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Abstract

A repeated game with private monitoring is “close” to a repeated game with public monitoring (or per-
fect monitoring) when (i) the expected payoff structures are close and (ii) the informational structures are 
close in the sense that private signals in the private monitoring game can be aggregated by some public 
coordination device to generate a public signal whose distribution is close to the distribution of the public 
signal in the public monitoring game. We provide a sufficient condition for the set of uniformly strict perfect 
public equilibria for a public monitoring game to be robust in nearby private monitoring games in the sense 
that they remain equilibria with respect to the public signal that is generated by such public coordination 
devices with truthful reporting. Our sufficient condition requires that every player is informationally small 
in a well-defined sense.
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1. Introduction

Cooperation within groups is an important and commonly observed social phenomenon, but 
the way in which cooperation arises is one of the least understood questions in economics. The 
theory of repeated games has improved our understanding by showing how coordinated threats 
to punish can prevent deviations from cooperative behavior, but much of the work in repeated 
games rests on very restrictive assumptions that all players share the same public information 
either perfectly or imperfectly. For the case in which each player can observe all other players’ 
actions directly (perfect monitoring), Aumann and Shapley [5] and Rubinstein [34] proved a 
folk theorem without discounting, and Fudenberg and Maskin [13] proved a folk theorem with 
discounting. For the case in which each player observes a noisy public signal (imperfect public 
monitoring), Abreu, Pearce and Stacchetti [1] characterized the set of pure strategy sequential 
equilibrium payoffs and Fudenberg, Levine and Maskin [14] proved a folk theorem.

But a theory that rests on the assumption that there is common knowledge of a sufficient 
statistic about all past behavior is, at best, incomplete. Such a theory is of little help in under-
standing behavior in groups in which there are idiosyncratic errors in individuals’ observations of 
outcomes.1 For many problems, it is more realistic to consider players who possess only partial 
information about the environment and, most importantly, players may not know the information 
possessed by other players. In such problems, players may communicate their partial information 
to other players in order to build a “consensus” regarding the current situation, which can be used 
to coordinate their future behavior. In this view, repeated games with public information can be 
thought of as a reduced form of a more complex interaction involving information sharing.

This point of view leads us to examine the robustness of equilibria with public monitoring 
when monitoring is private, but “close” to public monitoring. For example, one can think of 
a situation in which information contained in the public signal is dispersed among the players 
in the form of noisy private signals. If the amount of information contained in each player’s 
private signal is negligible, then it is tempting to consider the game with such private signals 
and the underlying game with public signals as being “close.” In this paper, we examine whether 
an equilibrium with public monitoring remains an equilibrium with respect to a public signal 
generated from private monitoring and communication, and whether (and how) players can be 
induced to reveal their private information.

To make these ideas precise, consider a public monitoring game (G, π) and a private moni-
toring game (G′, p), where G and G′ are normal form games with public monitoring and private 
monitoring respectively. In (G, π), each action profile a generates a public signal y from a set 
Y with probability π(y|a). In (G′, p), each action profile a generates a private signal profile 
s = (s1, .., sn) with probability p(s|a). In our analysis of the private monitoring game (G′, p), 
we will augment the model with a “public coordination device” φ that chooses a public coordi-
nating signal (possibly randomly) from Y based on the reported profile of private signals. In this 
expanded game, players choose an action profile a, observe their private signals (s1, .., sn), and 
publicly announce the (not necessarily honest) profile (s′

1, .., s
′
n). A public coordinating signal 

y ∈ Y is then selected with probability φ(y|s′
1, .., s

′
n). If the players report their private signals 

truthfully, then the probability that the realized public coordinating signal is y given a and φ is 
equal to pφ(y|a) = ∑

s∈S φ(y|s)p(s|a). We say that (G, π) and (G′, p) are close when G and 
G′ are close in terms of expected payoffs and there exists a public coordinating device φ such 

1 For example, team production in which each individual observes the outcome with error lies outside this framework.
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that π(y|a) ≈ pφ(y|a). Consider the private monitoring repeated game associated with (G′, p)

and augment it with such a public coordination device φht given each history of publicly coor-
dinating signals ht . We call this augmented game a communication extension of the repeated 
game associated with (G′, p). We then ask the following question: for a given perfect public 
equilibrium α∗ of the repeated game associated with (G, π) and given the repeated game associ-
ated with any “close” private monitoring game (G′, p), can we find a communication extension 
and an equilibrium in which players (i) truthfully reveal their signals along the equilibrium path 
and (ii) choose their actions as a function of the history of public coordinating signals according 
to α∗?

If revelation constraints can be ignored and players are assumed to announce their private 
signals truthfully, then the private monitoring game (G′, pφht ) is really a new public monitoring 
game for each ht . In this case, it is straightforward to show that α∗ is an equilibrium in any 
communication extension when G′ is close to G, pφht is close to π at each ht , and α∗ is a 
uniformly strict equilibrium of the original repeated game (G, π). Hence our analysis is mainly 
concerned with revelation constraints. The revelation of private information can be problematic, 
as can be seen in a simple trigger strategy equilibrium to support collusion. For a trigger strategy 
equilibrium to work, it is essential that every player reports “bad” outcomes honestly. However 
it is clear that players will not want to reveal any private information that may trigger mutual 
punishment.

We find that the following two concepts are the key to deal with the revelation constraints: 
informational size and distributional variability. Roughly speaking, player i is informationally 
small if for each action profile a, her private information is unlikely to have a large effect on 
the distribution of the public coordinating signal pφ(·|a). Consequently, small informational size 
will imply that she will have little incentive to misreport her private signal in order to manipu-
late the other players’ behavior to her advantage. Players are naturally informationally small in 
numerous settings. Suppose, for example, that there are many players whose signals are noisy 
observations of an underlying (but unobserved) common signal, and that these noisy observa-
tions are conditionally i.i.d. If φ maps each signal profile into the posterior distribution of the 
unobserved signal, then each player is informationally small by the law of large numbers. Alter-
natively, with the same function φ, agents receiving conditionally i.i.d. signals of the unobserved 
signal would be informationally small if their signals are very precise, even if the number of play-
ers is small (but at least three). Distributional variability is an index that measures the correlation 
between a player’s private signal and the public coordinating signal which she would expect 
when she reports her signal truthfully. If this index is large, that means that a player’s conditional 
belief about the public coordinating signal varies widely with respect to her private information. 
The larger this index is, the easier it is to detect and punish a lie. With these concepts, our result 
can be stated as follows: a uniformly strict equilibrium is robust when, for some public coordi-
nation device, (1) (G′, p) is close to (G, π) in the sense described above and (2) each player’s 
informational size is small relative to her distributional variability.

The way to induce honest reporting is roughly as follows. If φ is employed in every period, 
then pφ(y|a) is always close to π(y|a), but players may have an incentive to send false reports. 
To address this, we employ different public coordinating devices at different public histories 
{φht |ht ∈ H }, where each φht is a perturbation of φ. When every player’s informational size is 
small relative to her distributional variability, we can construct the collection {φht |ht ∈ H } so that 
every revelation constraint is satisfied on the equilibrium path (i.e. after the equilibrium action 
α∗(ht ) is played in the same period), while keeping each perturbation small enough so that the 
incentive to play the equilibrium action specified by α∗ is not altered.



