance in Gν(u, φ, ψ),

sν(t?) = a?.

We now state our main result.

Theorem 2. If the action profile a? is noise-independently selected in 1-dimensional global

games embedding the complete information game g, then a? is also noise-independently se-

lected in N-dimensional global games embedding g for all N > 1.
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4 Proof

Fix N > 1, a N -dimensional global game Gν(u, φ, ψ) and a parameter function θ : [0, 1] →

RN . We note Eν(∆ui(a
′
i → ai)|xi, s−i) for the expected difference in utility of player i

from playing ai versus a′i against the strategy profile s−i when he receives the signal xi in

Gν(u, φ, ψ). We will also use the notation Pν(F |xi) (resp. Pν(F |t)) to refer to the probability

of an event F conditional on the signal xi (resp. the state parameter t).

Let us write V for the set of unit vectors v ∈ RN . For any v ∈ V and d ∈ R, we set:

L(v, d) = {y ∈ RN |y.v = d},

where the symbol · denotes the dot product in RN . Moreover, for each player i, we let the

density function φvi : [−1
2 ,

1
2 ] → R+ be such that for all d ∈ [−1

2 ,
1
2 ], φvi (d) is the density of

probability associated with the event ηi ∈ L(v, d). We note Φv
i for the distribution function

associated with φvi .

For each unit vector v ∈ RN , we write Gθ(ν, v) for the one-dimensional global game

associated with the noise structure (φvi )i∈I , the payoff function (uθi )i∈I , the scale factor ν and

where the payoff parameter t is drawn uniformly from the interval [0, 1]. In addition, applying

FMP’s main result, we note s?θ(v) for the essentially unique strategy profile surviving iterative

strict dominance in Gθ(ν, v) as the noise shrinks to zero. Notice that if action profile a? is

noise-independently selected in one dimensional global games at state parameter t̃?, then for

each unit vector v, s?θ(v) takes the value a? at t̃?. Consequently, Theorem 2 directly follows

from Theorem 3 below.

Theorem 3. Let t̃? ∈ [0, 1] and a? ∈ A be such that for all unit vectors v, s?θ(v) takes the

value a? at t̃?. Then, there exists ν? > 0 such that for each ν < ν?, each pure strategy profile

sν surviving iterative strict dominance in Gν(u, φ, ψ) must satisfy sν(θ(t̃?)) = a?.

Proof. We will establish that there exists ν? > 0 such that for each ν < ν?, each strategy

profile sν surviving iterative strict dominance in Gν(u, φ, ψ) must satisfy sν(θ(t̃?)) ≤ a?. (A

symmetric argument yields that sν(θ(t̃?)) ≥ a?.) As in FMP, we introduce the notion of

a simplified global game Gθ?(ν, v) that differs from Gθ(ν, v) in that each player i’s payoff

depends directly on her signal xi rather than on the state t̃. Following notations similar to

those used for the multidimensional global game Gν(u, φ, ψ), we let Evν (∆uθi (a
′
i → ai)|xi, s−i)

denote the expected difference in utility of player i from playing ai versus a′i against the
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strategy profile s−i when he receives the signal xi in Gθ?(ν, v). We also write Pvν(E|xi) (resp.

Pvν(E|t̃)) for the probability of an event E conditional on the signal xi (resp. the state

parameter t̃) in Gθ?(ν, v). For each ν > 0, we know (FMP, Lemma 4) that there exists

an essentially unique strategy profile surviving iterative strict dominance in Gθ?(ν, v) and

we write sθ(ν, v) = {sθi (ν, v)}i∈I for its right-continuous version. For each i, we define:

A+
i = {ai ∈ Ai|ai ≥ a?i } and A−i = {ai ∈ Ai|ai < a?i } . In addition, for each increasing

strategy profile s in a one-dimensional global game, we set:

x(ai, s) = sup{x ∈ [0, 1]|si(x) ≤ ai},

for each ai ∈ ∪i∈IAi and x(a−i, s) = (x(aj , s))j 6=i. The fact that the simplified global game

Gθ?(ν, v) converges toward Gθ(ν, v) as the noise vanishes allows to establish Proposition 1

below. (The proof is standard but provided in Appendix for the sake of completeness.)

Proposition 1. There exist ν̄? and λ? > 0 such that for each i ∈ I, ν̄ < ν̄? and unit vector

v ∈ RN :

• x(ai, s
θ(ν̄, v)) > t̃? + λ?, for all ai ∈ A+

i and,

• x(ai, s
θ(ν̄, v)) < t̃? − λ?, for all ai ∈ A−i .

Proof. See Appendix. �

We now pick some ν̄ < min(ν̄?, λ?, L). (In the sequel of the proof, the scale factor ν̄ will

sometimes be omitted from notations). We first build a ”compressed” version of sθ(ν̄, v) for

each unit vector v.

Lemma 1. For each ν < ν̄ and each v ∈ V , there exists a strategy profile sθc(ν̄, ν, v) in

Gθ?(ν, v) such that for each ai ∈ ∪i∈IA+
i ,

1. t̃? ≤ x(ai, s
θ
c(ν̄, ν, v)) < t̃? +Cν, (where we recall that C denotes the cardinal of the set

∪i∈IAi) and,

2. Pvν(x−i ≤ x(a−i, s
θ
c(ν̄, ν, v))|x(ai, s

θ
c(ν̄, ν, v))) = Pvν̄(x−i ≤ x(a−i, s

θ(ν̄, v))|x(ai, s
θ(ν̄, v))),

for all a−i ∈ A−i.

Proof. Since sθ(ν̄, v) is increasing and the joint action space A is finite, we can identify

sθ(ν̄, v) with a finite sequence z1(v), z2(v), . . . , zk(v) with k ≤ C of jump points, at which

players switch to greater action profiles. Now, for each ν > 0, define recursively the sequence
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z′1(ν, v), . . . , z′k(ν, v) as follows. Set z′1(ν, v) = t̃? and, for each n > 1, z′n(ν, v) = z′n−1(ν, v) + ν

if zn(v) − zn−1(v) ≥ ν̄ and z′n(ν, v) = z′n−1(ν, v) + ν
ν̄ (zn(v) − zn−1(v)) otherwise. Finally, let

scθ(ν̄, ν, v) be the right-continuous increasing strategy profile such that:

• For each ai ∈ ∪i∈IA−i , x(ai, s
θ
c(ν̄, ν, v)) = x(ai, sθ(ν̄, v)),

• For each k and ai ∈ ∪i∈IA+
i , x(ai, s

θ
c(ν̄, ν, v)) = z′k(ν, v) if and only if x(ai, s

θ(ν̄, v)) =

zk(v).

