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Abstract

We construct a budget-balanced wagering mechanism that flexibly extracts information

about event probabilities, as well as the mean, median, and other statistics from a group of

individuals whose beliefs are immutable to the actions of others. We show how our mechanism,

called the Brier betting mechanism, arises naturally from a modified parimutuel betting market.

We prove that it is essentially the unique wagering mechanism that is anonymous, proportional,

sybilproof, and homogeneous. While the Brier betting mechanism is designed for individuals

with immutable beliefs, we find that it continues to perform well even for Bayesian individuals

who learn from the actions of others.
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1 Introduction

Consider a society of individuals endowed with heterogeneous information—and thus private beliefs—

about an uncertain event, for example, a future sporting event, a stock market event, or the success

of a project. Eliciting and fully aggregating their information in a market is theoretically possi-

ble under certain conditions (Lucas, 1972; Grossman, 1981; Ostrovsky, 2012) and works in simple

laboratory tests (Plott and Sunder, 1982), but can fail in more realistic scenarios (Plott and Sun-

der, 1988; Forsythe and Lundholm, 1990). Many market mechanisms, including continuous double

auctions (Wolfers and Zitzewitz, 2004), parimutuel markets (Ali, 1977; Thaler and Ziemba, 1988;

Hurley and McDonough, 1995; Plott et al., 2003; Ottaviani and Sørensen, 2009), and market scoring

rules (Hanson, 2003, 2007), have been used for information elicitation and aggregation. In theory,

the aggregation of information (even partial) in a market often relies on the assumption that par-

ticipants derive posterior beliefs from a common prior, acting as Bayesian agents and rationally

updating their beliefs upon observing others’ actions. In practice, however, individuals may not

be sophisticated enough to reason about the actions of others and incorporate the beliefs of other

agents into their own. The frequent violation of the Bayesian-rationality assumption arguably con-

tributes to the observed markets’ failure in aggregating information in experiments and real-world

scenarios.

On the other hand, some simple opinion pooling methods (French, 1985; Genest and Zidek, 1986;

Clemen and Winkler, 1999) have been shown to perform well in producing an aggregated forecast

in practice. For example, taking an average or a weighted average of private beliefs—in essence

treating individual information sources as independent—is a robust and practical alternative, with

accuracy improving in the number and diversity of individuals (Forsythe et al., 1992; Jacobs, 1995;

Surowiecki, 2004; Chen et al., 2005; Dani et al., 2006; Reeves and Pennock, 2007; Page, 2007).

These methods post-process individual beliefs that have already been elicited. Extracting beliefs

individually offers some comparative advantages relative to market environments. For instance,

the elicitor has more control on the information contained in the final aggregate. She can discard

reports to eliminate outliers, and reduce the impact of forecasts by uninformed individuals. She

can weight an individual’s estimate to account for the historical performance, or as a function of

its position relative to the overall distribution. If the elicitor is a decision maker, she can use, in

addition to the computed final aggregate, the distribution of individual estimates, which reflects

the dispersion of information among the individuals.

Proper scoring rules (Brier, 1950; Savage, 1971; Winkler et al., 1996; Gneiting and Raftery,

2007) and shared scoring rules (Kilgour and Gerchak, 2004) have been designed for the purpose

of eliciting individual beliefs. They are incentive compatible for agents who have private beliefs

that are immutable to the actions of others (i.e., who do not perform Bayesian updating), meaning

they reward agents maximally for reporting their true beliefs. Some scoring rules are distance

sensitive or effective and reward the accuracy of the reported posterior belief, in the sense that

if the final outcome is drawn at random according to some probability distribution p, then the

individual who reports a distribution q receives a payment that, on expectation, decreases with the
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distance between p and q. Here the distance is a metric that depends on the scoring rule that is

applied; it can be, for example, the Euclidian metric. Rewarding the accuracy of heterogeneous

beliefs is generally perceived as desirable (Friedman, 1983; Nau, 1985; Jose et al., 2009). First,

it reduces the dispersion of reported beliefs which reduces the amount of noise in the computed

aggregate. It also improves the performance of aggregation methods that discard outliers or weight

each announcement according to some centrality criterion. Second, it encourages individual to

seek (potentially costly) information so as to produce good forecasts (see, for example, Osband,

1989). However, if proper scoring rules can reward agents for reporting true beliefs and for being

accurate, they are not budget balanced. That is, inducing an individual to deliver truthful forecasts

requires an outside subsidy. When several individuals are asked to provide information, there is

a possibility to self-finance the mechanism, by having the bad predictors sponsor the good ones.

Shared scoring rules are an instance of such a budget-balanced mechanism. But these scoring

rules are not sybilproof : Individuals can benefit from submitting several reports under different

pseudonyms. Shared scoring rules also do not allow individuals to specify the maximum loss they

are willing to incur.

Focusing on eliciting private information from individuals, we propose a new mechanism, the

Brier betting mechanism, that has a number of desirable properties, including the four above.

The mechanism proceeds in two stages. First, individuals wager money on event probabilities.

Once all bets are collected and the event outcome is known, the total amount wagered is redis-

tributed among the bets. The fractions of the total allocated to bets are expressed as quadratic

functions of the outcome realization and individual predictions (essentially a Brier score), in which

each term is weighted by the fraction of money invested by each participant.

The Brier betting mechanism is incentive compatible for individuals with immutable beliefs,

budget balanced and:

• Proportional: An individual’s expected payoff increases as his or her absolute accuracy

increases, and decreases as the accuracy of other forecasts increases.

• Anonymous: The market does not discriminate among participants.

• Sybilproof: Market outputs do not depend on whether participants divide their wager among

one or several bets.

• Homogeneous: Market outputs depend solely on the fraction each player invests relative to

the total amount invested.

A natural question to ask is whether there are other mechanisms satisfying these properties. We

show that the answer is no: The Brier betting mechanism is essentially the only mechanism that

fulfills all these properties.

Our mechanism is also ex-ante individually rational (IR)—agents who make correct predictions

have a nonnegative expected value for participating—but it is not ex-post IR. In a budget-balanced

mechanism, if one agent can gain, another must risk losing. A bounded scoring rule with sufficient
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subsidy can be ex-post IR, ensuring no participant can ever lose. But an ex-post IR mechanism

rewards uninformed and even misinformed experts, encourages sybils, and isn’t practical for large,

open-membership groups.

The Brier betting mechanism is designed for individuals with immutable, heterogeneous prior

beliefs, hence may have robust performance in some real-world scenarios where individuals are

highly confident and do not change their mind upon seeing others’ actions. Perhaps surprisingly, if

individuals are instead rational, Bayesian agents who learn from the actions of others, our mecha-

nism continues to perform well. Specifically, under a common prior assumption, a slight bias away

from truthful reporting may arise under asymmetric information, through the correlation between

the total wealth wagered and the event outcome. This bias is driven towards zero as the fraction

of any individual’s wealth compared to the group’s converges to zero.

The paper proceeds as follows. Section 2 describes related work. Section 3 introduces the Brier

betting mechanism, and shows it satisfies a number of desirable properties. Section 4 shows how the

Brier betting mechanism can be constructed heuristically from the horse-race parimutuel markets.

Section 5 takes an axiomatic approach. It presents the Brier betting mechanism as a member

of a large class of mechanisms in which individuals can put wagers on probabilistic predictions,

and shows that the Brier betting mechanism is the only member of the class that satisfies all the

properties. Section 6 analyzes the performance of the Brier mechanism under a common prior

setting with rational Bayesian agents. Section 7 discusses an alternative interpretation of the Brier

mechanism in the context of eliciting expert advice, as well as an extension for the extraction of

general statistics. Finally, Section 8 concludes.

2 Background and Related Work

The Brier betting mechanism combines features of the horse-race parimutuel market and the scoring

rule elicitation method. As in the scoring rule method, market participants announce probabilistic

predictions and get rewarded accordingly. As in the parimutuel market, participants specify their

degree of participation, that is, their stake, in the market. Johnstone (2007) explores a similar

combination but the resulting mechanism is not incentive compatible.

Parimutuel markets are commonly used to wager on sports including horse racing and jai alai.

Players decide how much to wager on a categorical outcome of an uncertain variable: No probability

assessment is given. After the actual outcome materializes, the pool of money is divided among the

winning players who chose the correct outcome in proportion of the amount they bet. Parimutuel

betting platforms have be thoroughly studied (Eisenberg and Gale, 1959; Ali, 1977; Quandt, 1986;

Thaler and Ziemba, 1988; Watanabe et al., 1994; Hurley and McDonough, 1995; Takahiro, 1997;

Plott et al., 2003; Ottaviani and Sørensen, 2005, 2008, 2009; Koessler et al., 2008).