194 R. McLean et al. / Journal of Economic Theory 153 (2014) 191–212
The model is described in Section 2. The notions of informational size and distributional 
variability are introduced in Section 3. Section 4 proves our robustness result. Section 5 discusses 
the related literature. All the proofs are relegated to Appendix A.

2. Preliminaries

2.1. Repeated games with public monitoring

The set of players is N = {1, ..., n}. Player i chooses an action from a finite set Ai . An action 
profile is denoted by a = (a1, ..., an) ∈ ×iAi := A. Actions are not publicly observable, but the 
players observe a public signal from a finite set Y . The probability that y ∈ Y is realized given 
a ∈ A is denoted π(y|a). We do not assume full support. That is, the set {y ∈ Y |π(y|a) > 0}
can depend on a ∈ A. This allows for perfect monitoring (Y = A and π(y|a) = 1 if y = a) as a 
special case. Player i’s stage game payoff is ui(ai, y) and player i’s expected stage game payoff 
is gi(a) = ∑

y ui(ai, y)π(y|a). Consequently, players do not obtain any additional information 
regarding the actions of other players from realized payoffs. This stage game is denoted by 
(G, π), where G = (N, A, g).

We now construct the repeated game associated with (G, π). A private history for player 
i at stage t is denoted ht

i = (a0
i , ..., a

t−1
i ) ∈ Ht

i = At
i while a public history is denoted ht =

(y0, ..., yt−1) ∈ Ht = Y t with H 0
i = H 0 := {∅}. A pure strategy for player i is a sequence 

αi = {αt
i }∞t=0, where αt

i is a mapping from Ht
i × Ht to Ai . The set of pure strategies for 

player i is denoted Σi . We restrict ourselves to pure strategies. A strategy profile is denoted 
α = {αi}i∈N ∈ Σ := ×iΣi . A strategy profile induces a probability measure on A∞. Player i’s 
discounted average payoff given α and δ ∈ (0, 1) is wα,δ

i = (1 − δ) 
∑∞

t=0 δtE[gi(ã
t )|α].2 We 

denote this repeated game associated with (G, π) by G∞
π (δ).

A strategy profile is public if it only depends on Ht . A profile of public strategies is a perfect 
public equilibrium (PPE) if, after every public history, the continuation (public) strategy profile 
constitutes a Nash equilibrium (Fudenberg, Levine, and Maskin [14]). Note that a perfect public 
equilibrium is a subgame perfect equilibrium when the stage game is one of perfect monitoring. 
Since we focus on perfect public equilibrium, we will omit the dependence of strategies on 
private histories and write αt

i (h
t ) instead of αt

i (h
t
i , h

t ).3

Given α, δ and a public history ht+1 = (ht , y) ∈ Ht+1 = Ht ×Y , let wα,δ
i (ht , y) denote player 

i’s continuation payoff from period t +1. We define η-uniformly strict perfect public equilibrium
(η-USPPE) as follows.

Definition 1. A pure strategy perfect public equilibrium α ∈ Σ for G∞
π (δ) is η-uniformly strict 

if

(1 − δ)gi

(
αt

(
ht

)) + δ
∑
y∈Y

π
(
y
∣∣αt

(
ht

))
w

α,δ
i

(
ht , y

) − η

≥ (1 − δ)gi

(
a′
i , α

t−i

(
ht

)) + δ
∑
y∈Y

π
(
y
∣∣a′

i , α
t−i

(
ht

))
w

α,δ
i

(
ht , y

)
for all ht ∈ Ht , t ≥ 0, a′

i 	= αt
i (h

t ), and i ∈ N .

2 When x is a generic outcome of some random variable, we often use ̃x to denote this random variable.
3 Thus we ignore private strategies (Kandori and Obara [18], Mailath, Matthews and Sekiguchi [20]).
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This means that, at any public history, any player would lose at least η by any unilateral 
one-shot deviation. This is stronger than requiring all incentive constraints to hold strictly.

2.2. The repeated game with private monitoring and its public communication extension

Fix a stage game (G, π) with public monitoring as defined in the previous section. Consider 
a private monitoring game with the same set of players and the same action sets as those of G. 
Player i observes a private signal si from a finite set Si instead of the public signal. A private 
signal profile is denoted s = (s1, .., sn) ∈ ×iSi := S. Player i’s stage game payoff is vi(ai, si)
and player i’s expected stage game payoff is g′

i(a) = ∑
s vi(ai, si)p(s|a) where the conditional 

distribution on S given a is denoted p(·|a). We assume that the marginal distributions have 
full support, that is, p(si |a) := ∑

s−i
p(si , s−i |a) > 0 for all si ∈ Si , a ∈ A and i ∈ N . Let 

p(s−i |a, si) := p(si ,s−i |a)
p(si |a)

denote the conditional probability of s−i ∈ S−i given (a, si). We de-
note this private monitoring stage game by (G′, p), where G′ = (N, A, g′). Discounted average 
payoffs are defined as in the public monitoring case. Let G′∞

p (δ) be the corresponding repeated 
game with private monitoring given δ ∈ (0, 1).

Players communicate directly each period.4 At the end of each period, players publicly an-
nounce a profile s ∈ S.5 Then, a public coordinating device φ : S → �(Y ) generates a public 
signal y ∈ Y with probability φ(y|s). A convex combination of two public coordination devices 
φ and φ′ is denoted by (1 − λ)φ + λφ′ and is defined by(

(1 − λ)φ + λφ′)(y|s) := (1 − λ)φ(y|s) + λφ′(y|s).
The distribution of the public signal generated by φ given a with honest reporting is denoted by

pφ(y|a) :=
∑
s∈S

φ(y|s)p(s|a)

and the analogous conditional distribution given (a, si) is denoted by

pφ(y|a, si) :=
∑

s−i∈S−i

φ(y|si,s−i )p(s−i |a, si).

Next, let Ri be the set of all maps ri : Si → Si . The distribution of the generated public signal 
given a and ri ∈ Ri for player i and honest reporting for the other players is denoted by

pφ(y|a, ri) :=
∑
s∈S

φ
(
y
∣∣ri(si), s−i

)
p(s|a).

We denote expectation with respect to pφ(·|a, ri) by Eφ[·|a, ri] and expectation with respect to 
pφ(y|a) simply by Eφ[·|a].

4 This formulation of communication is very special. A more general communication structure would allow for a me-
diator who receives and sends confidential private information from and to the players (see Forges [11] and Myerson 
[29]). However, we do not need such a general communication structure for our robustness result. We ask when a per-
fect public equilibrium for G∞

π (δ) remains a perfect public equilibrium when players are engaged in a “close” private 
monitoring game (G′, p) augmented with communication. As part of our notion of “closeness,” we require that private 
signals in (G′, p) can be aggregated so as to generate a public signal whose distribution is close to π . Since public strate-
gies can only depend on this public signal by definition, there is no role for confidential announcements or confidential 
recommendations.