We prove that sθc(ν̄, ν, v) satisfies the required properties. Fix some ai ∈ ∪i∈IA+
i . Point 1 is

easily checked. Regarding Point 2, notice that since ν and ν̄ are smaller than min(λ?, ν̄?),

Pvν(x−i ≤ x(a−i, s
θ
c(ν̄, ν, v))|x(ai, s

θ
c(ν̄, ν, v))) = 0 = Pvν̄(x−i ≤ x(a−i, s

θ(ν̄, v))|x(ai, s
θ(ν̄, v))),

for all a−i ∈ A−−i. Now, assume that a−i ∈ A+
−i. On the one hand, note that |x(aj , s

θ
c(ν̄, ν, v))−

x(ai, s
θ
c(ν̄, ν, v))| ≥ ν if and only if |x(aj , s

θ(ν̄, v)) − x(ai, s
θ(ν̄, v))| ≥ ν̄. Moreover, if

|x(aj , s
θ
c(ν̄, ν, v))− x(ai, s

θ
c(ν̄, ν, v))| < ν, then:

x(aj , s
θ
c(ν̄, ν, v))− x(ai, s

θ
c(ν̄, ν, v))

ν
=
x(aj , s

θ(ν̄, v))− x(ai, s
θ(ν̄, v))

ν̄
.

On the other hand, since ν̄ < L, we must have by the definition of dominance regions,

x(ai, s
θ(ν̄, v)) ∈ [ν̄, 1−ν̄] for all ai 6= maxAi , which by construction implies: x(ai, s

θ
c(ν̄, ν, v)) ∈

[ν, 1− ν]. Hence, Remark 1 below, which directly follows from the fact that the prior is uni-

formly distributed on [0,1] in the one-dimensional global game Gθ?(ν, v) allows to conclude

the proof. �

Remark 1. For each ν > 0, x? ∈ [ν, 1− ν]|I| and v ∈ V ,

Pvν(x−i ≤ x?−i|x?i ) =

∫ 1
2

− 1
2

∏
j 6=i

Φv
j (
x?j − x?i

ν
+ ηi)φ

v
i (ηi)dηi.

Proof. It suffices to notice that since x?i ∈ [ν, 1−ν] and the prior is uniformly distributed

on [0,1], applying Bayes’ rule:

Pvν(x−i ≤ x?−i|x?i ) =

∫ x?i+ ν
2

x?i−
ν
2

∏
j 6=i Φv

j (
x?j−t
ν )φvi (

x?i−t
v )dt∫ x?i+ ν

2

x?i−
ν
2
φvi (

x?i−t
v )dt

.

Since
∫ 1

2

− 1
2

φvi (l)dl = 1, the change in variable ηi =
x?i−t
ν yields the desired result. �

For all λ ∈ [−1, 1] and ν > 0, define the strategy profile s(λ, ν̄, ν) in the N -dimensional

global game Gν(u, φ, ψ) as follows for each player i and signal xi ∈ RN :
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• For each action ai ∈ A+
i \maxAi, we have: a?i ≤ si(λ, ν̄, ν)(xi) ≤ ai if and only if there

exists t̃ ∈ [0, t̃?+λ] such that ||θ(t̃)−xi|| ≤
√
ν+x(ai, s

θ
c(ν̄, ν, ṽ))− t̃? with ṽ = xi−θ(t̃)

||xi−θ(t̃)||
;

• Otherwise, si(λ, ν̄, ν)(xi) = maxAi.

We consider, for each ν > 0, the following sequence of strategy profiles {s̄(ν)n}n∈N . Let

s̄(ν)0 be the constant profile in which all players play maxAi for any signal. For each n > 0,

we set s(ν)n = s(λn(ν), ν̄, ν), where the sequence {λn(ν)}n∈N? is defined recursively by :

λn+1(ν) = sup{λ ∈ [−1, 1]|si(λ, ν̄, ν) ≥ max BRi(s̄−i(ν)n), ∀i},

where maxBRi denotes the maximal best-response strategy of player i to s̄−i(ν)n.

Lemma 2. There exists ν? > 0 such that for each ν < ν?, the sequence {s̄(ν)n}n∈N is decreas-

ing and each strategy profile sν surviving iterative strict dominance in the game Gν(u, φ, ψ)

satisfies: sν ≤ s̄(ν)n, for all n ∈ N.

Proof of Lemma 2. There exists ν? such that for each ν < ν?:

µ̄− ν

2
>
√
ν + Cν, (1)

(where µ̄ is as defined in Assumption 1.) Note that Equation (1) means that for each player i

and signal xi /∈ Bµ̄− ν
2 (Θ), we must have s̄ni (xi) = maxAi, for all n. Now fix some ν < ν?. We

prove Lemma 2 by induction. It is trivially true at rank 0. Assume that it is also true at rank

n, that is, assume that s̄(ν)n+1 ≤ s̄(ν)n and that each strategy profile sν surviving iterative

strict dominance satisfies: sν ≤ s̄(ν)n. For each player i and signal xi ∈ RN , we need to

distinguish two cases. If xi /∈ Bµ̄− ν
2 (Θ), we know by Equation (1) that s̄n+1

i (xi) = maxAi and

the result trivially follows. Now assume that xi ∈ Bµ̄− ν
2 (Θ). Then by the triangle inequality,

for each t ∈ B
ν
2 (xi), t ∈ Bµ̄(Θ). This means that for each state parameter t ∈ B

ν
2 (xi),

the payoff function associated with t is supermodular. Consequently, on the one hand, by

the second induction hypothesis, we deduce that each strategy sν,i surviving iterative strict

dominance must satisfy: sν,i(xi) ≤ max BRi(s̄(ν)n)(xi) ≤ s̄i(ν)n+1(xi). On the other hand,

by the first induction hypothesis, we have: max BRi(s̄(ν)n+1)(xi) ≤ max BRi(s̄(ν)n)(xi),

which implies that λn+2(ν) ≥ λn+1(ν) and s̄(ν)n+2 ≤ s̄(ν)n+1. �

The sequence {λn(ν)}n∈N is increasing and bounded. Hence, the sequences {λn}n∈N and

