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1 Introduction

In many problems of asymmetric information, one agent has information
upon which she bases her actions, and uninformed agents act based on infer-
ences from these actions. Because the informed agent can reveal information
through her actions, she chooses her actions strategically. If the informed
agent’s action as a function of her private information is one-to-one, then
her strategy is said to be separating and her actions completely reveal her
private information.

If the agent’s private information (her “type”) is given by a continu-
ously distributed real-valued random variable, incentive-compatible separat-
ing strategies in such interactions can easily be characterized by a differential
equation, if the strategy is known to be differentiable. But exactly because
the strategy is not known, differentiability cannot be taken for granted. This
obviously poses a serious problem for the determination and uniqueness of
equilibrium.

In many cases, however, differentiability is an implication of incentive-
compatibility. For a large class of signaling games and related settings,
Mailath (1987) has shown that any incentive-compatible separating strategy
of the informed agent must be differentiable and hence satisfy the standard
differential equation. Unfortunately, the assumptions in Mailath (1987) rule
out many important applications. In particular, as we describe below, they
do not cover the models of Leland and Pyle (1977), Glosten (1989), and De-
Marzo and Duffie (1999) that are at the core of modern theories of corporate
finance and market microstructure.

In this note, we provide appropriate generalizations of Mailath (1987)
to cover these models. Our results provide a foundation for the standard
approach to problems of information transmission in finance, in which the
issue of differentiability is often implicitly ignored. The new results can be
grouped into three categories. First, we show that the original results extend
to unbounded type spaces. This is important since many applications, in
particular in finance, naturally involve unbounded type spaces, for example,
when using normally distributed returns. Second, we provide sufficient con-
ditions that apply locally instead of globally. These conditions can be used
when the sufficient conditions do not hold globally (because, for example, a
derivative vanishes somewhere), but do hold locally (because the derivative
cannot vanish everywhere). We provide an example in which global differ-
entiability can be shown by “patching together” local arguments. Third, we
show that differentiability can obtain even in linear models, which are not
covered by Mailath (1987). This extends the analysis to the many models
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in corporate finance that use risk-neutrality, where the classic first-order
conditions of asset pricing do not apply.

2 The Model

An informed agent knows the state of nature ω ∈ Ω ⊂ R and one or more
uninformed agents react to the informed agent’s action x ∈ X ⊂ R on the
basis of inferences drawn from x about ω. The sets Ω and X are connected;
the sets may be bounded or unbounded, we do not require them to be open
or closed. For our purposes, this interaction can be summarized by the C2

function
V : Ω2 ×X −→ R,
(ω, ω̂, x) 7−→ V (ω, ω̂, x),

(1)

denoting the informed agent’s payoff from taking action x when the true
state of nature is ω and the uninformed agents believe it is ω̂.

As an example, consider the canonical signaling game (Spence (1973);
Cho and Kreps (1987)). There is an informed agent who, knowing ω, chooses
an action (or costly message) x, followed by an uninformed agent who ob-
serving x but not ω, chooses a response r ∈ R ⊂ R. The informed agent’s
payoff is given by v(x, r, ω) and the uninformed agent’s payoff is given by
u(x, r, ω). Given x and beliefs ξ ∈ Δ(Ω), denote by ρ(x, ξ) a best response
for the uninformed player. In particular, if the uninformed agent has point
belief ω̂ after observing x, ρ(x, ω̂) is a best response. The informed agent’s
payoff, given the uninformed agent’s best response ρ, can then be written as

V (ω, ω̂, x) ≡ v(x, ρ(x, ω̂), ω),

which is of the form assumed in (1) if ρ is twice continuously differentiable.
Note, however, that the framework is more general than just the signaling

model. In Section 3.2 below, for example, we apply our results to a screening
model.

We study interactions in which the informed agent’s information is fully
revealed (as in separating equilibria in signalling games). This means that
the informed agent’s action is given by a one-to-one function X : Ω → X ,
so that ω 6= ω′ implies X(ω) 6= X(ω′).1 Furthermore, X must be incentive-

1Environments with private information typically have many equilibria, not all of them
separating. In signaling games, refinements in the spirit of those proposed by Kohlberg
and Mertens (1986) and Cho and Kreps (1987) provide formal support for a focus on sepa-
ration. While Kohlberg and Mertens’s (1986) strategic stability has an abstract continuity
motivation, the “intuitive” motivations for some of its implications seem less persuasive
(Mailath, Okuno-Fujiwara, and Postlewaite, 1993).
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compatible, which means that the informed agent finds it optimal to follow
this strategy when she knows ω:

X(ω) ∈ arg max
x∈X(Ω)

V (ω,X−1(x), x). (IC)

The following assumptions adopt Mailath’s (1987) local concavity con-
ditions (4) and (5) to our setting.2

Assumption 1 The first-best contracting problem (the problem under full
information),

max
x∈X

V (ω, ω, x)

has a unique solution for all ω ∈ Ω, denoted XFB(ω), and

V33(ω, ω,XFB(ω)) ≡
∂2V (ω, ω, x)

∂x2

∣
∣
∣
∣
x=XFB(ω)

< 0

for all ω ∈ Ω.

If X is compact, the first-best may lie on the boundary of X , in which
case V33 is the appropriate one-sided derivative.

Assumption 2 There exists k > 0 such that for all (ω, x) ∈ Ω ×X ,

V33(ω, ω, x) ≥ 0 ⇒ |V3(ω.ω, x)| > k.

Assumptions 1 and 2 are weaker than strict concavity but stronger than
strict quasi-concavity of V (ω, ω, ∙).

The following theorem is the key result of Mailath (1987).

Theorem 1 (Mailath (1987)) Let Ω = [ω1, ω2] and X = R and let X be
one-to-one and incentive-compatible. Suppose Assumptions 1 and 2 hold,
and V13(ω, ω̂, x) 6= 0 and V2(ω, ω̂, x) 6= 0 for all (ω, ω̂, x) ∈ Ω2 ×X .

1. If V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂)) is a strictly monotone function of ω
for all ω̂, then X is differentiable in the interior of Ω, int(Ω).

2Since Mailath (1987) took R as the action space, while we allow for arbitrary real
intervals, the assumption that the first order condition V3 = 0 has a unique solution has
been replaced with the requirement that the first-best contracting problem has a unique
solution.

3



2. (a) If X(ω1) = XFB(ω1) and V2(ω, ω̂, x) > 0 for all (ω, ω̂, x) ∈ Ω2 ×
X , then X is differentiable on Ω.

(b) If X(ω2) = XFB(ω2) and V2(ω, ω̂, x) < 0 for all (ω, ω̂, x) ∈ Ω2 ×
X , then X is differentiable on Ω.

If X is differentiable, then it satisfies the differential equation

X ′(ω) = −
V2(ω, ω,X(ω))
V3(ω, ω,X(ω))

. (DE)

The differential equation (DE) is a trivial consequence of the incentive
constraint (IC), which yields the first-order condition V2 + X ′V3 = 0, given
differentiability.