5 Announcements do not have to be public. Our result holds even with private announcements.
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In the repeated game (G′, p) augmented with communication as described above, a public 
history in period t consists of a sequence of realized public signals ht ∈ Y t and a sequence of 
public announcements ht

R ∈ St . We allow different coordinating devices to be employed at differ-
ent ht ∈ Y t . Given a private monitoring game (G′, p), a public communication device for (G′, p)

is a collection Φ = {φht : ht ∈ Y t , t ≥ 0, } where each φht : S → 
(Y) is a public coordination 
device. Given a private monitoring game (G′, p), a discount factor δ, and a public communica-
tion device Φ , let G′∞

p (δ, Φ) denote the public communication extension of the repeated game 
with private monitoring G′∞

p (δ).
In G′∞

p (δ, Φ), play proceeds in the following way. At the beginning of period t , player i
chooses an action contingent on (ht

i, h
t , ht

R), where ht
i ∈ At

i × St
i is a sequence of her own pri-

vate actions and private signals. If the resulting action profile is a, then players receive private 
signals according to p(·|a). Let s denote the realized signal profile. Then player i makes a public 
announcement s′

i contingent on (ht
i, h

t , ht
R, ai, si). Of course, s′

i may differ from si . Let s′ ∈ S

denote the profile of announcements. Then a public signal is chosen according to φht (·|s′).
To describe a strategy in G′∞

p (δ, Φ), let Ht = Y t denote the set of histories of realized pub-
lic signals in period t , Ht

R = St denote the set of public reporting histories, and Ht
i = At

i × St
i

denote the set of private histories for player i in period t . Player i’s (pure) strategy consists 
of two components, an “action strategy” αt

i : Ht
i × Ht × Ht

R −→ Ai and a “reporting strate-
gy” ρt

i : Ht
i × Ht × Ht

R × Ai −→ Ri . Let αi = (α0
i , α

1
i , ...), ρi = (ρ0

i , ρ1
i , ...), α = {αi}i∈N , 

ρ = {ρi}i∈N and let σ = (α, ρ). As in the repeated game without communication, pure strate-
gies induce probability measures on A∞. Player i’s discounted expected payoff in G′∞

p (δ, Φ) is 

w
σ,δ
i (Φ) = (1 − δ) 

∑∞
t=0 δtE[g′

i (ã
t )|σ, Φ]. We usually drop Φ when the public communication 

device being used is clear from the context.
A strategy σi = (αi, ρi) for player i is truthful if player i reports her private signal truthfully 

whenever she played according to αi in the same period, i.e., ρt
i (si |ht

i , h
t , ht

R, αt
i (h

t
i , h

t , ht
R)) =

si for every (ht
i , h

t , ht
R) and si . Note that we allow players to lie immediately after a devia-

tion in action. A strategy σi = (αi, ρi) is public if αt
i only depends on ht = (y0, ..., yt−1) ∈ Ht

and ρt
i depends only on (ht , ai) ∈ Ht × Ai . Since we focus on this class of strategies in 

the public communication extension, we will write αt
i (h

t ) ∈ Ai instead of αt
i (h

t
i , h

t , ht
R) and 

ρt
i (·|ht , αt

i (h
t )) ∈ Ri instead of ρt

i (·|ht
i , h

t , ht
R, αt

i (h
t
i , h

t , ht
R)). Notice that there is a natural one-

to-one relationship between public strategies in G∞
π (δ) and the action strategy components of 

public strategies in G′∞
p (δ, Φ). Note that we need to check incentive constraints only at each ht

when every player uses a public strategy.
We extend the standard definition of perfect public equilibrium to the public communication 

extension as follows: a strategy profile σ for the public communication extension is a perfect 
public equilibrium with communication (which we will refer to as PPE from now on) if σ is a 
profile of truthful public strategies and the continuation strategy profile in the beginning of any 
period, which is a truthful public strategy by definition, constitutes a Nash equilibrium in the 
continuation game. A strategy profile σ is an η-uniformly strict perfect public equilibrium with 
communication if σ is a perfect public equilibrium with communication and any player would 
lose at least η in terms of discounted average payoff at any public history ht when she deviates 
from her equilibrium action.
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3. Informational size and incentive compatibility

3.1. Distance between stage games

We focus on public monitoring games (G, π) and private monitoring games (G′, p) that are 
close in two respects. First, g and g′ are close. Second, there exists a public coordination device 
φ that can generate a public signal distribution close to π .

Definition 2. Let (G′, p) be a private monitoring game and (G, π) be a public monitoring 
game. Given any public coordinating device φ, we say that pφ is an ε-approximation of π
if maxa ‖π(·|a) − pφ(·|a)‖2 ≤ ε.6 (G′, p, φ) is an ε-approximation of (G, π) if pφ is an 
ε-approximation of π and maxi,a |gi(a) − g′

i (a)| ≤ ε.

The following is a canonical example of ε-approximation.

Example 1 (Conditionally Independent Signals). Let ỹ denote a random variable that can take 
the values 0 or 1 with equal probability. There are n players (n odd). They do not observe the 
realization of ỹ but each observes a noisy private signal correlated with ̃y. Specifically, if ̃y = y, 
then player i observes a private signal si ∈ Si = {0, 1}, which agrees with y with probability 
β ∈ ( 1

2 , 1] and differs from y with probability 1 − β . These private signals are conditionally 
independent. Suppose that all players report their private signals (s1, .., sn) simultaneously and 
truthfully and φ(1|s1, .., sn) = 1 if the majority of the players announce 1 while φ(0|s1, .., sn) = 0
if the majority of the players announce 0.7 Clearly the distribution on {0, 1} generated this way is 
a good approximation of the original distribution of ̃y when β is sufficiently close to 1 or when 
the number of players is sufficiently large.

Since our notion of approximation is relatively weak, it may happen that two seemingly dif-
ferent monitoring structures are close to each other. For example, Y and Si can be different sets. 
As a second example, consider the following monitoring structure.

Example 2 (Perfectly Complementary Information). Suppose that Y = {0, 1} and Si = {0, 1}
and let π be the distribution of a hidden signal ỹ on Y . There are six players. The distribu-
tion p of private signals on S satisfies the following. When ỹ is 1, the private signal profile is 
such that three players receive signal 0 and three players receive signal 1, and each such profile 
of signals is equally likely. When ỹ is 0, the private signal profile is either (1, 1, 1, 1, 1, 1) or 
(0, 0, 0, 0, 0, 0), each with probability 1

2 . Consider a public coordination mechanism φ such that 
φ(0|s) = 0 if at least five players announce the same signal and φ(0|s) = 1 otherwise. Then pφ

is a 0-approximation of π .8

6 Throughout the text, ‖ · ‖1 will denote the �1-norm and ‖ · ‖2 will denote the �2-norm.
7 The generated public signal is the maximum likelihood estimate of the true realization of ̃y .
8 In this example, we use six players to make sure that no player’s report affects the realization of ̃y . This is not the 

case with five players.
Suppose that, with five players, either (1, 1, 1, 1, 1) or (0, 0, 0, 0, 0) is observed with probability 1

2 given ̃y = 0, signal 
profiles with at most one 0 or 1 is never observed and every other profile is observed with equal probability (= 1

20 ) given 
ỹ = 1. If we use a similar public coordination device, then every player is pivotal given a realization of signal profile 
such as (1, 1, 1, 1, 0).

