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Abstract

Complementary to the axiomatic and mechanism design studies on queueing problems,

this paper proposes a strategic bargaining approach to resolve queueing conflicts. Given

a situation where players with different waiting costs have to form a queue in order to be

served, they firstly compete with each other for a specific position in the queue. Then, the

winner can decide to take up the position or sell it to the others. In the former case, the

rest of the players will proceed to compete for the remaining positions in the same manner;

whereas for the latter case the seller can propose a queue with corresponding payments to

the others which can be accepted or rejected. Depending on which position players are going

to compete for, the subgame perfect equilibrium outcome of the corresponding mechanism

coincides with one of the two best known rules for queueing problems, the maximal and

the minimal transfer rules, while an efficient queue is always formed in equilibrium. The

analysis discovers a striking relationship between pessimism and optimism in this type of

decision making.

Keywords: Queueing problem, minimal transfer rule, maximal transfer rule, Shapley

value, bidding mechanism, implementation.

JEL code: C71; C72; D60



1 Introduction

Consider a group of agents who want to be severed in a facility. The facility can handle only

one agent at a time and agents differ in their unit waiting cost. The queueing problem is

concerned with finding the order to serve the agents and the corresponding monetary trans-

fers. This queueing problem has been well studied in the literature from two perspectives:

the normative perspective (Maniquet, 2003; Chun, 2006a, b, 2011; Misha and Rangarajan,

2007; Moulin, 2007) and the mechanism design (incentive) perspective (Dolan, 1978; Suijs,

1996; Mitra, 2001, 2002). This paper aims to investigate the problem along an alternative

angle, that is, we adopt a strategic approach to build up a natural and intuitive bargaining

protocol such that players can negotiate among themselves to resolve the queueing con-

flicts. Exploring this bargaining approach for queueing problems is not only important in

its own right as providing a new toolbox and contributing to an open area of the problem,

but has more significant implications: First, it helps understand the strategic features of

the allocation rules and makes a fresh review of their plausibility. Next, we can better

compare different rules and well associate axiomatic properties with individuals’ rational

behavior. Furthermore, new insights on fundamental and methodological issues can be

developed.

Two well-known rules for the queueing problem were introduced by applying solutions

developed for TU (transferable utility) games. Maniquet (2003) introduced the minimal

transfer rule, which corresponds to the Shapley value of TU games, when the worth of

a coalition is defined to be the minimum waiting cost incurred by its members under

the optimistic assumption that they are served before non-coalitional members. On the

other hand, Chun (2006a) introduced the maximal transfer rule, which also corresponds

to the Shapley value, when the worth of a coalition is defined to be the minimum waiting

cost incurred by its members under the pessimistic assumption that they are served after

non-coalitional members. Given the connection between the Shapley value for TU games

and the minimal and the maximal transfer rules for queueing problems, various bargaining

protocols implementing the Shapley value in the literature (Gul, 1989; Hart and Mas-Colell,

1996; Pérez-Castrillo and Wettstein, 2001; Ju and Wettstein, 2009) offer a venue enabling

us to construct non-cooperative mechanisms to implement rules for queueing problems.

However, this task is not straightforward, especially when considering that the potential

mechanism needs to match the underlying context of the queueing problem. Specifically,

one reason is that unlike the TU game, every player’s stand-alone value is not well defined

in the queueing context. It is conventional in the implementation literature on TU games

that when the proposal of a player is rejected in multilateral bargaining he will be left with

his stand-alone value, which is not affected by the other players’ coalitional behavior and

does not affect the other players’ payoffs. However, for queueing games, a player’s utility
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will necessarily be affected by how the others queue, and where to position this player will

also affect the utility of other players. Take for example the queueing game of Maniquet

(2003) which is defined in the optimistic perspective. In this game a player’s stand-alone

value is defined by having this player be served first before anyone else. However, it is

impossible to make every player be served first simultaneously in order to apply this stand-

alone value in any bargaining protocol that could be associated with queuing problems.

Moreover, if we directly follow the protocol implementing the Shapley value, it would imply

a rejected player to be served first in the queue, which not only looks a bit absurd, but

also actually fails to implement the minimal transfer rule. Hence, despite their connection,

the bargaining protocol for the Shapley value cannot be applied directly to the optimistic

game of Maniquet (2003).

The other challenge comes from the incentive design of a proper mechanism for play-

ers to form an efficient queue while accepting to make transfers as directed by the min-

imal transfer rule. One cannot simply assume conditions like super-additivity or zero-

monotonicity for queueing problems. Given the specific context, it should be endogenously

designed into the mechanism such that players find themselves being better off by building

up the efficient queue. A similar remark can be made for the maximal transfer rule and

Chun (2006a)’s game in the pessimistic perspective.

In this paper, we construct a non-cooperative mechanism that naturally fits into the

context of queueing problems and retains the main feature for TU games, but well over-

comes the challenges mentioned above. Players can resolve queueing conflicts by themselves

in a decentralized way and guarantee an efficient queue to be formed in equilibrium. By

keeping the basic construct and only adjusting a certain detail of the bargaining protocols,

we show that the variations can lead to alternative allocation rules for queueing problems.

This provides a common platform to study and compare solution concepts for queueing

problems and may further help investigate new rules. As we will see, the current study

discovers a striking relationship between pessimism and optimism as well as individual and

collective behavior. In addition, we offer a strategic foundation for an average transfer rule

that takes the average of the maximal and the minimal transfer rules, which can be viewed

as a reasonable compromise between the pessimistic and the optimistic perspectives.

The paper is organized as follows. Section 2 provides the preliminaries on queueing

problems, including the two rules of queueing problems that we are going to implement.

In Section 3 we construct two non-cooperative mechanisms and show that each mechanism

has a unique subgame perfect equilibrium outcome which is the allocation prescribed by

the maximal transfer rule and, respectively, the minimal transfer rule. We also provide a

mechanism to implement the average of the maximal and the minimal transfer rules. In

Section 4 we offer a robustness study of the results, which shows that to a great extent the
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ordering of rejected players does not affect the equilibrium outcome.

2 The queueing problem and two transfer rules

Let IN++ be the set of positive natural numbers and N ⊂ IN++ be the set of players. A

queue σ of the set of players N is a bijective function σ : N → {1, ..., |N |}. The set of all

queues of N is denoted by Π(N). Each player i ∈ N takes a position σi in queue σ (we

write σi instead of σ(i) for notational convenience). Given any σ ∈ Π(N) and i ∈ N , we

denote the set of players proceeding player i by Pi(σ) = {j ∈ N |σj < σi} and the set of

players following i by Fi(σ) = {j ∈ N |σj > σi}. Each player i ∈ N is characterized by

her unit disutility of waiting (unit waiting cost) θi ≥ 0. For any queue σ, if player i takes

the σith position in this queue, then player i incurs a waiting cost (σi − 1)θi. Hence, if a

player is served first in a queue, there is no time for her to wait to be served and thus, her

waiting cost is zero.

A queueing problem is defined by a list (N, θ) where θ = (θi)i∈N ∈ IRN
+ is the vector

of unit waiting costs. Let QN be the set of all queueing problems with player set N . An

allocation for (N, θ) ∈ QN is a pair (σ, t) ∈ Π(N) × IRN , where for each i ∈ N , σi is the

position of i in the queue and ti denotes the monetary transfer to player i. Each player

i ∈ N is supposed to have a quasi-linear utility function, and therefore, her utility with

respect to the allocation (σ, t) is given by ui(σ, t) = −(σi − 1)θi + ti. An allocation (σ, t)

is feasible if no two players are assigned the same position in the queue σ and the sum of

all the transfers is not positive. Thus, the set of feasible allocations F(N, θ) consists of all

(σ, t) ∈ Π(N)× IRN such that for all i, j ∈ N with i 6= j we have σi 6= σj and
∑

i∈N ti ≤ 0.

Given (N, θ) ∈ QN , an allocation (σ, t) ∈ F(N, θ) is efficient if it minimizes the

total waiting costs of all players and the transfers are balanced, i.e., all transfers add

up to 0. That is, (σ, t) ∈ F(N, θ) is efficient if and only if for all (σ′, t′) ∈ F(N, θ),∑
i∈N(σi − 1)θi ≤

∑
i∈N(σ′i − 1)θi and

∑
i∈N ti = 0. An efficient queue is a queue that

minimizes the total waiting cost of all agents. Note that it has no direct implication on

transfers. The set of efficient queues for (N, θ) ∈ QN is denoted by π(N, θ).