The assumption that V2 never equals zero, and so never changes sign
(“belief monotonicity”) implies that the direction of belief manipulation the
informed agent has an incentive to engage in is unambiguous: if V2 > 0, she
benefits from the uninformed side believing her to be of a higher type (re-
spectively, of a lower type if V2 < 0). The assumption that V13 never changes
sign (“type monotonicity”) means that the informed agent’s marginal util-
ity from x is monotone in her type. Neither assumption need be satisfied in
standard examples, as the following section shows.

The condition that V3/V2 is a strictly monotone function of ω for all
(ω̂,X(ω̂)) is a weak form of single crossing; we discuss the role of the single
crossing property when we introduce Theorem 4.

For signaling games satisfying standard monotonicity properties, the ini-
tial value condition pinning down the value of X at either ω1 or ω2 in parts
2a and b of Theorem 1 is a simple consequence of sequential rationality:3

Suppose V2 > 0. Then ω̂ = ω1 is the worst belief the uninformed agents can
have about the informed agent. It is then immediate that in any Nash equi-
librium with X separating, if XFB(ω1) ∈ X(Ω) then X(ω1) = XFB(ω1).4

On the other hand, if XFB(ω1) 6∈ X(Ω), then in response to a deviation
to the action x = XFB(ω1), sequential rationality requires the uninformed
agents to choose a best reply to some belief, and V2 > 0 again implies that
ω1 has a profitable deviation.

3For signaling games with finite type and action spaces, sequential rationality is for-
malized as sequential equilibrium (Kreps and Wilson, 1982), and with infinite type and
action spaces, by various versions of perfect Bayes equilibrium.

4Suppose X−1(XFB(ω1)) = ω′ 6= ω1. Then,

V (ω1, ω
′, XFB(ω1)) > V (ω1, ω1, X

FB(ω1)) > V (ω1, ω1, X(ω1)),

and so X is not incentive compatible, a contradiction.
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3 Three Examples

3.1 Equity Issues

The classic model of equity issues is due to Leland and Pyle (1977). It
considers an owner of a firm who wants to raise funds on the stock market
by selling her holdings. The uninformed side of the market is “the stock
market”: a large group of equally informed and well-diversified investors.
Investors are willing to invest if in expectation they earn the risk-free rate,
normalized to 0.

The company is worth ω + ε in the future, where ω ∈ Ω = [ω1,∞) is a
positive number and ε is a zero-mean random variable defined on an interval
[ε, ε]. The expected value of the firm, therefore, is ω. The owner has personal
wealth (outside the firm) of w0 and is risk-averse, with an increasing, strictly
concave, twice continuously differentiable money utility function U . The
capital market is risk-neutral. The owner considers diversifying his risk by
selling a fraction 1 − x of the firm in exchange for a payment of t by the
capital market.

The owner’s utility from an allocation (x, t) ∈ [0, 1] × R is

EεU(x(ω + ε) + w0 + t) (2)

and that of the capital market (using risk-neutrality)

(1 − x)ω − t. (3)

Because the owner is risk-averse, the first-best is XFB(ω) = 0, i.e., to sell
the firm completely, regardless of ω. The interaction between the two sides
of the market is given by a signaling game in which the owner, knowing the
value of ω, proposes an equity issue (x, t) which the stock market accepts or
rejects.

As is well known, this game has a large number of equilibria. The liter-
ature usually considers equilibria with (i) maximum information transmis-
sion that (ii) leave zero expected profits to the market conditional on each
type. Property (i) restricts attention to strategies (X,T ) : Ω → [0, 1] × R
that are one-to-one (fully separating), while property (ii) implies transfers
T (ω̂) = (1−x)ω̂, where ω̂ is the inferred expected value of the firm. One can
then ignore t = T (ω̂) in the analysis and denote a strategy of the informed
player (the owner) by X(ω).

The payoff function V of the informed investor as defined in (1) is

V (ω, ω̂, x) = EεU(w0 + x(ω + ε) + (1 − x)ω̂). (4)
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We have

V2(ω, ω̂, x) = (1 − x)EεU
′(w0 + x(ω + ε) + (1 − x)ω̂),

and

V13(ω, ω̂, x) = EεU
′(w0 + x(ω + ε) + (1 − x)ω̂)

+ x(ω − ω̂)EεU
′′(w0 + x(ω + ε) + (1 − x)ω̂).

Simple examples show that in general V13 can be 0, violating type-
monotonicity. Furthermore, Ω is not compact.

3.2 Market Microstructure

Consider a market for a risky asset in which risk neutral market makers
provide liquidity to an informed trader who, depending on her private infor-
mation, may wish to buy or sell the risky asset. Following Glosten (1989),
we refer to the informed trader as the investor. Let x ∈ R denote the quan-
tity of the risky asset traded by the investor, with x > 0 corresponding to
a purchase and x < 0 to a sale. The corresponding monetary transfer from
the investor to the market maker is denoted by t ∈ R; if t < 0, −t is the
amount received by the investor. If as in standard market microstructure
theory, p is the price of the asset, then t = px.

The following is Mailath and Nöldeke’s (2008) generalization of Glosten
(1989). The final value of the risky asset is ν = s+ε. The investor privately
observes s and her endowment θ of the risky asset before trade takes place.
The random variables (s, θ) describing the investor’s private information are
uncorrelated and elliptically distributed (Fang, Kotz, and Ng, 1990) with
variances σ2

s > 0 and σ2
θ > 0. The random variable ε, realized after trade,

is normally distributed with variance σ2
ε > 0 and independent of (s, θ). The

variables s, ε, and θ all have zero mean.
After a trade x resulting in a monetary transfer t, the investor’s final

wealth is w = (x + θ)(s + ε) − t. (The risk-free rate and the investor’s
initial money holdings are assumed to be zero.) The investor has CARA
preferences with risk aversion parameter γ > 0. As ε is normally distributed
this yields, as usual, a quadratic representation of the investor’s preferences
over (x, t) ∈ R2 conditional on her private information. Defining

r ≡ γσ2
ε > 0, (5)

such a representation is given by

U(x, t | s, θ) = (s − rθ)x − rx2/2 − t.
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While the private information of the investor is two-dimensional, her
preferences depend on this information only through the one-dimensional
variable s − rθ, which reflects a blend of the investor’s informational and
hedging motives for trade. Setting

ω ≡ E[ν | s − rθ] = E[s + ε | s − rθ],

the linear conditional expectation property of elliptically distributed random
variables (Hardin, 1982) implies

ω =
s − rθ

b
, (6)

where

b ≡
σ2

s + r2σ2
θ

σ2
s

> 1. (7)

Conditional on ω, the investor’s preferences over trade-transfer pairs are
thus described by the utility function

U(x, t | ω) = bωx − rx2/2 − t. (8)

Market makers are risk neutral and maximize expected trading profits.
It suffices to consider aggregate trading profits t − νx. Conditional on ω,
expected aggregate trading profits are given by

V(x, t | ω) = t − ωx. (9)

The analysis of the model can be conducted in the reduced form envi-
ronment, with the investor’s private information summarized by her one-
dimensional type ω and payoff functions given by (8) for the investor and
(9) for market makers.

