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Abstract

We consider a one-sided assignment market or exchange network with transferable utility
and propose a model for the dynamics of bargaining in such a market. Our dynamical model is
local, involving iterative updates of ‘offers’ based on estimated best alternative matches, in the
spirit of pairwise Nash bargaining. We establish that when a balanced outcome (a generalization
of the pairwise Nash bargaining solution to networks) exists, our dynamics converges rapidly to
such an outcome. We extend our results to the cases of (i) general agent ‘capacity constraints’,
i.e., an agent may be allowed to participate in multiple matches, and (ii) ‘unequal bargaining
powers’ (where we also find a surprising change in rate of convergence).

Keywords: Nash bargaining, network, dynamics, convergence, matching, assignment, ex-
change, balanced outcomes.

JEL classification: C78

1 Introduction

Bargaining has been heavily studied in the economics and sociology literature, e.g., [32, 36, 26, 35].
While the case of bargaining between two agents is fairly well understood [32, 36, 26], less is known
about the results of bargaining on networks. We consider exchange networks [13, 27], also called
assignment markets [39, 33], where agents occupy the nodes of a network, and edges represent
potential partnerships between pairs of agents, which can generate some additional value for these
agents. To form a partnership, the pair of agents must reach an agreement on how to split the value
of the partnership. Agents are constrained on the number of partnerships they can participate in,
for instance, under a matching constraint, each agent can participate in at most one partnership.
The fundamental question of interest is: Who will partner with whom, and on what terms? Such a
model is relevant to the study of the housing market, the labor market, the assignment of interns
to hospitals, the marriage market and so on. An assignment model is suitable for markets with
heterogeneous indivisible goods, where trades are constrained by a network structure.

Balanced outcomes1 generalize the pairwise Nash bargaining solution to this setting. The key
issue here is the definition of the threats or best alternatives of participants in a match — these are
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1Also called symmetrically pairwise-bargained allocations in [33] or Nash bargaining solutions [27].
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defined by assuming the incomes of other potential partners to be fixed. In a balanced outcome on
a network, each pair plays according to the local Nash bargaining solution thus defined. Balanced
outcomes have been found to possess some favorable properties:

Predictive power. The set of balanced outcomes refines the set of stable outcomes (the core),
where players have no incentive to deviate from their current partners. For instance, in the case of a
two player network, all possible deals are stable, but there is a unique balanced outcome. Balanced
outcomes have been found to capture various experimentally observed effects on small networks
[13, 27].

Computability. Kleinberg and Tardos [27] provide an efficient centralized algorithm to compute
balanced outcomes. They also show that balanced outcomes exist if and only if stable outcomes
exist.

Connection to cooperative game theory. The set of balanced outcomes is identical to the core
intersection prekernel of the corresponding cooperative game [33, 4].

However, this leaves unanswered the question of whether balanced outcomes can be predictive
on large networks, since there was previously no dynamical description of how players can find such
an outcome via a bargaining process.

In this work, we consider an assignment market with arbitrary network structure and edge
weights that correspond to the value of the potential partnership on that edge. We present a
model for the bargaining process in such a network setting, under a capacity constraint on the
number of exchanges that each player can establish. We define a model that satisfies two important
requirements: locality and convergence.

Locality. It is reasonable to assume that agents have accurate information about their neighbors
in the network (their negotiation partners). Specifically, an agent is expected to know the weights
of the edges with each of her negotiation partners. Further, for (ij) ∈ E, agent i may estimate
the ‘best alternative’ of agent j in the current ‘state’ of negotiations.2 On the other hand, it is
unlikely that the offer made to an agent during a negotiation depends on arbitrary other agents in
the network. We thus require that agent make ‘myopic’ choices on the basis of their neighborhood
in the exchange networks. This is consistent with the bulk of the game theory literature on learning
[18, 10].

Convergence. The duration of a negotiation is unlikely to depend strongly on the overall network
size. For instance, the negotiation on the price of a house, should not depend too much on the
size of the town in which it takes place, all other things being equal. Thus a realistic model for
negotiation should converge to a fixed point (hence to a set of exchange agreements) in a time
roughly independent of the network size.

Our dynamical model is fairly simple. Players compute the current best alternative to each
exchange, both for them, and for their partner. On the basis of that, they make a new offer to
their partner according to the pairwise Nash bargaining solution. This of course leads to a change
in the set of best alternatives at the next time step. We make the assumption that ‘pairing’ occurs
at the end, or after several iterative updates, thus suppressing the effect of agents pairing up and
leaving.

This dynamics is of course local. Each agent only needs to know the offers she is receiving,
as well as the offers that her potential partner is receiving. The technical part of this paper is
therefore devoted to the study of the convergence properties of this dynamics.

Remarkably, we find that it converges rapidly, in time roughly independent of the network size.

2For instance, i may form this estimate based on her conversation with j. (We do not present a game theoretic
treatment with fully rational/strategic agents in this work, cf. Section 6.)
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Further its fixed points are not arbitrary, but rather a suitable generalization of Nash bargaining
solutions [13, 33] introduced in the context of assignment markets and exchange networks (also
referred to as ‘balanced outcomes’ [27] or ‘symmetrically pairwise-bargained allocations’ [33]). Thus,
our work provides a dynamical justification of Nash bargaining solutions in assignment markets.

We now present the mathematical definitions of bargaining networks and balanced outcomes.
The network consists of a graph G = (V,E), with positive weights wij > 0 associated to the

edges (i, j) ∈ E. A player sits at each node of this network, and two players connected by edge
(i, j) can share a profit of wij dollars if they agree to trade with each other. Each player can trade
with at most one of her neighbors (this is called the 1-exchange rule), so that a set of valid trading
pairs forms a matching M in the graph G.

We define an outcome or trade outcome as a pair (M,γ) where M ⊆ E is a matching of G,
and γ = {γi : i ∈ V } is the vector of players’ profits. This means, γi ≥ 0, and (i, j) ∈ M implies
γi + γj = wij , whereas for every unmatched node i /∈M we have γi = 0.

A balanced outcome, or Nash bargaining (NB) solution, is a trade outcome that satisfies the
additional requirements of stability and balance. Denote by ∂i the set of neighbors of node i in G.
Stability. If player i is trading with j, then she cannot earn more by simply changing her trading
partner. Formally γi + γj ≥ wij for all (i, j) ∈ E \M .
Balance. If player i is trading with j, then the surplus of i over her best alternative must be equal
to the surplus of j over his best alternative. Mathematically,

γi − max
k∈∂i\j

(wik − γk)+ = γj − max
l∈∂j\i

(wjl − γl)+ (1)

for all (i, j) ∈M . Here (x)+ refers to the non-negative part of x, i.e. (x)+ ≡ max(0, x).
It turns out that the interplay between the 1-exchange rule and the stability and balance

conditions results in highly non-trivial predictions regarding the influence of network structure on
individual earnings.
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Figure 1: Examples of networks and corresponding balanced outcomes. The network G1 admits
a unique balanced outcome, G2 admits multiple balanced outcomes, and G3 admits no balanced
outcome. For G2 one solution is shown inside the square and the other solution is outside.

We conclude with some examples of networks and corresponding balanced outcomes (see Figure
1).

The network G1 has a unique balanced outcome with the nodes a and c forming a partnership
with a split of γa = 0.5, γc = 1.5. Node d remains isolated with γd = 0. The best alternative of
node c is (wcd − γd)+ = 1, whereas it is 0 for node a, and the excess of 2 − 1 = 1 is split equally
between a and c, so that each earns a surplus of 0.5 over their outside alternatives.

The network G2 admits multiple balanced outcomes. Each balanced outcome involves the
pairing M = {(e, f), (h, i)}. The earnings γe = 0.5, γf = 1.5, γh = 2, γi = 1 are balanced, and so is
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the symmetric counterpart of this earnings vector γe = 1.5, γf = 0.5, γh = 1, γi = 2. In fact, every
convex combination of these two earnings vectors is also balanced.

The network G3 does not admit any stable outcome, and hence does not admit any balanced
outcomes. To see this, observe that for any outcome, there is always a pair of agents who can
benefit by deviating.

1.1 Related work

Recall the LP relaxation to the maximum weight matching problem

maximize
∑

(i,j)∈E

wijxij , (2)

subject to
∑

j∈∂i

xij ≤ 1 ∀i ∈ V,

xij ≥ 0 ∀(i, j) ∈ E .

The dual problem to (2) is

minimize
∑

i∈V

yi, (3)

subject to yi + yj ≥ wij ∀(i, j) ∈ E,

yi ≥ 0 ∀i ∈ V.

Stable outcomes were studied by Sotomayor [40].

Proposition 1. [40] Stable outcomes exist if and only if the linear programming relaxation (2) of
the maximum weight matching problem on G admits an integral optimum. Further, if (M,γ) is a
stable solution then M is a maximum weight matching and γ is an optimum solution to the dual
LP (3).

Following [33, 13], Kleinberg and Tardos [27] first considered balanced outcomes on general
exchange networks and proved that: a network G admits a balanced outcome if and only if it
admits a stable outcome.

The same paper describes a polynomial algorithm for constructing balanced outcomes. This is
in turn based on the dynamic programming algorithm of Aspvall and Shiloach [1] for solving systems
of linear inequalities. However, [27] left open the question of whether the actual bargaining process
converges to balanced outcomes.

Rochford [33], and recent work by Bateni et al [4], relate the assignment market problem to
the extensive literature on cooperative game theory. They find that balanced outcomes correspond
to the core intersect pre-kernel of the corresponding cooperative game. A consequence of the
connection established is that the results of Kleinberg and Tardos [27] are implied by previous
work in the economics literature. The existence result follows from Proposition 1, and the fact
that if the core of a cooperative game is non-empty then the core intersect prekernel is non-empty.
Efficient computability follows from work by Faigle et al [17], who provide a polynomial time
algorithm for finding balanced outcomes. 3

However, [33, 4] also leave open the twin questions of finding (i) a natural model for bargaining,
and (ii) convergence (or not) to NB solutions.

3In fact, Faigle et al [17] work in the more general setting of cooperative games. The algorithm involves local
‘transfers’, alternating with a non-local LP based step after every O(n2) transfers.
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Azar and co-authors [2] studied the question as to whether a balanced outcome can be produced
by a local dynamics, and were able to answer it positively4. Their results left, however, two
outstanding challenges: (I) The algorithm analyzed by these authors first selects a matching M
in G using the message passing algorithm studied in [5, 22, 6, 37], corresponding to the pairing of
players that trade. In a second phase the algorithm determines the profit of each player. While
such an algorithm can be implemented in a distributed way, Azar et al. point out that it is not
entirely realistic. Indeed the rules of the dynamics change abruptly after the matching is found.
Further, if the pairing is established at the outset, the players lose their bargaining power; (II)
The bound on the convergence time proved in [2] is exponential in the network size, and therefore
does not provide a solid justification for convergence to NB solutions in large networks.

1.2 Our contribution

The present paper (based partly on our recent conference papers [25, 23]) aims at tackling these
challenges. First we introduce a natural dynamics that is interpretable as a realistic negotiation
process. We show that the fixed points of the dynamics are in one to one correspondence with NB
solutions, and prove that it converges to such solutions. Moreover, we show that the convergence
to approximate NB solutions is fast. Furthermore we are able to treat the more general case of
nodes with unsymmetrical bargaining powers and generalize the result of [27] on existence of NB
solutions to this context. These results are obtained through a new and seemingly general analysis
method, that builds on powerful quantitative estimates on mappings in the Banach spaces [3]. For
instance, our approach allows us to prove that a simple variant of the edge balancing dynamics of
[2] converges in polynomial time (see Section 7).

We consider various modifications to the model and analyze the results. One direction is to
allow arbitrary integer ‘capacity constraints’ that capture the maximum number of deals that a
particular node is able to simultaneously participate in (the model defined above corresponds to
a capacity of one for each node). Such a model would be relevant, for example, in the context of
a job market, where a single employer may have more than one opening available. We show that
many of our results generalize to this model in Section 5.

Another well motivated modification is to depart from the assumption of symmetry/balance
and allow nodes to have different ‘bargaining powers’. Rochford and Crawford [34] mention this
modification in passing, with the remark that it “. . . seems to yield no new insights”. Indeed, we
show here (see Section 4) that our asymptotic convergence results generalize to the unsymmetrical
case. However, surprisingly, we find that the natural dynamics may now take exponentially long
to converge. We find that this can occur even in a two-sided network with the ‘sellers’ having
slightly more bargaining power than the ‘buyers’. Thus, a seemingly minor change in the model
appears to drastically change the convergence properties of our dynamics. Other algorithms like
that of Kleinberg and Tardos [27] and Faigle et al [17] also fail to generalize, suggesting that,
in fact, we may lose computability of solutions in allowing asymmetry. However, we show that
a suitable modification to the bargaining process yields a fully polynomial time approximation
scheme (FPTAS) for the unequal bargaining powers. The caveat is that this algorithm, though
local, is not a good model for bargaining because it fixes the matching at the outset (cf. comment
(I) above).

Our dynamics and its analysis have similarities with a series of papers on using max-product
belief propagation for the weighted matching problems [5, 22, 6, 37]. We discuss that connection

4Stearns [43] defined a very similar dynamics and proved convergence for general cooperative games. The dynamics
can be interpreted in terms of the present model using the correspondence with cooperative games discussed in [4].
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and extensions of our results to those settings in one of our conference papers [25, Appendix F].
We obtain a class of new message passing algorithms to compute the maximum weight matching,
with belief propagation and our dynamics being special cases.

Related work in sociology

Besides economists, sociologists have been interested in such markets, called exchange networks in
that literature. The key question addressed by network exchange theory is that of how network
structure influences the power balance between agents. Numerous predictive frameworks have
been suggested in this context including generalized Nash bargaining solutions [13]. Moreover,
controlled experiments [45, 29, 41] have been carried out by sociologists. The typical experimental
set-up studies exactly the model of assignment markets proposed by economists [39, 33]. It is often
the case that players are provided information only about their immediate neighbors. Typically, a
number of ‘rounds’ of negotiations are run, with no change in the network, so as to allow the system
to reach an ‘equilibrium’. Further, players are usually not provided much information beyond who
their immediate neighbors are, and the value of the corresponding possible deals.

In addition to balanced outcomes [13], other frameworks have been suggested to predict/explain
the outcomes of these experiments [12, 9, 41].

1.3 Outline of the paper

Our dynamical model of bargaining in a network is described in Section 2. We state our main
results characterizing fixed points and convergence of the dynamics in Section 3.

We present two extensions of our model. In Section 4 we investigate the unsymmetrical case
with nodes having different bargaining powers. We find that the (generalized) dynamics may take
exponentially long to converge in this case, but we provide a modified local algorithm that provides
an FPTAS. We consider the case of general capacity constraints in Section 5, and show that our
main results generalize to this case.

In Section 7, we prove Theorems 2 and 3 on convergence of our dynamics. We characterize fixed
points in Section 8 with a proof of Theorem 1 (the proof of Theorem 4 is deferred to Appendix D).
Section 9 shows polynomial time convergence on bipartite graphs (proof of Theorem 5).

We present a discussion of our results in Section 6.
Appendix A contains a discussion on variations of the natural dynamics including time and

node varying damping factors and asynchronous updates.

2 Dynamical model

Consider a bargaining network G = (V,E), where the vertices represent agents, and the edges
represent potential partnerships between them. There is a positive weight wij > 0 on each edge
(i, j) ∈ E, representing the fact that players connected by edge (i, j) can share a profit of wij dollars
if they agree to trade with each other. Each player can trade with at most one of her neighbors
(this is called the 1-exchange rule), so that a set of valid trading pairs forms a matching M in the
graph G. We define a trade outcome as in Section 1, in accordance with the above constraints.

We expect natural dynamical description of a bargaining network to have the following prop-
erties: It should be local, i.e. involve limited information exchange along edges and processing at
nodes; It should be time invariant, i.e. the players’ behavior should be the same/similar on identical
local information at different times; It should be interpretable, i.e. the information exchanged along
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the edges should have a meaning for the players involved, and should be consistent with reasonable
behavior for players.

In the model we propose, at each time t, each player sends a message to each of her neighbors.
The message has the meaning of ‘best current alternative’. We denote the message from player i
to player j by αt

i\j . Player i is telling player j that she (player i) currently estimates earnings of

αt
i\j elsewhere, if she chooses not to trade with j.

The vector of all such messages is denoted by αt ∈ R2|E|
+ . Each agent i makes an ‘offer’ to each

of her neighbors, based on her own ‘best alternative’ and that of her neighbor. The offer from node
i to j is denoted by mt

i→j and is computed according to

mt
i→j = (wij − αt

i\j)+ −
1

2
(wij − αt

i\j − αt
j\i)+ . (4)

It is easy to deduce that this definition corresponds to the following policy: (i) An offer is
always non-negative, and a positive offer is never larger than wij − αt

i\j (no player is interested in

earning less than her current best alternative); (ii) Subject to the above constraints, the surplus

(wij −αt
i\j −αt

j\i) (if non-negative) is shared equally. We denote by mt ∈ R2|E|
+ the vector of offers.