However note that (p, φ) is still nonexclusive because no player’s reporting strategy can change the distribution of ̃y .
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In this example, each player’s prior beliefs and posterior beliefs on Y are the same. Hence, a 
player’s signal alone provides no information about the true value of the underlying signal, yet 
the aggregated private signals completely reveal the true underlying signal.

In this example and Example 1 with β = 1 and n ≥ 3, one player’s report does not affect 
the generated public signal at all. Following Postlewaite and Schmeidler [33], we say that a pair 
(p, φ) is nonexclusive when pφ(y|a, ri) = pφ(y|a) for any a, y, ri ∈ Ri and i.

3.2. Informational size, distributional variability, and one-shot revelation game

We turn to the issue of truthful revelation of private information in this subsection. Although 
our main interest is in repeated games, it is useful to consider the following simple one-shot 
information revelation game ([26]) first. Fix any private monitoring game (G′, p). For any public 
coordination device φ, any profile of payoff functions w : Y → R

n, and any a ∈ A, the one-shot 
information revelation game (G′, p, φ, w, a) is defined as follows. Player i observes a private 
signal si , which is distributed according to p(·|a). Players report s′, then a public coordinating 
signal y is generated with probability φ(y|s′). Finally, player i receives payoff wi(y) if the 
realized value of the public signal is y. In the context of repeated games, this payoff would 
be player i’s continuation payoff. (G′, p, φ, w, a) defines a game of incomplete information. 
Truthful reporting is an equilibrium of this game if for each i,

Eφ
[
wi(·)

∣∣a] ≥ Eφ
[
wi(·)

∣∣a, ri
]

for any ri ∈ Ri .
When do players have an incentive to report their private signals truthfully in this game? To fix 

ideas, consider the extreme case in which (p, φ) is nonexclusive. Then no player has an incentive 
to lie because what she reports is irrelevant in the presence of the reports of the other players and 
has no effect on the distribution of the generated public signal. Hence honest reporting can be 
implemented in a one-shot revelation game given any (w, a) when (p, φ) is nonexclusive. More 
generally, it should be “easier” to induce honest reporting as each player’s influence on the public 
coordinating signal becomes “smaller.” The following index measures the size of this influence 
for each player.

Definition 3 (Informational Size).
Player i’s informational size vφ

i (si , s′
i , a) given φ and (si, s′

i , a) ∈ Si × Si × A is the smallest 
ε satisfying

Pr
(∥∥φ(·|si , s̃−i ) − φ

(·∣∣s′
i , s̃−i

)∥∥
1 > ε

∣∣si , a) ≤ ε.

This means that, conditional on (si, a), player i’s posterior probability that she can manip-
ulate the public signal distribution by more than vφ

i (si , s′
i , a) by announcing s′

i 	= si is at most 

v
φ
i (si , s′

i , a). For example, each player’s informational size is 0 given any (si, s′
i ) in Example 2.

Note that there may be a trade-off between keeping each player’s informational size small 
and approximating a particular public signal distribution. Suppose that only player 1 is perfectly 
informed regarding the realization of ỹ in Example 1, i.e., β1 = 1 and βi = β ∈ (1/2, 1) for all 
i 	= 1. If the goal is to replicate the true value of ỹ from private signals, then one should choose 
a device φ̂ that uses player 1’s signal exclusively (i.e. φ̂(y|s) = 1 for y = s1). However, this 
makes player 1 informationally large. In such a case, although informationally inferior to φ̂, the 
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majority rule device described in Example 1 may be more desirable as it makes every player 
informationally small but still keeps pφ(·|a) close to π(·|a) when n is large.

Of course, a player’s informational size alone is not enough to induce honest reporting. Since 
players may still have an incentive to misreport their signals, we need to introduce some scheme 
to punish dishonest reporting. So we consider the following mechanism design problem: given 
that a ∈ A is played, find a public coordination device φ′ that generates approximately the same 
distribution as pφ(·|a) and makes truthful reporting a Bayesian Nash equilibrium for the one-shot 
revelation game (G′, p, φ′, w, a). For this purpose, we construct a certain scoring rule that relies 
on a player’s conditional beliefs.

Definition 4. (Distributional Variability)

Λ
φ
i

(
si, s

′
i , a

) =
∥∥∥∥ pφ(·|a, si)

‖pφ(·|a, si)‖2
− pφ(·|a, s′

i )

‖pφ(·|a, s′
i )‖2

∥∥∥∥2

2

The number Λφ
i (si , s′

i , a) ∈ [0, 2] measures the extent to which player i’s conditional (nor-
malized) beliefs regarding the public coordinating signal are different given si and s′

i (assuming 
honest reporting by others).9 This is always close to 2 in Example 1 if β is large and is always 
equal to 0 in Example 2. We use this variation of player i’s beliefs to induce her to report her 
private signals truthfully.10

Intuitively, it will be easier to induce players to report their private signals truthfully when 
the first indices are smaller and the second indices are larger. Indeed, it is the ratio of these two 
indexes at each (si, s′

i , a) that is significant for truthful revelation.

Definition 5. The probability measure pφ is γ -regular for φ if vφ
i (si , s′

i , a) ≤ γΛ
φ
i (si , s′

i , a) for 
all si ∈ Si , s′

i ∈ Si , a ∈ A and i ∈ N .

For example, pφ is 0-regular if (p, φ) is nonexclusive. When we say a player is informa-
tionally small, we mean that the ratio of her informational size to her distributional variability 
given every (si, s′

i , a) is small. We now state a result proved in [26] that provides a sufficient 
condition for truthful reporting to be an equilibrium in a one shot information revelation game. 
Suppose that a ∈ A and w : Y → R

n is a function. Let μi(y) and μ
i
(y) be probability distribu-

tions on Y whose supports are contained in arg maxy∈Y wi(y) and arg miny∈Y wi(y) respectively. 

Let ψi(a, s) := ∑
y∈Y

pφ(y|a,si )

‖pφ(·|a,si )‖2
· φ(y|s) and define φ′

a,w as follows:

φ′
a,w(y|s) :=

∑n
i=1 μi(y)ψi(a, s) + μ

i
(y)(1 − ψi(a, s))

n
. (1)

Intuitively, μi(y) is a reward and μ
i
(y) is a punishment and ψi(a, s) is the probability of receiv-

ing a reward defined so that it is maximized given truthful reporting.

9 It is bounded above by 2 because Λφ
i
(si , s′

i
, a) = 2

(
1 − pφ(·|a,si )·pφ(·|a,s′

i
)

‖pφ(·|a,si )‖2‖pφ(·|a,s′
i
)‖2

)
.

10 Our distributional variability is similar to, but different from, the condition with the same name in McLean and Postle-
waite [27]. Our condition measures the distance between a player’s conditional belief regarding the aggregated public 
signal, whereas their condition measures the distance between a player’s conditional belief about the other players’s 

private signals, i.e. 
∥∥∥∥ p(·|si )‖p(·|s )‖ − p(·|s′

i
)

‖p(·|s′)‖

∥∥∥∥2
(there is no action in [27]).
i 2 i 2 2
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Proposition 1. For any private monitoring game (G′, p) and any λ ∈ (0, 1), if there exists a 
public coordination device φ such that pφ is γ -regular for some γ ∈ (0, λ

6
√|Y |n ), then for any 

a ∈ A and any payoff function w : Y → R
n, truthful reporting is a Bayesian Nash equilibrium 

for the one-shot information revelation game (G′, p, (1 − λ)φ + λφ′
a,w, w, a) where φ′

a,w is a 
public coordination device as defined in (1) above.