The above assumptions on the information structure and traders’ pref-
erences are as in Glosten (1989), with the important exception that the
random variables (s, θ) describing the investor’s private information are not
required to be normally distributed. The assumption that these variables
are elliptically distributed is enough to yield payoff functions (8) and (9)
identical to those arising in Glosten’s (1989) normal environment (and used
in Hellwig’s (1992) analysis of Glosten’s competitive model).5 If ω is nor-
mally distributed, then the support Ω of its distribution is R, but in general,
Ω can be bounded (it must contain 0 as its midpoint).

5The distribution of ω is not completely arbitrary, as (6) determines ω as a function of
the elliptically distributed random variables (s, θ) and the underlying parameters γ and
σ2

ε . In particular, the distribution function of ω is symmetric and has finite variance (see
Mailath and Nöldeke (2008) for details).
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The strategic interaction between the two sides of the market is a screen-
ing game in which the market makers compete for the investor’s trade.
Hence, each market maker i offers a menu {(Xi(ω), Ti(ω))ω∈Ω : Xi(ω) ∈
R, Ti(ω) ∈ R, ∀ω ∈ Ω} of trading possibilities to the informed investor, and
the investor then chooses one allocation (Xi(ω̂), Ti(ω̂)) from one menu.

We again consider outcomes with maximum information transmission,
i.e., trading schedules that are separating with respect to ω. Competition
between market makers implies that if there exists a separating equilibrium
in the screening game, each market maker must make zero expected profits
on each type. By (9), this means

Ti(ω) = ωXi(ω) for all ω ∈ Ω and all i. (10)

Hence, the trading schedule schedule pins down the pricing schedule.
By (8), the payoff function V of the informed investor as defined in (1)

is then
V (ω, ω̂, x) = (bω − ω̂)x − rx2/2. (11)

We have

V2(ω, ω̂, x) = −x, (12)

V13(ω, ω̂, x) = b, (13)

and
d

dω

{
V3(ω, ω̂, x)
V2(ω, ω̂, x)

}

= −
b

x
. (14)

Equations (12) and (14) violate the assumptions of Theorem 1. Further-
more, while it is possible in the equity issue model of the previous subsection
to restrict Ω arbitrarily to a compact interval, the case of an unbounded Ω
is important in this case (arising, for example, when ω is normal).

3.3 Security Design

The fundamental question in corporate finance is how to allocate the cash
flow generated by a firm’s assets among its different providers of capital.
DeMarzo and Duffie (1999) have argued that this problem should be ana-
lyzed in two steps. First, the firm’s owners or managers design the security,
and second the security is sold to investors. Since the second step may take
place significantly later than the first, the firm may have obtained private in-
formation concerning the security’s payoff once it sells the security. For this
second step, DeMarzo and Duffie (1999)) therefore consider the following
game.
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The security has an expected payoff ω ∈ Ω, where ω is private informa-
tion of the firm and Ω ⊂ R is a potentially unbounded interval with left
endpoint ω1. The firm considers selling a quantity x ∈ [0, 1] of the security
to market investors. There are gains from trade because the firm discounts
the security’s cash flows at a higher rate than the market. Let δ < 1 be
the firm’s discount rate relative to that of the market (which is normalized
to 1). The firm and the market are both risk-neutral. If the firm sells the
amount x of the security for a total of t, the firm’s payoff is

t + (1 − x)δω (15)

and the market investors’ payoff is

xω − t. (16)

Market investors are competitive and must make zero expected profits
for each value of ω. Hence, if they believe the expected value of the security
to be ω̂, they will pay t = xω̂. Inserting this into (15) yields the payoff
function V of the informed investor as defined in (1):

V (ω, ω̂, x) = xω̂ + (1 − x)δω

= δω + (ω̂ − δω)x.

The informed agent’s payoff function V is linear in x and therefore vio-
lates Assumption 1 of Theorem 1.

4 The Generalized Theorems

In this section, we provide two theorems that significantly expand the appli-
cability of Theorem 1.Our first result is that incentive-compatibility implies
differentiability in models with linear payoffs and compact choice sets, as in
DeMarzo and Duffie (1999).

Assumption 3 The set X is compact and the function V is affine in x ∈ X ,

V (ω, ω̂, x) = A(ω, ω̂) + B(ω, ω̂)x, (17)

with B(ω, ω) 6= 0 for all ω ∈ Ω.

Under Assumption 3, XFB(ω) is on the boundary of X .
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Theorem 2 Let Ω and X be intervals in R and let X be one-to-one and
incentive-compatible. Suppose Assumption 3 holds. Then X is differentiable
at every ω ∈ Ω and satisfies the linear differential equation

B(ω, ω)X ′(ω) + B2(ω, ω)X(ω) = −A2(ω, ω). (18)

Theorem 2 is useful because many standard models in corporate fi-
nance, as in Industrial Organization, work with linear preferences, which
often gives rise to valuations V of the form (17). The theorem is sur-
prising because constrained optimization problems with linear objective
functions often yield discontinuous solutions. Interestingly, the assumption
that the action set X is compact does not force the solution to lie on the
boundary: the optimal X typically lies in the interior of X . Instead, com-
pactness is needed to prove that for any ω0 and any sequence ωn → ω0,
V (ω0, ω0, X(ωn)) → V (ω0, ω0, X(ω0)). This is a crucial insight that helps
to establish the continuity of X, from which, in turn the differentiability of
X can be deduced.

Instead of assuming compactness of X , this insight can also be proved
by our relaxed concavity assumptions 1 and 2.

Theorem 3 Suppose Ω and X are connected subsets of R and X is one-to-
one and incentive-compatible. Suppose Assumptions 1 and 2 hold.

1. For any ω ∈ Ω, if X(ω) = XFB(ω) then X is continuous at ω.

2. For any ω0 ∈ int(Ω), if V (ω0, ω0, ∙) is a monotone function in x, and
if either X(ω0) 6= XFB(ω0) or V2(ω0, ω0, X

FB(ω0)) 6= 0, then X is
differentiable at ω0.

3. Suppose V13(ω, ω, x) 6= 0 for all (ω, x) ∈ Ω×X , V2(ω, ω̂,X(ω̂)) 6= 0 for
all ω, ω̂ ∈ Ω, and V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂)) is a strictly monotone
function of ω for all ω̂. Then X is differentiable on int(Ω).

4. Assume that V13(ω, ω, x) 6= 0 and V12(ω, ω, x) ≤ 0 for all (ω, x) ∈
Ω × X . If V2(ω, ω,X(ω)) > 0 or if V2(ω, ω,X(ω)) < 0 for all ω in an
open subset Ω0 ⊂ Ω, then X is differentiable on Ω0.

5. Assume that V13(ω, ω, x) 6= 0 for all (ω, x) ∈ Ω ×X .

(i) Assume that Ω = [ω1, ω2] or Ω = [ω1,∞) and that X(ω1) =
XFB(ω1). If V2(ω, ω,X(ω)) > 0 for all ω ∈ Ω then X is differentiable
on Ω,
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(ii) Assume that Ω = [ω1, ω2] or Ω = (−∞, ω2] and that X(ω2) =
XFB(ω2). If V2(ω, ω,X(ω)) < 0 for all ω ∈ Ω then X is differentiable
on Ω.