Parimutuel markets enable players to confront their predictions, but they do so in a quite

restricted sense. For one thing, the parimutuel game is complex. The action best played for a

given subjective belief depends on the action chosen by other players: There are generally no
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dominant strategies (Ali, 1977). Even in simple Bayesian game theoretic settings that distribute

binary signals uniformly across players, multiple non-trivial equilibria arise (Watanabe et al., 1994;

Koessler et al., 2008). Additionally, the action space can be too coarse for separating equilibria

to exist. If the signal space is dense enough, different posteriors may yield the same equilibrium

strategies (Ottaviani and Sørensen, 2009, 2010). This impedes both information revelation and

incentives: Better information may not generate better payoffs, and some information is kept

private.

Scoring rules offer an alternative technique to eliciting forecasts. Scoring rules assign scores to a

probabilistic forecast as a function of the outcome realization. When the scoring rule is proper, an

individual paid according to the scoring rule maximizes her expected earnings when telling the truth

(Brier, 1950; Savage, 1971; Winkler et al., 1996; Gneiting and Raftery, 2007). The method elicits

subjective probabilities separately for each individual, but requires an external subsidy. In contrast,

in a market structure, the less informed participants typically sponsor the more informed ones.

Kilgour and Gerchak (2004) extend the scoring rule method to a group of forecasters, to benefit

from such a self-financing property. With these competitive scoring rules, each group member is

evaluated according to their own score, minus the average score of the other members. Competitive

scoring rules do not need an external subsidy but require that all participants be entitled to the

same liability and encourage pseudonyms. In contrast, the mechanism we introduce allows each

individual to specify an upper bound on the loss she is willing to incur, since an individual can

never lose more than the amount she chooses to gamble.

Our mechanism also relates to prediction markets. In these markets, participants trade on event-

contingent securities, for example a contract that pays off $1 if the Red Sox win the game against the

Yankees, and zero if they lose (Wolfers and Zitzewitz, 2004). Prediction markets induce aggregate

forecasts through market prices. They are fundamentally dynamic: Traders may take actions at

different points in time. They observe price movements and update their beliefs. This dynamic

structure enables the aggregation of private beliefs, but it may also induce strategic traders to delay

the revelation of private information, or to manipulate the market and propagate false beliefs (Chen

et al., 2010; Lallour, 2011; Ostrovsky, 2012). As in horse-race parimutuel markets, these prediction

markets combine participation and prediction together in a single dimension. Consequently, an

informed trader may lack the wealth necessary to move the market, which prevents the release of

private information. Symmetrically, if a trader has a belief close to the current market price, there

is little or no incentive to participate. Additionally, many prediction markets are prone to the thin-

market problem: With few traders, one market side may not find matching orders, hindering price

discovery (Milgrom and Stokey, 1982). In contrast this paper focuses on static mechanisms that

elicit individual predictions, and allows participants to decide on a prediction and participation

level independently.
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3 Brier Betting Mechanism

In this section we introduce a betting mechanism based on the Brier score, also known as the

quadratic score or squared loss. Consider a binary outcome, given by a random variable X taking

values in {0, 1}. X is interpreted as the indicator variable of a binary event E, such as the democrats

winning the next presidential elections, or an economic growth greater than 3% the next year. The

event is uncertain: let p be the actual probability that E occurs.1 All expectations are with respect

to the true probability p unless otherwise noted.

The Brier betting mechanism involves a group of n individuals, or players, indexed 1, . . . , n,

who wager money on their assessment of the probability of E. It proceeds in two stages:

• In a first stage, every player i places a bet. The bet consists of a wager wi ≥ 0 and a

probabilistic estimate pi ∈ [0, 1] for event E. Bets are submitted simultaneously.

• In a second stage, the event outcome is publicly observed. Denote by x the realization of

X. Each player i receives a fraction of the total amount wagered, based on the Brier score

s(q, x) = 1− (x− q)2, according to the formula:

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+
wi
W

s(pi, x)−
∑
j

wj
W
s(pj , x)

 , (1)

where W =
∑

j wj is the total amount wagered.

The (net) payoff for player i is therefore Wπi − wi. Note that the shares sum to one and are

nonnegative.

Let us briefly examine the form Equation (1), which is discussed in more detail in Section 4.

The first term, wi/W , is the share of the collected wealth W contributed by player i. The second

term determines whether player i will receive a smaller or larger share than what she initially

contributed by comparing her score with the weighted average of the scores of the other players. It

is easy to show that this is equivalent to

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+
wi
W

∑
j 6=i

wj
W

(
(pj − x)2 − (pi − x)2

)
=
wi
W

+ 2
wi
W

∑
j 6=i

wj
W

(pj − pi)
(
pi + pj

2
− x
)
.

This formulation offers a natural interpretation of the mechanism in terms of monetary transfer

1It is common in the forecasting literature to assume outcomes are drawn at random from some true, objective
probability distribution (Dawid, 1982; Foster and Vohra, 1998; Olszewski and Sandroni, 2008). One can also interpret
the probability p as an immutable subjective probability with respect to which an individual seeks to maximize her
expected payoff, as in Eisenberg and Gale (1959) and Ali (1977) who endow players with heterogeneous prior beliefs.
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between players. The output of the mechanism corresponds to each player i transferring a fraction

wj
W

(
(pi − x)2 − (pj − x)2

)
= 2

wj
W

(pi − pj)
(
pi + pj

2
− x
)

(2)

of her wager to player j. If the fraction (2) is negative, the transfer is from player j to player i.

Hence, for any given action profile (p1, w1), . . . , (pn, wn), in expectation when x = 1 with probability

p, player i gives away a fraction

wj
W

(
(pi − p)2 − (pj − p)2

)
= 2

wj
W

(pi − pj)
(
pi + pj

2
− p
)

of her wager to player j. In expectation, player i receives money from player j if and only if

|pi − p| < |pj − p|. In other words, player i receives money from player j if and only if she

announces a better prediction, in the sense that the absolute difference between the prediction and

the truth is lower. Furthermore, her share is proportional to both the extent of the disagreement

|pi − pj | between the two players, and the quality of the average prediction of the two players,

represented by the absolute difference |(pi + pj)/2− p|.
Observing that the expected share of player i is

wi
W

+
wi
W

∑
j 6=i

wj
W

(
(pj − p)2 − (pi − p)2

)
we can establish a list of properties that the Brier betting mechanism satisfies:

(1) For every permutation σ over {1, . . . , n},

πσ−1(i)((pσ(1), wσ(1)), . . . , (pσ(n), wσ(n)), x) = πi((p1, w1), . . . , (pn, wn), x) .

for every x, i, and every action profile (p1, w1), . . . , (pn, wn).

(2) The expected share of player i increases as |pi − p| decreases. That is, for all i, and all

(p1, w1), . . . , (pn, wn), the value of

E[πi((p1, w1), . . . , (pn, wn), X)]

increases as |pi − p| decreases.

(3) The expected share of player i decreases as |pj − p| decreases, for every other player j. That

is, for all i, j 6= i, all (p1, w1), . . . , (pn, wn), the value of

E[πi((p1, w1), . . . , (pn, wn), X)]

decreases as |pj − p| decreases.

(4) If two or more players make identical forecasts, the mechanism output for everyone else de-
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pends on the identical forecasters wagers only through the sum of the wagers of these identical

forecasters, but does not depend on each wager individually.

(5) The share to every player remains unchanged when all the players multiply their wager by the

same factor.

Let us briefly discuss the meaning of these properties. Property (1) states that the mechanism

is anonymous: It does not discriminate between players, in that the payoffs do not depend on the

players’ identities. Properties (2) and (3) state that the mechanism is proportional. According to

property (2), better predictions yield better payoffs. It is worth noting that the mechanism not

only rewards truth telling, it also rewards accuracy, in the sense that the closer the forecast is to the

truth, the larger the expected payoff. This feature of our mechanism encourages forecasts of better

quality, in the event that the player has the possibility to access more accurate information. In doing

so, it reduces the spread of the distribution of the different forecasts, which increases the precision

of the computed aggregate, if an aggregation method is being used as a post-processing step. With

property (3), a player’s payoff decreases as another player makes better predictions (such as when

another player has access to more accurate information) as can be expected of any competitive

mechanism. In electronic platforms, it is important to prevent players from manipulating identities.

Property (4) fulfills this requirement: The mechanism is sybilproof. There is no incentive for a

player to create multiple fake identities, as outputs do not depend on whether participants divide

their wager among one or several bets. Finally, property (5) states that mechanism is homogeneous

in that the share allocated to each player depends solely on the fraction each player invests relative

to the total amount invested. In other words, the share to every player does not depend on the

currency being used.

In our mechanism the wager determines a player’s stake or risk exposure. Both net payoffs and

expected net payoffs are monotone in the player’s wager. If a player loses money (in expectation),

her (expected) loss increases with the amount of her wager. If however a player earns money (in

expectation), her (expected) gain also increases with the amount of her wager. While a player’s

loss can never exceed her wager, a player’s gain never exceeds her wager either. By increasing her

wager, a player can potentially earn a larger payoff but it comes at the risk of a greater loss. It

is worth noting that in many instances, players win and lose far smaller amounts than their full

budget.