Proposition 1 shows that honest reporting can be induced for any one-shot revelation game 
by perturbing φ slightly. A smaller λ would require a smaller γ but note that γ does not depend 
on the underlying action and the payoff function. It is easy to see that γ is independent of a, 
since γ -regularity requires a certain property across all actions. In addition, γ is independent of 
w since both gains and losses from misreporting come from the same w implying that the size 
of w does not matter. This independence of γ from a and w will be crucial for our robustness 
result.

This proposition is similar to Theorem 1 in McLean and Postlewaite [27]. However, there is 
a difference between our result and the result in [27]. In [27], each player’s preference is given 
by ui(x, θ), where θ is an unobservable payoff relevant parameter and x is an allocation, so it is 
important that the true θ is recovered from private signals almost surely (“negligible aggregate 
uncertainty”) to implement an ex post efficient allocation x(θ). In our paper, we only require that 
the distribution of the public signal generated by φ be close to the distribution of the true public 
signal conditional on any action profile, because no signal has any direct effect on the players’ 
payoffs.

When is pφ likely to be γ -regular? Consider a more general version of Example 1 with con-
ditionally independent signals.

Definition 6. A private monitoring game (G′, p) is called a β-perturbation of the public moni-
toring game (G, π) if Si = Y for all i, vi(ai, y) = ui(ai, y) for all (a, y) and i, and there exists 
qi(·|y) ∈ �(Si) for all y and i such that p(s|a) = ∑

y∈Y

∏
i qi(si |y)π(y|a) and qi(y|y) ≥ β for 

any y and i.

Note that, if (G′, p) is a β-perturbation of (G, π), then it is a β ′-perturbation of (G, π) for 
any β ′ ∈ (0, β). Suppose that (G′, p) is a β-perturbation of (G, π). Let φM be the “majority 
rule”, which is a public coordination device that chooses y ∈ Y reported by the largest number of 
players (with some tie-breaking rule). Let pφM (y|a) be the probability that y is generated given 
truthful reporting and action profile a ∈ A. Then it is easy to show that pφM converges to π as 
β → 1. Hence (G′, p) is an ε-approximation of (G, π) for any given ε if β is close enough to 
one. Furthermore, player i’s informational size vφM

i (si , s′
i , a) converges to 0 given any si 	= s′

i and 
a as long as n ≥ 3 and, when π satisfies full support (i.e. ∀y ∈ Y , ∀a ∈ A, π(y|a) > 0), player 
i’s distributional variability ΛφM

i (si , s′
i , a) converges to its maximum possible value 2 given any 

si 	= s′
i and a as β → 1 for every i ∈ N . The following proposition summarizes this observation.

Proposition 2. Fix a public monitoring game (G, π) with n ≥ 3, where π satisfies full support. 
Let φM be any public coordination device for β-perturbation games that selects a majority opin-
ion. Then, for any ε, γ > 0, there exists β ∈ (0, 1) such that, for every β-perturbation (G′, p), 
(G′, p, φM) is an ε-approximation of (G, π) and pφM is γ -regular.
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4. Robustness of PPE

Consider any (G, π). In this section, we ask the following question: if α∗ is a PPE of G∞
π (δ), 

when can we find a reporting strategy ρ∗ such that (α∗, ρ∗) is truthful and a PPE of G′∞
p (δ, Φ)

with the help of some public communication device Φ?
The answer is simple in some extreme cases. Let φ be a public coordination device for 

which pφ is an ε-approximation of π , and suppose that (p, φ) is nonexclusive. Let Φ = {φht :
ht ∈ Y t , t ≥ 0} be the public communication device with φht = φ for all t and all ht . In this case, 
incentive compatibility for truthful reporting is an immediate consequence of nonexclusiveness. 
Essentially, we simply have another repeated game with public monitoring where the stage game 
payoffs and the public signal distribution are slightly perturbed. Therefore every η-uniformly 
strict PPE of (G, π) is an η′-uniformly strict PPE of G′∞

p (δ, Φ) for some positive η′ as long as 
ε is small enough because continuation payoffs in G′∞

p (δ, Φ) converge to continuation payoffs 
in G∞

π (δ) uniformly across all public histories and all public strategies as ε → 0 (as formally 
proved for Theorem 1).

Our robustness result generalizes this observation by relaxing nonexclusiveness. It says that 
an η-uniformly strict PPE of G∞

π (δ) is robust if, for some small enough ε and γ , there exists 
some public coordinating device φ such that (G′, p, φ) is an ε-approximation of (G, π) and pφ

is γ -regular. Note that the choices of γ and ε depend on η, but do not depend on the particular 
selection of an η-uniformly strict PPE.

Definition 7. An η-uniformly strict PPE α∗ of G∞
π (δ) is strictly robust with respect to (G′, p)

if there exists a public communication device Φ∗ and a reporting strategy ρ∗ such that σ ∗ =
(α∗, ρ∗) is an η′-uniformly strict truthful PPE of G′∞

p (δ, Φ∗) for some η′ > 0.

Theorem 1. Fix δ ∈ (0, 1) and a public monitoring game (G, π). For any η > 0, there exist 
γ, ε > 0 such that every η-uniformly strict PPE of G∞

π (δ) is strictly robust with respect to any 
(G′, p) for which there exists φ such that (G′, p, φ) is an ε-approximation of (G, π) and pφ is 
γ -regular.

Proof. See Appendix A. �
To understand the structure of our proof, let α∗ be any η-uniformly strict perfect public equi-

librium in G∞
π (δ). Given η > 0, we can choose small enough ε > 0 and λ > 0 such that, if 

(G′, p, φ) is an ε-approximation of (G, π) and players are constrained to reveal their signals 
truthfully, then it is strictly optimal to follow α∗ at any public history given a public commu-
nication device Φ ′ = {(1 − λ)φ + λφ′

ht : ht ∈ Y t , t ≥ 0} for any φ′
ht , ht ∈ Y t . This is because, 

as we already mentioned, the continuation payoffs in G′∞
p (δ, Φ ′) become close to the continu-

ation payoffs in G∞
π (δ) uniformly across all public histories given α∗ (or any profile of public 

strategies) and truthful revelation when (G′, p, φ) approximates (G, π).
Since players are not constrained to report truthfully, we must construct a public communi-

cation device that induces them to do so. We construct such a public communication device as 
follows. To begin, fix any such public communication device Φ ′. Pick any truthful public strategy 
σ = (α∗, ρ) in G′∞

p (δ, Φ ′) and compute continuation payoffs after every public history. Define 

{wΦ ′
(ht , ·) : ht ∈ Y t , t ≥ 0} to be the collection of continuation payoff functions. Note that they 

are independent of the choice of a reporting strategy as long as σ is truthful. Note also that σ
need not be an equilibrium in G′∞

p (δ, Φ ′).
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By Proposition 1, we can pick small enough γ > 0 such that, if pφ is γ -regular, then we can 
find {φ′′

ht : ht ∈ Y t , t ≥ 0} such that the incentive constraints for truth-telling are always satisfied 
on the equilibrium path given a public communication device Φ ′′ = {(1 − λ)φ + λφ′′

ht : ht ∈ Y t ,

t ≥ 0} and the continuation payoffs specified by wΦ ′
(ht , ·). What is important here is that honest 

reporting can be induced given any equilibrium action and any equilibrium continuation payoff 
function for the same number γ as Proposition 1 states. Note that this does not mean that incen-
tive constraints for honest reporting are satisfied off the equilibrium path, namely when a player 
deviates from the equilibrium action within the same period. In fact, the optimal one-period de-
viation may be a joint deviation in action and in report. However it can be easily shown that such 
joint deviation is not profitable when each player is informationally small, because of the strict 
incentive to play α∗ at every public history.