Notice that mt is just a deterministic function of αt. In the rest of the paper we shall describe
the network status uniquely through the latter vector, and use m|αt to denote mt defined by (4)
when required so as to avoid ambiguity.

Each node can estimate its potential earning based on the network status, using

γti ≡ max
k∈∂i

mt
k→i, (5)

the corresponding vector being denoted by γt ∈ R|V |
+ . Notice that γt is also a function of αt.

Messages are updated synchronously through the network, according to the rule

αt+1
i\j = (1− κ)αt

i\j + κ max
k∈∂i\j

mt
k→i . (6)

Here κ ∈ (0, 1] is a ‘damping’ factor: (1−κ) can be thought of as the inertia on the part of the nodes
to update their current estimates (represented by outgoing messages). The use of κ < 1 eliminates
pathological behaviors related to synchronous updates. In particular, we observe oscillations on
even-length cycles in the undamped synchronous version. We mention here that in Appendix A
we present extensions of our results to various update schemes (e.g., asynchronous updates, time-
varying damping factor).

Remark 2. An update under the natural dynamics requires agent i to perform O(|∂i|) arithmetic
operations, and O(|E|) operations in total.

Let Wmax ≡ max(ij)∈E wij. Often in the paper we take Wmax = 1, since this can always be
achieved by rescaling the problem, which is the same as changing units. It is easy to see that
αt ∈ [0,Wmax]

2|E|, mt ∈ [0,Wmax]
2|E| and γt ∈ [0,Wmax]

|V | at all times (unless the initial condition

violates this bounds). Thus we call α a ‘valid’ message vector if α ∈ [0,Wmax]
2|E|.

2.1 An Example

We consider a simple graph G with V = {A,B,C,D}, E = {(A,B), (B,C), (C,D)}, wAB =
8, wBC = 6 and wCD = 2. The unique maximum weight matching on this graph is M =
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Figure 2: Progress of the natural dynamics on a graph with four nodes and three edges. We
(arbitrarily) choose the initialization α0 = 0. A fixed point is reached at t = 6.
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{(A,B), (C,D)}. By Proposition 1, stable outcomes correspond to matching M and can be param-
eterized as

γ = (8− γB , γB , γC , 2− γC)

where (γB , γC) are constrained as

γB ∈ [0, 8]

γC ∈ [0, 2]

γB + γC ≥ 6

For instance, the set of stable outcomes (all on matchingM) includes (0, 8, 2, 0), (4, 4, 2, 0), (3, 5, 1, 1)
and so on. Now suppose we impose the balance condition Eq. (1) in addition, i.e., we look for bal-
anced outcomes. Using the algorithm of Kleinberg and Tardos [27], we find that the network admits
a unique balanced outcome γ = (1.5, 6.5, 1, 1).

Now we consider the evolution of the natural dynamics proposed above on the graph G. We
arbitrarily choose to study the initialization α0 = 0, i.e., each node initially estimates its best
alternatives to be 0 with respect to each neighbor. We set κ = 1 for simplicity5. The evolution of
the estimates and offers under the dynamics is shown in Figure 2.1. We now comment on a few
noteworthy features demonstrated by this example. In the first step, nodes A and B receive their
best offers from each other, node C receives its best offer from B and node D receives its best offer
from C. Thus, we might expect nodes A and B to be considering the formation of a partnership
already (though the terms are not yet clear), but this is not the case for C and D. After one
iteration, at t = 1, both pairs (A,B) and (C,D) receive their best offers from each other. In fact,
this property remains true at all future times (the case t = 2 is shown). However, the vectors α and
m continue to evolve from one iteration to the next. At iteration t = 6, a fixed point is reached,
i.e., α and m remain unchanged for t ≥ 6. Moreover, we notice that the fixed point captures the
unique balanced outcome on this graph, with the matching M and the splits (γA = 1.5, γB = 6.5)
and (γC = 1, γD = 1) emerging from the fixed point m∗.

We remark here that convergence to a fixed point in finite number of iterations is not a general
phenomenon. This occurs as a consequence of the simple example considered and the choice κ = 1.
However, as we prove below, we always obtain rapid convergence of the dynamics, and fixed points
always correspond to balanced outcomes, on any graph possessing balanced outcomes, and for any
initialization.

3 Main results: Fixed point properties and convergence

Our first result is that fixed points of the update equations (4), (6) (hereafter referred to as ‘natural
dynamics’) are indeed in correspondence with Nash bargaining solutions when such solutions exist.
Note that the fixed points are independent of the damping factor κ. The correspondence with NB
solutions includes pairing between nodes, according to the following notion of induced matching.

Definition 3. We say that a state (α,m, γ) (or just α) induces a matching M if the following
happens. For each node i ∈ V receiving non-zero offers (m·→i > 0), i is matched under M and
gets its unique best offer from node j such that (i, j) ∈M . Further, if γi = 0 then i is not matched

5Our results assume κ < 1 to avoid oscillatory behavior. However, it turns out that on graphs with no even cycles,
for instance the graph G under consideration, oscillations do not occur. We choose to consider κ = 1 for simplicity
of presentation.
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in M . In other words, pairs in M receive unique best offers that are positive from their respective
matched neighbors whereas unmatched nodes receive no non-zero offers.

Consider the LP relaxation to the maximum weight matching problem (2). A feasible point x
for LP (2) is called half-integral if for all e ∈ E, xe ∈ {0, 1, 12}. It is well known that problem (2)
always has an optimum x∗ that is half-integral [38]. An LP with a fully integer x∗ (x∗e ∈ {0, 1}) is
called tight.

Theorem 1. Let G be an instance admitting one or more Nash bargaining solutions, i.e. the LP
(2) admits an integral optimum.
(a) Unique LP optimum (generic case): Suppose the optimum is unique corresponding to matching
M∗. Let (α,m, γ) be a fixed point of the natural dynamics. Then α induces matching M∗ and
(M∗, γ) is a Nash bargaining solution. Conversely, every Nash bargaining solution (M,γ

NB
) has

M = M∗ and corresponds to a unique fixed point of the natural dynamics with γ = γ
NB

.

(b) Let (α,m, γ) be a fixed point of the natural dynamics. Then (M∗, γ) is a Nash bargaining
solution for any integral maximum weight matching M∗. Conversely, if (M,γ

NB
) is a Nash bar-

gaining solution, M is a maximum weight matching and there is a unique fixed point of the natural
dynamics with γ = γ

NB
.

We prove Theorem 1 in Section 8. Theorem 12 in Appendix C extends this characterization of
fixed points of the natural dynamics to cases where Nash bargaining solutions do not exist.

Remark 4. The condition that a tight LP (2) has a unique optimum is generic (see Appendix C,
Remark 18). Hence, fixed points induce a matching for almost all instances (cf. Theorem 1(a)).
Further, in the non-unique optimum case, we cannot expect an induced matching, since there is
always some node with two equally good alternatives.

The existence of a fixed point of the natural dynamics is immediate from Brouwer’s fixed point
theorem. Our next result says that the natural dynamics always converges to a fixed point. The
proof is in Section 7.

Theorem 2. The natural dynamics has at least one fixed point. Moreover, for any initial condition
with α0 ∈ [0,W ]2|E|, αt converges to a fixed point.

Note that Theorem 2 does not require any condition on LP (2). It also does not require
uniqueness of the fixed point.

With Theorems 1 and 2, we know that in the limit of a large number of iterations, the natural
dynamics yields a Nash bargaining solution. However, this still leaves unanswered the question
of the rate of convergence of the natural dynamics. Our next theorem addresses this question,
establishing fast convergence to an approximate fixed point.

However, before stating the theorem we define the notion of approximate fixed point.

Definition 5. We say that α is an ǫ-fixed point, or ǫ-FP in short, if, for all (i, j) ∈ E we have

∣

∣αi\j − max
k∈∂i\j

mk→i

∣

∣ ≤ ǫ , (7)

and similarly for αj\i. Here, m is obtained from α through Eq. (4) (i.e., m = m|α).

Note that ǫ-fixed points are also defined independently of the damping κ.
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Theorem 3. Let G = (V,E) be an instance with weights (we, e ∈ E) ∈ [0, 1]|E|. Take any initial
condition α0 ∈ [0, 1]2|E|. Take any ǫ > 0. Define

T ∗(ǫ) =
1

πκ(1 − κ)ǫ2
. (8)

Then for all t ≥ T ∗(ǫ), αt is an ǫ-fixed point. (Here π = 3.14159 . . .)

Thus, if we wait until time t, we are guaranteed to obtain an
(

1/
√

πκ(1− κ)t
)

-FP. Theorem 3

is proved in Section 7.

Remark 6. For any ǫ > 0, it is possible to construct an example such that it takes Ω(1/ǫ) iterations
to reach an ǫ-fixed point. This lower bound can be improved to Ω(1/ǫ2) in the unequal bargaining
powers case (cf. Section 4). However, in our constructions, the size of the example graph grows
with decreasing ǫ in each case.

We are left with the problem of relating approximate fixed points to approximate Nash bar-
gaining solutions. We use the following definition of ǫ-Nash bargaining solution, that is analogous
to the standard definition of ǫ-Nash equilibrium (e.g., see [14]).

Definition 7. We say that (M,γ) is an ǫ-Nash bargaining solution if it is a valid trade outcome
that is stable and satisfies ǫ-balance. ǫ-balance means that for every (i, j) ∈M we have

∣

∣[γi − max
k∈∂i\j

(wik−γk)+]− [γj − max
l∈∂j\i

(wjl−γl)+]
∣

∣ ≤ ǫ . (9)

A subtle issue needs to be addressed. For an approximate fixed point to yield an approximate
Nash bargaining solution, a suitable pairing between nodes is needed. Note that our dynamics
does not force a pairing between the nodes. Instead, a pairing should emerge quickly from the
dynamics. In other words, nodes on the graph should be able to identify their trading partners
from the messages being exchanged. As before, we use the notion of an induced matching (see
Definition 3).

Definition 8. Consider LP (2). Let H be the set of half integral points in the primal polytope. Let
x∗ ∈ H be an optimum. Then the LP gap g is defined as g = minx∈H\{x∗}

∑

e∈E wex
∗
e−

∑

e∈E wexe.

Theorem 4. Let G be an instance for which the LP (2) admits a unique optimum, and this is
integral, corresponding to matching M∗. Let the gap be g > 0. Let α be an ǫ-fixed point of the
natural dynamics, for some ǫ < g/(6n2). Let γ be the corresponding earnings estimates. Then
α induces the matching M∗ and (γ,M∗) is an (6ǫ)-Nash bargaining solution. Conversely, every
ǫ-Nash bargaining solution (M,γ

NB
) has M = M∗ for any ǫ > 0.

Note that g > 0 is equivalent to the unique optimum condition (cf. Remarks 2, 5). The
proof of this theorem requires generalization of the analysis used to prove Theorem 1 to the case
of approximate fixed points. Since its proof is similar to the proof of Theorem 1, we defer it to
Appendix D. We stress, however, that Theorem 4 is not, in any sense, an obvious strengthening of
Theorem 1. In fact, this is a delicate property of approximate fixed points that holds only in the
case of balanced outcomes. This characterization breaks down in the face of a seemingly benign
generalization to unequal bargaining powers (cf. Section 4 and [23, Section 4]).

Theorem 4 holds for all graphs, and is, in a sense, the best result we can hope for. To see this,
consider the following immediate corollary of Theorems 3 and 4.
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Corollary 9. Let G = (V,E) be an instance with weights (we, e ∈ E) ∈ [0, 1]|E|. Suppose LP (2)
admits a unique optimum, and this is integral, corresponding to matching M∗. Let the gap be g > 0.
Then for any α0 ∈ [0, 1]2|E|, there exists T ∗ = O(n4/g2) such that for any t ≥ T ∗, αt induces the
matching M∗ and (γt,M∗) is an (6/

√

πκ(1 − κ)t)-NB solution.

Proof. Choose T ∗ as T ∗(g/(10n2)) as defined in (8). Clearly, T ∗ = O(n4/g2). From Theorem 3,
αt is an ǫ(t)-FP for ǫ(t) = 1/

√

πκ(1− κ)t. Moreover, for all t ≥ T ∗, ǫ(t) ≤ g/(10n2). Hence, by
Theorem 4, αt induces the matching M∗ and (γt,M∗) is a (6ǫ(t))-NB solution for all t ≥ T ∗.

Corollary 9 implies that for any ǫ > 0, the natural dynamics finds an ǫ-NB solution in time
O
(

max
(

n4/g2, 1/ǫ2
))

.
This result is the essentially the strongest bound we can hope for in the following sense. First,

note that we need to find M∗ (see converse in Theorem 4) and balance the allocations. Max prod-
uct belief propagation, a standard local algorithm for computing the maximum weight matching,
requires O(n/g) iterations to converge, and this bound is tight [6]. Similar results hold for the
Auction algorithm [7] which also locally computes M∗. Moreover, max product BP and the natu-
ral dynamics are intimately related (see [25]), with the exception that max product is designed to
find M∗, but this is not true for the natural dynamics. Corollary 9 shows that natural dynamics
only requires a time that is polynomial in the same parameters n and 1/g to find M∗, while it
simultaneously takes rapid care of balancing the outcome.

3.1 Example: Polynomial convergence to ǫ-NB solution on bipartite graphs.

The next result further shows a concrete setting in which Corollary 9 leads to a strong guarantee
on quickly reaching an approximate NB solution.

Theorem 5. Let G = (V,E) be a bipartite graph with weights (we, e ∈ E) ∈ [0, 1]|E|. Take any
ξ ∈ (0, 1), η ∈ (0, 1). Construct a perturbed problem instance with weights w̄e = we + ηUe, where
Ue are independent identically distributed random variables uniform in [0, 1]. Then there exists
C = C(κ) <∞, such that for

T ∗ = C

(

n2|E|
ηξ

)2

, (10)

the following happens for all t ≥ T ∗ with probability at least 1 − ξ. State αt induces a matching
M that is independent of t. Further, (γt,M) is a ǫ(t)-NB solution for the perturbed problem, with

ǫ(t) = 12/
√

πκ(1− κ)t.

ξ represents our target in the probability that a pairing does not emerge, while η represents the
size of perturbation of the problem instance.

Theorem 5 implies that for any fixed η and ξ, and any ǫ > 0, we find an ǫ-NB solution in time
τ(ǫ) = Kmax(n4|E|2, 1/ǫ2) with probability at least 1− ξ, where K = K(η, ξ, κ) <∞. Theorem 5
is proved in Section 9.

3.2 Other results

A different analysis allows us to prove exponentially fast convergence to a unique Nash bargaining
solution. We describe this briefly in Section 7.1, referring to an unpublished manuscript [24] for
the proof, in the interest of space.
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We investigate the case of nodes with unsymmetrical bargaining powers in Section 4. We show
that generalizations of the Theorems 1, 2 and 3 hold for a suitably modified dynamics. Somewhat
surprisingly, we find that the modified dynamics may take exponentially long to converge (so
Theorem 3 does not generalize). However, we find a different local procedure that efficiently finds
approximate solutions.

In Section 5 we consider the case where agents have arbitrary integer capacity constraints on
the number of partnerships they can participate in, instead of the one-matching constraint. We
generalize our dynamics and the notion of balanced outcomes to this case. We show that Theorems
1, 2 and 3 generalize. As a corollary, we establish the existence of balanced outcomes whenever
stable outcomes exist (Corollary 14) in this general setting6.

Appendix A presents extensions of our convergence results to cases where the damping factor
varies in time or from node to node, and when updates are asynchronous. This shows that our
insights are robust to variations in the natural of damping and the timing of iterative updates.

4 Unequal bargaining powers

It is reasonable to expect that not all edge surpluses on matching edges are divided equally in
an exchange network setting. Some nodes are likely to have more ‘bargaining power’ than others.
This bargaining power can arise, for example, from ‘patience’; a patient agent is expected to get
more than half the surplus when trading with an impatient partner. This phenomenon is well
known in the Rubinstein game [36] where nodes alternately make offers to each other until an offer
is accepted – the node with a smaller discount factor earns more in the subgame perfect Nash
equilibrium. Moreover, a recent experimental study of bargaining in exchange networks [11] found
that patience correlated positively with earnings.

A reasonable approach to model this effect would be to assign a positive ‘bargaining power’ to
each node, and postulate that if a pair of nodes trade with each other, then the edge surplus is
divided in the ratio of their bargaining powers. We choose instead, a more general setting where
on each edge (ij) there is an expected surplus split fraction quantified by rij ∈ (0, 1). Namely, rij
is the fraction of surplus that goes to i if i and j trade with each other, and similarly for rji. Note
that we have rij + rji = 1. We call a weighted graph G along with the postulated split fraction
vector r an unequal division (UD) instance.