An allocation rule, or a rule, ϕ is a mapping ϕ : QN → F(N, θ), which associates with

each problem (N, θ) ∈ QN a non-empty subset ϕ(N, θ) ⊂ F(N, θ) of feasible allocations.1

There are two prominent rules for the queueing problem: the minimal transfer rule

(Maniquet, 2003) and the maximal transfer rule (Chun, 2006a). The minimal transfer rule,

1When no confusion arises, we write ϕ(N, θ) instead of ϕ((N, θ)).
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ϕmin, is defined by for all (N, θ) ∈ QN ,

ϕmin(N, θ) =

(σ∗, tmin)

∣∣∣∣∣∣σ∗ ∈ π(N, θ), and ∀i ∈ N, tmini = (σ∗i − 1)
θi
2
−

∑
j∈Fi(σ∗)

θj
2

 .

The maximal transfer rule, ϕmax, is defined by for all (N, θ) ∈ QN ,

ϕmax(N, θ) =

(σ∗, tmax)

∣∣∣∣∣∣σ∗ ∈ π(N, θ), and ∀i ∈ N, tmaxi =
∑

j∈Pi(σ∗)

θj
2
− (|N | − σ∗i )

θi
2

 .

Following Maniquet (2003), the queueing problem can be solved by applying solutions

of TU (transferable utility) games. To do this, queueing problems should be mapped into

TU games. First, we formally describe TU games. Let N ⊂ IN++ be the set of players. A

set S ⊆ N is a coalition. A TU game is a real-valued function v defined on all coalitions

S ⊆ N satisfying v(∅) = 0. The number v(S) is the worth of S. Let ΓN be the class of

games with player set N . A value is a function φ defined on ΓN which associates with

every v ∈ ΓN a vector φ(v) = (φi(v))i∈N .

The Shapley (1953) value, φSh, assigns to every TU game its expected marginal con-

tribution vector, over all possible coalitions while assuming all the orders of forming into

the grand coalition by a one-by-one sequence are equally likely to happen. For all v ∈ ΓN

and all i ∈ N,

φShi (v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) .

Maniquet (2003) introduces a queueing game by taking an optimistic treatment on

coalitional waiting costs. For each queueing problem (N, θ) ∈ QN , the optimistic way to

construct a queueing game is to assume a coalition S ⊆ N to be served before the rest of

the players in N . Accordingly, the worth vmin(S) of coalition S is defined as the sum of

its members’ waiting cost when they arrive before N\S and arrange themselves into an

efficient queue. Formally, for all (N, θ) ∈ QN and all S ⊆ N ,

vmin(S) = −
∑
i∈S

(σ∗i − 1)θi,

where σ∗ ∈ π(S, θS) and θS = (θi)i∈S. Note that the right hand side is the same for

all σ∗ ∈ π(S, θS). Apparently, vmin(S) is the minimum waiting cost that S can achieve,

since all other players N\S are required to be served after S. We note that, for any

(N, θ) ∈ QN , the resulting payoff to each player by the Shapley value of the associated

game vmin is the same as the utility received by the player based on the minimal transfer

rule, i.e. φShi (vmin) = −(σ∗i − 1) θi
2
−
∑

j∈Fi(σ∗)
θj
2

.

4



For all i ∈ N and all S ⊆ N\{i}, consider an efficient queue σ∗ for S ∪ {i}, i.e.,

σ∗ ∈ π(S ∪ {i}, θS∪{i}), and an efficient queue σ∗∗ for S, i.e., σ∗∗ ∈ π(S, θS). Then, the

marginal contribution of i ∈ N to S ⊆ N\{i} in vmin equals

vmin(S ∪ {i})− vmin(S)

= −
∑

k∈S∪{i}

(σ∗k − 1)θk −

(
−
∑
j∈S

(σ∗∗j − 1)θj

)
=

∑
j∈S

σ∗∗j θj −
∑

k∈S∪{i}

σ∗kθk + θi (2.1)

=

 ∑
j∈Pi(σ∗)

σ∗j θj +
∑

j∈Fi(σ∗)

(σ∗j − 1)θj

−
 ∑
j∈Pi(σ∗)

σ∗j θj + σ∗i θi +
∑

j∈Fi(σ∗)

σ∗j θj

+ θi

= (1− σ∗i )θi −
∑

j∈Fi(σ∗)

θj,

where the first equality follows by definition of vmin, and the third equality follows from

the fact that σ∗∗j = σ∗j for all j ∈ Pi(σ
∗) and σ∗∗j = σ∗j − 1 for all j ∈ Fi(σ

∗). That is,

with the joining of player i to S, construction of the efficient queue requires those who

have higher waiting costs than θi to be served before i, and those who have lower waiting

costs than θi to be served after i. Hence, compared to the total cost within S, i’s marginal

contribution (in terms of cost) is (1− σ∗i )θi −
∑

j∈Fi(σ∗) θj.

Alternatively, Chun (2006a) constructs a pessimistic counter-part of the queueing game

for which the worth vmax(S) of a coalition S ⊆ N is defined as the sum of its members’

waiting cost when they arrive behind N\S and then arrange themselves into an efficient

queue. Formally, for all (N, θ) ∈ QN and all S ⊆ N ,

vmax(S) = −
∑
i∈S

((|N | − |S|) + σ∗i − 1) θi,

where σ∗ ∈ π(S, θS) and θS = (θi)i∈S. Again, the right hand side is the same for all

σ∗ ∈ π(S, θS). Note that, for any (N, θ) ∈ QN , the resulting payoff to each player by the

Shapley value of the associated game vmax is the same as the utility received by the player

based on the maximal transfer rule, i.e. φi(v
max) = −(|N |−1)θi+

∑
j∈Pi(σ∗)

θj
2

+(|N |−σ∗i ) θi2 .

For all i and all S ⊆ N\{i}, consider an efficient queue σ∗ for S ∪ {i}, i.e., σ∗ ∈
π(S ∪ {i}, θS∪{i}), and an efficient queue σ∗∗ for S, i.e., σ∗∗ ∈ π(S, θS). Then, the marginal

contribution of player i ∈ N to coalition S ⊆ N\{i} in vmax equals

vmax(S ∪ {i})− vmax(S)

= −
∑

k∈S∪{i}

(|N | − |S| − 1 + σ∗k − 1)θk −

(
−
∑
j∈S

(|N | − |S|+ σ∗∗j − 1)θj

)
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=
∑
j∈S

(|N | − |S|+ σ∗∗j )θj −
∑

k∈S∪{i}

(|N | − |S| − 1 + σ∗k)θk + θi

=

 ∑
j∈Pi(σ∗)

(|N | − |S|+ σ∗j )θj +
∑

j∈Fi(σ∗)

(|N | − |S|+ σ∗j − 1)θj

 (2.2)

−

 ∑
j∈Pi(σ∗)

(|N | − |S| − 1 + σ∗j )θj + (|N | − |S| − 1 + σ∗i )θi +
∑

j∈Fi(σ∗)

(|N | − |S| − 1 + σ∗j )θj


+θi

= (2− |N |+ |S| − σ∗i )θi +
∑

j∈Pi(σ∗)

θj,

where equalities are similarly obtained as in (2.1).

3 Bargaining games for the queueing problem

In this section, following a natural and intuitive idea that well fits the context of queueing

problems, we construct two related bargaining games that implement the maximal and the

minimal transfer rules. These mechanisms provide a strategic perspective to evaluate and

compare the two rules. Throughout the paper, players are assumed to be risk neutral and

expected utility maximizers.