A somewhat subtle issue arises here. Honest reporting may not be incentive compatible with 
respect to the public communication device Φ ′′ because the system of continuation payoff func-
tions {wΦ ′′

(ht , ·) : ht ∈ Y t , t ≥ 0} induced by Φ ′′ is different from the system of continuation 
payoff function {wΦ ′

(ht , ·) : ht ∈ Y t , t ≥ 0} induced by Φ ′, with respect to which the incentive 
constraints for truth-telling are checked. Let F(Φ ′) = Φ ′′ be a mapping that associates Φ ′′ for 
each Φ ′. If F(Φ∗) = Φ∗ for some public communication device Φ∗, then the above argument 
suggests that we can find a truthful perfect public equilibrium with communication σ ∗ = (α∗, ρ∗)
in G′∞

p (δ, Φ∗). So the problem is reduced to finding a fixed point of the mapping F from the 
space of profiles of countable public coordination devices to itself. In the proof, we use a certain 
subset of this space that is mapped to itself by F and show that F satisfies all the properties 
required for applying the Fan–Glicksberg fixed point theorem.

When does our robustness result apply? The class of β-perturbations of the public monitoring 
game (G, π) provides a natural framework in which to pose the robustness problem. A com-
bination of Proposition 2 and Theorem 1 immediately implies that the set of uniformly strict 
perfect PPE for a repeated game with public monitoring is strictly robust with respect to any 
β-perturbation of the stage game (G, π) if β is large enough.

Corollary 1. Fix a public monitoring game (G, π) with n ≥ 3 and δ ∈ (0, 1), where π satisfies 
full support. For every η > 0, there exists β > 0 such that every η-uniformly strict PPE of G∞

π (δ)

is strictly robust with respect to any β-perturbation of (G, π).

We can also show that our robustness result is robust with respect to a small perturba-
tion of p in �(S) in the following sense. Suppose that, for given η > 0, there exists a 
public coordination device φ such that (G, p, φ) is a strict ε-approximation of (G, π) (i.e. 
maxi,a |gi(a) − g′

i (a)| < ε and maxa ‖π(·|a) − pφ(·|a)‖2 < ε) and pφ satisfies γ -regularity 

strictly
(

i.e. maxi,a,si ,s
′
i

v
φ
i (si ,s

′
i ,a)

Λ
φ
i (si ,s

′
i ,a)

< γ
)

for some ε > 0 and γ > 0 in the statement of Theorem 1. 

Theorem 1 says that every η-uniformly strict PPE is strictly robust with respect to (G′, p′). Now 
perturb p slightly in �(S). Note that the left hand sides of these strict inequalities are continuous 
in p. So all these inequalities continue to hold for any p′ that is close to p in �(S). Therefore 
every η-uniformly strict PPE remains strictly robust with respect to (G′, p′) for any p′ in some 
neighborhood of p in �(S). Note that the above corollary is a special case of this observation 
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where p is the (degenerate) private signal distribution with β = 1 and p′ is any β-perturbation 
of p with large enough β .11

However our result does not satisfy the following stronger notion of robustness. Let (G, π)

be a game with public monitoring and define the ε-perturbation class 
ε(G, π) of (G, π) as 
follows:


ε(G,π) = {(
G′,p

) ∣∣ ∃φ s.t.
(
G′,p,φ

)
is an ε-approximation of (G,π)

}
.

As a consequence of Proposition 2, it follows that 
ε(G, π) 	= ∅ for all ε if n ≥ 3. We will 
say that a PPE α∗ of G∞

π (δ) is ε-robust if for every (G′, p, φ) ∈ 
ε(G, π), there exists a public 
communication device Φ∗ and a reporting strategy ρ∗ such that σ ∗ = (α∗, ρ∗) is a truthful PPE of 
G′∞

p (δ, Φ∗). In terms of ε-robustness, a stronger continuity result would be stated as follows: for 
every η > 0, there exists an ε > 0 such that every η-uniformly strict PPE of G∞

π (δ) is ε-robust. 
The statement of our Theorem is close to, but not quite the same as, this stronger notion of 
robustness.

5. Related literature and discussion

There is a large literature on repeated games with private monitoring and communication. 
Most papers in the literature focus on a folk theorem rather than robustness (Aoyagi [4], Ben-
Porath and Kahneman [6], Compte [8], Fudenberg and Levine [12], Kandori and Matsushima 
[17], Obara [30], Tomala [37]).

Mailath and Morris [21] study robustness of PPE when a public monitoring structure is per-
turbed slightly, but without any communication. One of the assumptions they need for robustness 
is that private monitoring is almost public. Private monitoring is almost public if Si = Y for all i
and | Pr(s = (y, ..., y)|a) − π(y|a)| is small for all a and y. In a subsequent work, Mailath and 
Morris [22] introduce a weaker notion of approximation called ε-closeness, which does not as-
sume Si = Y . Their definition of ε-closeness (see Definition 2 in [22]) is maxa,y | Pr(∀i, fi(si) =
y|a) − π(y|a)| ≤ ε for all a and y given some mapping fi : Si → Y × {∅}, i ∈ N . While we al-
low communication for our robustness result, our notion of closeness is weaker. It is easy to 
show that, when p is ε-close to π in their sense, there exists a public coordination device φ such 
that pφ is ε(|Y | + 1)-approximation of π . In Example 2, pφ is a 0-approximation of π and is 
0-regular, but it is not close to π in their sense. They show that some PPE without bounded recall 
are not robust to small perturbations of public monitoring. Since there exist uniformly strict PPE 
within this class that are robust in our sense with respect to more general perturbations, our result 
suggests that communication is essential for the robustness of a certain class of PPE.12

Another related paper is Anderlini and Lagunoff [3], which considers dynastic repeated games 
with communication where short-lived players care about their offspring. As in our paper, play-
ers may have an incentive to conceal bad information so that future generations do not suffer 
from mutual punishments. Their model is based on perfect monitoring and their focus is on 
characterizing the equilibrium payoff set rather than establishing the robustness of equilibria.

11 With β = 1, (G, p, φM) is a strict ε-approximation of (G, π) for any ε > 0 and pφM is strictly γ -regular for any 
γ > 0.
12 Mailath and Morris [21] also prove a folk theorem for general repeated games with almost-perfect and almost-public 
private monitoring without any communication (a gap in the proof of the folk theorem in [21] is reported and corrected 
in Mailath and Olszewski [23]).
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The notion of informational size and distributional variability appear in McLean and Postle-
waite [27], although our formulation is slightly different.