{s̄(ν)n}n∈N converge and we note respectively λ̄ and s̄(ν) for their limits. By Lemma 2, for
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each ν, each strategy profile sν surviving iterative strict dominance in the game Gν(u, φ, ψ)

satisfies: sν ≤ s̄(ν). Hence, to conclude the proof of Theorem 3, it suffices to establish that

there exists ν? > 0 such that for each ν < ν?, λ̄(ν) ≥ 0. (Indeed, since x(a?i , s
θ
c(ν̄, ν, ṽ))− t̃? ≥

0, the above condition implies that s̄(ν)(xi) = a?i for all xi ∈ RN with ||t? − xi|| ≤
√
ν.)

Proposition 2 below is the main step of the proof.

Proposition 2. For any given δ > 0, there exists ν(δ) such that the following property is

satisfied for all λ ∈ [−1, 1] and ν < ν(δ). For each player i, action ai ∈ A+
i \ maxAi and

signal xi ∈ RN with si(λ, ν̄, ν)(xi) ≤ ai, there exists a unit vector ṽ ∈ V such that:

Pν(s−i(λ, ν̄, v)(x−i) ≤ a−i|xi) ≥ Pṽν̄(sθ−i(ν̄, ṽ)(x−i) ≤ a−i|x(ai, s
θ(ν̄, ṽ)))− δ, (2)

for all a−i ∈ A−i.

Proof. See Appendix. �

The proof of Proposition 3 below comes from the strict monotonicity of the payoff function

(uθi )i∈I .

Proposition 3. There exists ν? > 0 such that the following property is satisfied for all λ ≤ 0

and ν < ν?. For each player i, action ai ∈ A+
i \maxAi, unit vector v ∈ V and signal xi ∈ RN

with s(λ, ν̄, ν)(xi) ≤ ai:

∆ui(a
′
i → ai, a−i, t) ≥ ∆uθi (a

′
i → ai, a−i, x(ai, s

θ(ν̄, v))) +
λ?K

2
,

for all a′i ∈ A
+
i with a′i > ai, a−i ∈ A−i and t ∈ B

ν
2 (xi).

Proof. See Appendix. �

We are now in a position to conclude the proof of Theorem 3. Since sθ(ν̄, ṽ) is an

equilibrium profile of the one-dimensional (simplified) global game Gθ?(ν̄, ṽ),

E ṽν̄ [∆uθi (a
′
i → ai)|x(ai, s

θ(ν̄, ṽ)), sθ−i(ν̄, ṽ)] ≥ 0, (3)

for all a′i ∈ Ai. Combining Propositions 2 and 3, we know by strategic complementarities

that there exists ν? > 0 such that the following property holds for all λ < 0 and ν < ν?. For

each player i, action ai ∈ A+
i \maxAi and xi ∈ RN with si(λ, ν̄, ν)(xi) ≤ ai, there exists a

unit vector ṽ ∈ V such that:

Eν [∆ui(a
′
i → ai)|xi, s−i(λ, ν̄, ν)] ≥ E ṽν̄ [∆uθi (a

′
i → ai)|x(ai, s

θ(ν̄, ṽ)), sθ−i(ν̄, ṽ)] +
λ?K

4
, (4)
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for all a′i ∈ A
+
i with a′i > ai.

Now, fix some λ < 0 and ν < ν? such that
√
ν + Cν ≤ µ̄. For each player i, action

ai ∈ A+
i \ maxAi and xi ∈ RN with si(λ, ν̄, ν)(xi) ≤ ai, Equations (3) and (4) together

imply:

Eν [∆ui(a
′
i → ai)|xi, s−i(λ, ν̄, ν)] ≥ λ?K

4
, (5)

for all a′i ∈ A
+
i with a′i > ai. Notice on the one hand that there exists a function f(λ, ν) :

R?+ → R?+ such that for each ε > 0, i ∈ I, ai ∈ A+
i \ maxAi and x′i ∈ RN with si(λ +

f(λ, ν)(ε), ν̄, ν)(xi) ≤ ai, there exists xi ∈ RN such that: (i) si(λ, ν̄, ν)(xi) ≤ ai and (ii)

||xi − x′i|| < ε. On the other hand, since the function xi 7→ Eν [∆ui(a
′
i → ai)|xi, s(λ, ν̄, ν)]

is continuous and the set of xi ∈ RN such that s(λ, ν̄, ν)(xi) ≤ ai for some ai < maxAi is

included in the compact set Bµ̄(Θ), there exists ε > 0 such that :

|Eν [∆ui(a
′
i → ai)|xi, s−i(λ, ν̄, ν)]− Eν [∆ui(a

′
i → ai)|x′i, s−i(λ, ν̄, ν)]| ≤ λ?K

8
,

for all xi, x
′
i ∈ RN with s(λ, ν̄, ν)(xi) ≤ ai for some ai < maxAi and ||xi − x′i|| < ε. The

two above arguments together yield that, by Equation (5), there must exist some τ(λ, ν) > 0

such that for each i, ai ∈ A+
i \maxAi and x′i ∈ RN with si(λ+ τ(λ, ν), ν̄, ν)(x′i) ≤ ai,

Eν [∆ui(a
′
i → ai)|x′i, s−i(λ, ν̄, ν)] ≥ λ?K

8
,

for all a′i ∈ Ai with a′i > ai. Consequently, maxBR(s(λ, ν̄, ν)) ≤ s(λ + τ(λ, ν), ν̄, ν), which

implies that λ cannot be equal to λ̄(ν). This establishes that λ̄(ν) must be positive and thus

concludes the proof. �
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5 Appendix

5.1 Proof of Proposition 1.

Recall that, given a real non-negative parameter ε, a strategy profile is said to be an ε-

equilibrium if it is not possible for any player to gain more than ε in expected payoff by

unilaterally deviating from his strategy. For all increasing and right-continuous strategy

profiles s and s′ in a one-dimensional global game Gθ?(ν, v), we define:

∆(s, s′) = max
i∈I

max
ai∈Ai

|x(ai, s)− x(ai, s
′)|,

In addition, for each i and ai ∈ Ai \maxAi, we set:

(ai, s)
+ = min(a′i ∈ Ai|∃ xi > x(ai, s) with si(xi) = ai),

and,

(ai, s)
− = max(a′i ∈ Ai|∃ xi < x(ai, s) with si(xi) = ai),

Lemma 3. For each unit vector v ∈ V , ν > 0, ε ≥ 0 and ε-equilibria in increasing strategies

s and s′ in Gθ?(ν, v): ∆(s, s′) ≤ 2ε
K .