At all points of differentiability, X satisfies the differential equation
(DE).

The proof of both theorems, which recycles Mailath’s original proof and
adds a number of new elements, is in the appendix.

Theorem 3 generalizes Theorem 1 in several respects. First, the theorem
does not assume compactness of Ω. The argument is not entirely trivial
because Mailath’s proof uses uniform convergence (for which compactness
is needed) and exploits the behavior of X on the boundary of Ω. Second,
the assumptions on the partial derivatives need not hold for all (ω, ω̂, x) ∈
Ω2 ×X . Here, the necessary changes in Mailath’s proof are simple, but the
new generality is useful because (i) the restriction to the diagonal ω̂ = ω
has bite and (ii) usually there is some a priori information about the graph
of X that can be used.

Theorem 3.1 is a useful partial result that follows directly from Mailath’s
proof. The assumption in this statement seems difficult to verify a priori,
because one needs to know X, which one actually wants to characterize.
However, since it is more difficult to show the continuity of X than deducing
the differentiability from the continuity of X, this statement is useful to “fill
possible holes” left by the other statements. Subsection 5.2 provides an
example for this technique.

Theorem 3.5 clarifies the role of the boundary conditions in Theorem
1 and shows that only one boundary condition is necessary to obtain the
result. This extends the validity of the theorem to the case of intervals
that are either unbounded from below or from above. Theorem 3.3 is the
same statement as in Theorem 1 but without the restrictions on Ω. The
comparison of Theorem 3.3 and Theorem 3.5 therefore extends and clarifies
Mailath’s (1987) observation that in order to prove differentiability one can
use single crossing or a boundary condition.6

The two more substantial results are Theorem 3.2 and Theorem 3.4.
They also show that in order to prove differentiability, neither single cross-
ing nor a boundary condition are necessary. Theorem 3.2 is useful because

6However, note that these two are not the only alternatives, as Theorems 2 and 3
show. The single-crossing property is a standard condition on the indifference curves of
the informed agent (we discuss it in more detail below).
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the required monotonicity is often easy to verify, and is structurally novel
because it is local (i.e., it only requires conditions at ω0 to establish differ-
entiability at ω0). Unlike the statements in Theorem 1, Theorem 3.4 only
requires assumptions on V2 for ω in a subset Ω0 ⊂ Ω. This is particularly
useful if the regularity assumptions for V are known not to hold on the
whole domain. The condition V12 ≤ 0 (“manipulation monotonicity”) in
this statement is mild and satisfied in all examples we know of. It requires
that the informed agent’s gain from manipulating the uninformed beliefs
upwards does not increase in her type.

Theorems 2 and 3 identify conditions under which incentive-compatibility
implies differentiability. To complete our discussion we now briefly turn to
the question under what conditions the converse is true, i.e. when differen-
tiability implies incentive-compatibility. Under the assumption of Theorem
1, Mailath (1987, Theorem 3) showed that the converse holds if V satisfies
the single-crossing property on the graph of X. The next theorem shows
that this statement continues to be true under weaker assumptions. More-
over, the property is also locally necessary (the statement of Mailath (1987,
Theorem 3) is incorrect).

The Spence (1973)-Mirrlees (1971) single-crossing property requires the
agent’s marginal rate of substitution between her action (x) and that of the
uninformed agents be appropriately monotone in her type. In our exam-
ples, the uninformed agents’ action is a monetary transfer, and as is typical,
the action is monotone in beliefs about type. Consequently, in our reduced
form model, the appropriate marginal rate of substitution is between ω̂ and
x, that is, V3(ω, ω̂, x)/V2(ω, ω̂, x). The adjective “appropriately” captures
the requirement that, for example, in job market signaling, single crossing
is implied by more (rather then less) able workers having a lower marginal
cost of education. If less able workers have the lower marginal cost of edu-
cation, then the marginal rate substitution between education and wage is
an increasing function of ability. While monotonic, such a marginal rate of
substitution precludes the existence of a separating equilibrium.

The single-crossing property imposes a uniform structure on the deriva-
tives of V that implies global optimality from the first-order condition (which
is essentially the differential condition (DE)). Conversely, the second-order
condition for local optimality implied by incentive-compatibility is essen-
tially the local single-crossing condition.

The following theorem on the role of single crossing is proved in the
appendix. Since X ′ and V2 do not change sign, (19) and (20) both imply
that V3(ω, ω̂, x)/V2(ω, ω̂, x) is monotonic in ω (with the signs of X ′ and V2

jointly determining the appropriate monotonicity). Condition (19) implies
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a global monotonicity, in that it holds everywhere on the graph of X, while
(20) implies a local monotonicity, in that it only holds for the derivative
evaluated at ω̂ = ω.

Theorem 4 Assume that the one-to-one function X is continuous on Ω
and satisfies the differential equation (DE) on the interior of Ω. Suppose
V2(ω, ω̂,X(ω̂)) 6= 0 for all ω, ω̂ ∈ Ω.

1. If

X ′(ω)V2(ω, ω̂,X(ω̂))
d

dω

{
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

}

≥ 0 (19)

for all ω, ω̂ ∈ Ω, then X is incentive-compatible.

2. If X is incentive-compatible, then

X ′(ω)V2(ω, ω,X(ω))
d

dω

{
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

}∣∣
∣
∣
ω̂=ω

≥ 0 (20)

for all ω ∈ Ω.

5 The Examples Revisited

5.1 Equity Issues

In equilibrium, the payoff of the informed party in the model of Section 3.1,
(4), is strictly decreasing in x: under truth-telling (ω̂ = ω), investors pay the
expected value of the firm, and any share the informed owner holds yields a
mean-preserving spread around the mean. Since the informed owner is risk-
averse, her utility is therefore decreasing in the size of her shareholdings.
Since V2(ω, ω, 0) > 0 for all ω, the conditions of Theorem 3.2 are satisfied.

Note that the conditions are not satisfied for ω = ω1 (the left boundary),
and indeed we have X ′(ω1) = ∞.

5.2 Market Microstructure

From (11), the first-best in the model of Section 3.2 is given by

XFB(ω) =
b − 1

r
ω.

Under any competitive incentive-compatible separating price-quantity
schedule, type ω = 0 must get her first-best allocation, x = 0.7 Separation

7Since V (0, 0, X(0)) ≥ 0 (type ω = 0 has the option of choosing x = 0), and V (0, 0, x) =
−rx2/2, which is strictly negative if x 6= 0, we have X(0) = 0.
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then implies that every other type must choose a non-zero quantity. Hence,
V2(ω, ω,X(ω)) 6= 0 for all ω 6= 0 by (12). Since V12 ≡ 0, Theorem 3.4 there-
fore implies that any incentive-compatible schedule X must be differentiable
on the open sets (0,∞) and (−∞, 0).