There is an extensive literature on repeated games with private monitoring without communi-
cation, starting with Sekiguchi [35]. Bhaskar and Obara [7], Ely and Välimäki [9], Piccione [31]
prove a folk theorem for the repeated prisoners’ dilemma game with private almost-perfect mon-
itoring. The most successful approach to private monitoring games, which is taken by [9] and 
[31], is to rely on a class of equilibria called Belief-free equilibrium.13,14 BFE is formalized and 
generalized by Ely, Hörner and Olszewski [10]. A limit characterization of BFE payoffs is first 
obtained by [15] for the two-player case, then generalized to the n-player case by Yamamoto 
[38]. In general, BFE does not deliver a folk theorem except for particular games such as the 
prisoners’ dilemma. Various extensions of BFE have been proposed and successfully applied to 
prove a folk theorem for more general games (Hörner and Olszewski [15], Kandori [16], Mat-
sushima [24], Sugaya [36], Yamamoto [39]). Miyagawa, Miyahara, and Sekiguchi [28] consider 
private monitoring games where each player can observe the other players’ actions perfectly at 
some cost, and proves a folk theorem without any further assumption on imperfect monitoring 
structure.

Appendix A

A.1. Preliminary lemma

First we derive an upper bound on player i’s ability to manipulate the distribution of a pub-
lic coordinating signal in terms of player i’s informational size. Assuming honest reporting by 
players j 	= i, let pφ(y|a, si , s′

i ) =
∑

s−i
φ(y|s′

i , s−i )p(s−i |a, si) be player i’s conditional belief 
regarding the public signal given action profile a, true type si and reported type s′

i .

Lemma 1. ‖pφ(·|a, si , si) − pφ(·|a, si , s′
i )‖1 ≤ 3v

φ
i (si , s′

i , a) for all s′
i , si ∈ Si , a ∈ A and i ∈ N .

Proof.∥∥pφ(·|a, si, si) − pφ
(·∣∣a, si, s

′
i

)∥∥
1

=
∑
y

∣∣∣∣∑
s−i

{
φ(y|si , s−i ) − φ

(
y
∣∣s′

i , s−i

)}
p(s−i |a, si)

∣∣∣∣
≤

∑
s−i

∥∥φ(·|si , s−i ) − φ
(·∣∣s′

i , s−i

)∥∥
1p(s−i |a, si)

≤ (
1 − v

φ
i

(
si , s

′
i , a

))
v

φ
i

(
si, s

′
i , a

) + v
φ
i

(
si , s

′
i , a

) · max
c,d∈�(Y )

‖c − d‖1

≤ 3v
φ
i

(
si , s

′
i , a

) �
Proof of Theorem 1. Let (G, π) and (G′, p) be a public monitoring game and a private moni-
toring game respectively. Define κ as follows

13 However, the Belief-based approach in [7] also has been studied and refined in recent papers such as Phelan and 
Skrzypacz [32] and Kandori and Obara [19].
14 Kandori and Obara [18] introduces a type of belief-free equilibrium in the context of repeated games with imperfect 
public monitoring.
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κ := max
i∈N,a∈A

∣∣gi(a)
∣∣.

The discount factor δ is fixed throughout the proof.
We proceed in three steps to prove this theorem. In Step 1, we show that continuation payoffs 

in a public monitoring game and continuation payoffs in a private monitoring game are uni-
formly close across all public histories given the same public (action) strategy profile if the stage 
games are close at every public history given some public communication device and the players 
announce their private signals truthfully. In Step 2, using Proposition 1, we construct a public 
communication device such that the stage games of the private monitoring game are close to the 
stage game of the public monitoring game (as required in Step 1) and truth-telling is incentive 
compatible at every public history when players are informationally small. Finally, Step 3 verifies 
that all the (relevant) incentive constraints are satisfied in the private monitoring game for any 
η-uniformly strict equilibrium of the public monitoring game when players are informationally 
small, using the results from Step 1 and 2.

Step 1. Continuation payoffs are close with truthful reporting when stage games are uniformly 
close.

Claim. Suppose that α ∈ Σ is a public strategy in G∞
π (δ), Φ = {φht : ht ∈ Y t , t ≥ 0} is a public 

communication device, σ = (α, ρ) is a truthful strategy in G′∞
p (δ, Φ), and (G′, p, φht ) is an 

ε-approximation of (G, π) for every ht ∈ Y t . We claim that

sup
i,ht

∣∣wα
i

(
ht

) − wσ
i

(
ht

)∣∣ ≤
(

1 + δ
√|Y |κ
1 − δ

)
ε

where (abusing notation)

wα
i

(
ht

) = (1 − δ)gi

(
α
(
ht

)) + δ
∑
y

wα
i

(
ht , y

)
π

(
y
∣∣α(

ht
))

denotes player i’s continuation payoffs after ht in G∞
π (δ) given α and

wσ
i

(
ht

) = (1 − δ)g′
i

(
α
(
ht

)) + δ
∑
y

∑
s

wσ
i

(
ht , y

)
φht (y|s)p(

s
∣∣α(

ht
))

= (1 − δ)g′
i

(
α
(
ht

)) + δ
∑
y

wσ
i

(
ht , y

)
pφht

(
y
∣∣α(

ht
))

denotes player i’s continuation payoffs after ht in G′∞
p (δ, Φ) given σ .

Proof of Step 1. Suppose that α ∈ Σ is a public strategy in G∞
π (δ), Φ is a public communica-

tion device and σ = (α, ρ) is a truthful strategy in G′∞
p (δ, Φ). Choose any ε > 0 and suppose 

that (G′, p, φht ) is an ε-approximation of (G, π) for each φht ∈ Φ . Let B = supi,ht |wα
i (ht ) −

wσ
i (ht )| < ∞. For each public history ht , we obtain∣∣wα

i

(
ht

) − wσ
i

(
ht

)∣∣
� (1 − δ)ε + δ

∣∣∣∣∑wα
i

(
ht , y

)
π

(
y
∣∣α(

ht
)) −

∑
wσ

i

(
ht , y

)
pφht

(
y
∣∣α(

ht
))∣∣∣∣
y∈Y y∈Y
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� (1 − δ)ε + δ

∣∣∣∣∑
y∈Y

wα
i

(
ht , y

){
π

(
y
∣∣α(

ht
)) − pφht

(
y
∣∣α(

ht
))}∣∣∣∣

+ δ

∣∣∣∣∑
y∈Y

{
wα

i

(
ht , y

) − wσ
i

(
ht , y

)}
pφht

(
y
∣∣α(

ht
))∣∣∣∣

� (1 − δ)ε + δ
∥∥wα

i

(
ht , ·)∥∥2

∥∥π
(·∣∣α(

ht
)) − pφht

(·∣∣α(
ht

))∥∥
2 + δB

� (1 − δ)ε + δ
√|Y |κε + δB.

Computing the supremum of the left hand side, we obtain B ≤ (1 − δ)ε + δ
√|Y |κε + δB , from 

which it follows that

B ≤
(

1 + δ
√|Y |κ
1 − δ

)
ε

and the proof of the claim is complete. �
Step 2. Constructing the public communication device.