Proof of Lemma 3. Assume, w.l.o.g., that there exists a player i and an action âi ∈ Ai

such that ∆(s, s′) = x(âi, s
′) − x(âi, s) > 0. Let s′′ = {s′′i }i∈I be defined for each player i

by: s′′i (xi) = si(xi − ∆(s, s′)) for each xi ≥ −ν
2 + ∆(s, s′) and s′′i (xi) = minAi otherwise.

Notice that x(âi, s
′) = x(âi, s

′′) and (âi, s
′)− ≤ âi < (âi, s)

+. Hence, since s′ ≥ s′′, strategic

complementarities imply that:

Ev
ν [∆uθi ((âi, s

′)− → (âi, s)
+)|x(âi, s

′), s′−i] ≥ Ev
ν [∆uθi ((âi, s

′)− → (âi, s)
+)|x(âi, s

′′), s′′−i]. (6)

Now, on the one hand, since s is an ε-equilibrium in Gθ?(ν, v),

Ev
ν [∆uθi ((âi, s

′)− → (âi, s)
+)|x(âi, s), s] ≥ −ε.

Consequently, using the fact that the prior is uniformly distributed on [0,1] and strict mono-

tonicity,

Ev
ν [∆uθi ((âi, s

′)− → (âi, s)
+)|x(âi, s

′′), s′′−i] ≥ −ε+ ∆(s, s′)K. (7)

On the other hand, since s′ is an ε-equilibrium, we have:

Ev
ν [∆uθi ((âi, s)

+ → (âi, s
′)−)|x(âi, s

′), s′] ≥ −ε.
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Hence, Equations (6) and (7) together yield: ∆(s, s′) ≤ 2ε
K , concluding the proof of Lemma

3. �

Lemma 4. For any ε > 0, there exists ν? > 0 such that for each unit vector v ∈ V and ν, ν ′ >

0 with ν ′ < ν < ν?, there exists an increasing profile svν→ν′ such that 1) ∆(svν→ν′ , s
θ(ν ′, v)) < ε

and 2) ∆(svν→ν′ , s
θ(ν, v)) < ε.

Proof of Lemma 4. Fix some ε > 0. We first need to introduce some additional

notations. For each ν > 0 and unit vector v, we define the equivalence relation ∼vν as

follows. For each ai, aj ∈ ∪i∈IAi, ai ∼vν aj if and only if there exists a sequence of ac-

tions {ar}r=1,...,R ∈ ∪i∈IAi such that: a1 = ai, a
R = aj , and, for all r = 1, . . . , R − 1,

|x(ar, sθ(ν, v)) − x(ar+1, sθ(ν, v))| ≤ ν. We also define the order � on the quotient space

induced by ∼vν as follows. For all actions ai, aj ∈ ∪i∈IAi, [ai]
v
ν � [aj ]

v
ν if and only if

x(ak, s
θ(ν, v)) ≤ x(al, s

θ(ν, v)) for all actions ak, al ∈ ∪i∈IAi with [ak]
v
ν = [ai]

v
ν and [al]

v
ν =

[aj ]
v
ν . It can easily be checked that � define a total order on the quotient space. Now, for

each action ai ∈ ∪i∈IAi, define x([ai]
v
ν) and δvν(ai) by:

x([ai]
v
ν) = min

aj∈[ai]vν
{x(aj , s

θ(ν, v))},

and,

δvν(ai) = (x(ai, s
θ(ν, v))− x([ai]

v
ν))/ν.

Finally, let the increasing strategy profile svν→ν′ be such that for each player i and action

ai ∈ Ai,

x(ai, s
v
ν→ν′) = x([ai]

v
ν) + ν ′δvν(ai).

Now, fix some ν < L. Remark 2 below follows from the construction of svν→ν′ and the fact

that the prior is uniformly distributed on the interval [0,1] in Gθ?(ν, v).

Remark 2. For each player i and each action ai ∈ Ai \maxAi,

Pvν(x−i ≤ x(a−i, s
θ(ν, v))|x(ai, s

θ(ν, v))) = Pvν′(x−i ≤ x(a−i, s
v
ν→ν′)|x(ai, s

v
ν→ν′)) (8)

for all action profiles a−i ∈ A−i.

Proof. Since sθ(ν, v) is an equilibrium profile in the simplified game Gθ?(ν
′, v), the

existence of dominance regions yields: x(ai, s
θ(ν, v)) ∈ [L, 1 − L] ⊂ [ν, 1 − ν], for each
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ai ∈ Ai \ maxAi which in turn implies : x(ai, s
v
ν→ν′) ∈ [ν ′, 1 − ν ′], for all ν ′ < ν. Note

that if ai ≺ aj , then

Pvν(xj ≤ x(aj , s
θ(ν, v))|x(ai, s

θ(ν, v))) = 1 = Pvν′(xj ≤ x(aj , s
v
ν→ν′)|x(ai, s

v
ν→ν′)).

And, symmetrically,

Pvν(xi ≤ x(ai, s
θ(ν, v))|x(aj , s

θ(ν, v))) = 0 = Pvν′(xi ≤ x(ai, s
v
ν→ν′)|x(aj , s

v
ν→ν′)).

In addition, for each ai, aj ∈ ∪i∈IAi with ai ∼vν aj ,

x(ai, s
θ(ν, v))− x(aj , s

θ(ν, v))

ν
=
x(ai, s

v
ν→ν′)− x(aj , s

v
ν→ν′)

ν ′
.