Note that in our mechanism, the quality of a prediction is measured with respect to the absolute

difference between forecasted probabilities and actual ones. It is a direct consequence of the use of

the Brier score. Such measure of prediction quality is suggested by Friedman (1983) or Nau (1985),

among others. It implies that the payoff is symmetric in forecast errors since forecasts p + ε and

p − ε must have the same payoff. Section 7 expands the mechanism to general scoring rules and

demonstrates that the above properties continue to hold with weaker analogs for properties (2) and

(3), thereby allowing for different measures of prediction quality.

In Section 5, we show that, subject to a smoothing condition, the Brier betting mechanism

is essentially the only mechanism that satisfies (1)–(5). First, we build some intuition for the
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mechanism.

4 Construction of the Brier Betting Mechanism

The Brier betting mechanism can be obtained by extending the standard horse-race parimutuel

betting markets. In the present context, the horse-race parimutuel market is described as follows:

• In a first stage, every player i = 1, . . . , n submits a bet. The bet consists of a wager wi ≥ 0

and a prediction xi of the outcome. That is, xi = 1 to predict that E occurs and xi = 0 to

predict that E does not occur. Bets are submitted simultaneously.

• In a second stage, the realization x is publicly observed. Players whose prediction is wrong

lose their entire wager. Players who predict the outcome correctly share the total amount

wagered. Winners get an amount proportional to their own wager.

The (net) payoff to player i is therefore

si
wi∑
j sjwj

∑
j

wj

− wi , (3)

where si = 1 if player i is correct (that is, if xi = x) and xi = 0 otherwise.

Following Eisenberg and Gale (1959), Norvig (1967) and Ali (1977), suppose that players have

heterogeneous prior beliefs. That is, players hold immutable subjective beliefs on outcome prob-

abilities, and seek to maximize their expected payoffs with respect to these beliefs. Even in this

simple configuration, the parimutuel betting game lacks dominant strategies: A player’s optimal

action typically depends on the actions of the other players.

To illustrate this point, consider the choice of a single player i, who must decide whether to

place a small bet wi on outcome 0 or outcome 1. Let W0 be the total amount wagered on outcome

0 by other players, and W1 be the total amount wagered by other players on outcome 1. From

Equation 3, we can see that if a player i believes that outcome 1 occurs with probability pi, she is

better off putting her wager wi on outcome 1 if

pi
wi

W1 + wi
> (1− pi)

wi
W0 + wi

,

or
pi

1− pi
>
W1 + wi
W0 + wi

.

Therefore her optimal prediction depends on the values W0 and W1, which are unknown at the

time she places her bet.

To get around this problem, we modify the structure of the payoffs to ensure that a player’s

optimal prediction depends solely on her subjective probability. In particular, it is independent of

her own wager, and is independent of the predictions and wagers of the other players. The lack of
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dominant strategies owes to the term
∑

j sjwj in Equation 3, which is the total wager of the winners.

It appears as a denominator which introduces a non-linearity in the payoffs. To restore linearity,

we multiply the net payoffs by
∑

j sjwj/
∑

j wj , scaling down the amount of money transferred.

The net payoff for player i becomes

wi

(
si −

∑
j sjwj∑
j wj

)
. (4)

Note that payoffs remain bounded below by −wi. In this transformed redistribution rule, no matter

how much she decides to wager, a player is always better off predicting the most likely outcome

according to her own belief, independently of the actions of others. However the space of possible

predictions remains too coarse, impeding the full revelation of private beliefs. For example, a player

who believes that there is a 60% chance event E will occur announces the same prediction she would

announce if she instead believed there was a 90% chance.

To overcome the limitation, in a second step we extend the space of the possible predictions.

We now allow players to announce outcome probabilities. Specifically, player i’s prediction is an

estimate pi of the probability that E occurs. Players can still predict an outcome if they wish, by

announcing probabilities 0 or 1, but they can now express uncertainty as part of the bet. In the

payoffs given by (3) and (4), the variable si is essentially a measure of performance. The greater

the value si, the greater the payoff of player i. In the original parimutuel market, si is restricted to

values 0 and 1. This dichotomy reflects the idea that a player is either entirely correct or completely

wrong. As we now allow for a continuum of predictions, it is natural to also measure performance

on a continuum: The more precise the forecast, the greater the performance.

Scoring rules provide a classic measure of performance for probabilistic predictions. A scoring

rule s assigns a score s(q, x) as a function of a probabilistic forecast q ∈ [0, 1] and the realized

outcome x = 0, 1. Accurate forecasts match empirical probabilities. Proper scoring rules ensure

that the empirical average score is maximized under this condition. A scoring rule is (strictly) proper

when the expected score, under the true probability p, is (strictly) maximized when q = p. Proper

scoring rules and their constructions have been thoroughly studied. McCarthy (1956), Shuford

et al. (1966), Hendrickson and Buehler (1971), Savage (1971), Friedman (1983), and Schervish

(1989) offer various characterizations of proper and strictly proper scoring rules. Gneiting and

Raftery (2007) provide a summary of the results.

No matter the amount she wagers, and no matter the actions of the other players, player i

maximizes the expectation of her gains (as in Equation (4)) by maximizing the expected value

of si, according to her subjective beliefs. Therefore, if we substitute for si in Equation (4) any

proper scoring rule taking values in [0, 1], player i optimally chooses to report her true subjective

probability. After substitution, the net payoff for player i becomes

wi

[
s(pi, x)−

∑
j s(pj , x)wj∑

j wj

]
.
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While we could, in principle, use any proper scoring rule, the Brier score is a simple and widely

used strictly proper scoring rule that satisfies several nice properties. It is defined in this context

as s(q, x) = 1− (q − x)2. Unlike any other scoring rule, the Brier score has the property that, the

closer the forecast is to the true probability (in absolute difference), the greater the expected score

will be. Section 5 investigates this property in greater detail. Plugging in the Brier score, the net

payoff for agent i is

wi

[
−(pi − x)2 +

∑
j(pj − x)2wj∑

j wj

]
,

which can be rewritten as ∑
j 6=i

wiwj
W

((pj − x)2 − (pi − x)2) ,

where W =
∑

j wj . Adding the wager wi of player i and dividing by W gives the share assigned to

player i.

5 Axiomatic Approach

The Brier betting mechanism is part of a larger collection of mechanisms in which agents wager

money on probabilistic predictions. We refer to these as wagering mechanisms.

Specifically, a wagering mechanism is defined by a redistribution rule π. The rule specifies

how the total amount wagered is divided among the players, for any number of players. The

mechanism operates in two stages. In stage 1, every player i bets an amount wi on a prediction

pi for the probability that E occurs, i.e., the probability that X = 1. In stage 2, the realiza-

tion x of X becomes known, and the total amount wagered W is divided among the players.

Player i gets a share πi((p1, w1), . . . , (pn, wn), x) of W . That is, player i receives a net payoff

of Wπi((p1, w1), . . . , (pn, wn), x) − wi. Shares must be nonnegative and sum to one. We require

throughout that every function πi be twice continuously differentiable in the vector of predictions

(p1, . . . , pn).

The main result of this paper shows that, under this requirement, the Brier betting mechanism is

essentially the only wagering mechanism that satisfies the properties (1)–(5) enumerated in Section

3. We lay out the proof of this theorem in several steps. First, we show that the Brier score is the

only scoring rule to satisfy the property that the expected score decreases in the absolute difference

between the report and the true event probability. Next, we use this feature to provide a uniqueness

result for sharing rules that divide a fixed amount of money among a set of forecasters, a result of

independent interest. Finally, we build on this result to prove our main theorem.

Theorem 1. Consider a wagering mechanism defined by the redistribution rule (π1, . . . , πn) in

which every function πi is twice continuously differentiable. The mechanism satisfies the list of

11



desiderata (1)–(5) enumerated in Section 3 if and only if

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+ κ
wi
W

∑
j 6=i

wj
W

(
(pj − x)2 − (pi − x)2

)
for some constant κ ∈ [0, 1].

The presence of the quadratic term is due to the properties (2) and (3). In Section 7 we

claim that under weaker properties, the quadratic term can be replaced by any proper scoring

rule. Note the introduction of the constant κ, absent from the original formulation of the payoffs in

Equation (1). Properties (1)–(5) indeed hold for all κ ∈ [0, 1], however it is natural to set κ = 1. For

any other choice of κ players always get to keep some fixed fraction of their own wager, even in the

worst circumstances. Choosing κ = 1 ensures that a player can lose arbitrarily close to her wager in

some situations. Also note that property (5) is useful but not essential to the characterization. The

proof we offer in the following subsections shows that without property (5), the characterization

generalizes only marginally, with κ being then a function of the total amount wagered W . Such a

flexibility is not of particular interest as κ = 1 remains the most natural and desirable choice.