By Theorem 3.1, the schedule X is continuous at ω = 0. Calculating the
derivatives of X on (0,∞) and (−∞, 0) from (DE) shows that the left-hand
and right-hand derivative of X at ω = 0 exist and are identical. Hence, X
is differentiable on all of Ω.

One of the main insights in Glosten (1989) is his non-existence result. In
particular, he shows that in the case b ≤ 2, the differential equation (DE)
for Ω = R does not have a separating solution (see also Hellwig (1992)).
His conclusion is that too much competition can be detrimental for market
activity. This conclusion requires that every equilibrium trading schedule is
differentiable, a result missing in Glosten (1989), but which is implied by
Theorem 3.

It is worth noting that Glosten’s (1989) conclusion also requires viewing
separation as an implication of competition. Without an appeal to refine-
ments (see footnote 1), there is no foundation for such a view.8 Mailath
and Nöldeke (2008) argue that competitive pricing does not lead to market
breakdown, even in the presence of extreme adverse selection (in the sense
of unbounded supports of the private information).

5.3 Security Design

Since the firm’s payoff function V is linear in x, if the firm’s strategy X is
incentive-compatible and one-to-one, Theorem 2 implies that it is differen-
tiable for all ω > 0 and satisfies the differential equation

(1 − δ)ωX ′(ω) + X(ω) = 0. (21)

It can be easily verified that (21) has the solution

X(ω) = aω− 1
1−δ , (22)

where a ≥ 0 is a constant of integration. Since X(ω) ∈ [0, 1] by construction,
(22) implies that ω1 = inf Ω and a must satisfy ω1 ≥ a1−δ for a solution to
exist. In particular, if the interaction in the model is a signaling game (as

8Gale (1992, 1996) describes a Walrasian approach to competition in markets with
adverse selection that is related to the ideas of Kohlberg and Mertens (1986) and which
yields similar conclusions.
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in Section 3 of DeMarzo and Duffie (1999)), then firm type ω1 must obtain
its most preferred allocation x = 1, and the constant of integration is

a = ω
1

1−δ

1 .

Note that this implies that Ω must be bounded away from 0 for a non-
trivial solution to exist.9

A Proofs of Theorems 2 and 3

In what follows, Ω and X are connected subsets of R, and X is a one-to-one
function satisfying (IC).

Lemma A If X is continuous at ω0 and V3(ω0, ω0, X(ω0)) 6= 0, then X is
differentiable at ω0 with derivative

X ′(ω0) = −
V2(ω0, ω0, X(ω0))
V3(ω0, ω0, X(ω0))

.

If ω0 is on the boundary of Ω, then the derivative is the appropriate
one-sided derivative. This is essentially Proposition 2 of Mailath (1987). Its
proof requires no modification, since that proof only requires V be C2 (in
which case, it also has bounded derivatives on any compact neighborhood).

Lemma B Suppose either Assumptions 1 and 2 or Assumption 3 hold. If
X is continuous at ω0 ∈ int(Ω) and either V2(ω0, ω0, X

FB(ω0)) 6= 0 or
V2(ω0, ω0, X(ω0)) 6= 0, then V3(ω0, ω0, X(ω0)) 6= 0 and Lemma A applies.

Proof. Observe that X(ω0) cannot be on the boundary of X , since it is
both continuous at ω0 and one-to-one. Thus, if XFB(ω0) is on the boundary
(as it is under Assumption 3), we immediately have X(ω0) 6= XFB(ω0) and
so V3(ω0, ω0, X(ω0)) 6= 0.

Suppose XFB(ω0) ∈ int(X ) (and so it is Assumptions 1 and 2 that
hold). Since XFB is continuous, for η sufficiently small and for all ω ∈
[ω0 − η, ω0 + η], XFB(ω) ∈ int(X ) and so V3(ω, ω,XFB(ω)) = 0.

Suppose V2(ω0, ω0, X
FB(ω0)) 6= 0. Then, for η > 0 sufficiently small,

V2(ω, ω,XFB(ω)) 6= 0 on the same neighborhood of ω0. The argument
showing that X(ω0) 6= XFB(ω0) is now identical to the proof of (Mailath,
1987, Proposition 3, p. 1362).

9This result and solution (22) are in DeMarzo and Duffie (1999), which cites an earlier
unpublished version of their paper for the complete proof.
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Finally, suppose V2(ω0, ω0, X(ω0)) 6= 0. If X(ω0) = XFB(ω0), then
V2(ω0, ω0, X

FB(ω0)) 6= 0, which by the previous paragraph implies X(ω0) 6=
XFB(ω0), a contradiction.

Lemma C Suppose either Assumptions 1 and 2 or Assumption 3 hold. For
each non-empty compact interval [ω, ω] ⊂ Ω, X([ω, ω]) is bounded.

Proof. Under Assumption 3, X is compact, and so we immediately have
the result.

Suppose it is Assumptions 1 and 2 that hold. The continuity of V and the
Maximum Theorem imply that the first-best XFB is a continuous function
on Ω.

Suppose that X is unbounded on [ω, ω] and let ωn ∈ [ω, ω], n = 1, 2, ...
be a sequence such that xn = X(ωn) → ∞ (the case xn → −∞ is han-
dled analogously). We may assume that, by taking subsequences if nec-
essary, the sequence ωn converges to some ω0 ∈ [ω, ω]. There is N ∈
N such that X(ωn) > XFB(ω0) for all n ≥ N . Assumptions 1 and 2
imply that V (ω0, ω0, X(ωn)) → −∞. By the continuity of V , we also
have V (ωn, ωn, X(ωn)) → −∞. This, however, contradicts the incentive-
compatibility of X.

Lemma D Suppose either Assumptions 1 and 2 or Assumption 3 hold. If
ω → ω0 then V (ω0, ω0, X(ω)) → V (ω0, ω0, X(ω0)).

Proof. Fix a compact neighborhood N in Ω containing ω0. By Lemma C,
X(N) is bounded. Hence, V is uniformly continuous on N2 × cl(X(N)),
where cl(∙) denotes the closure.

Fix ε > 0. Uniform continuity implies that there is a δ1 > 0 with
{ω ∈ Ω; |ω − ω0| < δ1} ⊂ N such that for all x ∈ X(N),

|ω − ω0| < δ1 =⇒ |V (ω0, ω, x) − V (ω0, ω0, x)| < ε.

For these ω, incentive compatibility implies

V (ω0, ω0, X(ω0)) ≥ V (ω0, ω,X(ω)) > V (ω0, ω0, X(ω)) − ε. (A.1)

On the other hand, there is a δ2 > 0 with {ω ∈ Ω; |ω − ω0| < δ2} ⊂ N
such that for all x ∈ X(N),

|ω − ω0| < δ2 =⇒ |V (ω, ω0, x) − V (ω0, ω0, x)| < ε/2

and |V (ω, ω, x) − V (ω0, ω0, x)| < ε/2.
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Hence, for these ω, incentive compatibility implies

V (ω0, ω0, X(ω)) > V (ω, ω,X(ω)) −
ε

2

≥ V (ω, ω0, X(ω0)) −
ε

2
> V (ω0, ω0, X(ω0)) − ε. (A.2)

Therefore, for ω ∈ Ω with |ω − ω0| < min(δ1, δ2), we have

V (ω0, ω0, X(ω0)) − ε < V (ω0, ω0, X(ω)) < V (ω0, ω0, X(ω0)) + ε,

where the first inequality is from (A.2) and the second (A.1).
Hence, limω→ω0 V (ω0, ω0, X(ω)) = V (ω0, ω0, X(ω0)).