Hence, Remark 1 allows to conclude the proof. �

We now prove that the strategy profile svν→ν′ satisfies the required properties. Notice that

for all actions ai, aj ∈ ∪i∈IAi with [ai]
v
ν = [aj ]

v
ν , we have: |x(ai, s

θ(ν, v))−x(aj , s
θ(ν, v))| ≤ Cν

(where we recall that C denotes the cardinal of the set ∪i∈IAi). Consequently, for each

ai ∈ ∪i∈IAi, δvν(ai) ∈ [0, C]. Hence, for each ν ′ < ν < ε
C , by construction of the strategy

profile svν→ν′ ,

|x(ai, s
θ(ν, v))− x(ai, s

v
ν→ν′)| = |x([ai]

v
ν) + νδvν(ai)− (x([ai]

v
ν) + ν ′δvν(ai))| ≤ (ν − ν ′)δvν(ai)

≤ Cν < ε, (9)

for each player i and each action ai ∈ Ai, which establishes Point 2 of Lemma 4. Let us turn

to Point 1. We show that for each ε > 0, there exists ν > 0 such that svν→ν′ is an ε-equilibrium

of Gθ?(ν
′, v) for all ν ′ < ν. Lemma 3 then allows to conclude the proof. In order to do so, by a

standard argument, using strategic complementarities and the monotonicity of uθ, it suffices

to establish that the following properties are satisfied for each i and ai ∈ Ai \maxAi,

Ev
ν′ [∆u

θ
i (a
′
i → (ai, s

v
ν→ν′)

+)|x(ai, s
v
ν→ν′), s

v
ν→ν′,−i] ≥ −ε, (10)

and,

Ev
ν′ [∆u

θ
i (a
′
i → (ai, s

v
ν→ν′)

−)|x(ai, s
v
ν→ν′), s

v
ν→ν′,−i] ≥ −ε, (11)

for all a′i ∈ Ai. On the one hand, since sθ(ν, v) is an equilibrium of the game Gθ?(ν, v),

Ev
ν [∆uθi (a

′
i → (ai, s

θ(ν, v))+)|x(ai, s
θ(ν, v)), sθ−i(ν, v)] ≥ 0,
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and

Ev
ν′ [∆u

θ
i (a
′
i → (ai, s

θ(ν, v)−)|x(ai, s
θ(ν, v)), sθ−i(ν, v)] ≥ 0,

for all actions a′i ∈ Ai. On the other hand, recall that for each player i and each action

profile a ∈ A, the function uθi (a, t̃) is continuous in t̃. Consequently, since the interval [0, 1]

is compact, there must exist a function ξθ : R?+ → R?+ such that for all i, a ∈ A, ε > 0 and

xi, x
′
i ∈ [0, 1] with |xi − x′i| ≤ ξθ(ε): |ui(a, xi) − ui(a, x′i)| ≤ ε. Now, choose ν ′ < ν <

ξθ( ε
2

)

C .

By Equation (9) above, we must have: |x(ai, s
v
ν→ν′)− x(ai, s

θ(ν, v))| ≤ ξθ( ε2) which implies:

|uθi (a, x(ai, s
v
ν→ν′))− uθi (a, x(ai, s

θ(ν, v)))| ≤ ε

2
,

for all a ∈ A. And,

|∆uθi (ai → a′i, a−i, x(ai, s
ν→ν′))−∆uθi (ai → a′i, a−i, x(ai, s

θ(ν, v)))| ≤ ε,

for all a−i ∈ A−i and ai, a
′
i ∈ Ai. Consequently, Remark 2 above allows to conclude the proof.

�

We now conclude the proof of Proposition 1. For each unit vector v ∈ V , set t(ai, v) =

sup(xi ∈ R|sθ?(v)(xi) ≤ ai). By Lemma 4, for each ε > 0, there exists ν? such that, for

each unit vector v and ν, ν ′ < ν?, ∆(sθ(ν, v), sθ(ν ′, v)) ≤ ε. Consequently, the sequence of

functions x(ai, s
θ(ν, v)) converges uniformly in v toward the function t(ai, v) as ν tends toward

zero. In addition, notice that for each d ∈ [−1
2 ,

1
2 ], the function v 7→ φvi (d) is continuous.

Applying Lemma 3, we deduce that the function v 7→ x(ai, s
θ(ν̄, v)) is also continuous. Since

x(ai, s
θ(ν, v)) converges uniformly in v toward the function t(ai, v), this finally yields that

the function v 7→ t(ai, v) is continuous. Since by assumption we have: t(ai, v) > t̃?, for each

ai ∈ A+
i and v, we conclude that there must exist λ? > 0 and ν̄? > 0 such that for each

ν̄ < ν̄?, x(ai, s
θ(ν̄, v)) ≥ t̃? + λ?. A symmetric argument holds for each ai ∈ A−i . �

5.2 Proof of Proposition 2.

We first introduce some additional notations. For any signal xi ∈ RN , unit vector v ∈ V and

dj ∈ [−1, 1], we define Lν(xi, v, dj) and Hν(xi, v, dj) respectively by:

Lν(xi, v, dj) = {xj ∈ RN |v · (xj − xi) = νdj},

and,

Hν(xi, v, dj) = {xj ∈ RN |v · (xj − xi) ≤ νdj}.
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Similarly, for any xi ∈ RN , v ∈ RN and d−i ∈ [−1, 1]|I−1|, we define Lν(xi, v, d−i) and

Hν(xi, v, d−i) respectively by: Lν(xi, v, d−i) = Πj 6=iLν(xi, v, dj) andHν(xi, v, d−i) = Πj 6=iHν(xi, v, dj).

For each ai ∈ ∪i∈IA+
i and unit vector v, notice that 1

ν (x(ai, s
θ
c(ν, ν̄, v))− t̃?) does not depend

on ν and set:

κ(ai, ν̄, v) =
1

ν
(x(ai, s

θ
c(ν, ν̄, v))− t̃?).

By a slight abuse of notation, we write κ(a−i, ν̄, v) for the vector (κ(aj , ν̄, v))j 6=i and κ(a−i, ν̄, v)−

κ(ai, ν̄, v) for the vector (κ(aj , ν̄, v)− κ(ai, ν̄, v))j 6=i .