5.1 Characterization of the Brier Score

The quadratic or Brier scoring rules, defined by s(q, x) = −c(q−x)2+f(x) for an arbitrary function

f and positive constant c, are arguably the best known strictly proper scoring rules (Brier, 1950).

We begin by showing that these scoring rules are the only ones satisfying a simple monotonicity

property: The expected score increases as |p− q| decreases, where p is the probability assigned to

event E or outcome x = 1. The fact that the Brier scoring rules satisfy this property was shown

by Friedman (1983); the result below shows uniqueness. As most of our analysis requires some

smoothness of the functions being used, we prove the result for continuously differentiable scoring

rules, that is, functions s(q, x) continuously differentiable in q, for every choice of x.

Proposition 1. The Brier scoring rules are the unique scoring rules s(q, x) such that E[S(q,X)]

is strictly decreasing in the absolute difference |q − p|.

Proof of Proposition 1: We begin by a characterization of all the continuously differentiable proper

scoring rules. We show that s(q, x) is a proper scoring rule if and only if s′(q, x) = γ(q)(x− q) for

some continuously differentiable function γ(·) ≥ 0. Note that this statement is a direct consequence

of the more general Schervish characterization (Schervish, 1989). For this special case we include

a simple proof for completeness.

To show sufficiency, observe that if s′(q, x) = γ(q)(x− q), then

E[s(p,X)]− E[s(q,X)] =

∫ p

q
γ(t)(p− t)dt

which is non-negative when γ(t) ≥ 0.

12



For necessity, remark that if a scoring rule s(q, x) is proper then q = p maximizes E[s(q,X)],

where the expectation is taken under the true probability p that X = 1. The first-order condition

yields, for all p ∈ (0, 1),

ps′(p, 1) + (1− p)s′(p, 0) = 0 .

Let

γ(q, x) =
s′(q, x)

q − x

whenever q 6∈ {0, 1}. The first-order condition can then be rewritten as

p(p− 1)γ(p, 1) + p(1− p)γ(p, 0) = 0, ∀p ∈ (0, 1) ,

and so γ(p, 1) = γ(p, 0) = γ(p) for some function γ(·) on (0, 1). The function γ(·) can be extended

to the full interval [0, 1] by continuity. The fact that γ(·) ≥ 0 follows from the inequality

E[s(p,X)]− E[s(q,X)] =

∫ p

q
γ(t)(p− t)dt ≥ 0 , ∀p, q ∈ [0, 1] .

We now build on this result to show that E[s(q,X)] is strictly decreasing in |q − p| if and only

if s′(q, x) = γ(x− q) for some constant γ > 0.

For sufficiency, observe that if s′(q, x) = γ(x− q), then s(q, x) = −γ(x− q)2/2 + ρ(x) for some

function ρ. Hence E[s(q,X)]− E[s(p,X)] = γ(p− q)2/2, and the result follows.

We prove necessity starting from the equality

E[s(p− δ,X)] = E[s(p+ δ,X)] , (5)

for all p and δ such that p+ δ and p− δ are within the range [0, 1], equality that is implied by the

monotonicity condition. We already know that

s(q, x) = s(0, x) +

∫ q

0
γ(t)(x− t)dt .

Substituting this expression of s(q, x) into (5) yields∫ p+δ

p−δ
(p− t)γ(t)dt = 0 , ∀p, δ .

Differentiating with respect to δ, we get

(p− (p+ δ))γ(p+ δ) + (p− (p− δ))γ(p− δ) = −δγ(p+ δ) + δγ(p− δ) = 0 ,

and so γ(p + δ) = γ(p − δ). This equality is valid whenever 0 < p − δ < p + δ < 1. By continuity

of γ(·), we conclude that γ(p) = γ for all p, that is, γ is constant. That γ is positive follows

immediately.
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5.2 A Uniqueness Result for Sharing Rules

We next provide a uniqueness result for mechanisms that divide a fixed amount of money M among

a set of forecasters. These mechanisms can be interpreted as scoring rules that apply to multiple

forecasters, with the constraint that scores must be nonnegative and sum to a constant M .

As in the preceding sections, X denotes the indicator variable of an event E and p the probability

that E occurs. There are n forecasters. In the first stage, each forecaster i reports her probability

assessment pi. In the second stage, after observing the realization x of X, each forecaster i gets

a share πi(p1, . . . , pn, x) of the total amount M . A sharing rule is given by the vector of shares

(π1, . . . , πn). Sharing rules are, by definition, nonnegative, and such that the total shares π1+· · ·+πn
sum to one. We focus the analysis on sharing rules that are twice continuously differentiable with

respect to the vector of probability inputs (p1, . . . , pn).

We seek sharing rules that satisfy properties analogous to (1)–(3) from Section 3. In the context

of sharing rules, these properties are expressed as follows:

(a) The sharing rule should be symmetric, i.e., for every permutation σ of the forecasters,

πσ−1(i)(pσ(1), . . . , pσ(n), x) = πi(p1, . . . , pn, x) .

(b) For all i and j 6= i, E[πi(p1, . . . , pn, X)] should be increasing as |pi − p| decreases: A forecaster

gets a larger share as her report gets closer to the truth.

(c) For all i, E[πi(p1, . . . , pn, X)] should be decreasing as |pj − p| decreases: A forecaster gets a

smaller share as someone else’s report gets closer to the truth.

Proposition 2. The sharing rule (π1, . . . , πn) defined by

πi(p1, . . . , pn, x) =
1

n
+

α

n− 1

∑
j 6=i

(
(pj − x)2 − (pi − x)2

)
for α ∈ [0, 1/n] satisfies properties (a)–(c). Furthermore, sharing rules of this form are the only

twice continuously differentiable sharing rules that satisfy them all.

Proof of Proposition 2: Sufficiency is direct, observing that

E[πi(p1, . . . , pi−1, p, pi+1, . . . , pn, X)]− E[πi(p1, . . . , pn, X)] = α|pi − p|2 ,

and similarly

E[πi(p1, . . . , pj−1, p, pj+1, . . . , pn, X)]− E[πi(p1, . . . , pn, X)] = − α

n− 1
|pj − p|2 .

The key to proving necessity is the following lemma:
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Lemma 1. If πi is a twice continuously differentiable sharing rule that satisfies conditions (2) and

(3) above, then there exist twice continuously differentiable functions πji such that

πi(p1, . . . , pn, x) = πii(pi, x) +
∑
j 6=i

πji (pj , x) .

Proof of Lemma 1: The proof makes use of the following lemma, whose proof is relegated to the

Appendix.

Lemma 2. If f : (a, b)n 7→ R is twice continuously differentiable, and if

∂2f(x1, . . . , xn)

∂xi∂xj
= 0

for all x1, . . . , xn and all i 6= j, then there exist fi : (a, b) 7→ R, i = 1, . . . , n such that

f(x1, . . . , xn) =

n∑
i=1

fi(xi) .

Let Ep denote the expectation over X when X = 1 with probability p. By property (b),

p = arg max
pi

Ep[πi(p1, . . . , pn, X)] , (6)

and by property (c), for all j 6= i,

p = arg min
pi

Ep[πj(p1, . . . , pn, X)] . (7)

The first-order condition in (6) and (7) yields, for all k and all i,

Epi

[
∂πk(p1, . . . , pn, X)

∂pi

]
= 0 .

As the equality remains true for all values of pj , we can differentiate a second time and get, for all

k and all i, j, i 6= j,

Epi

[
∂2πk(p1, . . . , pn, X)

∂pi∂pj

]
= 0 .

Note that as πi is twice continuously differentiable function, ∂2πi/∂pi∂pj = ∂2πi/∂pj∂pi. Hence by

symmetry we also have

Epj

[
∂2πk(p1, . . . , pn, X)

∂pi∂pj

]
= 0 .

Observe that, for any random variable Y that takes value in {yL, yH}, if for any p, q with p 6= q,

the expected value of Y when Y = yH has probability p is the same as the expected value of Y

when Y = yL has probability p, then it must be the case that yL = yH . Applying this to the two
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preceding inequalities yields, for all i 6= j, all (p1, . . . , pn) with pi 6= pj , and all x,

∂2πk(p1, . . . , pn, X)

∂pi∂pj
= 0 .

By continuity, the equality remains true for pi = pj . We conclude by a direct application of

Lemma 2.

We now return to the proof of the proposition. We apply Lemma 1, and write πi =
∑

j π
j
i with

the functions πji as defined by the Lemma. Using property (b) and applying Proposition 1, there

exist some constants αi > 0 and some functions gii such that, for all i,

πii(pi, x) = −αi(pi − x)2 + gii(x) .

Also, by property (c), and again in application of Proposition 1, there exist some constants βji > 0

and some functions gji such that, for all i, j with i 6= j,

πji (pi, x) = βji (pj − x)2 + gji (x) .