The first game, called the first-served mechanism, which implements the maximal

transfer rule, can be described informally as follows. At stage 1 all players participate in

a multi-bidding auction to compete for the first position of a queue. In this auction, each

player bids by submitting an (n−1)-tuple of numbers (positive or negative), one number for

each player (excluding herself). Note that a positive number implies a payment she makes

to other player and a negative number means a demand she asks for from other player. The

player whose net bid (the difference between the sum of bids made by the player and the

sum of bids the other players made to her) is the highest wins the first position while making

the payment or receiving the compensation, as per the corresponding bid she makes. At

stage 2, the winner has two options. She can either take up the first position by herself or

sell it to other players. If she decides to take up the position by herself, then the rest of the

players will play the game again from the first stage to bargain over those positions after

her. If she decides to sell the position, then this sale cannot be a bilateral one because

where to locate the winner after the sale affects other players’ positions. Therefore, selling

the first position will naturally be an all-party negotiation process. That is, the winner will

make an overall proposal that consists of a queue assigning positions to all players and a

vector of transfers specifying the amount each player is supposed to pay or receive. Stage

3 is to approve or disapprove the proposal. The proposal is accepted if all the other players
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agree. In case of acceptance the proposal is implemented so that the queue is formed with

transfers in effect to all players. In case of rejection the proposer loses any say about the

queue but she will retain the first position,2 although she will incur no additional transfers,

i.e., neither pay to others nor receive any compensation from others (except for the bids

made at stage 1). Meanwhile, all players except for the rejected proposer start the new

round of negotiation using the same rule.

Now we formally describe the first-served mechanism.

First-served mechanism. If there is only one player, N = {i}, she simply is served first

(also last) and the default queue is trivially efficient while no transfer will be made. So

this player’s utility will be ui(σ, t) = −(σi− 1)θi + ti = −0θi + 0 = 0, which is independent

of θi. When the player set N = {1, . . . , n} consists of two or more players, the mechanism

is defined for any set of (active) players S ⊆ N, recursively starting with S = N .

Stage 1. Bidding for the first position: Each player i ∈ S makes s−1 (where s = |S|
is the cardinality of coalition S) bids bij ∈ IR, one to every j ∈ S\{i}. For each i ∈ S,

define the net bid of player i by Bi =
∑

j∈S\{i} b
i
j−
∑

j∈S\{i} b
j
i . Let is = argmaxi∈SB

i.

In case of a non-unique maximizer we choose with equal probability any of these

maximal bidders to be the ‘winner.’ Once the winner is has been chosen, player is

pays every player j ∈ S\{is} her bid bisj .

Stage 2. Taking up or selling the position: The winner is decides to either take up

the first position by herself or sell it to the others. If taking up the position by herself,

player is will be located before all players of S\{is} but after N\S, i.e., with position

|N | − |S| + 1. Hence, her final utility is −(|N | − |S|)θi −
∑

j∈S\{is} b
is
j +

∑n
r=s+1 b

ir
is

,

where (|N | − |S|)θi is her waiting cost at this position, bisj is the bid she pays to

player j ∈ S \ {is}, and biris , r ∈ {s + 1, . . . , n}, are the bids she received from the

rejected proposers ir, r ∈ {s + 1, ..., n}. Moreover, stage 3 will not be evoked, but

all players in S other than is proceed again from stage 1 where the set of active

players is S\{is}. If the winner is decides to sell the position, then is will make a

proposal (σ(S), (tj)j∈S) consisting of a queue σ(S) ∈ Π(S) and a vector of transfers

(tj)j∈S ∈ IRS such that
∑

j∈S tj ≤ 0. (This offer is additional to the bids paid at

stage 1.) The game continues to stage 3.

Stage 3. Approving or disapproving a proposal: The players in S other than is, se-

quentially, either accept or reject the proposal. If at least one player rejects the

2Indeed this option makes the choice of taking up the first position at stage 2 strategically redundant.

Yet it seems natural and logical for the winner to have the right to take up the position without proceeding

to the next stage.
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proposal, then it is rejected. Otherwise, it is accepted.

(i) If the proposal is rejected, all players in S other than is go back to stage 1 where the

set of active players is S\{is}. Meanwhile, player is will simply fall back to her default

position: the position in front of the queue of S\{is} but after N\S. Consequently,

player is receives her final utility −(|N | − |S|)θi −
∑

j∈S\{is} b
is
j +

∑n
r=s+1 b

ir
is

. Note

that this is the same utility she would receive if she decided in stage 2 to take up her

position.

(ii) If the proposal is accepted, then we have to distinguish between two cases, S = N

and S 6= N . If S = N , all players agree with the proposer in on her proposal

(σ(N), (tj)j∈N) and the game ENDS. Each player j ∈ N\{in} receives −(σj(N) −
1)θj+b

in
j +tj, and player in receives −(σin(N)−1)θin−

∑
j∈N\{in} b

in
j +tin , where tin =

−
∑

j∈N\{in} tj. If S 6= N , all players in S agree with the proposer is on her proposal

(σ(S), (tj)j∈S), and the game ENDS. Each player j ∈ S\{is} receives −(|N | − |S|+
σj(S) − 1)θj + tj, and with the bids made by is and all other previously rejected

proposers, player j’s final utility is −(|N | − |S|+σj(S)− 1)θj +
∑n

k=s b
ik
j + tj. Player

is receives −(|N |− |S|+σis(S)−1)θis−
∑

j∈S\{is} b
is
j + tis , where tis = −

∑
j∈S\{is} tj,

and adding the bids is received from the previously rejected proposers, the final utility

of player is is −(|N | − |S|+ σis(S)− 1)θis −
∑

j∈S\{is} b
is
j +

∑n
k=s+1 b

ik
is

+ tis .

We show that for any queueing problem (N, θ) ∈ QN , the first-served mechanism has a

unique subgame perfect equilibrium (SPE) outcome, which coincides with the payoff vector

prescribed by the maximal transfer rule. We first present the following lemma.

Lemma 3.1 For all (N, θ) ∈ QN , all i ∈ N , and all S ⊆ N\{i},

vmax(S ∪ {i})− vmax(S) ≥ −(|N | − |S| − 1)θi.

Proof. Let T ⊆ S be the set of players whose unit waiting costs are greater than θi, and

S\T be the set of players whose unit waiting costs are less than or equal to θi. That is,

θk ≤ θi < θj for all j ∈ T and all k ∈ S\T . In an efficient queue σ∗ for S∪{i}, player i will

be served after players in T but before anyone else in the queue σ∗, so that σ∗i = |T |+ 1.3

Thus,

vmax(S ∪ {i})− vmax(S) = (2− |N |+ |S| − σ∗i )θi +
∑

j∈Pi(σ∗)

θj

3Note that the position of player i may not be |T |+ 1 if there is a player j ∈ S with θj = θi. Since the

choice of an efficient queue has no effect on vmax(S ∪ {i}) − vmax(S), we can take an efficient queue σ∗

with σ∗i = |T |+ 1.
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= (2− |N |+ |S| − (|T |+ 1)) θi +
∑
j∈T

θj

= −(|N | − |S|+ |T | − 1)θi +
∑
j∈T

θj

≥ −(|N | − |S|+ |T | − 1)θi + |T |θi
= −(|N | − |S| − 1)θi.

2

The inequality in Lemma 3.1 (and the proof) is strict if θi < θj for at least one

j ∈ S \ {i}.4 The implication of this lemma is rather intuitive: it pays for player i to join

coalition S and form an efficient queue rather than taking up a position in front of S since

the cost for the coalition S ∪{i} is not more than the cost of S plus the cost of i when she

is served in the position before S. The right hand side of the inequality of the lemma is

the utility of player i when she takes up the position σi = |N | − |S|. Although this result

shares a similar feature as the zero-monotonicity property for TU games, the difference lies

in the fact that the zero-monotonicity property makes a comparison between the marginal

contribution of a player and her stand-alone worth. Note that the stand-alone worth of

player i in this game is −(|N | − 1)θi. Moreover, the cost −(|N | − |S| − 1)θi depends on

the size of S, while the stand-alone worth vmax({i}) = −(|N | − 1)θi does not.

Theorem 3.2 For any queueing problem (N, θ) ∈ QN , the first-served mechanism has a

unique subgame perfect equilibrium (SPE) outcome, which coincides with the payoff vector

prescribed by the maximal transfer rule ϕmax(N, θ).

Proof. Consider a queueing problem (N, θ) ∈ QN . The proof proceeds by induction on

the number of players n. The induction assumption is that whenever the mechanism is

used by n players with a given vector of unit waiting costs, it implements the maximal

transfer rule of this queueing problem. It is easy to see that the theorem holds for n = 1.