Lemma 5. For any δ > 0, there exists ν1(δ) > 0 such that for all ν < ν1(δ), λ ∈ [−1, 1],

i ∈ I, ai ∈ A+
i \maxAi and xi ∈ Bµ̄− ν

2 (Θ) with si(λ, ν̄, ν)(xi) ≤ ai,

Pν(x−i ∈ Hν(xi, v, κ(a−i, ν̄, v)− κ(ai, ν̄, v))|xi) ≥ Pvν̄(sθ−i(ν̄, v)(x−i) ≤ a−i|x(ai, s
θ(ν̄, v)))− δ,

for all unit vectors v ∈ V and a−i ∈ A+
−i.

Proof of Lemma 5. Fix some δ > 0. For each xi ∈ Bµ̄− ν
2 (Θ), define mν(xi) by

mν(xi) =
min

t∈B
ν
2 (xi)

ψ(t)

max
t∈B

ν
2 (xi)

ψ(t)
.

The set Bµ̄(Θ) is compact and the prior density ψ is continuous and strictly positive on

Bµ̄(Θ). Hence, there exists ν(δ) > 0 such that for each ν < ν(δ) and xi ∈ Bµ̄− ν
2 (Θ),

mν(xi) > 1 − δ. Now assume that ν < ν(δ) and pick some i, ai ∈ A+
i \maxAi, a−i ∈ A+

−i

and xi ∈ Bµ̄− ν
2 (Θ) with si(λ, ν̄, ν)(xi) ≤ ai. On the one hand, applying Bayes’ rule,

Pν(t ∈ Lν(xi, v, d)|xi) =

∫
t∈Lν(xi,v,d) φ

v
i (
xi−t
v )ψ(t)dt∫

φvi (
xi−t
v )ψ(t)dt

,

for all unit vectors v ∈ V and d ∈ [−1, 1]. This implies:

mν(xi)φ
v
i (−d) ≤ Pν(t ∈ Lν(xi, v, d)|xi). (12)

On the other hand, note that:

Pν(x−i ∈ Hν(t, v, d−i)|t) = Πj 6=iΦ
v
j (dj).

Consequently, we have:

Pν(x−i ∈ Hν(xi, v, d−i)|xi) =

∫ 1
2

− 1
2

Pν(t ∈ Lν(xi, v,−l)|xi)Πj 6=iΦ
v
j (dj + l)dl.
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This yields, applying Equation (12) and the fact that ν < ν(δ),

Pν(x−i ∈ Hν(xi, v, d−i)|xi) ≥
∫ 1

2

− 1
2

φvi (l)Πj 6=iΦ
v
j (dj + l)dl − δ.

It now suffices to recall that by construction of sθc(ν̄, ν, v) (Lemma 1):

Pvν̄(sθ−i(ν̄, v)(x−i) ≤ a−i|x(ai, s
θ(ν̄, v))) = Pvν(sθc,−i(ν̄, ν, v)(x−i) ≤ a−i|x(ai, s

θ
c(ν̄, ν, v))),

and that, by Remark 1,

Pvν(sθc,−i(ν̄, ν, v)(x−i) ≤ a−i|x(ai, s
θ
c(ν̄, ν, v))) =

∫ 1
2

− 1
2

φi(ηi)Πj 6=iΦ
v
j (κ(aj , ν̄, v)−κ(ai, ν̄, v)+ηi)dηi,

to conclude the proof. �

Lemma 6. For any ε > 0, there exists ν2(ε) > 0 such that, for each ν < ν2(ε), the following

property holds for each λ ∈ [−1, 1], i ∈ I, ai ∈ A+
i \maxAi and xi ∈ RN with si(λ, ν̄, ν)(xi) ≤

ai. There exists a unit vector ṽ ∈ V such that for each j 6= i, aj ∈ A+
j and xj ∈ RN satisfying:

xj ∈ Hν(xi, ṽ, κ(aj , ν̄, ṽ)− κ(ai, ν̄, ṽ)− ε) ∩Bν(xi),

we have:

sj(λ, ν̄, ν)(xj) ≤ aj .

Proof of Lemma 6. We first establish Claim 1 below.

Claim 1. For any ε > 0, there exists ν3(ε) > 0 such that the following property holds for

all ν < ν3(ε), xi ∈ RN , t̃ ∈ [0, 1] and κ ∈ [0, C] with ||θ(t̃) − xi|| ∈ [
√
ν

2 ,
√
ν + κν]. For all

κ′ ∈ [0, C] and xj ∈ RN such that:

xj ∈ Hν(xi, ṽ, κ
′ − κ− ε) ∩Bν(xi),

with ṽ = xi−θ(t̃)
||xi−θ(t̃)||

, we have:

||θ(t̃)− xj || ≤
√
ν + (κ′ − ε

2
)ν.

Proof of Claim 1. We begin with the following remark.

Remark 3. Fix some xi ∈ RN and t̃ ∈ [0, 1] with ||θ(t̃) − xi|| ≥
√
ν

2 . Let ṽ ∈ RN be defined

by ṽ = xi−θ(t̃)
||xi−θ(t̃)||

. For all ν > 0 and d ∈ R, the following two properties are satisfied.
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1. If d < −1, Hν(xi, ṽ, d) ∩Bν(xi) = ∅.

2. If d ≥ −1, we have:

||θ(t̃)− xj ||2 ≤ (||θ(t̃)− xi||+ dν)2 + ν2,

for all xj ∈ Hν(xi, ṽ, d) ∩Bν(xi).

Proof of Remark 3. Fix some xi ∈ RN , t̃ ∈ [0, 1], ν > 0 and d ∈ R. By Pythagorean

theorem, for all xj ∈ Lν(xi, ṽ, d) (with ṽ = xi−θ(t̃)
||xi−θ(t̃)||

),

(dν)2 + ||xj − (xi + (dν)ṽ)||2 = ||xj − xi||2. (13)

For all xj ∈ Bν(xi), ||xj − xi||2 ≤ ν2. Hence, using Equation (13), we deduce that

||xj − (xi + (dν)ṽ)|| ≤ ν, (14)

for all xj ∈ Lν(xi, ṽ, d) ∩ Bν(xi) and that Lν(xi, ṽ, d) ∩ Bν(xi) = ∅ if d /∈ [−1, 1], which

establishes Point 1. Now assume that d ≥ −1. By Pythagorean theorem, for each xj ∈

Lν(xi, ṽ, d),

||θ(t̃)− xj ||2 = ||θ(t̃)− (xi + (dν)ṽ)||2 + ||(xi + (dν)ṽ)− xj ||2.