These two equalities imply that πi can be re-written under the form

πi(p1, . . . , pn, x) = −αi(pi − x)2 +
∑
j 6=i

βji (pj − x)2 + gi(x)

where gi =
∑

j g
j
i . Fix some forecaster i. Applying property (a), the payoff of forecaster i when

the reports of the other forecasters are permuted should remain the same, which yields βji = βi for

some βi and all j. When can then apply property (a) to forecaster i and some other forecaster j.

When these agents are permuted, the payoffs are permuted as well, which yields αi = α, βi = β,

and gi = g for all i. Hence, for all p1, . . . , pn, and all x,

πi(p1, . . . , pn, x) = −α(pi − x)2 +
∑
j 6=i

β(pj − x)2 + g(x) .

The last step makes use of the fact that the forecasters’ shares sum to one:∑
i

−α(pi − x)2 +
∑
i

∑
j 6=i

β(pj − x)2 + ng(x) = 1 .

As the equality remains true for every value of p1, by we can differentiate each side of the equality

with respect to p1 to get

−2α(p1 − x) + 2(n− 1)β(p1 − x) = 0 ,

which gives β = α/(n− 1) and so 0 + ng(x) = 1, hence g(x) = 1/n.
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In summary,

πi(p1, . . . , pn, x) =
1

n
+

α

n− 1

∑
j 6=i

[
(pj − x)2 − (pi − x)2

]
.

Property (b) implies α ≥ 0. As shares must remain nonnegative, α ≤ 1/n.

To prove our main theorem, we make use of Proposition 2 in its full generality. However, when

using sharing rules as an independent mechanism to reward a group of forecasters, it is natural to

take α = 1, so as to get the additional property (d):

(d) For all i, there exists a profile of reports p1, . . . , pn and a realization x such that the share of

forecaster i is zero: πi(p1, . . . , pn, x) = 0.

We have the following immediate corollary:

Corollary 1. The sharing rule (π1, . . . , πn) defined by

πi(p1, . . . , pn, x) =
1

n
+

1

n(n− 1)

∑
j 6=i

(
(pj − x)2 − (pi − x)2

)
satisfies properties (a)–(d). Furthermore, it is the only twice continuously differentiable sharing

rule that satisfies them all.

5.3 Return to Wagering Mechanisms

We now return our attention to wagering mechanisms and provide the proof for the uniqueness of

the Brier betting mechanism.

Proof of Theorem 1: As we argued in Section 3, sufficiency is immediate and follows from the

observation that

E[πi((p1, w1), . . . , (pn, wn), X)] =
wi
W

+ κ
wi
W

∑
j 6=i

wj
W

(
(pj − p)2 − (pi − p)2

)
.

To show necessity, we make a parallel between three different scenarios: One in which all wagers

are identical, one in which wagers may vary but remain multiple of a base wager ε, and, finally, the

real setting of interest in which wagers are arbitrary. The rules that determine the payoffs of the

first setting are derived from Proposition 2. The payoffs of the second setting are then obtained

using property (4) of Section 3. Finally, we get the payoffs of the third setting by viewing this

general setting as a limit case of the second setting.

Let (p1, . . . , pn) be a profile of n predictions.

Setting 1: In the first setting, there are N players divided into n groups with ki members each,∑
j kj = N . Each player of the group i announces the same prediction pi, and all players in all

groups wager the same amount ε. The total amount of money wagered is then W = Nε. Index
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players by capital letters I, J and denote by pI the prediction of player I. The properties (1), (2),

and (3) applied to this first setting imply, by proposition 2, that player I should get a share

1

N
+

α

N − 1

∑
J 6=I

[(qJ − x)2 − (qI − x)2]

of the total wager W for some α ∈ [0, 1/N ]. Note that α may depend on N and ε. In what follows,

we write the dependence explicitly as α(N, ε).

Setting 2: Now consider a second setting with only n players. Each player i chooses prediction

pi (as above) and a wager wi = kiε for the same values of ki used in setting 1.

The total amount of money wagered in this setting is W = Nε, the same as in setting 1.

Furthermore, each player i in this setting announces the same prediction as every member of group

i in setting 1, and wagers an amount that is the sum of the wagers of all members of this group.

Therefore, by application of property (4), the share that player i receives in this setting must equal

the total share that group i receives in setting 1, which is

ki
N

+
α(N, ε)ki
N − 1

∑
j 6=i

kj [(qj − x)2 − (qi − x)2] .

This expression can be rewritten as

wi
W

+ β(N, ε)
wi
W

∑
j 6=i

wj
W

[(qj − x)2 − (qi − x)2] (8)

where we define

β(N, ε) =
N2

N − 1
α(N, ε) .

By property (5), the shares do not depend on ε so that β(N, ε) is only a function of N , and we

write β(N, ε) = β(N).

Setting 3: In the final step, we return to the initial problem of computing shares for players

with unrestricted wagers. This third setting can be seen as a limit case of the second setting. Each

player i wagers any amount wi > 0 (the case wi = 0 can be obtained by continuity) and predicts

pi. We compute the share of player i as follows.

Let εt = 1/t and for each player i, consider any sequence of positive integers {kti}t=1,2,... such

that kti/t → wi as t → +∞. Let N t =
∑

i k
t
i . Each particular value of t corresponds to setting 2

with the corresponding values ε = εt and ki = kti . Naturally N t → +∞ as t → +∞. By (8), and

the continuity assumption of the sharing rule, the limit of

wi
W

+ β(N t)
wi
W

∑
j 6=i

wj
W

[(qj − x)2 − (qi − x)2]

as t→∞ exists and equals the share of player i in this third setting. Hence the limit limN→∞ β(N)

exists, and we conclude the proof by taking κ = limN→∞ β(N). That κ ∈ [0, 1] follows from the
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necessity to have nonnegative shares and by property (2).

6 The Case of Bayesian Individuals

The main framework of this paper assumes that individuals hold independent, immutable prior

beliefs, as in the works of Eisenberg and Gale (1959) and Ali (1977) on betting markets. An

individual’s subjective probability is not affected by the actions of other players; everybody acts

as if they are very confident about their own prediction. The assumption of immutable beliefs

facilitates the analysis as we need not be concerned about the formation of the posteriors.

Our framework can be interpreted as an extreme case of information structure. There are, of

course, many other relevant structures, in which individuals can learn from others’ actions. In one

other extreme, individuals hold a common prior about the states of the world, a setting common to

many models of dynamic market mechanisms. While our mechanism is designed for one particular

information structure, it is of natural interest to investigate its performance and robustness when

one departs from the assumption of differing immutable prior beliefs.

The purpose of the current section is to illustrate the functioning of our mechanism in the case

of players who share a common prior belief. Such an information structure is used for example in

papers by Koessler et al. (2008) and Ottaviani and Sørensen (2009, 2010) in a similar context. In

this configuration players are directly influenced by the actions of others. In general common prior

settings, we show that players no longer announce a truthful prediction. This is true of the Brier

betting mechanism, but also of any non-trivial wagering mechanism. However, in the case of the

Brier betting mechanism, we are able to quantify the bias and show that predictions tend to reflect

true personal assessments as the size of the betting market grows. This asymptotic property is

independent of the information partitions/common prior being used.

Model. Let (Ω,F , P ) be a probability space, where Ω denotes the set of possible states of the

world and P is a common prior. All expectations of this section are taken with respect to P . There

are n risk-neutral players. Player i holds private information on the true state of the world, which

leads to heterogenous private beliefs about the likelihood of the event. As is common, to allow for

full generality, we represent this private the information by a sigma algebra Fi. The set Fi can be

interpreted as the collection of all the events that player i observes privately. For example, if player

i observes a real-valued signal Si, then the set Fi consists in the sigma algebra generated by the

family of events {Si ∈ [a, b]}, where [a, b] is any interval.

Players are offered to bet in the Brier betting mechanism. Denote by E the event of interest. A

player’s prediction consists in a probability assessment that E occurs. Denote by X the indicator

variable of E. By convention, each player may decide not to participate by wagering a zero amount.

The mechanism then disregards the prediction. However if she decides to participate, the player

must wager an amount within the range [WL,WH ], where WL and WH are mechanism parameters

that specify respectively the lowest and highest amount players can wager. Imposing lower and
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upper bounds on wagers is common in practice. Limiting the gains and losses makes our analysis

tractable: It permits to assume risk neutrality, an hypothesis empirically validated in the context

of horse-race parimutuel betting (Ali, 1977). To induce voluntary participation, and circumvent

No-Trade Theorems (Milgrom and Stokey, 1982), we treat the betting game as a consumption

good. Players derive a positive utility from betting, owing for example to entertainment value. If

she participates, player i gets, in addition to her payoff, a utility amount equivalent to Ui dollars.