The balance condition is replaced by correct division condition

[rij ]
−1

[

γi − max
k∈∂i\j

(wik − γk)+
]

(11)

UD
== [rji]

−1
[

γj − max
l∈∂j\i

(wjl − γl)+
]

,

on matched edges (ij). We retain the stability condition. We call trade outcomes satisfying (11)
and stability unequal division (UD) solutions. A natural modification to our dynamics in this
situation consists of the following redefinition of offers.

mt
i→j

UD
== (wij − αt

i\j)+ − rij(wij − αt
i\j − αt

j\i)+ . (12)

We call the dynamics resulting from (12) and the update rule (6) the unsymmetrical natural dy-
namics. One can check that T defined in (22) is nonexpansive for offers defined as in (12). It follows

6The caveat here is that Corollary 14 does not say anything about the corner case of non-unique maximum weight
b-matching.
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that Theorems 2 and 3 hold for the UD-natural dynamics with damping. (We retain Definition 5
of an ǫ-FP). Further, Theorem 1 can also be extended to this case. The proof involves exactly the
same steps as for the natural dynamics (cf. Section 8). Properties 1-6 in the direct part all hold
(proofs nearly verbatim) and an identical construction works for the converse.

Theorem 6. Let G be an instance for which the LP (2) admits an integral optimum. Let (α,m, γ)
be a fixed point of the UD-natural dynamics. Then (M∗, γ) is a UD solution for any maximum
weight matching M∗. Conversely, for any UD solution (M,γ

UD
), matching M is a maximum weight

matching and there is a unique fixed point of the UD-natural dynamics with γ = γ
UD

.
Further, if the LP (2) has a unique integral optimum, corresponding to matching M∗, then any

fixed point α induces matching M∗.

We note that the following generalization of the result on existence of Nash bargaining solutions
[27] follows from Theorem 6 and the existence of fixed points.

Lemma 1. UD solutions exist if and only if a stable outcome exists (i.e. LP (2) has an integral
optimum.)

Proof. The direct part of Theorem 6, along with the existence of fixed points of the UD natural
dynamics (from Brouwer’s fixed point theorem, also first part of Theorem 2 for UD) shows that
UD solutions exist if LP (2) has an integral optimum. The converse is trivial since if LP (2)
has no integral optimum, then there are no stable solutions (see Proposition 1) and hence no UD
solutions.

4.1 Exponential convergence time in the UD case

It is possible to derive a characterization similar to Theorem 4 also for the UD case. However, the
bound on ǫ needed to ensure that the right pairing emerges in an ǫ-FP turns out to be exponentially
small in n. As such, we are only able to show that a pairing emerges in time 2O(n)/g2. In fact, as
the example below shows, it does take exponentially long for a pairing to emerge in worst case.

Let n = |V |. In Appendix G.1, we construct a sequence of instances (In, n ≥ 16), such that for
each instance in the sequence the following holds.

(a) The instance admits a UD solution, and the gap g ≥ 1.

(b) There is a message vector α that is an ǫ-FP for ǫ = 2−cn such that α does not induce any
matching. In fact, for any matching in our example, there exists j such that j gets an offer
from outside the matching that exceeds the offer of its partner under the matching (if any) by
at least 1. Thus, α is ‘far’ from inducing a matching.

Further, split fractions are bounded within [r, 1 − r] for arbitrary desired r ∈ (0, 1/2) (c depends
on r). Also, the weights are uniformly bounded by a constant W (r).

Now, if we start at an ǫ-FP, the successive iterates of our dynamics are all ǫ-FPs (this follows
from the nonexpansivity of the update operator, cf. Section 8). Hence, no offer can change by
more than ǫ in each iteration. Thus, in our constructed instances In, it requires at least 2Ω(n)

iterations starting with α0 = α, before αt induced a matching. Thus, our construction with the
above properties implies that the unsymmetrical natural dynamics can take exponentially long to
induce a matching, even on well behaved instances (g = Ω(1)). Moreover, as discussed in Appendix
G.1, our construction corresponds to a plausible two-sided market, so this is not to be dismissed
as a unrealistic special case that can be ignored.
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4.2 A fully polynomial time approximation scheme

We show that though the natural dynamics may take exponentially long to converge, there is a
polynomial time iterative ‘re-balancing’ algorithm that enables us to compute an approximate UD
solution.

First we define an approximate version of correct division, asking that Eq. (11) be satisfied to
within an additive ǫ, for all matched edges. For each edge (ij) ∈ M , we define the ‘edge surplus’
as the excess of wij over the sum of best alternatives, i.e.,

Surpij(γ) = wij − max
k∈∂i\j

(wik − γk)+ − max
l∈∂j\i

(wjl − γl)+ . (13)

Definition 10 (ǫ-Correct division). An outcome (γ,M) is said to satisfy ǫ-correct division if, for
all (ij) ∈M ,

|γi − max
k∈∂i\j

(wik − γk)+ − rijSurpij(γ)| ≤ ǫ , (14)

where Surpij(·) is defined by Eq. (13).

We define approximate UD solutions as follows:

Definition 11 (ǫ-UD solution). An outcome (γ,M) is an ǫ-UD solution for ǫ ≥ 0 if it is stable
and it satisfies ǫ-correct division (cf. Definition 10).

It follows from Lemma 1 that ǫ-UD solutions exist if and only if the LP (2) admits an integral
optimum, which is the same as the requirement for existence of UD solutions. We prove the
following:

Theorem 7. There is an algorithm that is polynomial in the input and 1/ǫ, such that for any
problem instance with weights uniformly bounded by 1, i.e., (we, e ∈ E) ∈ (0, 1]|E|:

• If the instance admits a UD solution, the algorithm finds an ǫ-UD solution.

• If the instance does not admit a UD solution, the algorithm returns the message unstable.

Our approach to finding an ǫ-UD solution consists of two main steps:

1. Find a maximum weight matching M∗ and a dual optimum γ (solution to the dual LP (3)) .
Thus, form a stable outcome (γ,M∗). Else certify that the instance has no UD solution.

2. Iteratively update the allocation γ without changing the matching. Updates are local, and
are designed to converge fast to an allocation satisfying the ǫ-correct division solution while
maintaining stability. Thus, we arrive at an ǫ-UD solution.

As mentioned earlier, this is similar to the approach of [2]. The crucial differences (enabling our
results) are: (i) we stay within the space of stable outcomes, (ii) our analysis of convergence.

The algorithm leading to Theorem 7 and the corresponding analysis are presented in Appendix
4.2. We remark that our algorithm can easily be made local, without sacrificing efficiency (see [23]
for details).
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5 General capacity constraints

In several situations, agents may be less restricted: Instead of an agent being allowed to enter at
most one agreement, for each agent i, there may be an integer capacity constraint bi specifying the
maximum number of partnerships that i can enter into. For instance, in a labor market for full
time jobs, an employer j may have 4 openings for a particular role (bj = 4), another employer may
have 6 openings for a different role, and so on, but the job seekers can each accept at most one job.
In this section, we describe a generalization of our dynamical model to the case of general capacity
constraints, in an attempt to model behavior in such settings. We find that most of our results
from the one-matching case, cf. Section 3, generalize.

5.1 Preliminaries

Now a bargaining network is specified by an undirected graph G = (V,E) with positive weights on
the edges (wij)(ij)∈E , and integer capacity constraints associated to the nodes (bi)i∈V . We generalize
the notion of ‘matching’ to sets of edges that satisfy the given capacity constraints: Given capacity
constraints b = (bi), we call a set of edges M ⊆ E a b-matching if the degree di(M) of i in the
graph (V,M) is at most bi, for every i ∈ V . We say that i is saturated under M if di(M) = bi.

We assume that there are no double edges between nodes7. Thus, an agent can use at most one
unit of capacity with any one of her neighbors in the model we consider.

A trade outcome is now a pair (M,Γ), where M is a b-matching and Γ ∈ [0, 1]2|E| is a splitting
of profits Γ = (γi→j , γj→i)(ij)∈E , with γi→j = 0 if (ij) /∈M , and γi→j + γj→i = wij if (ij) ∈M .

Define γi = minj:(ij)∈M γj→i if i is saturated (i.e. di(M) = bi) and γi = 0 if i is not saturated.

Note that this definition is equivalent to γi = (bthi -max)j∈∂iγj→i. Here (bth-max) : R∗
+ → R+

denotes the b-th largest of a set of non-negative reals, being defined as 0 if there are less than b
numbers in the set. It is easy to see that our definition of γi here is consistent with the definition
for the one-exchange case. (But Γ is not consistent with γ, which is why we use different notation.)

We say that a trading outcome is stable if γi+γj ≥ wij for all ij /∈M . This definition is natural;
a selfish agent would want to switch partners if and only if he can gain more utility elsewhere.

An outcome (M,γ) is said to be balanced if

γj→i − (bthi -max)k∈∂i\j(wik − γk)+ = γi→j − (bthj -max)
l∈∂j\i

(wjl − γl)+ (15)

for all (ij) ∈M .
Note that the definitions of stability and balance generalize those for the one-exchange case.
An outcome (M,Γ) is a Nash bargaining solution if it is both stable and balanced.
Consider the problem of finding the maximum weight (not necessarily perfect) b-matching on

7This assumption was not needed in the one-exchange case since, in that case, utility maximizing agents i and
j will automatically discard all but the heaviest edge between them. This is no longer true in the case of general
capacity constraints.
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a weighted graph G = (V,E). The LP-relaxation of this problem and it’s dual are given by

max
∑

(ij)∈E xijwij | min
∑

i∈V biyi +
∑

(ij)∈E yij
subject to | subject to

∑

j∈N(i) xij ≤ bi ∀ i | yij + yi + yj − wij ≥ 0 ∀ (ij) ∈ E

0 ≤ xij ≤ 1 ∀ (ij) ∈ E | yij ≥ 0 ∀ (ij) ∈ E
| yi ≥ 0 ∀ i ∈ V
|

Primal LP | Dual LP.
(16)

Complementary slackness says that a pair of feasible solutions is optimal if and only if

• For all ij ∈ E; x∗ij(−wij + y∗ij + y∗i + y∗j ) = 0.

• For all ij ∈ E; (x∗ij − 1)y∗ij = 0.

• For all i ∈ V ; (
∑

j∈N(i) x
∗
ij − bi)y

∗
i = 0.

Lemma 2. Consider a network G = (V,E) with edge weights (wij)(ij)∈E and capacity constraints
b = (bi). There exists a stable solution if and only if the primal LP (16) admits an integer optimum.
Further, if (M,Γ) is a stable outcome, then M is a maximum weight b-matching, and yi = γi for
all i ∈ V and yij = (wij − yi − yj)+ for all (ij) ∈ E is an optimum solution to the dual LP.

Proof. If x∗ is an integer optimum for the primal LP, andH∗ ⊂ G is the corresponding b-matching),
the complementary slackness conditions read

(i) For all ij ∈ E(H∗); wij = y∗ij + y∗i + y∗j .

(ii) For all ij /∈ E(H∗); y∗ij = 0.

(iii) For all i with di(H
∗) < bi; y∗i = 0.

We can construct a stable outcome (H∗, γ) by setting γi→j = y∗j +y∗ij/2 for (ij) ∈ H∗, and γi→j = 0
otherwise: Using (iii) above, γi ≥ y∗i (cf. definition of γi above), so for any (ij) /∈ H∗, we have
γi+γj ≥ y∗i +y∗j ≥ wij , using (ii) above. It is easy to check that γi→j+γj→i = wij for any (ij) ∈ H∗

using (i) above. Thus, (H∗, γ) is a stable outcome.
For the converse, consider a stable allocation (M,γ). We claim that M forms a (integer) primal

optimum. For this we simply demonstrate that there is a feasible point in the dual with the same
value as the primal value at M : Take yi = γi, and yij = wij−yi−yj for edges inM , and 0 otherwise.
The dual objective is then exactly equal to the weight of M . This also proves the second part of
the lemma.

5.2 Dynamical model

We retain the notation αt
i\j for the ‘best alternative’ estimated in iteration t. As before, ‘offers’ are

determined as

mt
i→j = (wij − αt

i\j)+ −
1

2
(wij − αt

i\j − αt
j\i)+ ,

in the spirit of the pairwise Nash bargaining solution.
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Now the best alternative αt
i\j should be the estimated income from the ‘replacement’ partner-

ship, if i and j do not reach an agreement with each other. This ‘replacement’ should be the one
corresponding to the bthi largest offer received by i from neighbors other than j. Hence, the update
rule is modified to

αt+1
i\j = (1− κ)αt

i\j + κ (bthi -max)k∈∂i\j m
t
k→i , (17)

where κ ∈ (0, 1) is the damping factor.
Further, we define Γ = (γi→j, γj→i)(ij)∈E by

γtj→i ≡
{

mt
j→i if mt

j→i is among top bi incoming offers to i

0 otherwise.
(18)

Here ties are broken arbitrarily in ordering incoming offers. Finally, we define

γti ≡ (bthi -max)k∈∂i γ
t
k→i = (bthi -max)k∈∂i m

t
k→i (19)

5.3 Results

Our first result is that fixed points of the new update equations (4), (17) are again in correspondence
with Nash bargaining solutions when such solutions exist (analogous to Theorem 1). Note that the
fixed points are independent of the damping factor κ. First, we generalize the notion of an induced
matching.

Definition 12. We say that a state (α,m,Γ) (or just α) induces a b-matching M if the following
happens. For each node i ∈ V receiving at least bi non-zero offers (m·→i > 0): there is no tie for
the (bthi -max) incoming offer to i, and node i is matched under M to the bi neighbors from whom
it is receiving its bi highest offers. For each node i ∈ V receiving less than bi non-zero offers: node
i is matched under M to all its neighbors from whom it is receiving positive offers.

Consider the LP relaxation to the maximum weight matching problem (2). A feasible point x
for LP (2) is called half-integral if for all e ∈ E, xe ∈ {0, 1, 12}. Again, it can be easily shown that
the primal LP (16) always has an optimum x∗ that is half-integral [38, Chapter 31]. As before, an
LP with a fully integer x∗ (i.e., x∗e ∈ {0, 1} for all e ∈ E) is called tight.

Theorem 8. Let G = (V,E) with edge weights (wij)(ij)∈E and capacity constraints b = (bi) be
an instance such that the primal LP (16) has a unique optimum that is integral, corresponding to
matching M∗. Let (α,m,Γ) be a fixed point of the natural dynamics. Then α induces matching M∗

and (M∗,Γ) is a Nash bargaining solution. Conversely, every Nash bargaining solution (M,ΓNB)
has M = M∗ and corresponds to a unique fixed point of the natural dynamics with Γ = ΓNB.

We prove Theorem 8 in Appendix E.

Remark 13. The condition that a tight primal LP (16) has a unique optimum is generic (analogous
to Appendix C, Remark 18). Hence, Theorem 8 applies to ‘almost all’ problems with for which there
exists a stable solution (cf. Lemma 2).

Corollary 14. Let G = (V,E) with edge weights (wij)(ij)∈E and capacity constraints b = (bi) be
an instance such that the primal LP (16) has a unique optimum that is integral. Then the instance
possesses a Nash bargaining solution.
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Thus, we obtain a (almost) tight characterization of the when NB solutions exist in the case of
general capacity constraints8.

Our convergence results, Theorems 2 and 3, generalize immediately, with the proofs (cf. Section
7) going through nearly verbatim:

Theorem 9. Let G = (V,E) with edge weights (wij)(ij)∈E and capacity constraints b = (bi) be any
instance. The natural dynamics has at least one fixed point. Moreover, for any initial condition
with α0 ∈ [0,W ]2|E|, αt converges to a fixed point.

We retain the Definition 5 for an ǫ-fixed point.

Theorem 10. Let G = (V,E) with weights (we, e ∈ E) ∈ [0, 1]|E| and capacity constraints b = (bi)
be any instance. Take any initial condition α0 ∈ [0, 1]2|E|. Take any ǫ > 0. Define

T ∗(ǫ) =
1

πκ(1 − κ)ǫ2
. (20)

Then for all t ≥ T ∗(ǫ), αt is an ǫ-fixed point. (Again π = 3.14159 . . .)

6 Discussion

Our results provide a dynamical justification for balanced outcomes, showing that agents bargaining
with each other in a realistic, local manner can find such outcomes quickly. Refer to Section 1.2
for a summary of our contributions.

Some caution is needed in the interpretation of our results. Our dynamics avoids the question
of how and when a pair of agents will cease to make iterative updates, and commit to each other.
We showed that the right pairing will be found in time polynomial in the network size n and the
parameter LP parameter g. But how will agents find out when this convergence has occurred?
After all, agents are not likely to know n, and even less likely to know g. Further, why should
agents wait for the right pairing to be found? It may be better for them to strike a deal after a few
iterative updates because (i) they may estimate that they are unlikely to get a better deal later, (ii)
they may be impatient, (iii) the convergence time may be very large on large networks. If a pair
of agents do pair up and leave, then this changes the situation for the remaining agents, some of
whom may have lost possible partners ([30] studies a model with this flavor). Our dynamics does
not deal with this. A possible approach to circumventing some of these problems is to interpret our
model in the context of a repeated game, where agents can pair up, but still continue to renegotiate
their partnerships. Formalizing this is an open problem.