Notice that by the definition of ṽ,

||θ(t̃)− (xi + (dν)ṽ)|| = ||θ(t̃)− xi||+ dν.

Thus,

||θ(t̃)− xj ||2 = (||θ(t̃)− xi||+ dν)2 + ||xj − (xi + (dν)ṽ)||2.

Consequently, by Equation (14),

||θ(t̃)− xj ||2 ≤ (||θ(t̃)− xi||+ dν)2 + ν2,

which concludes the proof. �

We now conclude the proof of Claim 1. Fix ε > 0, κ, κ′ ∈ [0, C], xi ∈ RN , t̃ ∈ [0, 1] with

||θ(t̃) − xi|| ∈ [
√
ν

2 ,
√
ν + κν] and let ṽ = xi−θ(t̃)

||xi−θ(t̃)||
. We distinguish two cases. First assume

that κ′ − κ− ε < −1. By Remark 3, we know that:

Hν(xi, ṽ, κ
′ − κ− ε) ∩Bν(xi) = ∅.
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Now assume that κ′ − κ− ε ≥ −1. In that case, by Remark 3,

||θ(t̃)− xj ||2 ≤ (||θ(t̃)− xi||+ (κ′ − κ− ε)ν)2 + ν2,

for each xj ∈ Hν(xi, ṽ, κ
′ − κ− ε) ∩Bν(xi). Since ||θ(t̃)− xi|| ≥

√
ν

2 , we have: ||θ(t̃)− xi||+

(κ′ − κ − ε)ν > 0 when ν is sufficiently small (i.e., such that
√
ν

2 > ν), which means that

(||θ(t̃) − xi|| + (κ′ − κ − ε)ν)2 increases with ||θ(t̃) − xi||. This yields, using the fact that

||θ(t̃)− xi|| ≤
√
ν + κν,

||θ(t̃)− xj ||2 ≤ (
√
ν + (κ′ − ε)ν)2 + ν2,

In addition, we have:

(
√
ν + (κ′ − ε)ν)2 + ν2 = ν + 2(κ′ − ε)ν

√
ν + ((κ′ − ε)2 + 1)ν2.

Consequently,

(
√
ν+(κ′−ε)ν)2 +ν2 = ν+2(κ′− ε

2
)ν
√
ν+(κ′− ε

2
)2ν2 +((κ′−ε)2 +1− (κ′− ε

2
)2)ν2−εν

√
ν,

that is,

(
√
ν + (κ′ − ε)ν)2 + ν2 = (

√
ν + (κ′ − ε

2
)ν)2 + ((κ′ − ε)2 + 1− (κ′ − ε

2
)2)ν2 − εν

√
ν. (15)

Note that:

((κ′ − ε)2 + 1− (κ′ − ε

2
)2)ν2 − εν

√
ν = (

3ε2

4
− εκ′ + 1)ν2 − εν

√
ν ≤ (

3ε2

4
+ 1)ν2 − εν

√
ν.

We deduce that when ν is sufficiently small (compared to ε):

((κ′ − ε)2 + 1− (κ′ − ε

2
)2)ν2 − εν

√
ν ≤ 0.

This finally yields, using Equation (15),

||θ(t̃)− xj ||2 ≤ (
√
ν + (κ′ − ε

2
)ν)2,

which concludes the proof of Claim 1. �

Claim 2. For any ε > 0, there exists ν4(ε) > 0 such that for any xi ∈ RN , t̃ ∈ [0, 1] with

||θ(t̃)− xi|| ≥
√
ν

2 , xj ∈ Bν(xi) and aj ∈ ∪j∈IA+
j ,

|κ(aj , ṽ)− κ(aj , ṽ
′)| < ε

2
,

with ṽ′ =
xj−θ(t̃)
||xj−θ(t̃||

and ṽ = xi−θ(t̃)
||xi−θ(t̃||

.
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Proof of Claim 2. For each ai ∈ A+
i , the function ṽ 7→ κ(ai, ṽ) is continuous and the

set V of unit vectors ṽ ∈ RN is compact. Hence, the function ṽ 7→ κ(ai, ṽ) is uniformly

continuous on V and it suffices to establish Remark 4 below. �

Remark 4. For any ε > 0 there exists ν(ε) > 0 such that for any xi ∈ RN , t̃ ∈ [0, 1] with

||xi − θ(t̃)|| ≥
√
ν

2 and xj ∈ Bν(xi),

|| xi − θ(t̃)
||xi − θ(t̃)||

− xj − θ(t̃)
||xj − θ(t̃)||

|| < ε.

Proof of Remark 4. We have:

|| xi − θ(t̃)
||xi − θ(t̃)||

− xj − θ(t̃)
||xj − θ(t̃)||

|| = || xi − xj
||xi − θ(t̃)||

+
(xj − θ(t̃))(||xj − θ(t̃)|| − ||xi − θ(t̃)||)

||xi − θ(t̃)||||xj − θ(t̃)||
||. (16)

Since ||xi − θ(t̃)|| ≥
√
ν

2 ,
||xi − xj ||
||xi − θ(t̃)||

≤ 2
√
ν,

for all xj ∈ Bν(xi). In addition, by the triangle inequality,

||xi − θ(t̃)||+ ν ≥ ||xj − θ(t̃)|| ≥ ||xi − θ(t̃)|| − ν,

for all xj ∈ Bν(xi). We deduce:

||(xj − θ(t̃))(||xj − θ(t̃)|| − ||xi − θ(t̃)||)
||xi − θ(t̃)||||xj − θ(t̃)||

|| ≤ || ν(xj − θ(t̃))
||xi − θ(t̃)||||xj − θ(t̃)||

|| ≤ 2
√
ν.