We assume that it holds for all m ≤ n− 1 and show that it is satisfied for n.

First we show that the maximal transfer allocation is an SPE outcome. We explicitly

construct an SPE that yields the maximal transfer allocation as the SPE outcome. Consider

the following strategies, which the players would follow in any (sub)game they participate

in (we describe it for the whole set of players, N , but similar strategies are followed by any

player in S ⊆ N that is called upon to play the game, with S replacing N):

4In the proof, if T 6= ∅, then the inequality becomes strict.
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At stage 1, each player i ∈ N announces

bij =

−(σ∗j − 1)θj +
∑

k∈Pj(σ∗)

θk
2
− (|N | − σ∗j )

θj
2


−

−(1 + σ∗∗j − 1)θj +
∑

k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2


where σ∗ ∈ π(N, θ) and σ∗∗ ∈ π(N\{in}, θN\{in}) for all j ∈ N\{i}.

At stage 2, the proposer (‘winner’ of the bidding in stage 1), player in, adopts the

option of selling the position instead of taking it up by herself, and makes a proposal

(σ∗, t) such that σ∗ ∈ π(N, θ) and for all j ∈ N\{in},
tj = (σ∗j − 1)θj +

(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
, where σ∗∗ ∈

π(N\{in}, θN\{in}).
At stage 3, any player j ∈ N\{in} accepts any proposal (σ, t) such that σ ∈ Π(N)

and tj ≥ (σj − 1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
where σ∗∗ ∈

π(N\{in}, θN\{in}), and rejects it otherwise. (Note that the right hand side is the same for

any σ∗∗ ∈ π(N\{in}, θN\{in}).)

To verify that the above strategies indeed constitute an SPE and yield the maximal

transfer allocation, we first look at stage 3. Suppose the proposal of in is rejected. From the

induction hypothesis, we know that for the remaining players in N\{in}, a corresponding

efficient queue will be formed in the unique SPE outcome of that subgame and the resulting

utility to every player j ∈ N\{in} is −(1 + σ∗∗j − 1)θj +
∑

k∈Pj(σ∗∗)
θk
2
− (|N | − 1− σ∗∗j )

θj
2

,

where σ∗∗ ∈ π(N\{in}, θN\{in}), which is the reservation utility for j when she considers any

proposal made by in. If j accepts the proposal made by in, then she is located at position

σj with transfer tj so that she receives the utility −(σj − 1)θj + tj. Apparently, only when

this utility is no less than her reservation utility, it is possible for her to accept the proposal,

which gives rise to tj ≥ (σj−1)θj+
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
.

Note that with tj as specified above, at this stage, j’s utility is guaranteed to be no less

than her reservation utility, regardless of the queue proposed by in.

Now consider stage 2. Obviously, for any proposed σ, in does not make j an offer tj that

is strictly higher than (σj− 1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
.

In the meantime, in would not lower the offer tj for any j ∈ N\{in} to be strictly less than

(σj−1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
since it would lead her

proposal to be rejected and then to be served at first. Being served first implies 0 waiting

cost for in at this stage, but there is an incentive for in to make an acceptable proposal as

presented at stage 2 since her payoff from an accepted proposal is

−(σ∗in − 1)θin −
∑

j∈N\{in}

tj

10



= −(σ∗in − 1)θin −
∑

j∈N\{in}

(σ∗j − 1)θj

−
∑

j∈N\{in}

−(1 + σ∗∗j − 1)θj +
∑

k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2


= −

∑
i∈N

(σ∗i − 1)θi −
∑

j∈N\{in}

(
−(1 + σ∗∗j − 1)θj

)
−

∑
j∈N\{in}

 ∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2


= vmax(N)− vmax(N\{in})
≥ −(|N | − (|N | − 1)− 1)θin

= 0,

where the third equality follows from the definition of vmax and the fact that by defini-

tion of an efficient allocation,
∑

j∈N\{in}

(∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
= 0, and the

inequality follows from Lemma 3.1.

To verify that the strategies restricted to stage 1 constitute an SPE, note that all net

bids equal zero, which follows from the fact that bij = φj(N, v
max)− φj(N\{i}, vmax|N\{i})

where vmax|N\{i}(S) = vmax(S) for all S ⊆ N\{i}, and by the balanced contributions

property of the Shapley value (Myerson, 1980).5 To show that a change in the bids made

by player i cannot increase that player’s payoff we consider the following two cases: First,

if player i changes the vector of her bids so that another player becomes the proposer, this

will not change her resulting utility, which would still equal that given by the maximal

transfer rule (i.e., her Shapley value of the queueing game vmax). Second, if she changes

the vector of her bids and following it she is still the proposer with positive probability,

it must be that her total bid (
∑

j∈N\{i} b
i
j) did not decline, which again means her payoff

cannot improve. That is, any deviation of the bidding strategy of player i specified at stage

1 cannot improve her payoff. Hence, no player has an incentive to change her bid, showing

that the given strategy profile is an SPE.

Since the proof that any SPE yields the maximal transfer allocation proceeds by a

series of claims and goes along the same line as the unicity proof of Theorem 1 in Pérez-

Castrillo and Wettstein (2001), it is provided in the Appendix. 2

Next we introduce our second game, called the last-served mechanism, which im-

plements the minimal transfer rule. Differently from the first-served mechanism, players

compete for the right of being served last in the queue. Alternatively, one can think that

5A value φ satisfies the balanced contributions property if φi(N, v)− φi(N \ {j}, v|N\{j}) = φj(N, v)−
φj(N \ {i}, v|N\{i}) for all v ∈ ΓN and all i, j ∈ N . In van den Brink and Chun (2012) the implications of

this property are investigated in the context of queueing.
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players are now demanding compensations for them to be served last, which is in the

same light as the ALDB (auctioning the leadership with differentiated bids) mechanism in

Moulin (1981). The one with the highest net bid (or lowest net demand if the bids are

negative) will be selected as the winner. The winner can decide to take up the last position

by herself or sell it to the others. For the latter option, she makes a proposal of a queue

and a vector of transfers. If the proposal is rejected, she remains at the last position to be

served after all the participating players.

Now we provide a formal description of the last-served mechanism, again based on

any set of (active) players S ⊆ N .

Last-served mechanism. If there is only one player, N = {i}, she simply is served last

(also first) and the default queue is trivially efficient while no transfer will be made. So

this player’s utility will be ui(σ, t) = −(σi− 1)θi + ti = −0θi + 0 = 0, which is independent

of θi. When the player set N = {1, . . . , n} consists of two or more players, the mechanism

is defined for any set of (active) players S ⊆ N, recursively starting with S = N .

Stage 1. Bidding for the last position: It is the same as stage 1 of the first-served

mechanism, except that the right at the winner’s disposal in this mechanism is to be

served after, instead of before, the rest of the active players.

Stage 2. Taking up or selling the position: The winner is decides to either take up

the last position by herself or sell it to the others. If taking up the position by herself,

player is will be indeed located at the s-th position, i.e., after all other players of

S but before all players of N\S, and will receive her final utility of −(s − 1)θi −∑
j∈S\{is} b

is
j +

∑n
r=s+1 b

ir
is

, where (s−1)θi is her waiting cost,
∑

j∈S\{is} b
is
j is the sum

of the bids she paid at stage 1, and
∑n

r=s+1 b
ir
is

is the sum of the bids she received

from previously rejected proposers is+1, ..., in. Moreover, stage 3 will not be evoked,

but all players in S other than is proceed again from stage 1 where the set of active

players is S\{is}. If the winner is decides to sell the position, then is will make a

proposal (σ(S), (tj)j∈S) consisting of a queue σ(S) ∈ Π(S) and a vector of transfers

(tj)j∈S ∈ IRS such that
∑

j∈S tj ≤ 0. (This offer is additional to the bids paid at

stage 1.) The game continues to stage 3.

Stage 3. Approving or disapproving a proposal: The players in S other than is, se-

quentially, either accept or reject the proposal. If at least one player rejects the

proposal, then it is rejected. Otherwise, it is accepted.