Related to the above discussion is the fact that our agents are not strategic. Though our dynam-
ics admits interpretation as a bargaining process, it is unclear how, for instance, agent j becomes
aware of the best alternative αi\j of a neighbor i. In the case of a fixed best alternative, the work
of Rubinstein [36] justifies the pairwise Nash bargaining solution, but in our case the best alterna-
tive estimates evolve in time. Thus, it is unclear how to explain our dynamics game theoretically.
However, we do not consider this to be a major drawback of our approach. Non-strategic agent
behavior is commonly assumed in the literature on learning in games [18], even in games of only
two players. Alternative recent approaches to bargaining in networks assume strategic agents, but
struggle to incorporate reasonable informational assumptions (e.g. [30] assumes common knowledge

8For simplicity, we have stated and proved, in Theorem 8, a generalization of only part (a) of Theorem 1. However,
we expect that part (b) also generalizes, which would then lead to an exact characterization of when NB solutions
exist in this case.
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of the network and perfect information of all prior events). Prima facie, it appears that bounded
rationality models like ours may be more realistic.

Several examples admit multiple balanced outcomes (see Example 3 in Section 1). In fact, this
is a common feature of two-sided assignment markets, which typically contain multiple even cycles.
It would be very interesting to investigate whether our dynamics favors some balanced outcomes
over others. If this is the case, it may improve our ability to predict outcomes in such markets.

Our model assumes the network to be exogenous, which does not capture the fact that agents
may strategically form links. It would be interesting (and very challenging) to endogenize the
network. A perhaps less daunting proposition is to characterize bargaining on networks that ex-
perience shocks, like the arrival of new agents, the departure of agents or the addition/deletion of
links. Our result showing convergence to an approximate fixed point in time independent of the
network size provides hope of progress on this front.

Finally, we remark on the computational problem of computing exact UD solutions in the un-
symmetric case (recall that we give an FPTAS). We conjecture that the problem is computationally
hard (cf. Section 1.2), with the recently introduced complexity class continuous local search [15]
providing a possible way forward. We leave it as a challenging open problem to prove or refute this
conjecture.

7 Convergence to fixed points: Proofs of Theorems 2 and 3

Theorems 2 and 3 admit a surprisingly simple proofs, that build on powerful results in the theory
of nonexpansive mappings in Banach spaces.

Definition 15. Given a normed linear space L, and a bounded domain D ⊆ L, a nonexpansive
mapping T : D → L is a mapping satisfying ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ D.

Mann [31] first considered the iteration xt+1 = (1−κ)xt+κTxt for κ ∈ (0, 1), which is equivalent
to iterating Tκ = (1 − κ) I + κT. Ishikawa [20] and Edelstein-O’Brien [16] proved the surprising
result that, if the sequence {xt}t≥0 is bounded, then ‖Txt−xt‖ → 0 (the sequence is asymptotically
regular) and indeed xt → x∗ with x∗ a fixed point of T.

Baillon and Bruck [3] recently proved a powerful quantitative version of Ishikawa’s theorem: If
‖x0 − xt‖ ≤ 1 for all t, then

‖Txt − xt‖ < 1
√

πκ(1 − κ)t
. (21)

The surprise is that such a result holds irrespective of the mapping T and of the normed space
(in particular, of its dimensions). Theorems 2 and 3 immediately follow from this theory once we
recognize that the natural dynamics can be cast into the form of a Mann iteration for a mapping
which is nonexpansive with respect to a suitably defined norm.

Let us stress that the nonexpansivity property does not appear to be a lucky mathematical
accident, but rather an intrinsic property of bargaining models under the one-exchange constraint.
It loosely corresponds to the basic observation that if earnings in the neighborhood of a pair of
trade partners change by amounts N1, N2, ..., Nk, then the balanced split for the partners changes
at most by max(N1, N2, . . . , Nk), i.e., the largest of the neighboring changes.

Our technique seems therefore applicable in a broader context. (For instance, it can be applied
successfully to prove fast convergence of a synchronous and damped version of the edge-balancing
dynamics of [2].)
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Proof (Theorem 2). We consider the linear space L = R
2|E| indexed by directed edges in G. On

the bounded domain D = [0,W ]2|E| we define the mapping T : α 7→ Tα by letting, for (i, j) ∈ E,

(Tα)i\j ≡ max
k∈∂i\j

mk→i|α , (22)

where mk→i|α is defined by Eq. (4). It is easy to check that the sequence of best alternatives
produced by the natural dynamics corresponds to the Mann iteration αt = Tt

κα
0. Also, T is

nonexpansive for the ℓ∞ norm

‖α− β‖∞ = max
(i,j)∈E

|αi\j − βi\j | . (23)

Non-expansivity follows from:
(i) The ‘max’ in Eq. (22) is non expansive.
(ii)An offer mi→j as defined by Eq. (4) is nonexpansive. To see this, note that mi→j = f(αi\j , αj\i),
where f(x, y) : R2

+ → R+ is given by

f(x, y) =

{ wij−x+y

2 x+ y ≤ wij

(wij − x)+ otherwise.
(24)

It is easy to check that f is continuous everywhere in R2
+. Also, it is differentiable except in

{(x, y) ∈ R2
+ : x+y = wij or x = wij}, and satisfies ||∇f ||1 = |∂f∂x |+ |

∂f
∂y
| ≤ 1. Hence, f is Lipschitz

continuous in the L∞ norm, with Lipschitz constant 1, i.e., it is nonexpansive in sup norm.
Notice that Tκ maps D ≡ [0,W ]2|E| into itself. The thesis follows from [20, Corollary 1].

Proof (Theorem 3). With the definitions given above, consider W = 1 (whence ‖Tαt − α0‖∞ ≤ 1
for all t) and apply [3, Theorem 1].

7.1 Exponentially fast convergence to unique Nash bargaining solution

Convergence of the natural dynamics was studied in an earlier version of this paper using a dif-
ferent (and much more laborious) technique [24]. While the results in Section 3 constitute a large
improvement in elegance and generality over those of [24], the latter retain an independent interest.
Indeed the analysis of [24] shows that convergence is exponentially fast in a well defined class of
instances. We decided therefore to retain the main result of that analysis (recast from [24]).

Theorem 11. Assume W = 1. Let G be an instance having unique Nash bargaining solution (M,γ)
with KT gap σ > 0, and let γ denote the corresponding allocation. Then, for any ǫ ∈ (0, σ/4), there

exists T∗(n, σ, ǫ) = C n7
[

1/σ + log(σ/ǫ)
]

,such that, for any initial condition with α0 ∈ [0, 1]2|E|,
and any t ≥ T∗ the natural dynamics yields earning estimates γt, with |γti − γi| ≤ ǫ for all i ∈ V .
Moreover, αt induces the matching M and (M,γt) is a (4ǫ)-NB solution for any t ≥ T∗.

We refer to Appendix F for a definition of the KT gap σ (here KT stands for Kleinberg-
Tardos). Suffice it to say that it is related to the Kleinberg-Tardos decomposition of G and that it
is polynomially computable [27].

As mentioned above, the proof is based on a very different technique, namely on ‘approximate
decoupling’ of the natural dynamics on different KT structures under the assumptions σ > 0 (which
is generic) and that there is a unique NB solution. See preprint [24] for a complete proof.

Let us stress here that, for fixed σ, T∗(n, σ, ǫ) is only logarithmic in (1/ǫ) while it is proportional
to 1/ǫ2 in Theorem 3. In other words, for instances with KT gap bounded away from 0, the natural
dynamics converges exponentially fast, while Theorem 3 guarantees inverse polynomial convergence
in the general case.
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8 Fixed point properties: Proof of Theorem 1

Let S be the set of optimum solutions of LP (2). We call e ∈ E a strong-solid edge if x∗e = 1 for all
x∗ ∈ S and a non-solid edge if x∗e = 0 for all x∗ ∈ S. We call e ∈ E a weak-solid edge if it is neither
strong-solid nor non-solid.

Proof of Theorem 1: From fixed points to NB solutions. The direct part follows from the
following set of fixed point properties. The proofs of these properties are given in Appendix C.
Throughout (α,m, γ) is a fixed point of the dynamics (4), (6) (with γ given by (5)).

(1) Two players (i, j) ∈ E are called partners if γi+γj = wij. Then the following are equivalent:
(a) i and j are partners, (b) wij − αi\j − αj\i ≥ 0, (c) γi = mj→i and γj = mi→j.

(2) Let P (i) be the set of all partners of i. Then the following are equivalent: (a) P (i) = {j}
and γi > 0, (b) P (j) = {i} and γj > 0, (c) wij − αi\j − αj\i > 0, (d) i and j receive unique best
positive offers from each other.

(3) We say that (i, j) is a weak-dotted edge if wij − αi\j − αj\i = 0, a strong-dotted edge if
wij − αi\j − αj\i > 0, and a non-dotted edge otherwise. If i has no adjacent dotted edges, then
γi = 0.

(4) An edge is strong-solid (weak-solid) if and only if it is strongly (weakly) dotted.
(5) The balance property (1), holds at every edge (i, j) ∈ E (with both sides being non-negative).
(6) γ is an optimum solution for the dual LP (3) to LP (2) and mi→j = (wij − γi)+ holds for

all (i, j) ∈ E.

Proof of Theorem 1 (a), direct implication. Assume that the LP (2) has a unique optimum that is
integral. Then, by property 4, the set of strong-dotted edges form the unique maximum weight
matching M∗ and all other edges are non-dotted. By property 3 for i that is unmatched under M∗,
γi = 0. Hence by property 2, α induces the matching M∗. Finally, by properties 6 and 5, the pair
(M∗, γ) is stable and balanced respectively, and thus forms a NB solution.

The corresponding result for the non-unique optimum case (part (b)) can be proved similarly:
it follows immediately Theorem 12, Appendix C.

Remark 16. Properties 1-6 hold for any instance. This leads to the general result Theorem 12 in
Appendix C shows that in general, fixed points correspond to dual optima satisfying the unmatched
balance property (1).

Proof of Theorem 1: From NB solutions to fixed points.

Proof. Consider any NB solution (M,γ
NB

). Using Proposition 1, M is a maximum weight matching.
Construct a corresponding FP as follows. Set mi→j = (wij − γNB,i)+ for all (i, j) ∈ E. Compute α
using αi\j = maxk∈∂i\j mk→i. We claim that this is a FP and that the corresponding γ is γ

NB
. To

prove that we are at a fixed point, we imagine updated offers mupd based on α, and show mupd = m.
Consider a matching edge (i, j) ∈ M . We know that γNB,i + γNB,j = wij . Also stability and

balance tell us γNB,i−maxk∈∂i\j(wik − γNB,k)+ = γNB,j −maxl∈∂j\i(wjl− γNB,l)+ and both sides are
non-negative. Hence, γNB,i − αi\j = γNB,j − αj\i ≥ 0. Therefore αi\j + αj\i ≤ wij ,

mupd
i→j =

wij − αi\j + αj\i

2
=

wij − γNB,i + γNB,j

2
= γNB,j = wij − γNB,i = mi→j .
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By symmetry, we also have mupd
j→i = γNB,i = mj→i. Hence, the offers remain unchanged. Now

consider (i, j) /∈ M . We have γNB,i + γNB,j ≥ wij and, γNB,i = maxk∈∂i\j(wik − γNB,k)+ = αi\j .
Similar equation holds for γNB,j. The validity of this identity can be checked individually in the

cases when i ∈ M and i /∈ M . Hence, αi\j + αj\i ≥ wij . This leads to mupd
i→j = (wij − αi\j)+ =

(wij − γNB,i)+ = mi→j. By symmetry, we know also that mupd
j→i = mj→i.

Finally, we show γ = γ
NB

. For all (i, j) ∈M , we already found that mi→j = γj and vice versa.
For any edge (ij) /∈M , we know mi→j = (wij−γNB,i)+ ≤ γNB,j. This immediately leads to γ = γ

NB
.

It is worth noting that making use of the uniqueness of LP optimum we know that M = M∗, and
we can further show that γi = mj→i > αi\j if and only if (ij) ∈M , i.e., the fixed point reconstructs
the pairing M = M∗.

9 Polynomial convergence on bipartite graphs: Proof of Theorem

5

Theorem 5 says that on a bipartite graph, under a small random perturbation on any problem
instance, the natural dynamics is likely to quickly find the maximum weight matching. Now, in
light of Corollary 9, this simply involves showing that the gap g of the perturbed problem instance
is likely to be sufficiently large. We use a version of the well known Isolation Lemma to for this.
Note that on bipartite graphs, there is always an integral optimum to the LP (2).

Next, is our Isolation lemma (recast from [21]). For the proof, see Appendix B.

Lemma 3 (Isolation Lemma). Consider a bipartite graph G = (V,E). Choose η > 0, ξ > 0. Edge
weights are generated as follows: for each e ∈ E, w̄e is chosen uniformly in [we, we + η]. Denote
byM the set of matchings in G. Let M∗ be a maximum weight matching. Let M∗∗ be a matching
having the maximum weight in M\M∗. Denote by w̄(M) the weight of a matching M . Then

Pr[ w̄(M∗)− w̄(M∗∗) ≥ ηξ/(2|E|) ] ≥ 1− ξ (25)

Proof of Theorem 5. Using Lemma 3, we know that the gap of the perturbed problem satisfies
ḡ ≥ ηξ/(2|E|) with probability at least 1 − ξ. Now, the weights in the perturbed instance are
bounded by W̄ = 2. Rescale by dividing all weights and messages by 2, and use Corollary 9. The
theorem follows from the following two elementary observations. First, an (ǫ/2)-NB solution for
the rescaled problem corresponds to an ǫ-NB solution for the original problem. Second, induced
matchings are unaffected by scaling.

We remark that Theorem 5 does not generalize to any (non-bipartite) graph with edge weights
such that the LP (2) has an integral optimum, for the following reason. We can easily generalize
the Isolation Lemma to show that the gap g of the perturbed problem is likely to be large also in
this case. However, there is a probability arbitrarily close to 1 (depending on the instance) that a
random perturbation will result in an instance for which LP (2) does not have an integral optimum,
i.e. the perturbed instance does not have any Nash bargaining solutions!
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A Variations of the natural dynamics

Now that we have a reasonable dynamics that converges fast to balanced outcomes, it is natural
ask whether variations of the natural dynamics also yield balanced outcomes. What happens in the
case of asynchronous updates, different nodes updating at different rates, damping factors that vary
across nodes and in time, and so on? We discuss some of these questions in this section, focussing
on some situations in which we can prove convergence with minimal additional work. Note that we
are only concerned with extending our convergence results since the fixed point properties remain
unchanged.

A.1 Node dependent damping

Consider that the damping factor may be different for different nodes, but unchanging over time.
Denote by κ(v), the damping factor for node v. Assume that κ(v) ∈ [1 − κ∗, κ∗] ∀v ∈ V for some
κ∗ ∈ [0.5, 1), i.e. damping factors are uniformly bounded away from 0 and 1. Define operator
T : [0, 1]|E| → [0, 1]|E| by

(Tα)i\j =

(

κ(i)

κ∗

)

max
k∈∂i\j

mk→i +

(

κ∗ − κ(i)

κ∗

)

αi\j (26)

T is nonexpansive. Now, the dynamics can be written as αt+1 = κ∗Tαt + (1 − κ∗)αt. Clearly,
convergence to fixed points (Theorem 2) holds in this situation. Note that fixed points of T

are the same as fixed points of the natural dynamics. Moreover, we can use [3] to assert that
||αt − Tαt||∞ = O(1/

√
t) and hence αt is an O(1/

√
t)-FP. In short, we don’t lose anything with

this generalization!
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A.2 Time varying damping

Now consider instead that the damping may change over time, but is the same for all nodes. Denote
by κt the damping factor at time t, i.e.

αt+1 = κt max
k∈∂i\j

mt
k→i + (1− κt)α

t (27)

The result of [20] implies that, as long as
∑∞

t=0 κt = ∞ and limt→∞ supκt < 1, the dynamics is
guaranteed to converge to a fixed point. Note that again the fixed points are unchanged. [28]
provides a quantitative estimate of the rate of convergence in this case, guaranteeing in particular
that an ǫ-FP is reached in time exp(O(1/ǫ)) if κt is uniformly bounded away from 0 and 1. Note
that this estimate is much weaker than the one provided by [3], leading to Theorem 3. It seems
intuitive that the stronger O(1/

√
k) bound holds also for the time varying damping case in the

general nonexpansive operator setting, but a proof has remained elusive thus far.

A.3 Asynchronous updates

Finally, we look at the case of asynchronous updates, i.e., one message αi\j is updated in any given

step while the others remain unchanged. Define Ti\j : [0, 1]
|E| → [0, 1]|E| by

(Ti\jα)i′\j′ =

{

maxk∈∂i′\j′ mk→i′ if (i, j) = (i′, j′)

αi′\j′ otherwise
(28)

Let m ≡ |E|. There are 2m such operators, two for each edge. Clearly, each Ti\j is nonexpansive in
sup-norm. Now, consider an arbitrary permutation of the 2m directed edges ((i1, j1), (i2, j2), . . .).
Consider the updates induced by Ti1\j1 ,Ti2\j2 , . . . in order, each with a damping factor of 1/(2m).
Consider the resulting product

(

(1/2m)Ti1\j1 + (1− (1/2m)) I
)

· (29)

·
(

(1/2m)Ti2\j2 + (1− (1/2m)) I
)

· . . .