Theorem 2. Suppose Assumption 3 holds. Then X is differentiable at
every ω ∈ Ω and satisfies the linear differential equation

B(ω, ω)X ′(ω) + B2(ω, ω)X(ω) = −A2(ω, ω).

Proof. Fix ω0 ∈ Ω and a compact neighborhood in Ω containing ω0. Con-
sider a sequence ωn → ω0. By the compactness of X , the sequence X(ωn)
has a convergent subsequence that converges to some x̂ ∈ X . By Lemma
D, V (ω0, ω0, X(ωn)) → V (ω0, ω0, X(ω0)). By Assumption 3, V (ω0, ω0, ∙)
is strictly monotone in x. The continuity of V therefore implies that x̂ =
X(ω0). Hence, X is continuous at ω0. From Assumption 3, and Lemma
A, X is differentiable at ω0. The differential equation (18) is obtained by
re-arranging the differential equation in Lemma A.

Theorem 3.1. Suppose Assumptions 1 and 2 hold. For any ω ∈ Ω, if
X(ω) = XFB(ω) then X is continuous at ω.

Theorem 3.2. Suppose Assumptions 1 and 2 hold. For any ω0 ∈ int(Ω),
if V (ω0, ω0, ∙) is a monotone function in x, and if either X(ω0) 6= XFB(ω0)
or V2(ω0, ω0, X

FB(ω0)) 6= 0, then X is differentiable at ω0.

Proofs of Theorem 3.1 and 3.2. Consider ω0 ∈ int(Ω) and fix a compact
neighborhood N in Ω cotaining ω0. Consider a sequence ωn → ω0 in N . By
Lemma C, the sequence X(ωn) has a convergent subsequence that converges
to an x̂ ∈ cl(X(N)). By Lemma D, on that subsequence,

V (ω0, ω0, X(ωn)) → V (ω0, ω0, X(ω0)). (A.3)

Assumptions 1 and 2 imply that V (ω0, ω0, x) is strictly quasi-concave in
x, with a unique maximum at x = XFB(ω0). Equation (A.3) then implies
that X must be continuous at ω0 when X(ω0) = XFB(ω0).
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If V (ω, ω, ∙) is monotone, it is strictly monotone (and so one-to-one)
because of Assumption 2. Hence, x̂ = X(ω0), and so X is continuous at ω0.
The second result then follows from Lemmas A and B.

Lemma E Suppose Assumptions 1 and 2 hold. If X is discontinuous at
some point ω0, then there are two possible actions x′ < x′′ such that for all
sequences ωn → ω0, the set {X(ωn} is bounded and every convergent subse-
quence of {X(ωn)} converges to either x′ or x′′. The type w0 is indifferent
between the two limit actions, X(ω0) = x′ or x′′, and x′FB(ω0) < x′′.

Proof. Suppose X is discontinuous at ω0 and fix a compact neighborhood
in Ω around ω0, [ω0 − η, ω0 + η] ∩ Ω. Consider two sequences, {ω−

n } and
{ω+

n }, in [ω0 − η, ω0 + η] ∩ Ω.
If the sequences X(ω−

n ) and X(ω+
n ) do not converge to X(ω0) they have,

by Lemma C, convergent subsequences that converge to x− and x+, respec-
tively, and we restrict attention to these subsequences.

Incentive-compatibility implies

V (ω−
n , ω−

n , X(ω−
n )) ≥ V (ω−

n , ω+
n , X(ω+

n ))

and V (ω+
n , ω+

n , X(ω+
n )) ≥ V (ω+

n , ω−
n , X(ω−

n )).

Taking limits and comparing the two inequalities gives

V (ω0, ω0, x
−) = V (ω0, ω0, x

+). (A.4)

A similar exercise with ω0 replacing ω−
n shows that

V (ω0, ω0, X(ω0)) = V (ω0, ω0, x
+).

The strict quasi-concavity of V (Assumptions 1 and 2) implies that the
equation V (ω0, ω0, x) = k can have at most two distinct solutions in x. Let
x′ and x′′ denote these two solutions, with one of them equaling X(ω0).

Equation (A.4), with the strict quasi-concavity, also implies that XFB(ω0)
lies strictly between x′ and x′′.

Lemma F Suppose that Assumptions 1 and 2 hold, V13(ω, ω, x) 6= 0 and
V2(ω, ω,XFB(ω)) 6= 0 for all (ω, x) ∈ Ω∗ × X , where Ω∗ is a connected
subset of Ω. Then X can have at most one point of discontinuity ω0 in Ω∗.
At the discontinuity,
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1. X is continuous from either the left or the right,

2. the left-hand and the right-hand limits exist, and

3. the jump of X is of the same sign as V13, i.e.,

( lim
ω↘ω0

X(ω) − lim
ω↗ω0

X(ω)) ∙ V13 > 0. (A.5)

Proof. Define, for arbitrary ω, ω̂ ∈ Ω and x ∈ X ,

g(ω, ω̂, x) ≡ V (ω, ω̂, x) − V (ω, ω0, X(ω0)).

Since V is C2, g is C2 on Ω2 ×X . Moreover,

g(ω, ω0, X(ω0)) = g1(ω, ω0, X(ω0)) = 0, ∀ω. (A.6)

Incentive compatibility implies

g(ω0, ω,X(ω)) ≤ 0 (A.7)

and g(ω, ω,X(ω)) ≥ 0. (A.8)

For any ω ∈ Ω and λ ∈ [0, 1], define

[ω; λ]1 ≡ (λω0 + (1 − λ)ω, ω,X(ω))

and for any μ ∈ [0, 1], define

[ω; μ]23 ≡ (ω0, μω0 + (1 − μ)ω, μX(ω0) + (1 − μ)X(ω)).