(i) If the proposal is rejected, all players in S other than is go back to stage 1 where

the set of active players is S\{is}. Meanwhile, player is will be left with her default

12



position: the position after the queue of S\{is} but before N\S. Consequently,

player is receives her final utility −(s − 1)θi −
∑

j∈S\{is} b
is
j +

∑n
r=s+1 b

ir
is

. Note that

this is the same utility she would receive if she decided in stage 2 to take up her

position.

(ii) If the offer is accepted, we have to distinguish between two cases, S = N and S 6=
N . If S = N , all players agree with the proposer in on her proposal (σ(N), (tj)j∈N)

and the game ENDS. Each player j ∈ N\{in} receives −(σ(N)j− 1)θj + binj + tj, and

player in receives −(σ(N)in − 1)θin −
∑

j∈N\{in} b
in
j + tin , where tin = −

∑
j∈N\{in} tj.

If S 6= N , all players in S agree with the proposer is on her proposal (σ(S), (tj)j∈S),

and the game ENDS. Each player j ∈ S\{is} receives −(σ(S)j − 1)θj + tj, and with

the bids made by is and all other previously rejected proposers, player j’s final utility

is −(σ(S)j−1)θj+
∑n

k=s b
ik
j +tj. Player is receives −(σ(S)is−1)θis−

∑
j∈S\{is} b

is
j +tis ,

where tis = −
∑

j∈S\{is} tj, and by adding the bids is received from the previously

rejected proposers, the final utility of player is is −(σ(S)is − 1)θis −
∑

j∈S\{is} b
is
j +∑n

k=s+1 b
ik
is

+ tis .

We show that for any queueing problem (N, θ) ∈ QN , the last-served mechanism has

a unique SPE outcome, which coincides with the payoff vector prescribed by the minimal

transfer rule. We begin with the following lemma.

Lemma 3.3 For all q ∈ QN , all i ∈ N , and all S ⊆ N\{i},

vmin(S ∪ {i})− vmin(S) ≥ −|S|θi.

Proof. Let T ⊆ S be the set of players whose unit waiting costs are greater than θi, and

S\T be the set of players whose unit waiting costs are less than or equal to θi. That is,

θk ≤ θi < θj for all j ∈ T and all k ∈ S\T . In an efficient queue σ∗ for S∪{i}, player i will

be served after players in T but before anyone else in the queue σ∗, so that σ∗i = |T |+ 1.6

That is, i will be served after players in T but before anyone else in the queue σ∗. Thus,

vmin(S ∪ {i})− vmin(S) = (1− σ∗i )θi −
∑

k∈Fi(σ∗)

θk

= (1− (|T |+ 1)) θi −
∑
k∈S\T

θk

= −|T |θi −
∑
k∈S\T

θk

≥ −|T |θi − (|S| − |T |)θi
= −|S|θi.

6Note that the position of i may not be |T |+ 1 if there is a player j ∈ S with θj = θi. Since the choice

of an efficient queue has no effect on vmin(S ∪ {i}) − vmin(S), we can take an efficient queue σ∗ with

σ∗i = |T |+ 1.
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2

Note that the inequality in Lemma 3.3 is strict if θi > θk for at least one k ∈ S \ {i}.7

This lemma also offers a desirable implication: it pays for player i to join coalition S and

form an efficient queue rather than taking up a position after S since the cost for the

coalition S ∪ {i} is not more than the cost of S plus the cost of i when she is served in

the position after S. Note that the right hand side of the inequality in Lemma 3.3 is the

utility of player i when she takes up the position σi = |S|+ 1.

Now we are ready to present our second main result.

Theorem 3.4 For any queueing problem (N, θ) ∈ QN , the last-served mechanism has a

unique SPE outcome, which coincides with the payoff vector prescribed by the minimal

transfer rule ϕmin(N, θ).

Since the proof can be constructed in the same line as that of Theorem 3.2, it is omitted.8

Remark: Since Chun and Hokari (2007) establish a coincidence result between the Shapley

value and the nucleolus in queueing problems, together with Theorem 3.2 and 3.4, our

games can implement the nucleolus of the corresponding games.9

Here we discuss implications of the two mechanisms implementing the maximal and

the minimal transfer rules, respectively. In both mechanisms, the players have the same

strategies. However, the two mechanisms assign different positions to a winner who decides

to take up the position in stage 2, 10 or whose proposal is rejected in stage 3, of a certain

round. In the first-served mechanism this player gets the first position (after the already

rejected players), while in the last-served mechanism this player gets the last position (in

front of the already rejected players). At first sight, the first-served mechanism seems to

be advantageous for the proposer since she takes up the best available position (either in

stage 2 or if her proposal is rejected in stage 3). Moreover, the proposer seems to have an

incentive of making her proposal be rejected since it gets the best position if her proposal is

accepted. On the other hand, in the last-served mechanism, the proposer seems to have an

7In the proof, if S \ T 6= ∅, then the inequality becomes strict.
8The proof can be obtained from the authors on request.
9This follows from the fact that in the game vmin the worth of any coalition with two or more players

equals the sum of the worths of its two-person subcoalitions, while all singletons have worth zero. Equiv-

alently, only coalitions with cardinalities two can have a nonzero (Harsanyi) dividend. The Shapley value

and the nucleolus coincide for such games (see van den Nouweland et al., 1996). For vmax, by introducing

a zero-normalized game, the coincidence result can be established.
10Note that the possibility of taking up the position and leaving the game is not a part of the Pérez-

Castrillo and Wettstein’s (2001) mechanism which implements the Shapley value for TU games.
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incentive of making her proposal be accepted since it gets the worst position if her proposal

is rejected.

The ‘value’ of being the proposer, and therefore the bids made in stage 1, depends on

the position that is at stake for the proposer. As it turns out, in SPE, being the proposer

in the first-served mechanism is so attractive that the bids to become the proposer are so

high that it eventually leads to a combination of bids (in stage 1) and offers (in stage 2)

such that the SPE outcome yields the utility payoffs prescribed by the maximal transfer

rule which asks relatively high compensations from the first served player to later served

players. On the other hand, in SPE, being the proposer in the last-served mechanism is so

unattractive that the bids to become the proposer are so low (in fact, the players want to

be paid to become the proposer) that it eventually leads to a combination of bids (in stage

1) and offers (in stage 2) such that the SPE outcome yields the utility payoffs prescribed

by the minimal transfer rule which asks relatively low compensations from the first served

player to later served players. Requiring a rejected player to be served last leads to an

equilibrium outcome corresponding to a rule that yields lower transfers that agents with

higher waiting costs have to make to agents with lower waiting costs in compensation for

taking up a position in front of the queue.

Our result provides a link between a pessimistic treatment of a proposer and an opti-

mistic treatment of a coalition aligning together for the minimal transfer rule. The minimal

transfer rule can be obtained by the last-served mechanism that assigns the last position to

the proposer, a pessimistic treatment of a proposer. This rule can also be obtained, as in

its original definition of Maniquet (2003), under the optimistic assumption that a coalition

is served before the rest of players. Similarly, the first-served mechanism provides a link

between an optimistic treatment of a proposer and a pessimistic treatment of a coalition,

which in either way leads to the same maximal transfer rule.

The axiomatic foundations of the maximal and the minimal transfer rules indicate

that the two rules have desirable properties and are complementary to each other. Next

we introduce an average transfer rule that takes the average of these two rules, which can

be seen as a compromised choice between the optimistic and the pessimistic perspectives.

To construct a strategic mechanism for the average transfer rule, one may combine the two

mechanisms by setting up a lottery device in the beginning such that there will be an equal

probability to play the first-served and the last-served mechanisms. Each player’s expected

payoff from playing this mega-game equals the average of the allocations generated by the

maximal and the minimal transfer rules. However, this is not a natural implementation

mechanism because players’ payoffs are generated exogenously and the coincidence only

happens in expectation rather than in actual terms. To deal with this difficulty, we offer

another mechanism implementing the average transfer rule.

15



Hybrid mechanism. The mechanism is the same as the previous two mechanisms, except

when the set of active players is N .

Stage 1. Bidding for the proposer: It is the same as stage 1 of the previous two mech-

anisms, except that the winner in this mechanism has an equal chance to be served

in the first and the last positions (e.g., by a fair lottery device like flipping a coin),

instead of being served for sure either in the first position or in the last position.