=
(

1− (1−(1/2m))2m
)

T+ (1−(1/2m))2m I

Here (29) defines T, and I is the identity operator. It is easy to deduce that T above is nonexpansive
from the following elementary facts – the product of nonexpansive operators in nonexpansive,
and the convex combination of nonexpansive operators is nonexpansive. Also, (1− (1/2m))2m ∈
[1/4, 1/e] ∀m. Thus, if we repeat these asynchronous updates periodically in a series of ‘update
cycles’, we are guaranteed to quickly converge to an ǫ-FP of T ([3]).

Proposition 17. An ǫ-FP of T is an O(mǫ)-FP of the natural dynamics.

Proof. Suppose we start an update cycle at α, an ǫ-FP of T. Then we know that at the end of the
update cycle, no coordinate changes by more than (1 − 1/4)ǫ ≤ ǫ. Note that among the 2m steps
in a cycle, any particular i\j ‘coordinate’ only changes in one step. Thus, each such coordinate
change is bounded by ǫ. Consider the s-th step in the update cycle. The state before the s-th step,
call it α(s− 1), is ǫ-close to α. Also, we know that the (is\js) coordinate changes by at most ǫ in
this step. Hence,

||Tis\jsα(s− 1)− α(s − 1)||∞ ≤ (2m)ǫ

⇒ ||Tis\jsα− α||∞ ≤ (2m+ 2)ǫ

This holds for s = 1, 2, . . . , 2m. Hence the result.
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Note that with ǫ = 0, Proposition 17 tells us that fixed points of T are fixed points of the
natural dynamics. Thus, we are immediately guaranteed convergence to fixed points of the natural
dynamics. Moreover, the quantitative estimate in Proposition 17 guarantees that in a small number
of update cycles we reach approximate fixed points of the natural dynamics.

Finally, we comment that instead of ordering updates by a permutation of directed edges, we
could have an arbitrary periodic sequence of updates satisfying non-starvation and obtain similar
results. For example, this would include cases where some nodes update more frequently than
others. Also, note that the damping factors of (1/2m) were chosen for simplicity and to ensure fast
convergence. Any non-trivial damping would suffice to guarantee convergence.

It remains an open question to show convergence for non-periodic asynchronous updates.

B Proof of Isolation lemma

Our proof of the isolation lemma is adapted from [21].

Proof of Lemma 3. Fix e ∈ E and fix w̄e′ for all e
′ ∈ E\e. Let Me be a maximum weight matching

among matchings that strictly include edge e, and let M∼e be a maximum weight matching among
matchings that exclude edge e. Clearly, Me and M∼e are independent of w̄e. Define

fe(w̄e) ≡ w̄(Me) = fe(0) + w̄e

f∼e ≡ w̄(M∼e) = const <∞

Clearly, fe(0) ≤ f∼e, since we cannot do worse by forcing exclusion of a zero weight edge. Thus,
there is some unique θ ≥ 0 such that fe(θ) = f∼e. Define δ = ηξ/2|E|. Let D(e) be the event that
|w̄(Me)− w̄(M∼e)| < δ. It is easy to see that D(e) occurs if and only if w̄e ∈ (θ − δ, θ + δ). Thus,
Pr[D(e)] ≤ 2δ/η = ξ/|E|. Now,

{

w̄(M∗)− w̄(M∗∗) < δ

}

=
⋃

e∈E

D(e) (30)

and the lemma follows by union bound.

C Proofs of fixed point properties

In this section we state and prove the fixed point properties that were used for the proof of Theorem
1 in Section 8. Before that, however, we remark that the condition: “LP (2) has a unique optimum”
in Theorem 1(a) is almost always valid.

Remark 18. We argue that the condition “LP (2) has a unique optimum” is generic in instances
with integral optimum:
Let GI ⊂ [0,W ]|E| be the set of instances having an integral optimum. Let GUI ⊂ GI be the set of
instances having a unique integral optimum. It turns out that GI has dimension |E| (i.e. the class
of instances having an integral optimum is large) and that GUI is both open and dense in GI.

Notation. In proofs of this section and Section D we denote surplus wij − αi\j − αj\i of edge (ij)
by Surpij.

Lemma 4. γ satisfies the constraints of the dual problem (3).
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Proof. Since offers mi→j are by definition non-negative therefore for all v ∈ V we have γv ≥ 0. So
we only need to show γi + γj ≥ wij for any edge (ij) ∈ E. It is easy to see that γi ≥ αi\j and
γj ≥ αi\j . Therefore, if αi\j + αi\j ≥ wij then γi + γj ≥ wij holds and we are done. Otherwise,

for αi\j +αi\j < wij we have mi→j =
wij−αi\j+αj\i

2 and mj→i =
wij−αj\i+αi\j

2 which gives γi + γj ≥
mi→j +mj→i = wij .

Recall that for any (ij) ∈ E, we say that i and j are ‘partners’ if γi+γj = wij and P (i) denotes
the partners of node i. In other words P (i) = {j : j ∈ ∂i, γi + γj = wij}.

Lemma 5. The following are equivalent:
(a) i and j are partners,
(b) Surpij ≥ 0.
(c) γi = mj→i and γj = mi→j.
Moreover, if γi = mj→i and γj > mi→j then γi = 0.

Proof. We will prove (a)⇒ (b)⇒ (c)⇒ (a).
(a)⇒ (b): Since γi ≥ αi\j and γj ≥ αj\i always holds then wij = γi + γj ≥ αi\j + αj\i.
(b) ⇒ (c): If Surpij ≥ 0 then (wij − αi\j + αj\i)/2 ≥ αj\i. But mi→j = (wij − αi\j + αj\i)/2

therefore γj = mi→j. The argument for γi = mj→i is similar.
(c)⇒ (a): If Surpij ≥ 0 thenmi→j = (wij−αi\j+αj\i)/2 andmj→i = (wij−αj\i+αi\j)/2 which

gives γi + γj = mi→j +mj→i = wij and we are done. Otherwise, we have γi + γj = mi→j +mj→i ≤
(wij − αi\j)+ + (wij − αj\i)+ < max

[

(wij − αi\j)+, (wij − αj\i)+, 2wij − αi\j − αj\i

]

≤ wij which

contradicts Lemma 4 that γ satisfies the constraints of the dual problem (3).
Finally, we need to show that γi = mj→i and γj > mi→j give γi = 0. First note that by

equivalence of (b) and (c) we should have wij < αi\j +αj\i. On the other hand αi\j ≤ γi = mj→i ≤
(wij − αj\i)+. Now if wij − αj\i > 0 we get αi\j ≤ wij − αj\i which is a contradiction. Therefore
γi = (wij − αj\i)+ = 0.

Lemma 6. The following are equivalent:
(a) P (i) = {j} and γi > 0,
(b) P (j) = {i} and γj > 0,
(c) wij − αi\j − αj\i > 0.
(d) i and j receive unique best positive offers from each other.

Proof. (a) ⇒ (c) ⇒ (b): (a) means that for all k ∈ ∂i\j, Surpik < 0. This means mk→i =
(wik − αk\i)+ < αi\k = mj→i (using γi > 0). Hence, αi\j < mj→i. From (a), it also follows that
mj→i > 0 or (wij − αj\i)+ = wij − αj\i. Therefore, mj→i ≤ (wij − αj\i)+ = wij − αj\i which gives
wij − αi\j − αj\i > 0 or (c). From this we can explicitly write mi→j = (wij − αi\j + αj\i)/2 which
is strictly bigger than αj\i. Hence we obtain (b).

By symmetry (b)⇒ (c)⇒ (a). Thus, we have shown that (a), (b) and (c) are equivalent.
(c) ⇒ (d): (c) implies that mi→j = (wij − αi\j + αj\i)/2 > αj\i = maxk∈∂j\imk→j. Thus, j

receives its unique best positive offer from i. Using symmetry, it follows that (d) holds.
(d) ⇒ (c): (d) implies γi = mj→i and γj = mi→j. By Lemma 5, i and j are partners, i.e.

γi + γj = wij . Hence, mi→j + mj→i = wij. But since (d) holds, αi\j < mj→i and αj\i < mi→j.
This leads to (c).

This finishes the proof.
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Recall that (ij) is a weak-dotted edge if wij−αi\j−αj\i = 0, a strong-dotted edge if wij−αi\j−
αj\i > 0, and a non-dotted edge otherwise. Basically, for any dotted edge (ij) we have j ∈ P (i)
and i ∈ P (j).

Corollary 19. A corollary of Lemmas 5-6 is that strong-dotted edges are only adjacent to non-
dotted edges. Also each weak-dotted edge is adjacent to at least one weak-dotted edge at each end
(assume that the earnings of the two endpoints are non-zero).

Lemma 7. If i has no adjacent dotted edges, then γi = 0

Proof. Assume that the largest offer to i comes from j. Therefore, αi\j ≤ mj→i ≤ (wij − αj\i)+.
Now if wij − αj\i > 0 then αi\j ≤ wij − αj\i or (ij) is dotted edge which is impossible. Thus,
wij − αj\i = 0 and γi = 0.

Lemma 8. The following are equivalent:
(a) αi\j = γi,
(b) Surpij ≤ 0,
(c) mi→j = (wij − αi\j)+.

Proof. (a)⇒ (b): “not (b)” ⇒ mj→i = (wij − αj\i + αi\j)/2 > αi\j ⇒ “not (a)”.
(b)⇒ (c): Follows from the definition of mi→j.
(c)⇒ (a): From mi→j = (wij −αi\j)+ we have Surpij ≤ 0. Therefore, mj→i = (wij −αj\i)+ ≤

max
[

wij − αj\i, 0
]

≤ αi\j .

Note that (b) is symmetric in i and j, so (a) and (c) can be transformed by interchanging i and
j.

Corollary 20. αi\j = γi if and only if αj\i = γj

Lemma 9. mi→j = (wij − γi)+ holds ∀ (ij) ∈ E

Proof. If wij − αi\j − αj\i ≤ 0 then the result follows from Lemma 8. Otherwise, (ij) is strongly
dotted and γi = mj→i = (wij − αj\i + αi\j)/2, γj = mi→j = (wij − αi\j + αj\i)/2. From here we
can explicitly calculate wij − γi = (wij − αi\j + αj\i)/2 = mi→j.

Lemma 10. The unmatched balance property, equation (1), holds at every edge (ij) ∈ E, and both
sides of the equation are non-negative.

Proof. In light of lemma 9, (1) can be rewritten at a fixed point as

γi − αi\j = γj − αj\i (31)

which is easy to verify. The case Surpij ≤ 0 leads to both sides of Eq. (31) being 0 by Corollary
20. The other case Surpij > 0 leads to

mi→j − αj\i = mj→i − αi\j =
Surpij

2
(32)

Clearly, we have γi = mj→i and γj = mi→j. So Eq. (31) holds.

Next lemmas show that dotted edges are in correspondence with the solid edges that were
defined in Section 8.
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Lemma 11. A non-solid edge cannot be a dotted edge, weak or strong.

Before proving the lemma let us define alternating paths. A path P = (i1, i2, . . . , ik) in G is
called alternating path if: (a) There exist a partition of edges of P into two sets A,B such that either
A ⊂M∗ or B ⊂M∗. Moreover A (B) consists of all odd (even) edges; i.e. A = {(i1, i2), (i3, i4), . . .}
(B = {(i2, i3), (i4, i5), . . .}). (b) The path P might intersect itself or even repeat its own edges but
no edge is repeated immediately. That is, for any 1 ≤ r ≤ k − 2 : ir 6= ir+1 and ir 6= ir+2. P is
called an alternating cycle if i1 = ik.

Also, consider x∗ and y∗ that are optimum solutions for the LP and its dual, (2) and (3).
The complementary slackness conditions (see [38]) for more details) state that for all v ∈ V ,
y∗v(

∑

e∈∂v x
∗
e − 1) = 0 and for all e = (ij) ∈ E, x∗e(y

∗
i + y∗j −wij) = 0. Therefore, for all solid edges

the equality y∗i + y∗j = wij holds. Moreover, any node v ∈ V is adjacent to a solid edge if and only
if y∗v > 0.

Proof of Lemma 11. First, we refine the notion of solid edges by calling an edge e, 1-x∗-solid (12 -
x∗-solid) whenever x∗e = 1 (x∗e =

1
2).

We need to consider two cases:
Case (I). Assume that LP has an optimum solution x∗ that is integral as well (having a tight

LP).
The idea of the proof is that if there exists a non-solid edge e which is dotted, we use a similar

analysis to [6] to construct an alternating path consisting of dotted and x∗-solid edges that leads
to creation of at an optimal solution to LP (2) that assigns a positive value to e. This contradicts
the non-solid assumption on e.

Now assume the contrary: take (i1, i2) that is a non-solid edge but it is dotted. Consider an
endpoint of (i1, i2). For example take i2. Either there is a x∗-solid edge attached to i2 or not. If
there is not, we stop. Otherwise, assume (i2, i3) is a x∗-solid edge. Using Lemma 7, either γi3 = 0
or there is a dotted edge connected to i3. But if this dotted edge is (i2, i3) then P (i2) ⊇ {i1, i3}.
Therefore, by Lemma 6 there has to be another dotted edge (i3, i4) connected to i3. Now, depending
on whether i4 has (has not) an adjacent x∗-solid edge we continue (stop) the construction. A similar
procedure could be done by starting at i1 instead of i2. Therefore, we obtain an alternating path
P = (i−k, . . . , i−1, i0, i1, i2, . . . , iℓ) with all odd edges being dotted and all even edges being x∗-solid.
Using the same argument as in [6] one can show that one of the following four scenarios occur.
Path: Before P intersects itself, both end-points of the path stop. Either the last edge is x∗-solid
(then γv = 0 for the last node) or the last edge is a dotted edge. Now consider a new solution x′

to LP (2) by x′e = x∗e if e /∈ P and x′e = 1 − x∗e if e ∈ P . It is easy to see that x′ is a feasible LP
solution at all points v /∈ P and also for internal vertices of P . The only nontrivial case is when
v = i−k (or v = iℓ) and the edge (i−k, i−k+1) (or (iℓ−1, iℓ) ) is dotted. In both of these cases, by
construction v is not connected to an x∗-solid edge outside of P . Hence, making any change inside
of P is safe. Now denote the weight of all solid (dotted) edges of P by w(Psolid) (w(Pdotted)). Here,
we only include edges outside Psolid in Pdotted. Clearly,

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e = w(Psolid)− w(Pdotted). (33)

But w(Pdotted) =
∑

v∈P γv . Moreover, from Lemma 4, γ is dual feasible which gives w(Psolid) ≤
∑

v∈P γv. We are using the fact that if there is a x∗-solid edge at an endpoint of P the γ of the
endpoint should be 0. Now Eq. (33) reduces to

∑

e∈E wex
∗
e−

∑

e∈E wex
′
e ≤ 0. This contradicts that

e = (i1, i2) is non-solid since x′e > 0.
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Cycle: P intersects itself and will contain an even cycle C2s. This case can be handled very similar
to the path by defining x′e = x∗e if e /∈ C2s and x′e = 1 − x∗e if e ∈ C2s. The proof is even simpler
since the extra check for the boundary condition is not necessary.
Blossom: P intersects itself and will contain an odd cycle C2s+1 with a path (stem) P ′ attached
to the cycle at point u. In this case let x′e = x∗e if e /∈ P ′ ∪ C2s+1, and x′e = 1 − x∗e if e ∈ P ′, and
x′e = 1

2 if e ∈ C2s+1. From here, we drop the subindex 2s + 1 to simplify the notation. Since the
cycle has odd length, both neighbors of u in C have to be dotted. Therefore,

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e

=w(P ′
solid) + w(Csolid)− w(P ′

dotted)

− w(Cdotted) + w(Csolid)

2

=w(P ′
solid) +

w(Csolid)

2
− w(P ′

dotted)−
w(Cdotted)

2
.

Plugging w(P ′
solid) ≤

∑

v∈P ′ γv, w(Csolid) ≤
∑

v∈C γv − γu, w(P ′
dotted) =

∑

v∈P ′ γv − γu and
w(Cdotted) =

∑

v∈C γv + γu, we obtain

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e ≤ 0 ,

which is again a contradiction.
Bicycle: P intersects itself at least twice and will contain two odd cycles C2s+1 and C ′

2s′+1 with a
path (stem) P ′ that is connecting them. Very similar to Blossom, let x′e = x∗e if e /∈ P ′ ∪ C ∪ C ′,
x′e = 1− x∗e if e ∈ P ′, and x′e =

1
2 if e ∈ C ∪ C ′. The proof follows similar to the case of blossom.

Case (II). Assume that there is an optimum solution x∗ of LP that is not necessarily integral.
Everything is similar to Case (I) but the algebraic treatments are slightly different. Some edges

e in P can be 1
2 -x

∗-solid (x∗e = 1
2). In particular some of the odd edges (dotted edges) of P can

now be 1
2 -x

∗-solid. But the subset of 1
2 -x

∗-solid edges of P can be only sub-paths of odd length in
P . On each such sub-path defining x′ = 1− x∗ means we are not affecting x∗. Therefore, all of the
algebraic calculations should be considered on those sub-paths of P that have no 1

2 -x
∗-solid edge

which means both of their boundary edges are dotted.
Path: Define x′ as in Case (I). Using the discussion above, let P (1), . . . , P(r) be disjoint sub-paths

of P that have no 1
2 -x

∗-solid edge. Thus,
∑

e∈E wex
∗
e−

∑

e∈E wex
′
e =

∑r
i=1

[

w(P
(i)
solid)−w(P

(i)
dotted)

]

.