Expanding g(ω, ω,X(ω)) around (ω0, ω,X(ω)) to the second order yields

g(ω, ω,X(ω)) = g(ω0, ω,X(ω)) + g1(ω0, ω,X(ω))(ω − ω0)

+ 1
2g11([ω; λ]1)(ω − ω0)2

for some λ ∈ [0, 1]. Next, expanding g1(ω0, ω,X(ω)) around (ω0, ω0, X(ω0))
to the first order yields

g1(ω0, ω,X(ω)) = g1(ω0, ω0, X(ω0))

+ g12([ω; μ]23)(ω − ω0) + g13([ω; μ]23)(X(ω) − X(ω0))
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for some μ ∈ [0, 1]. Because the first term on the right-hand side is 0 by
(A.6), combining these two expressions yields

g(ω, ω,X(ω)) = g(ω0, ω,X(ω))

+ (ω − ω0)
{[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ω − ω0)

+ g13([ω; μ]23)(X(ω) − X(ω0))
}

. (A.9)

Expressions (A.7), (A.8), and (A.9) imply

0 ≥ g(ω0, ω,X(ω)) ≥ −(ω − ω0)
{[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ω − ω0)

+ g13([ω; μ]23)(X(ω) − X(ω0))
}

(A.10)

for some λ, μ ∈ [0, 1].
Suppose X is discontinuous at ω0 ∈ Ω∗ . By Lemma E, there exists x0 6=

X(ω0) and a sequence {ωn} ⊂ Ω∗ with ωn → ω0 satisfying X(ωn) → x0.
Without loss of generality, we may assume ωn > ω0 for all n, or ωn < ω0

for all n.
Suppose ωn > ω0 for all n. Focusing on the left-most and right-most

term of the inequality chain (A.10), setting ω = ωn, and dividing through
by ωn − ω yields
[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ωn −ω0)+ g13([ω; μ]23)(X(ωn)−X(ω0)) ≥ 0.

(A.11)
Since g13([ω; μ]23) = V13([ω; μ]23), in the limit, this implies

(x0 − X(ω0))V
0
13 > 0, (A.12)

where
V 0

13 = V13(ω0, ω0, μX(ω0) + (1 − μ)x0)

and the inequality is strict because x0 6= X(ω0) and V13(ω, ω, x) 6= 0.
Suppose now that ωn < ω0 for all n. In that case, the inequality in (A.11)

is reversed, and as is the strict inequality in (A.12). This implies that at a
point of discontinuity, the value x0 can only be the limiting value from one
side. We now argue that x0 is the limiting value for all such sequences.

Suppose ωn ↘ ω0 and X(ωn) → x0 6= V (ω0), and V 0
13 > 0 (the other

cases are handled similarly). Then, from (A.12), x0 > X(ω0). Suppose
there is another sequence ω̃n ↘ ω0 with X(ω̃n) → X(ω0). Since XFB is
continuous, for large n and small η, we have X(ω̃n) < XFB(ω) < X(ωn) for
all n and all ω ∈ [ω0, ω0 + η]. Fix ωn and ω̃m with ω0 < ωn < ω̃m < ω0 + η.
Theorem 3.1 and Lemma B imply that for all ω ∈ [ωn, ω̃m], X(ω) 6= XFB(ω).
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Since for all ω ∈ [ωn, ω̃m], we have X(ω̃m) < XFB(ω) < X(ωn), X is
discontinuous at some ω ∈ [ωn, ω̃m] with some left limit (i.e., for some
sequence ω†

n ↗ ω) exceeding XFB(ω) and some right limit being less than
XFB(ω). But this contradicts (A.12).

Hence, X is continuous from either the left or the right, and (A.5) holds.
Since XFB is continuous and X(ω) 6= XFB(ω) (from Lemmas B and E),

X can have at most one discontinuity on Ω∗.

Theorem 3.3. Suppose Assumptions 1 and 2 hold, V13(ω, ω, x) 6= 0
for all (ω, x) ∈ Ω∗ × X , V2(ω, ω̂,X(ω̂)) 6= 0 for all ω, ω̂ ∈ Ω∗, and that
V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂)) is a strictly monotone function of ω ∈ Ω∗ for
all ω̂ ∈ Ω∗, where Ω∗ is a connected subset of Ω. Then X is differentiable
on int(Ω∗).

Proof. The result follows from Lemma B, once we have proved that X is
continuous in the interior of Ω∗.

Suppose that X is discontinuous at ω0 ∈ int(Ω∗). Assume that V13(ω, ω, x)
> 0 (the other case is analogous). By Lemma F, X is continuous for all
ω 6= ω0 and so, by Lemma B, differentiable at all such ω ∈ int(Ω∗) with
derivative

X ′(ω) = −
V2(ω, ω,X(ω))
V3(ω, ω,X(ω))

.

Since by Lemmas E and F, X(ω) is strictly smaller than the first-best for
ω < ω0 and strictly greater for ω > ω0, we have (ω −ω0)V3(ω, ω,X(ω)) < 0
for ω 6= ω0, and so (ω − ω0)X ′(ω)V2(ω, ω,X(ω) > 0 for ω 6= ω0. Since
V2(ω, ω,X(ω)) does not change sign on Ω∗ by assumption, X ′ has one sign
for ω < ω0 and the other sign for ω > ω0.

By assumption, V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂)) is a strictly monotone
function of ω ∈ Ω∗, and so

X ′(ω)V2(ω, ω̂,X(ω̂))
∂

∂ω

[
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

]

< 0 (A.13)

for ω either below or above ω0.
Suppose it is the former (the latter is handled similarly). Choose ar-

bitrary ω′ < ω′′ < ω0 in int(Ω∗). Consider V (ω′′−1(x), x) as a function of
x. By the differentiability of X and the Intermediate Value Theorem, there
exists an ω ∈ (ω′, ω′′) such that

V (ω′′, ω′, X(ω′)) = V (ω′′, ω′′, X(ω′′)) −

{

V2(ω
′′, ω,X(ω))

dX−1(X(ω))
dx

+ V3(ω
′′, ω,X(ω))

}

(X(ω′′) − X(ω′))
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= V (ω′′, ω′′, X(ω′′)) −

{

V2(ω
′′, ω,X(ω))

(

−
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

)

+ V3(ω
′′, ω,X(ω))

}

(X(ω′′) − X(ω′))

= V (ω′′, ω′′, X(ω′′)) −

{
V3(ω′′, ω,X(ω))
V2(ω′′, ω,X(ω))

−
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

}

× V2(ω
′′, ω,X(ω))(X(ω′′) − X(ω′))

= V (ω′′, ω′′, X(ω′′)) −
∫ ω′′

ω

∂

∂ω

(
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

)

dω

× V2(ω
′′, ω,X(ω))(X(ω′′) − X(ω′))

> V (ω′′, ω′′, X(ω′′)).

The strict inequality (which follows from (A.13) and ω < ω′′) contradicts
incentive compatibility.

Lemma G Suppose Assumptions 1 and 2 hold. Let Ω0 be an open subset
of Ω on which X is differentiable. Assume that V2(ω, ω,X(ω)) 6= 0 for all
ω ∈ Ω0. Then

V12(ω, ω,X(ω)) + X ′(ω)V13(ω, ω,X(ω)) ≥ 0 (A.14)

for all ω ∈ Ω0.