Stage 2. Taking the chance or making a proposal: The winner in decides to either

take the chance by herself or make a proposal. If in takes the chance by herself, a

lottery device will generate the actual state for in to be located first or last. Then,

the mechanism proceeds along this realized position for all the other players, with no

lottery device anymore. If in is located first by the lottery device, then the mechanism

proceeds as in the first-served mechanism for the other players, and if in is located last

by the lottery device, then the mechanism proceeds as in the last-served mechanism

for the other players. On the other hand, if the winner in decides to make a proposal,

then the proposal will consist of a queue σ(N) ∈ Π(N) and a vector of transfers

(tj)j∈N ∈ IRN such that
∑

j∈N tj ≤ 0. The game continues to stage 3.

Stage 3. Approving or disapproving a proposal: The players in N other than in,

sequentially, either accept or reject the proposal. If at least one player rejects the

proposal, then it is rejected. Otherwise, it is accepted. If the proposal is rejected,

then the lottery device reveals which position, the first or the last, the rejected

proposer in actually takes. For all the other players N\{in}, the mechanism will

proceed according to the realized position on in, and there will be no lottery device

anymore. That is, if in takes up the first position, then the other players will play

the first-served mechanism. On the contrary, if in takes up the last position, then

the other players will play the last-served mechanism.

To sum up, the only difference takes place when the active set of players is N , where

a proposer has an equal probability to be served in the first position and the last position.

Once the position is revealed, then the mechanism proceeds along this line for the remaining

players.

Proposition 3.5 For any queueing problem (N, θ) ∈ QN , the hybrid mechanism has a

unique SPE outcome, which coincides with the payoff vector prescribed by the average

transfer rule, i.e., 1
2

(ϕmax(N, θ) + ϕmin(N, θ)) .
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Proof. Since the proof can be constructed along the same line as in Theorems 3.2 and 3.4,

we only provide the sketch. From Theorem 3.2, if the first-served mechanism is played by

N\{i}, then the unique SPE outcome for this subgame is ϕmax(N\{in}, θN\{in}). Similarly,

if the last-served mechanism will be played, then the outcome is ϕmin(N\{in}, θN\{in}).
Therefore, in SPE, in will make a proposal such that each player j ∈ N\{j} obtains
1
2

(
ϕmaxj (N\{in}, θN\{in}) + ϕminj (N\{in}, θN\{in})

)
, which is player j’s expected payoff if

in is rejected. Due to Lemma 3.1 and Lemma 3.3, one can obviously see that in has an

incentive to make such an acceptable proposal instead of being rejected and receiving the

expected payoff 1
2

(0− (n− 1)θin). 2

4 Independence of the ordering of the rejected players

Now we discuss a robustness property of the two mechanisms implementing the minimal

and the maximal transfer rules. Recall that the last-served mechanism requires a rejected

proposer to be served after the others. If the proposal of in, as the proposer for the set of

active players N , is rejected, she will be placed at the last position of the entire queue of

N , no matter how N\{in} is arranged. If the proposal of in−1, as the proposer for the set

of active players N\{in} is rejected, in−1 will take up the (|N | − 1)-th position but before

in, and so on. The most recently rejected player will be served after the remaining set of

active players, but before the previously rejected players. One may consider an alternative

design of the mechanism which assigns to the first rejected proposer the first position of

all the rejected players and to the most recently rejected player the last position of all the

rejected players. The following proposition confirms that such a mechanism would still

implement the minimal transfer rule.

Proposition 4.1 The ordering of the rejected players in the last-served mechanism, so

long as they are served after the set of active players S, plays no role in implementing the

minimal transfer rule of a queueing problem (N, θ) in SPE.

Proof. Any alternative ordering different from the one specified in the original last-served

mechanism would mean that the most recently rejected player cannot do better. That is,

is, if rejected, will take the s-th position or after. Taking the s-th position, the same as in

the original last-served mechanism, gives her no incentive to make an unacceptable offer

when she was making a proposal. Since a later position can only make her worse off when

being rejected, she will make an acceptable offer in SPE. Therefore, even if a rejected player

would be placed at the beginning of all the rejected players, she would see that all others

will have no incentive to have their offers be rejected and this ordering will give the same

result as in the original last-served mechanism. 2
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Similarly, we can construct an alternative mechanism to implement the maximal trans-

fer rule. In this mechanism, when a proposer is rejected, her final position in the queue

of N is pending, up to the moment when the finally rejected proposer is settled. Suppose

S\{is} have made an agreement. The last rejected proposer is will take up the posi-

tion immediately before S\{is} but after N\S, whereas all players in N\S can form any

ordering.

Proposition 4.2 The ordering of the rejected players in the first-served mechanism, so

long as they are served before the set of active players S and the last rejected player takes

the position immediately before S, plays no role in implementing the maximal transfer rule

of a queueing problem (N, θ) in SPE.

Proof. A player may wish her successors to become rejected players so that she might

be better offer by being placed at a front position. However, in a two-player subgame,

the proposer would not make an unacceptable offer. So the previous proposer, for a 3-

player subgame, can foresee this and realize that she would have to be the finally rejected

proposer, if she were to make a proposal being rejected, which implies that she will be

placed immediately before the other two players, but not further front. Therefore, she

would not make an unacceptable offer, either. Backward induction leads the first proposer

to make an acceptable offer, too. 2
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Appendix: Proof of unicity in Theorem 3.2

The proof that any SPE yields the allocation prescribed by the maximal transfer allocation

proceeds by a series of claims.

Claim (1). At stage 3, in any SPE, any player j ∈ N\{in} accepts any proposal (σ, t) such

that σ ∈ Π(N), if tj > (σj−1)θj+
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
,

and rejects it if tj < (σj − 1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
,

where σ∗∗ ∈ π(N\{in}, θN\{in}).

Proof. This claim follows directly from the induction assumption. 2

Claim (2). (i) If vmax(N)−vmax(N\{in}) > −(|N |−(|N |−1)−1)θin = 0, the only SPE of

the game that starts at stage 2 is the following. At stage 2, player in chooses the option of

selling the position instead of taking it up by herself, and makes a proposal (σ∗, t) such that

σ∗ ∈ π(N, θ) and tj = (σ∗j −1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
,

where σ∗∗ ∈ π(N\{in}, θN\{in}), to each j ∈ N\{in}. At stage 3, each j ∈ N\{in} accepts

any proposal (σ, t) such that σ ∈ Π(N), if

tj ≥ (σj − 1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
where σ∗∗ ∈

π(N\{in}, θN\{in}), and rejects it otherwise.

(ii) If vmax(N)−vmax(N\{in}) = 0, there exist other SPE’s in addition to the one described

in the main text. In fact, any set of the following strategies also constitutes an SPE: at

stage 2, player in either takes up the first position by herself or sells the position by making

a proposal (σ, t) such that σ ∈ Π(N) and to some j 6= in,

tj < (σj − 1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
where σ∗∗ ∈

π(N\{in}, θN\{in}); and, at stage 3, player j rejects any proposal tj ≤ (σj − 1)θj +(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
. In any SPE of this subgame, the

final payoffs to players in and j 6= in are −(σ∗in − 1)θin −
∑

j∈N\{in} b
in
j −

∑
j∈N\{in} tj, and

−(σ∗j − 1)θj + binj + tj, respectively, where

tj = (σ∗j − 1)θj +
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
.

Proof. For the case of vmax(N) − vmax(N\{in}) > 0, one can verify the argument by

the induction assumption and Lemma 3.1. For the case of vmax(N) − vmax(N\{in}) = 0,

one can obviously see that in would be indifferent between taking up the first position

and making an acceptable proposal, with the first option being equivalent to making an

unacceptable proposal and then having it be rejected, which would all yield the same payoff

to in. Note that in this case θin > θj for all j ∈ N\{in} due to Lemma 3.1, and by the

induction hypothesis, taking up the first position by in still yields an efficient queue. 2
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Claim (3). In any SPE, Bi = Bj for all i, j ∈ N and hence Bi = 0 for all i ∈ N .

Claim (4). In any SPE, each player’s payoff is the same regardless of who is chosen as

the winner at stage 1.