Since in each P (i) the two boundary edges are dotted, w(P
(i)
solid) ≤

∑

v∈P (i) γv and
∑

v∈P (i) γv =

w(P
(i)
dotted). The rest can be done as in Case (I).

Cycle, Blossom, Bicycle: These cases can be done using the same method of breaking the path
and cycles into sub-paths P (i) and following the case of path.

Lemma 12. Every strong-solid edge is a strong-dotted edge. Also, every weak-solid edge is a
weak-dotted edge.

Proof. We rule out all alternative cases one by one. In particular we prove:
(i) A strong-solid edge cannot be weak-dotted. If an edge (i, j) is strong-solid then it cannot be

adjacent to another solid edge (weak or strong). Therefore, using Lemma 11 none of adjacent edges
to (i, j) are dotted. However, if (i, j) is weak-dotted by Lemma 6 it is adjacent to at least one other
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weak-dotted edge (since at least one of γi and γj is positive) which is a contradiction. Thus (i, j)
cannot be weak-dotted.

(ii) A strong-solid edge cannot be non-dotted. Similar to (i), if an edge (i, j) is strong-solid it
cannot be adjacent to dotted edges. Now, if (i, j) is non-dotted then γi = γj = 0 using Lemma 7.
Hence wij < γi + γj = 0 which is contradiction since we assumed all weights are positive.

(iii) A weak-solid edge cannot be strong-dotted. Assume, (i1, i2) is weak-solid and strong-dotted.
Then we can show an optimum to LP (2) can be improved which is a contradiction. The proof
is very similar to proof of Lemma 11. Since (i1, i2) is weak-solid, there is a half-integral matching
x∗ that is optimum to LP and puts a mass 1/2 or 0 on (i1, i2). Then either there is an adjacent
x∗-solid edge (i2, i3) or an adjacent x∗-solid edge (i0, i1) with mass at least 1/2 or we stop. In the
latter case, increasing the value of x∗i1i2 increases

∑

e∈E wex
∗
e while keeping it LP feasible which is

a contradiction. Otherwise, by strong-dotted assumption on (i1, i2) ((i0, i1)), the new edge (i2, i3)
is not dotted. Now we select a dotted edge (i3, i4) if it exists (otherwise we stop and in that
case γi3 = 0). This process is repeated as in proof of Lemma 11 in both directions to obtain an
alternating path P = (i−k, . . . , i−1, i0, i1, i2, . . . , iℓ) with all odd edges being dotted with x∗ value
at most 1/2 and all even edges being x∗-solid with mass at least 1/2. We discuss the case of P
being a simple path (not intersecting itself) here, and other cases: cycle, bicycle and blossom can
be treated similar to path as in proof of Lemma 11.

Construct LP solution x′ that is equal to x∗ outside of P and inside it satisfies x′e = x∗e + 1/2
if e is an odd edge that is e = (i2k−1,i2k), and x′e = x∗e − 1/2 when e is an even edge that is
e = (i2k,i2k+1

). It is easy to see that x′ is a feasible LP solution. And since for all edges (ij , ij+1)
we have γij + γij+1 ≥ wij ij+1 and on dotted edges we have equality γij + γij+1 = wij ij+1 then
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e =

w(Pdotted)−w(Psolid)
2 ≥ γi2+γi3−wi2i3

2 > 0 where the last inequality follows
from the fact that (i2, i3) is not-dotted. Hence we reach a contradiction.

(iv) A weak-solid edge cannot be non-dotted. Assume, (i1, i2) is weak-solid and non-dotted.
Similar to (iii) we can show the best solution to LP (2) can be improved which is a contradiction.
Since (i1, i2) is weak-solid we can choose a half-integral x∗ that puts a mass at least 1/2 on (i1, i2).
Also, this time the alternation in P is the opposite of (iii). That is we choose (i2, i3) to be dotted
(if it does not exist γi2 = 0 and we stop.) The solution x′ is constructed as before: equal to x∗

outside of P , x′e = x∗e + 1/2 if e is odd and x′e = x∗e − 1/2 if it is even. Hence,
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e ≥

γi1+γi2−wi1i2
2 > 0, using the non-dotted assumption on (i1, i2). Hence, we obtain

another contradiction.

Lemma 13. γ is an optimum for the dual problem (3)

Proof. Lemma 4 guarantees feasibility. Optimality follows from lemmas 7, 11 and 12 as follows.
Take any optimum half integral matching x∗ to LP. Now using Lemma 12:

∑

v γv =
∑

e∈E wex
∗
e

which finishes the proof.

Theorem 12. Let BALOPT be the set of optima of the dual problem (3) satisfying the unmatched
balance property, Eq. (1), at every edge. If (α,m, γ) is a fixed point of the natural dynamics then
γ ∈ BALOPT . Conversely, for every γ

BO
∈ BALOPT , there is a unique fixed point of the natural

dynamics with γ = γ
BO

.

Proof. The direct implication is immediate from Lemmas 10 and 13. The converse proof here
follows the same steps as for Theorem 1, proved in Section 8. Instead of separately analyzing the
cases (ij) ∈M and (ij) /∈M , we study the cases γi + γj = wij and γi + γj > wij.
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D ǫ-fixed point properties: Proof of Theorem 4

In this section we prove Theorem 4, stated in Section 3. In this section we assume that α is an
ǫ-fixed point with corresponding offers m and earnings γ. That is, for all i, j

ǫ ≥ |αi\j − max
k∈∂i\j

mk→i

∣

∣ ,

mi→j = (wij − αi\j)+ −
(wij − αi\j − αj\i)+

2
,

γi = max
k∈∂i

mk→i .

Definition 21. An edge (ij) is called δ-dotted (δ ≥ 0) if γi + γj ≤ wij + δ.

Lemma 14. For all edge (ij) ∈ E and all δ, δ1, δ2 ∈ R the following hold:
(a) If (ij) is δ-dotted then Surpij ≥ −(2ǫ+ δ).
(b) If Surpij ≥ −δ then mi→j ≥ γj − (ǫ+ δ) and mj→i ≥ γi − (ǫ+ δ).
(c) If mi→j ≥ γj − δ1 and mj→i ≥ γi − δ2 then (ij) is (δ1 + δ2)-dotted.
(d) If γi − δ ≤ mj→i and γj > mi→j + 2ǫ+ δ then γi = 0.
(e) If γi > 0 and mj→i ≥ γi − δ then (ij) is (2δ + 2ǫ)-dotted.
(f) For γi, γj > 0, mj→i ≤ αi\j + δ if and only if mi→j ≤ αj\i + δ.
(h) For all (ij), |mi→j − (wij − γi)+| ≤ ǫ.
(i) For all (ij), γi − (wij − γj)+ ≥ −ǫ and γi + γj ≥ wij − ǫ.
(j) For all i, if γi > 0 then there is at least a 2ǫ-dotted edge attached to i.

Proof. (a) Since α is ǫ-fixed point, γi ≥ mi→j − ǫ and γj ≥ mj→i − ǫ. Therefore, Surpij =
wij −mi→j −mj→i ≥ wij − γi − γj − (2ǫ) ≥ −(2ǫ+ δ).

(b) First consider the case Surpij ≤ 0. Then, mi→j = (wij − αi\j)+ ≥ wij − αi\j ≥ αj\i − δ ≥
maxℓ∈∂j\i(mℓ→j) − δ − ǫ, which yields mi→j ≥ γj − (ǫ + δ). The proof of mj→i ≥ γi − (ǫ + δ) is
similar.

For the case Surpij > 0, mi→j =
wij−αi\j+αj\i

2 =
Surpij

2 +αi\j ≥ max(−δ
2 , 0)+maxℓ∈∂j\i(mℓ→j)−

ǫ, and the rest follows as above.
(c) Note that γi + γj ≤ mi→j + mj→i + δ1 + δ2. If Surpij ≥ 0 then the result follows from

mi→j+mj→i = wij. For Surpij < 0 the result follows from mi→j+mj→i ≤ max[(wij−αi\j)+, (wij−
αj\i)+, 2wij − αi\j − αj\i] ≤ wij.

(d) We need to show that when γi ≤ mj→i + δ and γj > mi→j + 2ǫ + δ then γi = 0. From
part (b) that was just shown, the surplus should satisfy Surpij < −(ǫ + δ). On the other hand
αi\j− ǫ ≤ maxk∈∂i\j(mk→i) ≤ γi ≤ mj→i+ δ ≤ (wij−αi\j)++ δ. Now, if γi > 0 then wij−αi\j > 0
which gives αi\j−ǫ ≤ wij−αi\j+δ. This is equivalent to Surpij ≥ −(ǫ+δ) which is a contradiction.
Hence γi = 0.

(e) Using part (d) we should have mi→j ≥ γj − (2ǫ + δ). Now applying part (c) the result
follows.

(f) If Surpij ≥ 0 then
wij−αj\i+αi\j

2 = mj→i ≤ αi\j + δ. This inequality is equivalent to

mi→j =
wij−αi\j+αj\i

2 ≤ αj\i + δ, which proves the result. If Surpij < 0 then wij − αj\i ≤
(wij − αj\i)+ ≤ αi\j + δ. This is equivalent to wij − αi\j ≤ αj\i + δ which yields the result.

(h) If Surpij ≥ 0 then by part (b), mi→j+ǫ ≥ γj andmj→i+ǫ ≥ γi. Therefore, using γj ≥ mi→j,
γi ≥ mj→i and mj→i +mi→j = wij we have, mi→j ≥ wij −mj→i ≥ wij − γi ≥ wij −mj→i − ǫ ≥
mi→j − ǫ, which gives the result.
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If Surpij < 0 then mi→j = (wij − αi\j)+ < αj\i this gives γj − ǫ < αj\i. On the other hand
αj\i ≤ γj + ǫ holds. Similarly, γi + ǫ ≥ αi\j ≥ γi − ǫ that leads to |(wij −αi\j)+ − (wij − γi)+| ≤ ǫ.
Hence, the result follows from mi→j = (wij − αi\j)+.

(i) Using part (h), mj→i + ǫ ≥ (wij − γj)+. Now result follows using γi ≥ mj→i.
(j) There is at least one neighbor j ∈ ∂i that sends the maximum offer mj→i = γi. Using part

(d) we should have mi→j ≥ γj − 2ǫ and now the result follows from part (c).

Lemma 15. For any edge (ij) ∈ E the earnings estimate γ satisfies 6ǫ-balanced property (i.e., Eq.
(9) holds for 6ǫ instead of ǫ).

Proof. Using Lemma 14(h), αi\j−2ǫ ≤ maxk∈∂i\j(mk→i)−ǫ ≤ maxk∈∂i\j [(wik−γk)+] ≤ maxk∈∂i\j(mk→i)+
ǫ ≤ αi\j + 2ǫ, or

∣

∣

∣

∣

max
k∈∂i\j

[(wik − γk)+]− αi\j

∣

∣

∣

∣

≤ 2ǫ (34)

Now, if Surpij ≤ 0 thenmj→i = (wij−αj\i)+ ≤ αi\j which gives |γi−αi\j | ≤ ǫ or,
∣

∣γi −maxk∈∂i\j[(wik − γk)+]
∣

∣ ≤
3ǫ. Therefore, 6ǫ-balance property holds.

And if Surpij > 0, by Lemma 14(b) we have mj→i+ǫ ≥ γi. Hence,
Surpij

2 +ǫ = mj→i−αi\j+ǫ ≥
γi − αi\j ≥ mj→i − αi\j =

Surpij
2 . Same bound holds for γj − αj\i by symmetry. Therefore, using

Eq. (34), |γi −maxk∈∂i\j[(wik − γk)+]| and |γj −maxℓ∈∂j\i[(wjℓ − γℓ)+]| are within 3ǫ ≤ 6ǫ of each
other.

Lemma 16. If (ij) is δ-dotted for k ∈ ∂i\j and if γk > max(δ, ǫ) + 6ǫ, then there exists r ∈ ∂k\i
such that (rk) is (max(δ, ǫ) + 6ǫ)-dotted.

Proof. Using, γi + γj ≤ wij + δ and Lemma 14(i),

−ǫ ≤ γi − max
s∈∂i\k

[(wis − γs)+] ≤ γi − (wij − γj)+ ≤ δ.

Therefore, |γi −maxs∈∂i\k[(wis − γs)+]| ≤ max(δ, ǫ) which combined with Lemma 15 gives

|γk − max
r∈∂k\i

[(wrk − γr)+]| ≤ max(δ, ǫ) + 6ǫ.

This fact and γk > max(δ, ǫ)+6ǫ, show that there exists an edge r ∈ ∂k\i with |γk− (wrk−γr)+| ≤
max(δ, ǫ) + 6ǫ and the result follows.

Lemma 17. A non-solid edge cannot be a δ-dotted edge for δ ≤ 4ǫ.

Note that this Lemma holds even for the more general case of M∗ being non-integral.
The proof is a more complex version of proof of Lemma 11. Recall the notion of alternating

path from that proof.
Also, consider x∗ and y∗ that are optimum solutions for the LP and its dual, (2) and (3). Also

recall that by complementary slackness conditions , for all solid edges the equality y∗i + y∗j = wij

holds. Moreover, any node v ∈ V is adjacent to a solid edge if and only if y∗v > 0.

Proof of Lemma 17. We need to consider two cases:
Case (I). Assume that the optimum LP solution x∗ is integral (having a tight LP). Now assume

the contrary: take (i1, i2) that is a non-solid edge but it is δ-dotted. Consider an endpoint of (i1, i2).
For example take i2. Either there is a solid edge attached to i2 or not. If there is not, we stop.
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Otherwise, assume (i2, i3) is a solid edge. Using Lemma 16, either γi3 > 10ǫ or there is a 10ǫ-dotted
edge (i3, i4) connected to i3. Now, depending on whether i4 has (has not) an adjacent solid edge we
continue (stop) the construction. Similar procedure could be done by starting at i1 instead of i2.
Therefore, we obtain an alternating path P = (i−k, . . . , i−1, i0, i1, i2, . . . , iℓ) with each (i2k, i2k+1)
being (6k + 4)ǫ-dotted and all (i2k−1, i2k)) being solid. Using the same argument as in [6] one can
show that one of the following four scenarios occur.
Path: Before P intersects itself, both end-points of the path stop. At each end of the path, either
the last edge is solid (then γv < (3n+ 4)ǫ for the last node v) or the last edge is a (3n+ 4)-dotted
edge with no solid edge attached to v. Now consider a new solution x′ to LP (2) by x′e = x∗e
if e /∈ P and x′e = 1 − x∗e if e ∈ P . It is easy to see that x′ is a feasible LP solution at all
points v /∈ P and also for internal vertices of P . The only nontrivial case is when v = i−k (or
v = iℓ) and the edge (i−k, i−k+1) (or (iℓ−1, iℓ) ) is (3n + 4)ǫ-dotted. In both of these cases, by
construction no solid edge is attached to v outside of P so making any change inside of P is
safe. Now denote the weight of all solid (remaining) edges of P by w(Psolid) (w(Pdotted)). Hence,
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e = w(Psolid)− w(Pdotted).

But w(Pdotted)+(3n2+16n)ǫ/4 ≥∑

v∈P γv . Moreover, from Lemma 14(i), γi+γj ≥ wij− ǫ for
all (ij) ∈ P which gives w(Psolid) ≤

∑

v∈P γv + nǫ/2. Now
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e = w(Psolid)−

w(Pdotted) yields wex
∗
e−

∑

e∈E wex
′
e ≤ (3n2+18n)ǫ/4 ≤ n(n+5)ǫ. For ǫ < g/(6n2) This contradicts

the tightness of LP relaxation (2) since x′e 6= x∗e holds at least for e = (i1, i2).
Cycle: P intersects itself and will contain an even cycle C2s. This case can be handled very similar
to the path by defining x′e = x∗e if e /∈ C2s and x′e = 1 − x∗e if e ∈ C2s. The proof is even simpler
since the extra check for the boundary condition is not necessary.
Blossom: P intersects itself and will contain an odd cycle C2s+1 with a path (stem) P ′ attached
to the cycle at point u. In this case let x′e = x∗e if e /∈ P ′ ∪ C2s+1, and x′e = 1 − x∗e if e ∈ P ′, and
x′e = 1

2 if e ∈ C2s+1. From here, we drop the subindex 2s + 1 to simplify the notation. Since the
cycle has odd length, both neighbors of u in C have to be dotted. Therefore,

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e = w(P ′

solid) + w(Csolid)− w(P ′
dotted)−

w(Cdotted) + w(Csolid)

2
,

= w(P ′
solid) +

w(Csolid)

2
− w(P ′

dotted)−
w(Cdotted)

2

<
∑

v∈P ′

γv +

⌈ |P |
2

⌉

ǫ+

∑

v∈C γv − γu

2
+ sǫ−

∑

v∈P ′

γv + γu

+

(

3|P |2 + 16|P |
4

)

ǫ−
∑

v∈C γv + γu

2
+

(

3s2 + 16s

4

)

ǫ .