Hence, Equation (16) yields:

|| xi − θ(t̃)
||xi − θ(t̃)||

− xj − θ(t̃)
||xj − θ(t̃)||

|| ≤ 4
√
ν,

which concludes the proof. �

Let us now conclude the proof of Lemma 6. Notice that there exists ν? such that for all

ν < ν?,
√
ν

2 + ν <
√
ν and pick some ν < min(ν?, ν3(ε), ν4(ε)), i, λ ∈ [−1, 1], ai ∈ A+

i \maxAi

and xi ∈ RN with si(λ, ν̄, ν)(xi) ≤ ai. By construction, there exists some t̃ ∈ [0, t̃? + λ] such

that ||xi− θ(t̃)|| ≤
√
ν + κ(ai, ν̄, ṽ)ν with ṽ = xi−θ(t̃)

||xi−θ(t̃)||
. We need to separate two cases. First

assume that ||θ(t̃)− xi|| ≤
√
ν

2 . Since ν < ν?, we have: ||θ(t̃)− xj || <
√
ν, for all xj ∈ Bν(xi),

which by construction ensures that sj(λ, ν̄, ν)(xj) ≤ aj , for all aj ∈ A+
j . Now, assume that

||θ(t̃) − xi|| ≥
√
ν

2 . Let aj ∈ A+
j and xj ∈ RN be such that xj ∈ Hν(xi, ṽ, κ(aj , ν̄, ṽ) −

κ(ai, ν̄, ṽ)− ε) ∩Bν(xi). By Claim 1, we have:

||xj − θ(t̃)|| ≤
√
ν + (κ(aj , ν̄, ṽ)− ε

2
)ν.
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By Claim 2, this implies:

||xj − θ(t̃)|| ≤
√
ν + κ(aj , ν̄, ṽ

′)ν,

with ṽ′ =
xj−θ(t̃)
||xj−θ(t̃)||

, which concludes the proof. �

We now conclude the proof of Proposition 2. Notice that the function (xi, ṽ, d−i) 7→

Pν(x−i ∈ Hν(xi, ṽ, d−i)|xi) is continuous on the compact set Bµ̄(Θ)×V × [−1, 1]|I−1|. Hence,

it is uniformly continuous on Bµ̄(Θ)×V ×[−1, 1]|I−1| and there exists a function ε : R?+ → R?+
such that:

Pν(x−i ∈ Hν(xi, ṽ, d−i − ε(δ))|xi) ≥ Pν(x−i ∈ Hν(xi, ṽ, d−i)|xi)− δ.

for all δ > 0, d−i ∈ [−1, 1]|I−1|, v ∈ V and xi ∈ Bµ̄(Θ). Now, fix some δ > 0, λ ∈ [−1, 1], ν <

min(ν1( δ2), ν2(ε( δ2)), ai ∈ A+
i \maxAi and xi ∈ RN such that si(λ, ν̄, ν)(xi) ≤ ai. By Lemma

6, there exists a unit vector ṽ ∈ V such that:

Pν(s−i(λ, ν̄, ν)(x−i) ≤ a−i|x−i) ≥ Pν(x−i ∈ Hν(xi, ṽ, κ(a−i, ν̄, ṽ)− κ(ai, ν̄, ṽ))|xi)−
δ

2
.

In addition, by Lemma 5,

Pν(x−i ∈ Hν(xi, ṽ, κ(a−i, ν̄, ṽ)− κ(ai, ν̄, ṽ))|xi) ≥ Pṽν(sθ(ν̄, ṽ)(x−i) ≤ a−i|x(ai, s
θ(ν̄, ṽ)))− δ

2
.

Combining the two equations above finally yields the desired result. �

5.3 Proof of Proposition 3.

Recall that, by Proposition 1, x(ai, s
θ(ν̄, v)) > t̃? + λ?, for each i ∈ I, ai ∈ A+

i and unit

vector v ∈ V . Hence, for all λ ≤ 0 and t̃ ∈ [0, t̃? + λ], x(ai, s
θ(ν̄, v))− t̃ > λ?. Consequently,

by strict monotonicity,

∆uθi (a
′ → ai, a−i, t̃) ≥ ∆uθi (a

′
i → ai, a−i, x(ai, s

θ(ν̄, v))) + λ?K, (17)

for each a′i ∈ Ai with a′i > ai and each unit vector v ∈ V . Since the set Bµ̄(θ) is compact

and the function ui(a, ·) is continuous, there exists a function ξ : R?+ → R?+ such that for any

given ε > 0, a ∈ A and t, t′ ∈ Bµ̄(Θ) with ||t − t′|| < ξ(ε), we have: |ui(a, t) − ui(a, t′)| < ε.

Notice that there exists ν? > 0 such that for each ν < ν?,
√
ν + Cν < ξ(λ

?K
4 ) − ν

2 (where

we recall that C =
∑

i∈I |Ai|). Now, fix some ν < ν?, λ ≤ 0, ai ∈ A+
i and xi ∈ RN with
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s(λ, ν̄, ν)(xi) ≤ ai. By construction of the strategy profile s(λ, ν̄, ν), we know that there

exists some t̃ ∈ [0, t? + λ] such that:

||xi − θ(t̃)|| <
√
ν + Cν.

Since ν < ν?, this implies:

||xi − θ(t̃)|| ≤ ξ(
λ?K

4
)− ν

2
.

Hence, by the triangle inequality, for all t ∈ B
ν
2 (xi), ||t− θ(t̃)|| < ξ(λ

?K
4 ). Consequently, for

all a ∈ A and t ∈ B
ν
2 (xi),

||ui(a, t)− ui(a, θ(t̃))|| <
λ?K

4
.

Thus for all a−i ∈ A−i and t ∈ B
ν
2 (xi),

∆ui(a
′
i → ai, a−i, t) ≥ ∆uθi (a

′ → ai, a−i, t̃)−
λ?K

2
, (18)

for all actions a′i ∈ A
+
i with a′i > ai. Putting Equations (17) and (18) together, we deduce

that for all λ ≤ 0, ν < ν? and xi ∈ RN with s(λ, ν̄, ν)(xi) ≤ ai:

∆ui(a
′
i → ai, a−i, t) ≥ ∆uθi (a

′
i → ai, a−i, x(ai, s

θ(ν̄, v))) +
λ?K

2
,

for all t ∈ B
ν
2 (xi), a

′
i ∈ A

+
i with a′i > ai and unit vectors v ∈ V , which concludes the proof.

�
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