Proof. The proofs of claims (3) and (4) are the same as in Pérez-Castrillo and Wettstein

(2001). 2

Claim (5). In any SPE, the final payoff of each player coincides with her payoff prescribed

by the maximal transfer rule.

Proof. Note that if player i is the proposer, her final payoff is −(σ∗i −1)θi−
∑

j∈N\{i} b
i
j−∑

j∈N\{i} tj, where tj = (σ∗j−1)θj+
(
−(1 + σ∗∗j − 1)θj +

∑
k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2

)
.

And if player j 6= i is the proposer, the final payoff of player i is −(σ∗i − 1)θi + bji +(
(σ∗i − 1)θi +

(
−(1 + σ∗∗i − 1)θi +

∑
k∈Pi(σ∗∗)

θk
2
− (|N | − 1− σ∗∗i ) θi

2

))
. Therefore, the sum

of payoffs to player i over all possible choices of the proposer is:

−(σ∗i − 1)θi −
∑

j∈N\{i}

bij

−
∑

j∈N\{i}

(σ∗j − 1)θj +

−(1 + σ∗∗j − 1)θj +
∑

k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2


+
∑
j 6=i

(
−(σ∗i − 1)θi + bji

)
+
∑
j 6=i

(σ∗i − 1)θi +

−(1 + σ∗∗i − 1)θi +
∑

k∈Pi(σ∗∗)

θk
2
− (|N | − 1− σ∗∗i )

θi
2


= −n(σ∗i − 1)θi −

∑
j∈N\{i}

(σ∗j − 1)θj +

−(1 + σ∗∗j − 1)θj +
∑

k∈Pj(σ∗∗)

θk
2
− (|N | − 1− σ∗∗j )

θj
2


+(n− 1)(σ∗i − 1)θi +

∑
j 6=i

−(1 + σ∗∗i − 1)θi +
∑

k∈Pi(σ∗∗)

θk
2
− (|N | − 1− σ∗∗i )

θi
2


= −(σ∗i − 1)θi −

∑
j∈N\{i}

(σ∗j − 1)θj −
∑

j∈N\{i}

(
−σ∗∗j θj

)

+
∑

j∈N\{i}

−σ∗∗i θi +
∑

k∈Pi(σ∗∗)

θk
2
− (|N | − 1− σ∗∗i )

θi
2


= −(σ∗i − 1)θi +

∑
k∈Pi(σ∗)

θk +
∑

j∈N\{i}

−(|N | − 1)
θi
2
− σ∗∗i

θi
2

+
∑

k∈Pi(σ∗∗)

θk
2
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= −(σ∗i − 1)θi +
∑

k∈Pi(σ∗)

θk −
∑

j∈N\{i}

σ∗∗i θi
2
− (n− 1)2

2
θi +

∑
j∈N\{i}

∑
k∈Pi(σ∗∗)

θk
2

= −(σ∗i − 1)θi +
∑

k∈Pi(σ∗)

θk −
1

2
(|Pi(σ∗)|(σ∗ − 1)θi + |Fi(σ∗)|σ∗θi)−

(n− 1)2

2
θi

+|Fi(σ∗)|
∑

k∈Pi(σ∗)

θk
2

+ (|Pi(σ∗)| − 1)
∑

k∈Pi(σ∗)

θk
2

= −(σ∗i − 1)θi −
1

2
((n− 1)σ∗θi − |Pi(σ∗)|θi)−

(n− 1)2

2
θi +

∑
k∈Pi(σ∗)

nθk
2

= −(σ∗i − 1)θi −
1

2
((n− 1)σ∗θi − (σ∗i − 1)θi)−

(n− 1)2

2
θi +

∑
k∈Pi(σ∗)

nθk
2

= −n
2

(σ∗i − 2 + n)θi +
∑

k∈Pi(σ∗)

nθk
2

= n

−(σ∗i − 1)θi − (n− σ∗i )
θi
2

+
∑

k∈Pi(σ∗)

θk
2


= nϕmaxi (N, θ).

Together with Claim (4), we can conclude that in any SPE, for any player i ∈ N , her final

payoff is ϕmaxi (N, θ). 2
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Annex: Proof of Theorem 3.4

Consider a queueing problem (N, θ) ∈ QN . The proof proceeds by induction on the number

of players n. The induction assumption is that whenever the mechanism is used by n players

with a given vector of unit waiting costs, it implements the minimal transfer rule to this

queueing problem. It is easy to see that the theorem holds for n = 1. We assume that it

holds for all m ≤ n− 1 and show that it is satisfied for n.

First we show that the minimal transfer rule is an SPE outcome. We explicitly con-

struct an SPE that yields the minimal transfer allocation as the SPE outcome. Consider

the following strategies, which the players would follow in any (sub)game they participate

in (we describe it for the whole set of players, N , but similar strategies are followed by any

player in S ⊆ N that is called upon to play the game, with S replacing N):

At stage 1, each player i ∈ N announces

bij =

−(σ∗j − 1)θj + (σ∗j − 1)
θj
2
−

∑
k∈Fj(σ∗)

θk
2

−
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−

∑
k∈Fj(σ∗∗)

θk
2


where σ∗ ∈ π(N, θ) and σ∗∗ ∈ π(N\{in}, θN\{in}) for all j ∈ N\{i}.

At stage 2, the proposer, player in, adopts the option of selling the position instead of

taking it up by herself, and makes a proposal (σ∗, t) such that σ∗ ∈ π(N, θ) and j ∈ N\{in},
tj = (σ∗j−1)θj+

(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
, where σ∗∗ ∈ π(N\{in}, θN\{in}).

At stage 3, any player j ∈ N\{in} accepts any proposal (σ, t) if σ ∈ Π(N) and tj ≥
(σj − 1)θj +

(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
where σ∗∗ ∈ π(N\{in}, θN\{in}),

and rejects it otherwise.

To verify the above strategies indeed constitute an SPE and yield the minimal transfer

rule, we first look at stage 3. Suppose the proposal of in is rejected. From the induction

hypothesis, we know that for the remaining players N\{in}, a corresponding efficient queue

will be formed and the resulting utility to every player j ∈ N\{in} is −(σ∗∗j − 1)θj +

(σ∗∗j − 1)
θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

, where σ∗∗ ∈ π(N\{in}, θN\{in}), which is the reservation utility

for j when she considers any proposal made by in. If j accepts the proposal made by

in, she receives the utility −(σj − 1)θj + tj. Apparently, only when this utility is no

less than her reservation utility, she will accept the proposal, which gives rise to tj ≥
(σj − 1)θj +

(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
. Note that with tj as specified

above, at this stage, player j’s utility is guaranteed to be no less than her reservation

utility, regardless of the queue proposed by in.

Now consider stage 2. Obviously, for any proposed σ, in does not make an offer

tj that is strictly higher than (σj − 1)θj +
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
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for any j ∈ N\{in}. In the meantime, in would not lower tj to be strictly less than

(σj−1)θj+
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
for any j ∈ N\{in} since it would

lead her proposal to be rejected and served at last with the waiting cost of −(|N |−1)θin at

this stage. We show that in does have an incentive to make such an acceptable proposal.

By making this proposal at stage 2, player in receives

−(σin − 1)θin −
∑

j∈N\{in}

tj

= −(σin − 1)θin −
∑

j∈N\{in}

(σj − 1)θj +

−(σ∗∗j − 1)θj + (σ∗∗j − 1)
θj
2
−

∑
k∈Fj(σ∗∗)

θk
2


= −

∑
i∈N

(σi − 1)θi −
∑

j∈N\{in}

(
−(σ∗∗j − 1)θj

)
−

∑
j∈N\{in}

(σ∗∗j − 1)
θj
2
−

∑
k∈Fj(σ∗∗)

θk
2


= −

∑
i∈N

(σi − 1)θi − vmin(N\{in}),

where the last equality follows from the definition of vmin and the fact that∑
j∈N\{in}

(
(σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
= 0. Moreover, in order for the proposer in to

maximize what she can achieve, it is obvious that she chooses σ∗ ∈ π(N, θ) because

−
∑

i∈N(σ∗i − 1)θi ≥ −
∑

i∈N(σi − 1)θi for all σ ∈ Π(N, θ)\π(N, θ). Hence, in will receive

vmin(N)− vmin(N\{in}) ≥ −(|N | − 1)θin , where the inequality follows from Lemma 3.3.