But the last term is at most n(n+ 5)ǫ which is again a contradiction.
Bicycle: P intersects itself at least twice and will contain two odd cycles C2s+1 and C ′

2s′+1 with a
path (stem) P ′ that is connecting them. Very similar to Blossom, let x′e = x∗e if e /∈ P ′ ∪ C ∪ C ′,
x′e = 1− x∗e if e ∈ P ′, and x′e =

1
2 if e ∈ C ∪ C ′. The proof follows similar to the case of blossom.

Case (II). Assume that the optimum LP solution x∗ is not necessarily integral.
Everything is similar to Case (I) but the algebraic treatments are slightly different. Some edges

e in P can be 1
2 -solid (x∗e = 1

2 ). In particular some of the odd edges (dotted edges) of P can now
be 1

2 -solid. But the subset of
1
2 -solid edges of P can be only sub-paths of odd length in P . On each

such sub-path defining x′ = 1 − x∗ means we are not affecting x∗. Therefore, all of the algebraic
calculations should be considered on those sub-paths of P that have no 1

2 -solid edge which means
both of their boundary edges are dotted.
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Path: Define x′ as in Case (I). Using the discussion above, let P (1), . . . , P(r) be disjoint sub-paths

of P that have no 1
2 -solid edge. Thus,

∑

e∈E wex
∗
e −

∑

e∈E wex
′
e =

∑r
i=1

[

w(P
(i)
solid) − w(P

(i)
dotted)

]

.

Since in each P (i) the two boundary edges are dotted, w(P
(i)
solid) ≤

∑

v∈P (i) γv + |P (i)|ǫ/2 and
∑

v∈P (i) γv ≤ w(P
(i)
dotted) + (3|P (i)|2 + 16|P (i)|)ǫ/4. The rest can be done as in Case (I).

Cycle, Blossom, Bicycle: These cases can be done using the same method of breaking the path
and cycles into sub-paths P (i) and following the case of path.

The direct part of Theorem 4 follows from the next lemma.

Lemma 18. α induces the matching M∗.

Proof. From Lemma 17 it follows that the set of 2ǫ-dotted edges is a subset of the solid edges. In
particular, when the optimum matching M∗ is integral, no node can be adjacent to more than one
2ǫ-dotted edges. If we define a x′ to be zero on all edges and x′e = 1 for all 2ǫ-dotted edges (ij)
with γi + γj > 0. Then clearly x′ is feasible to (2). On the other hand, using the definition of
2ǫ-dotted for all e′ with xe′ = 1, and Lemma 14(j) that each node with γi > 0 is adjacent to at
least one 2ǫ-dotted edge we can write

∑

e∈E wex
′
e ≥

∑

v∈V γv − nǫ. Separately, from Lemma 14(i)
we have

∑

v∈V γv ≥
∑

e∈E wex
∗
e− nǫ

2 , which shows that x′ is also an optimum solution to (2) (when
ǫ < g/(6n2)). From the uniqueness assumption on x∗ we obtain that M∗ is equal to the set of all
2ǫ-dotted edges with at least one endpoint having a positive earning estimate. We would like to
show that for any such edge (ij), both earning estimates γi and γj are positive.

Assume the contrary, i.e., without loss of generality γi = 0. Then, Surpij ≤ 0 and 0 = mj→i =
(wij − αj\i)+ that gives αj\i ≥ wij or

mℓ→j ≥ αj\i − ǫ ≥ wij − ǫ ≥ (wij − αi\j)+ − ǫ = γj − ǫ.

for some ℓ ∈ ∂j\i. Now using Lemma 14(e) the edge (jℓ) is 4ǫ-dotted which contradicts Lemma
17.

Finally, the endpoints of the matched edges provide each other their unique best offers. This
latter follows from the fact that each node with γi > 0 receives an offer equal to γi and the edge
corresponding to that offer has to be 2ǫ-dotted using Lemma 14(d). The nodes with no positive
offer γi = 0 are unmatched in M∗ as well.

Proof of Theorem 4.

Proof. For any ǫ < g/(6n2), an ǫ-fixed point induces the matching M∗ using Lemma 18. Addition-
ally, the earning vector γ is (6ǫ)-balanced using Lemma 15. Next we show that (γ,M∗) is a stable
trade outcome.

Lemma 19. The earnings estimates γ is an optimum solution to the dual (3). In particular the
pair (γ,M∗) is a stable trade outcome.

Proof. Using Lemma 17, we can show that for any non-solid edge (ij), stability holds, i.e. γi+γj ≥
wij .

Now let (i, j) be a solid edge. Then i and j are sending each other their best offers. If Surpij ≥ 0

we are done using γi+ γj = mj→i+mi→j =
wij−αi\j+αj\i

2 +
wij−αj\i+αi\j

2 = wij . And if Surpij < 0
then γi = mj→i = (wij − αj\i)+ ≤ αi\j . Similarly, γj ≤ αj\i. This means there exist k ∈ ∂i\j with
mk→i ≥ αi\j − ǫ ≥ γi − ǫ. But, from Lemma 14(e) the edge (ik) would become 4ǫ-dotted which is
a contradiction.
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The converse of Theorem 4 is trivial since any ǫ-NB solution (M,γ
NB

) is stable and produces a
trade outcome by definition, hence it is a dual optimal solution which means M = M∗.

E Proof of Theorem 8

Theorem 13. Let G = (V,E) with edge weights (wij)(ij)∈E and capacity constraints b = (bi) be
an instance such that the primal LP (16) has a unique optimum that is integral, corresponding to
matching M∗. Let (α,m,Γ) be a fixed point of the natural dynamics. Then α induces matching M∗

and (M∗,Γ) is a Nash bargaining solution. Conversely, every Nash bargaining solution (M,ΓNB)
has M = M∗ and corresponds to a unique fixed point of the natural dynamics with Γ = ΓNB.

Let S be the set of optimum solutions of LP (16). As in the one-matching case, we call e ∈ E
a strong-solid edge if x∗e = 1 for all x∗ ∈ S and a non-solid edge if x∗e = 0 for all x∗ ∈ S. We call
e ∈ E a weak-solid edge if it is neither strong-solid nor non-solid.

Proof of Theorem 8: From fixed points to NB solutions. The direct part follows from
the following set of fixed point properties, similar to those for the one-matching case. Throughout
(α,m,Γ) is a fixed point of the dynamics (17) (with Γ given by (18), and m given by (4)). The
properties are proved for the case when the primal LP in (16) has a unique integral optimum (which
implies that there are no weak-solid edges).

(1) Two players (i, j) ∈ E are called partners if γi+γj ≤ wij. Then the following are equivalent:
(a) i and j are partners, (b) wij − αi\j − αj\i ≥ 0, (c) γi ≤ mj→i and γj ≤ mi→j.

(2) The following are equivalent: (a) wij−αi\j−αj\i > 0, (b) γj→i > αi\j = (bthi -max)k∈∂i\j mk→i.
Denote this set of edges by M .

(3) We say that (i, j) is a weak-dotted edge if wij − αi\j − αj\i = 0, a strong-dotted edge if
wij − αi\j − αj\i > 0, and a non-dotted edge otherwise. If i has less than bi adjacent dotted edges,
then γi = 0.

(4) Each strong solid edge is strong dotted, and each non-solid edge is non-dotted.
(5) The balance property (15), holds at every edge (i, j) ∈M .
(6) We have

mi→j =

{

γi→j for (ij) ∈M ,
(wij − γi)+ for (ij) /∈M .

(7) An optimum solution for the dual LP in (16) can be constructed as yi = γi for all i ∈ V
and:

yij =

{

wij − γi − γj for (ij) ∈M ,
0 for (ij) /∈M .

Proof of Theorem 8, direct implication. Assume that the primal LP in (16) has a unique optimum
that is integral. Then, by property 4, the set of strong-dotted edges M is the unique maximum
weight matching M∗, i.e. M = M∗, and all other edges are non-dotted. By property 3, for i that
has less than bi partners under M

∗, we have γi = 0. Hence by property 2, we know that for i not
saturated under M∗, for every (ij) /∈ M∗ since (ij) is a non-dotted edge γj→i = αi\j = 0, and
for every (ij) ∈ M∗ node i gets a positive incoming offer γj→i = mj→i. For i saturated under
M∗, property 2 yields that the (bthi -max) highest incoming offers to i come from neighbors in M∗

(without ties). It follows that α induces the matching M∗. Also, we deduce that γi→j = γj→i = 0
for (ij) /∈M∗.
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From property 6 we deduce that γi→j+γj→i = wij for (ij) ∈M and from property 1, we deduce
that mj→i < γi for (ij) /∈ M . It follows that (M,Γ) is a trade outcome. Finally, by properties 7
and 5, the pair (M∗, γ) is stable and balanced respectively, and thus forms a NB solution.

Proof of Theorem 8: From NB solutions to fixed points.

Proof. Consider any NB solution (M,ΓNB). Using Proposition 1, M = M∗, the unique maximum
weight matching. Construct a corresponding FP as follows. Set

mi→j =

{

γNB,i→j for (ij) ∈M ,
(wij − γNB,i)+ for (ij) /∈M .

Compute α using αi\j = (bthi -max)k∈∂i\jmk→i. We claim that this is a FP and that the correspond-
ing Γ is ΓNB.

To prove that we are at a fixed point, we imagine updated offers mupd based on α, and show
mupd = m.

Consider a matching edge (i, j) ∈ M . We know that γNB,i→j + γNB,j→i = wij . Also, stability
and balance tell us

γNB,j→i − (bthi -max)k∈∂i\j(wik − γNB,k)+ = γNB,i→j − (bthj -max)
l∈∂j\i

(wjl − γNB,l)+

and both sides are non-negative. For (i, k) ∈M , we know that (wik−γNB,k)+ ≥ (wik−γNB,i→k)+ =
γNB,k→i = mk→i. It follows that

(bthi -max)k∈∂i\j(wik − γNB,k)+ = (bthi -max)k∈∂i\jmk→i = αi\j

Hence, γNB,j→i − αi\j = γNB,i→j − αj\i ≥ 0. Therefore αi\j + αj\i ≤ wij ,

mupd
i→j =

wij − αi\j + αj\i

2
=

wij − γNB,j→i + γNB,i→j

2
= γNB,i→j = mi→j .

By symmetry, we also have mupd
j→i = γNB,j→i = mj→i. Hence, the offers remain unchanged. Now

consider (i, j) /∈ M . We have γNB,i + γNB,j ≥ wij and, γNB,i = (bthi -max)k∈∂i\jγNB,k→i = αi\j . A
similar equation holds for γNB,j. The validity of this identity can be checked individually in the
cases when i is saturated under M and i is not saturated under M . Hence, αi\j + αj\i ≥ wij .

This leads to mupd
i→j = (wij − αi\j)+ = (wij − γNB,i)+ = mi→j. By symmetry, we know also that

mupd
j→i = mj→i.
Finally, we show Γ = ΓNB. Note that since we have already established α is a fixed point, we

know from the direct part that α induces the matching M , so there is no tie breaking required to
determine the bi highest incoming offers to node i ∈ V . For all (i, j) ∈ M , we already found that
mi→j = γNB,i→j and vice versa. For any edge (ij) /∈ M , we know mi→j = (wij − γNB,i)+ ≤ γNB,j.
This immediately leads to Γ = ΓNB.

E.1 Proof of properties used in direct part

Now we prove the fixed point properties that were used in the direct part of the proof of Theorem 8.
Before that, however, we remark that the condition: “the primal LP in (16) has a unique optimum”
in Theorem 8 is almost always valid.
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Remark 22. We argue that the condition “the primal LP in (16) has a unique optimum” is generic
in instances with integral optimum:
Let GI ⊂ [0, 1]|E| be the set of instances having an integral optimum, given a graph G with capacity
constraints b. Let GUI ⊂ GI be the set of instances having a unique integral optimum. It turns out
that GI has dimension |E| (i.e. the class of instances having an integral optimum is large) and that
GUI is both open and dense in GI.

Again, we denote surplus wij − αi\j − αj\i of edge (ij) by Surpij .

Lemma 20. The following are equivalent:
(a) γi + γj ≤ wij ,
(b) Surpij ≥ 0.
(c) γi ≤ mj→i and γj ≤ mi→j.
Moreover, if γi ≤ mj→i and γj > mi→j then γi = 0.

Proof. We will prove (a)⇒ (b)⇒ (c)⇒ (a).
(a)⇒ (b): Since γi ≥ αi\j and γj ≥ αj\i always holds then wij ≥ γi + γj ≥ αi\j + αj\i.
(b) ⇒ (c): If Surpij ≥ 0 then mi→j = (wij − αi\j + αj\i)/2 ≥ αj\i. So mi→j is among the bj

best offers received by node j, implying γj ≤ mi→j. The argument for γi ≤ mj→i is similar.
(c)⇒ (a): If Surpij ≥ 0 thenmi→j = (wij−αi\j+αj\i)/2 andmj→i = (wij−αj\i+αi\j)/2 which

gives γi + γj ≤ mi→j +mj→i = wij and we are done. Otherwise, we have γi + γj ≤ mi→j +mj→i =

(wij − αi\j)+ + (wij − αj\i)+ < max

[

(wij − αi\j)+, (wij − αj\i)+, 2wij − αi\j − αj\i

]

≤ wij.

Finally, we suppose γi = mj→i and γj > mi→j. First note that by equivalence of (b) and (c)
we should have wij < αi\j + αj\i. On the other hand αi\j ≤ γi ≤ mj→i ≤ (wij − αj\i)+. Now if
wij − αj\i > 0 we get αi\j ≤ wij − αj\i which is a contradiction. Therefore γi ≤ (wij − αj\i)+ = 0,
implying γi = 0.

Lemma 21. The following are equivalent:
(a) mj→i > αi\j ,
(b) mi→j > αj\i,
(c) wij − αi\j − αj\i > 0.

(d) i and j receive positive offers from each other, with mj→i > ((bi + 1)th-max)k∈∂imk→i and
similarly for i.

These conditions imply that mj→i = γj→i and mi→j = γi→j .

Proof. (a)⇒ (c) ⇒ (b): (a) implies that (wij − αj\i)+ ≥ mj→i > αi\j , which yields (c). From this
we can explicitly write mi→j = (wij − αi\j + αj\i)/2 which is strictly bigger than αj\i. Hence we
obtain (b).

By symmetry (b)⇒ (c)⇒ (a). Thus, we have shown that (a), (b) and (c) are equivalent.
(c)⇒ (d): (c) implies that mi→j = (wij − αi\j + αj\i)/2 > αj\i = (bthj -max)

k∈∂j\i
mk→j. Using

symmetry, it follows that (d) holds.
(d)⇒ (a) is easy to check.
This finishes the proof of equivalence. The implication follows from the definition of γi→j.

Recall that (ij) is a weak-dotted edge if wij − αi\j − αj\i = 0, a strong-dotted edge if wij −
αi\j − αj\i > 0, and a non-dotted edge otherwise.

Lemma 22. If γi > 0, then i has bi adjacent strong dotted edges, or at least bi +1 adjacent dotted
edges.
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Proof. Suppose γi > 0. Then the bi largest incoming offers to i are all strictly positive. Suppose
one of these offers comes from j. Then, αi\j ≤ mj→i ≤ (wij − αj\i)+. Now mi→j > 0, implying
that αi\j ≤ wij − αj\i or (ij) is dotted edge. If there is strict inequality for all j, this means that
we have at least bi strong dotted edges adjacent to i. If we have equality for some j, that means
there is a tie for the bi highest offer incoming to i. We deduce that at least bi + 1 dotted edges
adjacent to i.

Lemma 23. The following are equivalent:
(a) Surpij ≤ 0,
(b) mi→j = (wij − αi\j)+.
Moreover, these conditions imply αi\j = γi and αj\i = γj .

Proof. Equivalence of (a) and (b) follows from the definitions. (a) implies mi→j ≤ αj\i which yields
αj\i = γj . By symmetry, we can also deduce αi\j = γi.

Note that (a) is symmetric in i and j, so (b) can be transformed by interchanging i and j.

Lemma 24. A non-solid edge cannot be a dotted edge, weak or strong.

The proof of this lemma is very similar to that of Lemma 11: we consider optimal solutions of
the primal and dual LPs (16), and construct an alternating path consisting of alternate (i) non-solid
dotted edges, and (ii) strong solid, non-strong dotted edges. We omit the proof.

Lemma 25. Every strong-solid edge is a strong-dotted edge.

Again, the proof is very similar to the proof of Lemma 12, and we omit it.

Lemma 26. Consider the set of edges M ≡ {(ij) : Surpij > 0}. The balance property (15) is
satisfied for all (ij) ∈M .

Proof. Consider any (ij) ∈M . From Lemma 21, we know that

γj→i = mj→i = αi\j + Surpij/2

To prove balance, it then suffices to establish

(bthi -max)k∈∂i\j mk→i = αi\j . (35)

Now node i can have at most bi adjacent strong dotted edges, from Lemma 6 (d). One of these is
(ij). (35) follows from the property mi→j = (wij − γi)+ on non-strong dotted edges (from Lemma
23).