Equilibrium Analysis. In this setting a natural solution concept is that of Bayes-Nash equilib-

rium. A pure strategy for player i is a pair of random variables (pi, wi), where pi : Ω 7→ [0, 1] gives

a prediction—the assessment of event E’s likelihood—and wi : Ω 7→ {0} ∪ [WL,WH ] returns the

wager. Both functions depend on the state and are required to be Fi-measurable, 2 so that both the

prediction and the wager of player i depend only on her private information. A mixed strategy is a

distribution over pure strategies. For simplicity of exposition we focus on pure strategy equilibria;

the analysis extends directly to equilibria in mixed-strategy. A strategy profile {(pi, wi)}ni=1 is an

(ex-interim) Bayes-Nash equilibrium when, for every player i, and every alternative strategy (p̃i, w̃i)

of that player,

E

[∑
j 6=i

wiwj
wi +W−i

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Fi
]

+ Ui1{wi > 0} ≥

E

[∑
j 6=i

w̃iwj
w̃i +W−i

(
(pj −X)2 − (p̃i −X)2

) ∣∣∣∣ Fi
]

+ Ui1{w̃i > 0} , (9)

where W−i =
∑

j 6=iwj is the total amount other players wager.

Rearranging the terms and using W =
∑

j wj as the total wager, we get that

E

[∑
j 6=i

wiwj
W

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Fi
]

=

E

∑
j 6=i

wiwj
W

(pj −X)2
∣∣∣∣ Fi

− E

[
wi

(
1− wi

W

)
(pi −X)2

∣∣∣∣ Fi] ,

so that at equilibrium pi minimizes the last term

E

[
wi

(
1− wi

W

)
(pi −X)2

∣∣∣∣ Fi] .

The first order condition yields

E

[
wi

(
1− wi

W

)
(pi −X)

∣∣∣∣ Fi] = 0 .

2Recall that a function is G-measurable when observing the occurrence or nonoccurrence of each event of G is
enough to fully determine the value of that function.
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Hence, at equilibrium, the prediction of player i is

pi =
E[(1− wi/W )X | Fi]

1− E[wi/W | Fi]
= E[X | Fi]−

Cov(wi/W,X | Fi)
1− E[wi/W | Fi]

,

where Cov(wi/W,X |Fi) denotes the covariance between wi/W and X conditionally on information

Fi. It is easily verified that 0 ≤ pi ≤ 1.

Therefore, at equilibrium, each participating player i announces a prediction that is the sum of

her true probability assessment E[X | Fi] and a bias

εi = −Cov(wi/W,X | Fi)
1− E[wi/W | Fi]

. (10)

The bias depends only on how the total amount wagered correlates with the outcome. If par-

ticipation increases with the occurrence of the event, players tend to overestimate probabilities.

Conversely if the total amount wagered decreases with the occurrence of the event, players tend to

underestimate probabilities. The bias owes to the structure of the payoffs. A prediction has greater

impact on a player’s payoff when the total amount wagered is large. Depending on the information

structure, the total amount wagered may provide information on the state of the world. Conse-

quently the optimal prediction may depend on the total amount wagered. As the total amount

wagered is uncertain, the optimal prediction is a weighted average of the predictions that are sep-

arately optimal conditionally on every possible total wager W . Since greater amounts W have

stronger impact on a player’s payoff, the player should put more weight on the predictions optimal

for these amounts, which introduces a bias.

However biases are typically small can often be ignored. As we argue in the two examples below,

they are only noticeable under some cases of asymmetric information. Besides if m is the number

of participants, observing that

|εi| ≤
E[wi/W | Fi]

1− E[wi/W | Fi]
= O(1/m) ,

the bias becomes rapidly negligible as the number of participants grows. Thus predictions tend

to reflect accurately the players’ beliefs in large markets, no matter the underlying information

structure. Note that the problem of biased predictions is intrinsic to all non-trivial wagering

mechanisms. It is due to the budget-balance constraint, which implies that the same predictions

impact payoffs differently for different given wagers of the other players.

At equilibrium, the wager for player i, wi, maximizes

E

[∑
j 6=i

wiwj
W

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Fi
]

+ Ui1{wi > 0} with pi =
E[(1− wi/W )X | Fi]

1− E[wi/W | Fi]

Because the net payoffs from betting are always within the range [−wi, wi], if player i participates

she is always guaranteed utility at least Ui −WL. In particular player i is better off participating
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whenever Ui > WL. If Ui < WL, the player may or may not decide to participate, depending on

how her private information compares to that of others. She will only participate if she finds herself

sufficiently knowledgeable compared to the other players.

If equilibrium wagers are independent of the state of the world, the monotonicity of the payoffs

discussed in Section 3 implies that each player should wager either 0, WL or WH . She wagers 0 if

she is poorly informed and has low value for participation, she wagers WL if she is poorly informed

and has high value for participation, and she wagers WH if she is well informed, no matter her

value for participation. However in general equilibrium wagers need not be restricted to these three

values. They can lie a priori anywhere in between the minimum and maximum wagers WL and

WH . Indeed, for a given state of the world, marginal payoffs have the same sign. Hence if a player

finds it best to participate, the optimal wager is either to bet the maximum amount WH , and get a

positive wealth transfer from the other players, or to bet the minimum amount WL and subsidize

the other players. In contrast, when the state of the world is uncertain, the marginal payoffs may

change sign, because the marginal payoffs for the different states of the world need not vary at the

same rate. Therefore conditional on a player’s private information, at a particular wager w, betting

one extra dollar may generate additional gains, while at a wager w′ > w, betting one extra dollar

may cause a loss. Naturally more informed players always wager more than less informed players,

in the sense that, if Fi ⊆ Fj , then wj ≥ wi.

An example with biased predictions. Biased predictions can only appear under asymmetric

information when a player’s participation depends on her private observations. For instance, when

a player can receive good information in some states of the world, say S, and poor information in

others, to the extent that she is willing to participate only when she receives good information. A

large total wager W is then an indicator that the states of the world S are more likely. At the

time bets are being submitted, players do not know the total wager W . However, conditional on

W being large, a player should update her belief towards higher probabilities for S. As we argued

above, predictions conditional on large W should carry more weight than those conditional on small

W . Hence a player tends to report probabilities under the assumption that S is more likely than

her personal assessment would suggest, causing a bias.

To illustrate our argument, consider a binary outcome X and three conditionally independent

binary signals S1, S2, S3. (In this setting a state of world is simply a joint realization of all the

signals and the binary outcome.) The common prior P assigns equal probability to X = 1 and

X = 0. There are three players. Every player i privately observes signal Si. Signal S1 is completely

uninformative with P (S = 1|X = 1) = P (S = 1|X = 0) = 1/2. Signal S3 is perfectly informative

with P (S3 = 1|X = 1) = P (S3 = 0|X = 0) = 1. Finally, signal S2 is informative in some states and

uninformative in some others: P (S2 = 1|X = 1) = 1 but P (S2 = 1|X = 0) = 1/2. Take WL = 1

and WH = 10 as lower and upper wager limits, respectively. Let the participation utility for player

1 be U1 > WL (player 1 is here for entertainment purpose, in effect she subsidizes the market) and

for the other two players U2 = U3 = 0 (other players only play for profit).

22



We first observe that in a Bayes-Nash equilibrium, the wagers of player 1 and 3 are respectively

w1 = 1 and w3 = 10. Indeed player 1 is always better off participating because of her high

entertainment value. However, since the other two players are more informed, player 1 is always

losing money in equilibrium, and so bets the minimum amount allowed to minimize her losses.

On the contrary player 3 is the best informed of all players. Since she always knows the true

outcome she never loses money, and should wager the maximum amount to maximize her gains. In

equilibrium player 2 takes an action that depends on how much she knows. If she observes signal

S2 = 0, then she knows that X = 0 and is, like player 3, perfectly informed. She should wager the

maximum to get the most she can from player 1. If however S2 = 1, she is poorly informed. Using

the fact that, at equilibrium, p3 = X, player 2’s expected net incoming transfer conditional on her

information S2 = 1 is therefore

E

[
w2

W

∑
j=1,3

wj
(
(pj −X)2 − (pi −X)2

) ∣∣∣∣∣ S2 = 1

]
≤ w2w1

W
− w2w3

W
· 2

9
< 0 .

No matter how player 1 chooses her prediction, player 2 is guaranteed to lose money on average

when she receives signal S2 = 1, and therefore should abstain from participation. Hence, in this

particular setting, the total wager at equilibrium depends on the true state of the world.