To verify the strategies restricted to stage 1 constitute an SPE, note that all net bids

equal zero, which follows from the fact that bij = φj(N, v
min)−φj(N\{i}, vmin|N\{i}) where

vmin|N\{i}(S) = vmin(S) for all S ⊆ N\{i}, and by the balanced contributions property

of the Shapley value (Myerson, 1980). To show that a change in the bids made by player

i cannot increase that player’s payoff we consider the following two cases: First, if player

i may change the vector of her bids so that another player becomes the proposer, this

will not change her resulting utility, which would still equal that given by the minimal

transfer rule (i.e., her Shapley value of the queueing game vmin). Second, if she changes

the vector of her bids and following it she is still the proposer with positive probability,

it must be that her total bid (
∑

j∈N\{i} b
i
j) did not decline, which again means her payoff

cannot improve. That is, any deviation of the bidding strategy of player i specified at stage

1 cannot improve her payoff. Hence, no player has an incentive to change her bid, showing

that the given strategy profile is an SPE.

The proof that any SPE yields the allocation prescribed by the minimal transfer rule

proceeds by a series of claims, similar to the unicity proof of Theorem 1 in Pérez-Castrillo

and Wettstein (2001).

Claim (1). At stage 3, in any SPE, any player j ∈ N\{in} accepts any proposal (σ, t)
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such that σ ∈ Π(N), if tj > (σj − 1)θj +
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
,

and rejects it if tj < (σj − 1)θj +
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
, where

σ∗∗ ∈ π(N\{in}, θN\{in}).
Proof. This claims follows directly from the induction assumption. 2

Claim (2). (i) If vmin(N) − vmin(N\{in}) > −(|N | − 1)θin , the only SPE of the game

that starts at stage 2 is the following. At stage 2, player in adopts the option of selling

the position instead of taking it up by herself, and makes a proposal (σ∗, t) such that σ∗ ∈
π(N, θ) and tj = (σ∗j − 1)θj +

(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
, where σ∗∗ ∈

π(N\{in}, θN\{in}), to each j ∈ N\{in}. At stage 3, each j ∈ N\{in} accepts any proposal

(σ, t) such that σ ∈ Π(N), if tj ≥ (σj−1)θj+
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
,

where σ∗∗ ∈ π(N\{in}, θN\{in}), and rejects it otherwise.

(ii) If vmin(N) − vmin(N\{in}) = −(|N | − 1)θin , there exist other SPE’s in addition to

the above one. In fact, any set of the following strategies also constitutes an SPE: at

stage 2, player in either takes up the last position by herself or sells the position by

making a proposal (σ, t) such that σ ∈ Π(N) and to some j 6= in, tj < (σj − 1)θj +(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
where σ∗∗ ∈ π(N\{in}, θN\{in}); and at stage

3, the player j rejects any proposal tj ≤ (σj−1)θj+
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
.

In any SPE of this subgame, the final payoffs to players in and j 6= in are −(σ∗in −
1)θin −

∑
j∈N\{in} b

in
j −

∑
j∈N\{in} tj, and −(σ∗j − 1)θj + binj + tj, respectively, where tj =

(σ∗j − 1)θj +
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
.

Proof. For the case of vmin(N) − vmin(N\{in}) > −(|N | − 1)θin , one can verify the

argument by the induction assumption and Lemma 3.3. For the case of vmin(N) −
vmin(N\{in}) = −(|N | − 1)θin , one can obviously see that in would be indifferent be-

tween taking up the last position and making an acceptable proposal, with the first option

being equivalent to making an unacceptable proposal and then having it be rejected, which

would all yield the same payoff to in. 2

Claim (3). In any SPE, Bi = Bj for all i, j ∈ N and hence Bi = 0 for all i ∈ N .

Claim (4). In any SPE, each player’s payoff is the same regardless of who is chosen as

the winner at stage 1.

Proof. The proofs of claims (3) and (4) are the same as in Pérez-Castrillo and Wettstein

(2001). 2
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Claim (5). In any SPE, the final payoff of each player coincides with her payoff prescribed

by the minimal transfer rule.

Proof. Note that if player i is the proposer, her final payoff is −(σ∗i −1)θi−
∑

j∈N\{i} b
i
j−∑

j∈N\{i} tj, where tj = (σ∗j − 1)θj +
(
−(σ∗∗j − 1)θj + (σ∗∗j − 1)

θj
2
−
∑

k∈Fj(σ∗∗)
θk
2

)
. And if

player j 6= i is the proposer, the final payoff of player i is

−(σ∗i − 1)θi + bji +
(

(σ∗i − 1)θi +
(
−(σ∗∗i − 1)θi + (σ∗∗i − 1) θi

2
−
∑

k∈Fi(σ∗∗)
θk
2

))
. Therefore,

the sum of payoffs to player i over all possible choices of the proposer is:

−(σ∗i − 1)θi −
∑

j∈N\{i}

bij

−
∑

j∈N\{i}

(σ∗j − 1)θj +

−(σ∗∗j − 1)θj + (σ∗∗j − 1)
θj
2
−

∑
k∈Fj(σ∗∗)

θk
2


+
∑
j 6=i

(
−(σ∗i − 1)θi + bji

)
+
∑
j 6=i

(σ∗i − 1)θi +

−(σ∗∗i − 1)θi + (σ∗∗i − 1)
θi
2
−

∑
k∈Fi(σ∗∗)

θk
2


= −n(σ∗i − 1)θi −

∑
j∈N\{i}

(σ∗j − 1)θj +

−(σ∗∗j − 1)θj + (σ∗∗j − 1)
θj
2
−

∑
k∈Fj(σ∗∗)

θk
2


+(n− 1)(σ∗i − 1)θi +

∑
j 6=i

−(σ∗∗i − 1)θi + (σ∗∗i − 1)
θi
2
−

∑
k∈Fi(σ∗∗)

θk
2


= −(σ∗i − 1)θi −

∑
j∈N\{i}

(σ∗j − 1)θj −
∑

j∈N\{i}

(
−(σ∗∗j − 1)θj

)

+
∑

j∈N\{i}

−(σ∗∗i − 1)θi + (σ∗∗i − 1)
θi
2
−

∑
k∈Fi(σ∗∗)

θk
2


= −(σ∗i − 1)θi −

∑
k∈Fi(σ∗)

θk +
∑

j∈N\{i}

−(σ∗∗i − 1)
θi
2
−

∑
k∈Fi(σ∗∗)

θk
2


= −σ∗i θi + θi −

∑
k∈Fi(σ∗)

θk −
∑

j∈N\{i}

σ∗∗i θi
2

+ (n− 1)
θi
2
−

∑
j∈N\{i}

∑
k∈Fi(σ∗∗)

θk
2

= −σ∗i θi −
∑

k∈Fi(σ∗)

θk −
∑

j∈N\{i}

σ∗∗i θi
2

+ (n+ 1)
θi
2
−

∑
j∈N\{i}

∑
k∈Fi(σ∗∗)

θk
2

= −σ∗i θi −
∑

k∈Fi(σ∗)

θk −
1

2
(|Fi(σ∗)|σ∗i θi + |Pi(σ∗)|(σ∗i − 1)θi) + (n+ 1)

θi
2
−

∑
j∈N\{i}

∑
k∈Fi(σ∗∗)

θk
2
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= −n+ 1

2
(σ∗i − 1)θi +

1

2
|Pi(σ∗)|θi −

∑
k∈Fi(σ∗)

θk −
1

2
(|Pi(σ∗)|+ |Fi(σ∗)| − 1)

∑
k∈Fi(σ∗)

θk

= −n+ 1

2
(σ∗i − 1)θi +

1

2
(σ∗i − 1)θi −

n

2

∑
k∈Fi(σ∗)

θk

= −n
2

(σ∗i − 1)θi −
∑

k∈Fi(σ∗)

nθk
2

= n

−(σ∗i − 1)θi + (σ∗i − 1)
θi
2
−

∑
k∈Fi(σ∗)

θk
2


= nϕmini (N, θ).

Together with Claim (4), we can conclude that in any SPE, for any player i ∈ N , her final

payoff is ϕmini (N, θ). 2
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