Lemma 27. An optimum solution for the dual LP in (16) can be constructed as yi = γi for all
i ∈ V and:

yij =

{

wij − γi − γj for (ij) ∈M ,
0 for (ij) /∈M .

Proof. We first show that this construction satisfies the dual constraints. yij ≥ 0 follows from
Lemma 20 (a) and (b). We have

yi + yj + yij = wij for (ij) ∈M (36)
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Figure 3: Examples of basic structures: path, blossom, bicycle, and cycle (matched edges in bold).

by construction. For (ij) /∈ M , we have yi + yj = γi + γj ≥ wij from Lemma 23. This completes
our proof of feasibility.

To show optimality, we establish that the weight of matchingM is the same as the dual objective
value

∑

i∈V biyi +
∑

e∈E yij at the chosen y. Lemma 22 guarantees γi = 0 for i having less than bi
adjacent dotted edges. Using Lemmas 24 and 25, we know that M is a valid b matching consisting
of strong dotted edges, and all other edges are non-dotted. We deduce

w(M) =
∑

(ij)∈M

wij =
∑

(ij)∈M

yi + yj + yij =
∑

i∈V

biyi +
∑

e∈E

yij ,

using (36). This completes our proof of optimality.

F The Kleinberg-Tardos construction and the KT gap

Let G be an instance which admits at least one stable outcome, M∗ be the corresponding matching
(recall that this is a maximum weight matching), and consider the Kleinberg-Tardos (KT) procedure
for finding a NB solution [27]. Any NB solution γ∗ can be constructed by this procedure with
appropriate choices at successive stages. At each stage, a linear program is solved with variables
γi attached to node i. The linear program maximizes the minimum ‘slack’ of all unmatched edges
and nodes, whose values have not yet been set (the slack of edge (i, j) 6∈M is γi + γj − wij).

At the first stage, the set of nodes that remain unmatched (i.e. are not part of M∗) is found,
if such nodes exist. Call the set of unmatched nodes C0.

After this, at successive stages of the KT procedure, a sequence of structures C1, C2, . . . , Ck
characterizing the LP optimum are found. We call this the KT sequence. Each such structure is a
pair Cq = (V (Cq), E(Cq)) with V (Cq) ⊆ V , E(Cq) ⊆ E. According to [27] Cq belongs to one of four
topologies: alternating path, blossom, bicycle, alternating cycle (Figure 3). The q-th linear program
determines the value of γ∗i for i ∈ V (Cq). Further, one has the partition E(Cq) = E1(Cq) ∪ E2(Cq)
with E1(Cq) consisting of all matching edges along which nodes in V (Cq) trade, and E2(Cq) consists
of edges (i, j) such that some i ∈ V (Cq) receives its second-best, positive offer from j.

The γ values for nodes on the limiting structure are uniquely determined if the structure is an
alternating path, blossom or bicycle9. In case of an alternating cycle there is one degree of freedom
– setting a value γ∗i for one node i ∈ Cq fully determines the values at the other nodes.

We emphasize that, within the present definition, Cq is not necessarily a subgraph of G, in that
it might contain an edge (i, j) but not both its endpoints. On the other hand, V (Cq) is always
subset of the endpoints of E(Cq). We denote by Vext(Cq) ⊇ V (Cq) the set of nodes formed by all
the endpoints of edges in E(Cq).

For all nodes i ∈ V (Cq) the second best offer is equal to γ∗i − σq, where σq is the slack of the
q-th structure. Therefore

γ∗i + γ∗j − wij =

{

0 if (i, j) ∈ E1(Cq),
σq if (i, j) ∈ E2(Cq).

9In [27] it is claimed that the γ values ‘may not be fully determined’ also in the case of bicycles. However it is not
hard to prove that γ values are, in fact, uniquely determined in bicycles.

42



The slacks form an increasing sequence (σ1 ≤ σ2 ≤ . . . ≤ σk).

Definition 23. We say that a unique Nash bargaining solution α∗ has a KT gap σ if

σ ≤ min
{

σ1; σ2 − σ1; . . . ; σk − σk−1

}

,

and if for each edge (i, j) such that i, j ∈ Vext(Cq) and (i, j) 6∈ E(Cq),

γ∗i + γ∗j − wij ≥ σq + σ .

It is possible to prove that the positive gap condition is generic in the following sense. The set
of all instances such that the NB solution is unique can be regarded as a subset G ⊆ [0,W ]|E| (W
being the maximum edge weight). It turns out that G has dimension |E| (i.e. the class of instances
having unique NB solution is large) and that the subset of instances with gap σ > 0 is both open
and dense in G.

G Appendix to Section 4

G.1 UD example showing exponentially slow convergence

We construct a sequence of instances In along with particular initializations such that convergence to
an approximate fixed point is exponentially slow, cf. Section 4.1. Let us first consider n = 8N , where
N ≥ 2. The construction can be easily extended to arbitrary n ≥ 16. The graph Gn = (Vn, En) we
will consider is a simple ‘ring’. More precisely, Vn = {1, 2, . . . , n} and En = {(1, 2), (2, 3), . . . , (n −
1, n), (n, 1)}. All edges have the same weight W , with the exception w4N,4N+1 = W − 1. (We will
choose W later.) Thus, Gn has a unique maximum weight matching M∗ = {(1, 2), (3, 4), . . . , (n −
1, n), }. Moreover, M∗ solves LP (2), implying that Gn possesses a UD solution (using Lemma 1),
and the LP gap g = 1 provided W ≥ 1. Given any r ∈ (0, 1/2), we define the split fractions as
follows 10 : We first define the split fractions on edges En,left = {(1, 2), (2, 3), . . . , (4N − 1, 4N)}.
We set

r3,2 = r5,4 = . . . = r2N−1,2N−2 = r

r2N+1,2N+2 = r2N+3,2N+4 = . . . = r4N−3,4N−2 = r

and the split fractions on all other edges in En,left to 1/2. As before, ri,i+1 = 1− ri+1,i is implicit.
For edges on the ‘right’ side we define split fractions in a symmetrical way. Define ‘reflection’

R : {4N + 1, 4N + 2, . . . , 8N} → {1, 2, . . . , 4N} as

R(l) = n− l + 1 (37)

We set ri,i+1 = rR(i),R(i+1) for all i ∈ {4N + 1, 4N + 2, . . . , 8N − 1}.
Finally, we set rn,1 = r4N,4N+1 = 1/2.
Now we show how to construct α satisfying properties (a) and (b) above. Let β ≡ r/(1−r) < 1.

Set αn\1 = α1\n = W/2− 1.
For 0 ≤ i ≤ N − 1, define11

α2i+1\2i+2 = W/2−
i−1
∑

j=0

βj , α2i+2\2i+1 = W/2 +

i
∑

j=0

βj .

10It turns out the values of the split fraction on approximately half the edges is irrelevant for our choice of α.
11The summations can be written in closed form if desired, but it turns out to be easier to work with the summations

directly.
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For 1 ≤ i ≤ N − 1, define

α2i\2i+1 = W/2 +

i−2
∑

j=0

βj , α2i+1\2i = W/2−
i

∑

j=0

βj .

Let α2N\2N+1 = W/2 +
∑N−1

j=0 βj, α2N+1\2N = W/2−∑N−1
j=0 βj. For 0 ≤ i ≤ N − 2, define

α2N+2i+1\2N+2i+2 = W/2−
N−i−1
∑

j=0

βj , α2N+2i+2\2N+2i+1 = W/2 +

N−i−3
∑

j=0

βj .

For 1 ≤ i ≤ N − 1, define

α2N+2i\2N+2i+1 = W/2 +
N−i−1
∑

j=0

βj , α2N+2i+1\2N+2i = W/2−
N−i−2
∑

j=0

βj .

Next, let α4N−1\4N = α4N\4N−1 = W/2 − 1. α4N\4N+1 = α4N+1\4N = W/2. Again, the messages
on the ‘right’ side are defined in terms of the reflection Eq. (37). We define αi\i+1 = αR(i)\R(i+1),
and αi+1\i = αR(i+1)\R(i), for all i ∈ {4N + 1, 4N + 2, . . . , 8N − 1}.

The corresponding offers m(α) can be easily computed. We have m1→n = mn→1 = W/2. For
0 ≤ i ≤ N − 1, we have

m2i+1→2i+2 = W/2 +

i−1
∑

j=0

βj , m2i+2→2i+1 = W/2 +

i
∑

j=0

βj .

For 1 ≤ i ≤ N − 1, we have

m2i→2i+1 = W/2−
i−1
∑

j=0

βj , m2i+1→2i = W/2 +

i−1
∑

j=0

βj .

We have m2N→2N+1 = W/2−∑N−1
j=0 βj , m2N+1→2N = W/2+

∑N−1
j=0 βj . For 0 ≤ i ≤ N − 2, we

have

m2N+2i+1→2N+2i+2 = W/2 +

N−i−2
∑

j=0

βj , m2N+2i+2→2N+2i+1 = W/2−
N−i−2
∑

j=0

βj .

For 1 ≤ i ≤ N − 1, we have

m2N+2i→2N+2i+1 = W/2−
N−i−1
∑

j=0

βj , m2N+2i+1→2N+2i = W/2 +

N−i−2
∑

j=0

βj .

Finally, we have m4N−1→4N = m4N→4N−1 = W/2, m4N→4N+1 = m4N+1→4N = W/2− 1. Offers on
the ‘right’ side are clearly the same as the corresponding offer on the left.

Importantly, note that it suffices to have W ≥ 2 + 2/(1 − β) to ensure that all messages and
offers are bounded below by 1 (in particular, none of them is negative). Choose W = 2+2/(1−β)
(for example).

Next, note that all the fixed point conditions are satisfied, except the update rules for α2N\2N+1,
α2N+1\2N and the corresponding messages in the reflection. However, it is easy to check that these

update rules are each violated by only βN−1. Thus, α is an ǫn-FP for ǫn = βN−1 ≤ 2−cn for
appropriate c = c(r) > 0.
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G.2 Proof of Theorem 7

We show how to obtain an FPTAS using the two steps stated in Section 4.2.
Step 1 can be carried out by finding a maximum weight matching M∗ (see, e.g., [19]) and also

solving the the dual linear program (3). For the dual LP, let v be the optimum value and let γ be
an optimum solution. We now use Proposition 1. If the weight of M∗ is smaller than v, we return
unstable, since we know that no stable outcome exists, hence no UD solution (or ǫ-UD solution)
exists. Else, (γ,M∗) is a stable outcome. This completes step 1! The computational effort involved
is polynomial in the input size. All unmatched nodes have earnings of 0.

In step 2, we fix the matching M∗, and rebalance the matched edges iteratively. It turns out to
be crucial that our iterative updates preserve stability. An example similar to the one in Section
G.1 demonstrates that the rebalancing procedure can take an exponentially large time to reach an
approximate UD solution if stability is not preserved [23].

We now motivate the rebalancing procedure briefly, before we give a detailed description and
state results. Imagine an edge (i, j) ∈ M∗. Since we start with a stable outcome, the edge weight
wij is at least the sum of the best alternatives, i.e. Surpij ≥ 0. Suppose we change the division of
wij into γ′i, γ

′
j so that the Surpij is divided as per the prescribed split fraction rij. Earnings of all

other nodes are left unchanged. Since rij ∈ (0, 1), γ′i is at least as large as the best alternative of
i, as was the case for γi. This leads to γ′i + γk ≥ wik for all k ∈ ∂i\j. A similar argument holds for
node j. In short, stability is preserved !

It turns out that the analysis of convergence is simpler if we analyze synchronous updates, as
opposed to asynchronous updates as described above. Moreover, we find that simply choosing an
appropriate ‘damping factor’ allows us to ensure that stability is preserved even with synchronous
updates. We use a powerful technique introduced in our recent work [27] to prove convergence.

Table 1 shows the algorithm Edge Rebalancing we use to complete step 2. Note that each
iteration of the loop can requires O(|E|) simple operations.

Correctness of Edge Rebalancing:
It is easy to check that (γreb,M) and (γt,M) are valid outcomes for all t. We show that γt computed
by Edge Rebalancing is, in fact, a stable allocation:

Lemma 28. If Edge Rebalancing is given a valid input satisfying the ‘Check’ on line 1, then
(γt,M) is a stable outcome for all t ≥ 0.

Proof. We prove this lemma by induction on time t. Clearly (γ0,M) is a stable outcome, since the
input is valid. Suppose (γt,M) is a stable outcome.

Consider any (i, j) ∈ M . It is easy to verify that γreb
i + γreb

j = wij , for γreb computed from
γt in Lines 6-9 of Edge Rebalancing. Also, we know that γti + γtj = wij. It follows that

γt+1
i + γt+1

j = wij as needed. For i ∈ V unmatched under M , γti = 0 by hypothesis and as per

Lines 10-12, γreb
i = 0 ⇒ γt+1

i = 0 as needed.
Consider any (i, k) ∈ E\M . We know that γti + γtk ≥ wik. We want to show the corresponding

inequality at time t+ 1. Define σt
ik ≡ γti + γtk − wik ≥ 0.

Claim 24. γreb
i ≥ γti − σt

ik.

If we prove the claim, it follows that a similar inequality holds for γreb
k , and hence γreb

i + γreb
k ≥

γti + γtk − 2σik = wik − σt
ik. It then follows from the definition in Line 14 that γt+1

i + γt+1
k ≥ wik,

for any κ ∈ (0, 1/2]. This will complete our proof that (γt+1,M) is a stable outcome.
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Table 1: Local algorithm that converts stable outcome to ǫ-UD solution

Edge Rebalancing
(

Instance I, Stable outcome (γ,M),

Damping factor κ, Error target ǫ
)

1: Check κ ∈ (0, 1/2], ǫ > 0, (γ,M) is stable outcome T

2: If (Check fails) Return error

3: γ0 ← γ

4: t← 0

5: Do

6: ForEach (i, j) ∈M

7: γreb
i ← maxk∈∂i\j(wik − γtk)+ + rijSurpij(γt)

8: γreb
j ← maxl∈∂j\i (wjl − γtl )+ + rjiSurpij(γt)

9: End ForEach

10: ForEach i ∈ V that is unmatched under M

11: γreb
i ← 0

12: End ForEach

13: If
(

‖γreb − γt‖∞ ≤ ǫ
)

Break Do

14: γt+1 = κγreb + (1− κ)γt

15: t← t+ 1

16: End Do

17: Return (γt,M)

Let us now prove the claim. Suppose i is matched under M . Using the definition in Line 7 (Line
8 contains a symmetrical definition), γreb

i ≥ maxk′∈∂i\j(wik′ − γtk′)+ since Surpik(γt) ≥ 0. Hence,

γreb
i ≥ (wik − γtk)+ ≥ (wik − γtk) = γti − σt

ik ,

as needed. If i is not matched under M , then γti = γreb
i = 0, so the claim follows from σt

ik ≥ 0.

Convergence of Edge Rebalancing:
Note that the termination condition ‖γreb− γt‖∞ ≤ ǫ on Line 13 is equivalent to ǫ-correct division.
We show that the rebalancing algorithm terminates fast:

Lemma 29. For any instance with weights bounded by 1, i.e. (we, e ∈ E) ∈ (0, 1]|E|, if Edge
Rebalancing is given a valid input, it terminates in T iterations, where

T ≤
⌈

1

πκ(1− κ)ǫ2

⌉

. (38)

and returns an outcome satisfying ǫ-correct division (cf. Definition 10). Here π = 3.14159 . . .

sketch only. This result is proved using the same technique as in the proof of Theorem 3. The
iterative updates of Edge Rebalancing can be written as

γt+1 = κTγt + (1− κ)γt , (39)
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where T is a self mapping of the (convex) set of allocations corresponding to matching M , AM ⊆
[0, 1]|E|. The ‘edge balancing’ operator T essentially corresponds to Lines 6-9 in Table 1. It is fairly
straightforward to show that T is nonexpansive with respect to sup norm. The main theorem in
[3] then tells us that

‖Tγt − γt‖∞ ≤
1

√

πκ(1− κ)t
. (40)

The result follows.
For the full proof, see [23].

Using Lemmas 28 and Lemmas 29, we immediately obtain our main result, Theorem 7.

of Theorem 7. We showed that step 1 can be completed in polynomial time. If the instance has no
UD solutions then the algorithm returns unstable. Else we obtain a stable outcome and proceed
to step 2.

Step 2 is performed using Edge Rebalancing. The input is the instance, the stable outcome
obtained from step 1, κ = 1/2 (for example) and the target error value ǫ > 0. Lemmas 28
and 29 show that Edge Rebalancing terminates after at most ⌈1/(πκ(1 − κ)ǫ2)⌉ iterations,
returning a outcome that is stable and satisfies ǫ-correct division, i.e. an ǫ-UD solution. Moreover,
each iteration requires O(|E|) simple operations. Hence, step 2 is completed in O(|E|/ǫ2) simple
operations.

The total number of operations required by the entire algorithm is thus polynomial in the input
and in (1/ǫ).
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