We now turn our attention to the equilibrium predictions. Player 3 being perfectly informed,

she reports truthfully the probabilities 0 or 1. When player 2 participates she is perfectly informed

and reports truthfully probability 0 or 1 as well. Player 1’s true assessment of the probability that

X = 1 is 50%. However in equilibrium she announces the prediction p1 that minimizes her expected

loss

P (S2 = 0)E

[
w1

W

∑
j=2,3

wj
(
(pi −X)2 − (pj −X)2

) ∣∣∣∣∣ S2 = 0

]

+ P (S2 = 1)E

[
w1

W

∑
j=2,3

wj
(
(pi −X)2 − (pj −X)2

) ∣∣∣∣∣ S2 = 1

]

= P (S2 = 0) · 20

21
· p21

+ P (S2 = 1) · 10

11

(
P (X = 0|S2 = 1)p21 + P (X = 1|S2 = 1)(1− p1)2

)
,

which yields p1 = 42/85 ≈ 49% < 50%. Therefore in equilibrium player 1 is not truthful, even

though the bias remains small enough for most practical purposes. Indeed when the total wager

W is low player 1’s participation is rewarded less than when W is high. High wagers indicate a

signal S2 = 0. Since the probability of outcome X = 1 conditional on S2 = 0 is less than when

the probability of X = 1 conditioned upon S2 = 1, player 1 should bias her reports towards lower

probabilities.
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An example with truthful predictions. In contrast, when the information structure displays

enough symmetry, equilibrium predictions are unbiased. Predictions are truthful even if the quality

of information is heterogeneous across players, as long as it does not vary within players. Consider

for example a setting with n players. As before, X is a binary outcome and P a common prior

that assigns equal probabilities to both outcomes. Each player i has access to a binary signal

Si, where P (Si = 1|X = 1) = P (Si = 0|X = 0) = µi > 1/2. High values µi indicate better

information. Without loss of generality we rank the players in order of increasing knowledge by

imposing µ1 ≤ · · · ≤ µn. Signals are conditionally independent. For simplicity consider Ui > WL,

i.e., every player is always willing to participate, no matter how informed.

We show that there exists an equilibrium in which every player predicts truthfully according to

her private information; that is, player i’s prediction strategy is pi = P (X = 1|Si). As predictions

are always unbiased in equilibria in which every player wagers independently of her signal, we seek

to construct such an equilibrium.

Players with imprecise signals get positive utility from entertainment value only, but lose money

on average. In effect they subsidize the market and transfer part of their wealth to the players with

precise signals. Hence if such an equilibrium exists, players who are poorly informed, that is,

players with low indices, should wager the minimum amount WL. In contrast players who are well

informed, those with high indices, should wager the maximum amount WH . (Recall that when

wagers do not depend on the state of the world a player’s payoff is monotone in the wager.)

We examine each of these strategy profiles separately and show one of them is indeed an

equilibrium. Specifically, consider n truthful strategy profiles indexed by I = 1, . . . , n. In each

of these profiles players always predict truthfully, but wager different amounts. In profile I, every

player i ≤ I wagers WL while every player i > I wagers WH .

The wagers are independent of the players’ signals, and by symmetry,

E[(pj −X)2 − (pi −X)2 | Si = 1] = E[(pj −X)2 − (pi −X)2 | Si = 0] .

Therefore, given any such a strategy profile I, the expected net incoming transfer to player i,

conditional on her information, equals

tIi = E

[∑
j

wiwj
W

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Si
]

= wi
∑
j

wj
W

E
[
(pj −X)2 − (pi −X)2 | Si

]
= wi

∑
j

wj
W

E
[
(pj −X)2 − (pi −X)2

]

= wi

∑
j

wj
W
µj(1− µj)

− wiµi(1− µi)
where we observe that E[(pi −X)2] = µi(1− µi) for any player i.
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For every strategy profile I, define f(I) to be the highest index i such that ti ≤ 0. By the above

equality, tIi /wi is increasing with i, and tI1 ≤ 0 while tIn ≥ 0. In other words, a player’s expected

share increases with the precision of her information, and players who are less informed make a

nonpositive profit while players who are more informed make a nonnegative profit. This implies

the index f(I) is such that, for all i ≤ f(I), tIi ≤ 0, and for all i > f(I), tIi > 0. For the strategy

profile I to be an equilibrium, it suffices that all the players with an index up to f(I) wager the

minimum amount allowed WL (as these players do not make a positive profit from betting), while

the players with an index greater than f(I) wager the maximum amount WH (as these players

make a positive profit from betting that is maximized when they wager the maximum amount).

Hence if we can find some J with f(J) = J , it means strategy profile J is an equilibrium. To show

existence of such an index value, let g(I) = f(I)− I. As g(1) ≥ 0 and g(n) ≤ 0, there must exists

some I such that g(I) ≥ 0 and g(I + 1) ≤ 0. Noting that f is increasing as tIi /wi is also increasing

in I, we have that either f(I) = I or f(I+1) = I+1. Therefore at least one of the strategy profiles

I ∈ {1, . . . , n} is an equilibrium.

7 Discussion

7.1 Eliciting Expert Advice

Although our analysis was made in the context of betting markets, the Brier betting mechanism

can also viewed as a mechanism to elicit information from a group of experts. In this alternative

context, an elicitor queries a group of n forecasters regarding probability estimates of an event of

interest E. As before, X, indicator variable of the event E, denotes the outcome. Each forecaster

i announces a probability estimate pi of E. In contrast to the setting considered in Section 5.2,

we allow for the forecaster to incur a loss—as we argue below, this is a desirable feature in that it

discourages the uninformed forecasters to participate. In order to do so, forecaster i must provide

a deposit wi ≥ 0 (instead of a wager). She may decide not to participate by setting her deposit to

zero. The deposit can be interpreted as a worst-case loss or a maximum liability amount, in that

the forecaster is guaranteed to lose no more than the amount deposited. As forecasters may have

different wealths, it is natural to grant forecasters the right to specify their own liability amount—in

particular, the mechanism does not prevent forecasters with low liability from participating. The

larger the declared liability, the larger the potential losses, but also the larger the potential gains.

The expert elicitation procedure differs from betting markets in that we permit another party,

the elicitor, to subsidize the market. A subsidy is often necessary to induce participation: In this

new context a forecaster’s utility reduces to her expertise fee, forecasters typically do not get the

additional entertainment value of the betting markets.3 The subsidy can also incentivize forecasters

to exert a potentially costly effort to retrieve high-quality information. However a complete model

with costly information acquisition is outside the scope of this paper.

3Although in some cases forecasters who want to establish a reputation for themselves may wish to participate
even when they incur a loss.
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There are two natural ways to introduce the subsidy. First, the elicitor can give away a fixed

lump sum payment M , as in Section 5.2. Each forecaster i receives the net payoff (M +W )πi−wi,
where the share πi is defined as before according to Equation (1), and W is the total sum deposited

by the forecasters. In this variant, we only alter the budget-balanced property of the Brier betting

mechanism; the net payoffs now sum to M . The properties (1)–(5) remain valid and our uniqueness

result still applies. Low values of M dissuade uninformed forecasters to participate, because their

deposit would finance the informed forecasters. As M grows larger, the mechanism attracts more

forecasters, as even a small share can generate large positive profits if the amount to share, M+W ,

is large enough.

Alternatively, the elicitor can play a more active part in the mechanism. Acting as a forecaster,

she can provide a prior probability estimate p0 that E comes true, and can deposit w0 = M to

subsidize the market. The payoff functions remain the same as in the Brier betting mechanism,

accounting for this new player. As opposed to the other forecasters, the elicitor does not expect

to generate a profit. The subsidy plays the same role as in the above mechanism. However in

this second mechanism the elicitor may not lose all of M . The actual loss depends on how the

forecasters’ predictions compare with her own. Specifically, if E occurs with probability p, the

elicitor gives away the expected amount

M
wi
W

[
(p0 − p)2 − (pi − p)2

]
to forecaster i, where W = M+

∑
i≥1wi. So forecaster i can only benefit from the subsidy when she

is more accurate than the elicitor, with respect to the absolute difference between the probability

estimate and the truth. Consequently if forecasters derive no personal value from participation,

this alternative mechanism deters all forecasters who are less informed than the elicitor. Note

that transfers between forecasters also occur, so that the actual reward of a forecaster depends

not only on how well she performs against the elicitor, but also how well she performs against the

other forecasters. However as forecasters can only get positive transfers from the less informed

forecasters, eventually no forecaster less informed than the elicitor will want to participate. If M

is low, the mechanism can even deter some forecasters who are slightly more informed than the

elicitor, but significantly less informed than some other forecasters. Transfers between forecasters

become negligible only when the subsidy grows large in comparison to the forecasters’ aggregate

liability.

7.2 Generalization of the Brier Betting Mechanism

The Brier betting mechanism is based on the Brier score which is a proper scoring rule. In principle

we can, however, plug any proper scoring rule s(q, x) taking values in the range [0, 1] into Equa-

tion (1) to derive an alternative betting mechanism. Properties (1), (4) and (5) continue to hold,

but properties (2) and (3) are specific to the Brier score. Using the fact that s(q, x) is a proper

scoring rule, we immediately get that the following weaker analogs are satisfied:
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(2∗) For a given action profile (p1, w1), . . . , (pn, wn), if player i changes her prediction pi to the

true probability p, then her expected share under p increases.

(3∗) For a given action profile (p1, w1), . . . , (pn, wn), the expected share of player i decreases if any

other player j changes her prediction from pj to p.