Proof. By Lemma A, X ′(ω) 6= 0 for all ω ∈ Ω0, and so X−1 is differentiable
for all x ∈ X(Ω0). Since X(ω) must maximize V (ω,X−1(x), x), the implied
first order condition evaluated at ω = X−1(x),

V2(X
−1(x), X−1(x), x)

dX−1(x)
dx

+ V3(X
−1(x), X−1(x), x) = 0,

must hold for all x ∈ X(Ω0). Since the equation is an identity, the first
derivative must also equal zero:

[V12 + V22]

(
dX−1

dx

)2

+ [V13 + 2V23]
dX−1

dx
+ V2

d2X−1

dx2
+ V33 = 0, (A.15)

where all the partial derivatives of V are evaluated at (X−1(x), X−1(x), x).
The second derivative of V (ω,X−1(x), x) is

d

dx2
V (ω,X−1(x), x) = V22

(
dX−1

dx

)2

+2V23
dX−1

dx
+V2

d2X−1

dx2
+V33, (A.16)
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where now all partial derivatives are evaluated at (ω,X−1(x), x). Evaluating
(A.16) at ω = X−1(x), and substituting from (A.15), yields

d

dx2
V (X−1(x), X−1(x), x) = −V12

(
dX−1

dx

)2

− V13
dX−1

dx

= −

(
dX−1

dx

)2

(V12 + X ′V13). (A.17)

Since V (ω,X−1(x), x) must have a local maximum at x = X(ω), the
right-hand side of (A.17) must be (weakly) negative for all ω ∈ Ω0, which
yields (A.14).

Theorem 3.4. Suppose Assumptions 1 and 2 hold, V13(ω, ω, x) 6= 0
and V12(ω, ω, x) ≤ 0 for all (ω, x) ∈ Ω × X . If V2(ω, ω,X(ω)) > 0 or if
V2(ω, ω,X(ω)) < 0 for all ω in an open subset Ω0 ⊂ Ω, then X is differen-
tiable on Ω0.

Proof. By Lemma F, X can have at most one discontinuity in Ω0, say ω0.
By Lemma A, X is differentiable on Ω0�{ω0}, and by Lemma G, it satisfies
(A.14) there.

Since V12 ≤ 0 and V13 6= 0, (A.14) immediately implies that X ′ must
have the same sign as V13 for all ω ∈ Ω0 \ {ω0}.

Recall that for all ω ∈ Ω0 \ {ω0},

X(ω) > XFB(ω) ⇔ V3(ω, ω,X(ω)) < 0 (A.18)

⇔ X ′(ω)V2(ω, ω,X(ω)) > 0,

where the first equivalence follows from the definition of the first-best and
the second from the form of the derivative of X derived in Lemma A. By
Lemma E, we have both X(ω′FB(ω′) and X(ω′′FB(ω′′) for some ω′, ω′′ ∈ Ω0

(since ω0 is a point of discontinuity). Since V2 does not change sign on Ω0,
X ′ does. But X ′ must have the same sign as V13 on Ω0�{ω0}, which does
not change its sign by assumption. Contradiction.

Theorem 3.5. Suppose Assumptions 1 and 2 hold and V13(ω, ω, x) 6= 0 for
all (ω, x) ∈ Ω ×X .

(i) Assume that Ω = [ω1, ω2] or Ω = [ω1,∞) and that X(ω1) =
XFB(ω1). If V2(ω, ω,X(ω)) > 0 for all ω ∈ Ω then X is differentiable on
Ω,

(ii) Assume that Ω = [ω1, ω2] or Ω = (−∞, ω2] and that X(ω2) =
XFB(ω2). If V2(ω, ω,X(ω)) < 0 for all ω ∈ Ω then X is differentiable on
Ω.
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Proof. Assume that V2(ω, ω,X(ω)) > 0 for all ω ≥ ω1 (the other case is
handled similarly). Suppose that X is discontinuous at ω0 > ω1 (by Lemma
F, there can be no other discontinuity). Denote Ω0 = {ω ∈ Ω; ω > ω1, ω 6=
ω0}. By Lemma A, X is differentiable on Ω0, and by Lemma G, it satisfies
(A.14) there.

Since V2(ωw, ωw, X(ωw)) 6= 0, by assumption, the continuity of X at ω1

and Lemma A imply that |X ′(ω)| → ∞ for ω → ω1. Hence, (A.14) implies
that X ′ must have the same sign as V13 for ω ∈ Ω0 sufficiently close to ω1.

As in (A.18), we now have for all ω ∈ Ω0

X(ω) > XFB(ω) ⇔ X ′(ω) > 0.

But according to Lemma F, at the discontinuity, the jump of X has the
same sign as V13, which is impossible.

B Proof of Theorem 4

First note that it suffices to prove the result assuming Ω is open (since if
Ω includes a boundary, and X is incentive compatible on the interior of Ω,
then continuity implies X is incentive compatible on Ω).

1. (Global sufficiency of single crossing for IC.) Since X satisfies (DE), it
satisfies the first order condition implied by (IC), and so satisfies (IC)
if

d

dx
V (ω,X−1(x), x) ∙ (x − X(ω)) ≤ 0 ∀x ∈ X(Ω), ω ∈ Ω. (B.19)

The derivative equals

V2(ω,X−1(x), x)

(
dX

dω̂

∣
∣
∣
∣
X−1(x)

)−1

+ V3(ω,X−1(x), x)

= V2(ω,X−1(x), x)
−V3(X−1(x), X−1(x), x)
V2(X−1(x), X−1(x), x)

+ V3(ω,X−1(x), x)

= V2(ω,X−1(x), x)

{
V3(ω,X−1(x), x)
V2(ω,X−1(x), x)

−
V3(X−1(x), X−1(x), x)
V2(X−1(x), X−1(x), x)

}

.

If X is strictly increasing and V2(ω, ω,X(ω)) > 0 (the other possibili-
ties handled mutatis mutandis), (B.19) is satisfied when V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂))
is an increasing function of ω for all ω̂ ∈ Ω.
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2. (Local necessity of single crossing for IC.) Suppose X satisfies (IC).
The second order condition is

d2

dx2
V (ω,X−1(x), x)

∣
∣
∣
∣
x=X(ω)

≤ 0,

which is, after substituting for d2X−1(x)/dx2,

−
dX−1

dx
∙

{

V12(ω, ω,X(ω))
dX−1

dx
+ V13(ω, ω,X(ω))

}

≤ 0,

i.e.,

−
dX−1

dx
∙

{

V13(ω, ω,X(ω)) − V12(ω, ω,X(ω))
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

}

≤ 0.

Multiplying both sides of this inequality by −(X ′)2 yields an expres-
sion equivalent to (20).
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Mailath, G. J., and G. Nöldeke (2008): “Does Competitive Pricing
Cause Market Breakdown Under Extreme Adverse Selection?,” Journal
of Economic Theory, 140(1), 97–125.

Mailath, G. J., M. Okuno-Fujiwara, and A. Postlewaite (1993):
“Belief-Based Refinements in Signaling Games,” Journal of Economic
Theory, 60, 241–276.

Mirrlees, J. A. (1971): “An exploration in the theory of optimum income
taxation,” Review of Economic Studies, 38, 175–208.

Spence, A. M. (1973): “Job Market Signaling,” Quarterly Journal of Eco-
nomics, 87(3), 355–374.

26


	Introduction
	The Model
	Three Examples
	Equity Issues
	Market Microstructure
	Security Design

	The Generalized Theorems
	The Examples Revisited
	Equity Issues
	Market Microstructure
	Security Design

	Proofs of Theorems 2 and 3
	Proof of Theorem 4