If the scoring rule is strictly proper, all increases/decreases are strict. Proposition 3 of Nau (1985)

shows that these two properties are respectively equivalent to seemingly stronger properties:

(2′) For a given action profile (p1, w1), . . . , (pn, wn), if player i changes her prediction pi to a

convex combination of pi and p, then her expected share increases.

(3′) For a given action profile (p1, w1), . . . , (pn, wn), the expected share of player i decreases when

another player j changes her prediction pj to a convex combination of pj and p.

If the scoring rule is strictly proper and the convex combinations are strict, all increases and

decreases are strict. These last two properties are a natural generalization of the properties (2) and

(3) without using a notion of distance between predictions and true probabilities.

The proofs of Proposition 2 and our main result Theorem 1 extend to this more general setting

with minor modifications and yield the following result.

Theorem 2. Consider a wagering mechanism defined by the redistribution rule (π1, . . . , πn) in

which every function πi is twice continuously differentiable. The mechanism satisfies the properties

(1), (2∗), (3∗), (4) and (5) if and only if

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+ κ
wi
W

∑
j 6=i

wj
W

(s(pi, x)− s(pj , x))

for some κ ∈ [0, 1] and some twice continuously differentiable proper scoring rule s(q, x) taking

values in [0, 1].

In other instances a market designer may be interested in statistics such as the mean, the

median or the 95th quantile. While probability scoring rules elicit event probabilities, a library

of more general scoring rules which are proper for general statistics is well-known and easily used

here. The Brier betting mechanism and its set of properties can be adapted to allow for predictions

of such statistics by plugging the appropriate scoring rule in Equation (1). We start by presenting

the extension under its most general form, then we provide more concrete examples.

Let Ω be a set of outcomes and D be a set of probability distributions over Ω. Following

Lambert et al. (2008), we define a general statistic as a function Γ : D 7→ Θ, where Θ is the set in

which the statistic takes values, and Γ(P ) is the value the statistic takes under P . The set Θ can

be arbitrary, typically R or Rk for single or multi-dimensional real-valued statistics. For example,

if Γ denotes the mean of a random variable X, Γ can be expressed as Γ(P ) =
∫
XdP .

A scoring rule for Γ is a function s(θ, ω) that returns a real-valued score as a function of the

realized outcome ω and a statistic estimate θ of the distribution over outcomes. The scoring rule s
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is proper if reporting true statistic values maximize the expected score, that is, for all P ∈ D and

all θ 6= Γ(P ),

EP [s(Γ(P ), ω)] ≥ EP [s(θ, ω)]

where EP is the expectation taken under the distribution P . The scoring rule s is strictly proper if

the maximization is strict.4

Let Γ be a statistic and s(θ, ω) be a proper scoring rule for Γ that takes values in [0, 1]. We

extend the mechanism of Section 3 as follows:

• In stage one, every player i places a bet, which consists of a wager wi ≥ 0 and an estimate θi

for statistic Γ.

• In stage two, the realized outcome ω is publicly observed. Every player i receives a fraction

of the total amount wagered, based on the scoring rule s, according to the formula:

πi((θ1, w1), . . . , (θn, wn), x) =
wi
W

+
wi
W

s(θi, x)−
∑
j

wj
W
s(θj , x)

 (11)

where W =
∑

j wj is the total amount wagered.

By construction, the resulting mechanism is budget balanced, and properties (1), (4), and (5)

continue to hold. Neither properties (2) and (3) nor their analogs (2′) and (3′) hold in general, but

the properties (2∗) and (3∗) continue to hold:

(2∗) For a given action profile (θ1, w1), . . . , (θn, wn), if player i changes her prediction θi to the

true value θ, then her expected share under P increases.

(3∗) For a given action profile (θ1, w1), . . . , (θn, wn), the expected share of player i decreases if any

other player j changes her prediction from θj to θ.

If the scoring rule is strictly proper, all increases/decreases are strict.5

Consider, for example, as set of outcomes x the interval [0, 1]. Let D be the set of probability

distributions that are represented by a positive density function. If the mechanism designer is

interested in the median m, she can employ the strictly proper scoring rule

s(m,x) = 1− |m− x|
4Lambert et al. (2008) and Lambert (2013) provide the statistics for which strictly proper scoring rules exist, and

show how to construct these scoring rules.
5Using the characterizations of Lambert (2013), it can be shown that our uniqueness result in Theorem 1 of the

current paper continues to hold for continuous real-valued statistics, under either properties (2′) and (3′) or properties
(2∗) and (3∗).
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to which corresponds the redistribution rule

πi((m1, w1), . . . , (mn, wn), x) =
wi
W

+
wi
W

∑
j

wj
W

(s(mi, x)− s(mj , x))

=
wi
W

+
wi
W

∑
j

wj
W

(|mj − x| − |mi − x|) .

If instead she is interested in the mean m̄ and variance v, she can use the strictly proper scoring

rule

s(m̄, v, x) = 2− |m̄− x|2 − |m̄2 + v − x2|2 ,

or if she is interested in the 5% and 95% quantiles α5 and α95 she can take the strictly proper

scoring rule

s(α5, α95, x) =
2

3
+

3

10
(f(α95)− f(α5))−

1

3
|f(α5)− x| −

1

3
|f(α95)− x| .

8 Conclusion

In a broad study conducted over two decades, Tetlock (2006) finds that the predictions of individual

forecasters, even domain experts, consistently perform worse than simple baselines. Empirically,

the average opinion of experts handily beats the average expert’s opinion, with accuracy increasing

in the number of inputs (Forsythe et al., 1992; Jacobs, 1995; Surowiecki, 2004; Reeves and Pennock,

2007; Chen et al., 2005; Dani et al., 2006; Page, 2007). Traditional scoring rules can elicit each

expert’s private belief, but the elicitor’s cost grows with the number of participants. Market scoring

rules (Hanson, 2003, 2007), or sequential shared scoring rules, where each new trader accepts a

scoring rule and pays off the previous, are more cost-effective but still require a subsidy to pay off

the final trader and may fail to induce information revelation is some scenarios.

We propose a class of wagering mechanisms: The Brier betting mechanism and its extensions.

Agents are called to report some information about an uncertain outcome. Along with their report,

they deposit an amount of money in a common pot. Upon realization of the outcome, agents receive

a payment that depends on the true outcome and their own report. Because they are self-financing,

wagering mechanisms like ours naturally cater to the kind of large, open groups that appear most

effective in practice.

We show that the Brier betting mechanism satisfies a number of desirable properties that scoring

rules and prediction markets do not, and show that it is the only mechanism that satisfies all of these

properties. In a Bayesian setting in which actions of some agents may influence the assessments

of some other agent, we show that the Brier betting mechanism exhibits a bias when agents are

asymmetrically informed. However the bias, intrinsic to all wagering mechanisms, is typically small

and vanishes to zero at a rate inversely proportional to the number of agents, and independently

of the information sets of the agents.
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Appendix: Proof of Lemma 2

Proof of Lemma 2: We first prove by induction that for all i ∈ {1, · · · , n}, there exist twice

continuously differentiable functions gi : (a, b)n−i+1 7→ R and hi : (a, b)n−1 7→ R such that

f(x1, . . . , xn) = gi(x1, xi+1, . . . , xn) + hi(x2, . . . , xn), (12)

and then apply this result to show that the lemma statement holds.

When i = 1, the claim in Equation (12) holds trivially with g1 = f and h1 = 0. Now, suppose

that for for some i ≥ 1, Equation (12) holds. Then since

∂2f(x1, . . . , xn)

∂x1∂xi+1
= 0

for all values of x1, . . . , xn, and
∂2hi(xi+1, . . . , xn)

∂x1xi+1
= 0,

it must be the case that
∂2gi(x1, xi+1, xi+2, . . . , xn)

∂x1∂xi+1
= 0

for all x1, xi+1, . . . , xn ∈ (a, b).
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Observe that, as gi is twice continuously differentiable,

∂2gi(x1, xi+1, . . . , xn)

∂x1∂xi+1
=
∂2gi(x1, xi+1, . . . , xn)

∂xi+1∂x1
. (13)

Hence, by twice integrating the right member of Equation (13), first with respect to x1 then

with respect to xi+1, we find that there exist twice continuously differentiable functions gi+1 :

(a, b)n−i 7→ R and h̃i+1 : (a, b)n−i 7→ R such that

gi(x1, xi+1, . . . , xn)

= gi+1(x1, xi+2, . . . , xn) + h̃i+1(xi+1, . . . , xn).

We can then satisfy Equation (12) at i+ 1 by setting

hi+1(x2, . . . , xn) = hi(x2, . . . , xn) + h̃i+1(xi+1, . . . , xn) .

Taking i = n, we find that

f(x1, . . . , xn) = gn(x1) + hn(x2, . . . , xn) .

Let f1 = gn. Now, since hn is twice continuously differentiable, we can repeat the same process

for x2 to find f2. Repeating the process recursively for x3, · · · , xn−1 shows that there exist a set of

functions f3, · · · , fn such that

f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn) .
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