Claim. Choose any λ ∈ (0, 1). If γ ∈ (0, λ

6
√|Y |n ) and if there exists a public coordinating device 

φ for which pφ is γ -regular, then for any pure strategy PPE α∗ of G∞
π (δ), there exists a collection 

of public coordinating devices {φht : ht ∈ Y t , t ≥ 0} such that, for each public history ht ∈ Y t , 
truthful reporting is a Bayesian Nash equilibrium in the one-shot information revelation game(

G′,p, (1 − λ)φ + λφht ,w
(
ht , ·), α∗(ht

))
,

where {w(ht ) : ht ∈ Y t , t ≥ 0} is the collection of continuation payoffs in G′∞
p (δ, Φλ) that are 

generated given the public communication device Φλ = {(1 − λ)φ + λφht : ht ∈ Y t , t ≥ 0} and 
any truthful strategy profile σ ∗ = ((α∗

1 , ρ∗
1 ), .., (α∗

n, ρ∗
n)) for G′∞

p (δ, Φλ).

Proof of Step 2. We use the mechanism of Proposition 1 to induce truthful reporting. Define 
ψi : A × S → [0, 1] as follows.

ψi(a, s) :=
∑
y∈Y

pφ(y|a, si)

‖pφ(·|a, si)‖2
· φ(y|s)

For any pair μi, μi
∈ �(Y ), a ∈ A and s ∈ S, define φa,μi,μi

(·|s) ∈ �(Y ) by

φa,μi ,μi
(y|s) := μi(y)ψi(a, s) + μ

i
(y)

(
1 − ψi(a, s)

)
and φa,μ,μ :=

∑n
i=1 φa,μi ,μi

n
.

Let K = (�(Y ) × �(Y ))n and let M denote the product of countably many copies of K
indexed by the elements of H := ⋃

t≥0 Y t . Suppose that α∗ is a PPE in G∞
π (δ). For each

μ = (
μ

(
ht

))
ht∈H

= ((
μ1

(
ht

)
,μ

1

(
ht

))
, ..,

(
μn

(
ht

)
,μ

n

(
ht

)))
ht∈H

∈ M

where

μ
(
ht

) = (
μ1

(
ht

)
,μ

1

(
ht

))
, ..,

(
μn

(
ht

)
,μ

n

(
ht

)) ∈ R2n|Y |,

define a public communication device given λ ∈ (0, 1) as follows:
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Φ(μ,λ) = {
(1 − λ)φ + λφα∗(ht ),μ(ht ),μ(ht ) : ht ∈ Y t , t ≥ 0

}
.

For each i, choose any reporting strategy ρ∗
i so that σ ∗

i = (α∗
i , ρ∗

i ) is truthful. Then the strategy 
profile σ ∗ and the public communication device Φ(μ, λ) define continuation payoffs in the game 
G′∞

p (δ, Φ(μ, λ)) at every public history. For each μ ∈ M , let wσ ∗
i (ht ; μ, λ) denote player i’s 

continuation payoff in G′∞
p (δ, Φ(μ, λ)) at public history ht . Next, define for each μ ∈ M a 

subset Γ (μ) ⊂ M as follows: μ′ ∈ Γ (μ) if and only if, for all ht ∈ Y t and i ∈ N ,

μ′
i

(
ht

) ∈ arg max
q∈
(Y)

∑
y∈Y

q(y)wσ ∗
i

((
ht , y

);μ,λ
)

and

μ′
i

(
ht

) ∈ arg min
q∈
(Y)

∑
y∈Y

q(y)wσ ∗
i

((
ht , y

);μ,λ
)
.

Note that μ′ need not be the same μ that we started with. Now we show that the correspon-
dence Γ : M → M has a fixed point by applying the Fan–Glicksberg fixed point theorem. First, 
let X denote the Cartesian product of countably many copies of R2n|Y | indexed by H := ⋃

t≥0 Y t . 
Since R2n|Y | is a Hausdorff locally convex topological vector space, it follows that X is a Haus-
dorff locally convex topological vector space with respect to the product topology. (Theorem 5.1 
and Lemma 5.54 in Aliprantis and Border [2].) Since K ⊆R

2n|Y | is nonempty, convex and com-
pact, we conclude that M is a nonempty, convex, compact subset in X.

Since Γ is nonempty, convex valued, and compact valued, we need only verify that Γ is upper 
hemicontinuous. Upper hemicontinuity will follow from Berge’s Theorem if we can establish that 
μ �→ wσ ∗

i ((ht , y); μ, λ) is a continuous real valued function on M for each t and ht ∈ Y t since 
the product of compact valued upper hemicontinuous correspondences from M , to K is upper 
hemicontinuous with respect to the product topology on X (Theorem 16.28 in [2]). To see that 
μ �→ wσ ∗

i ((ht , y); μ, λ) is continuous, first define

φ
μ

ht = (1 − λ)φ + λφα∗(ht ),μ(ht ),μ(ht )

and let d1 denote the �1 metric on R2n|Y |. Note that∣∣φμ

ht (y|s) − φ
μ′
ht (y|s)∣∣

≤ λ

n

n∑
i=1

(∣∣μi

(
ht

)
(y) − μ′

i

(
ht

)
(y)

∣∣ψi

(
α∗(ht

)
, s

)
+ ∣∣μ

i

(
ht

)
(y) − μ′

i

(
ht

)
(y)

∣∣[1 − ψi

(
α∗(ht

)
, s

)])
≤ λ

n

n∑
i=1

(∣∣μi

(
ht

)
(y) − μ′

i

(
ht

)
(y)

∣∣ + ∣∣μ
i

(
ht

)
(y) − μ′

i

(
ht

)
(y)

∣∣)
so that∣∣pφ

μ

ht
(
y
∣∣α∗(ht

)) − p
φ

μ′
ht

(
y
∣∣α∗(ht

))∣∣
≤

∑
s∈S

∣∣φμ

ht (y|s) − φ
μ′
ht (y|s)∣∣p(

s
∣∣α∗(ht

))
≤ max

∣∣φμ

ht (y|s) − φ
μ′
ht (y|s)∣∣
s∈S
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≤ λ

n

n∑
i=1

(∣∣μi

(
ht

)
(y) − μ′

i

(
ht

)
(y)

∣∣ + ∣∣μ
i

(
ht

)
(y) − μ′

i

(
ht

)
(y)

∣∣)
Therefore,

∥∥p
φ

μ

ht
(·∣∣α∗(ht

)) − p
φ

μ′
ht

(·∣∣α∗(ht
))∥∥

1 ≤ λ

n
d1

(
μ

(
ht

)
,μ′(ht

))
.

Next, note that the product topology on X is metrizable (recall that X is a countable product) 
with well known metric d̂ as defined, for example, in Theorem 3.24 of [2]. For this metric d̂, the 
following condition holds: for each ξ > 0 and each t , there exists a ζ > 0 (depending on ξ and t ) 
such that for each t ′ ≤ t and each ht ′ ∈ Y t ′ ,

d̂
(
μ,μ′) < ζ ⇒ d1

(
μ

(
ht ′),μ′(ht ′)) < ξ.

That is, we can make μ(ht ′) and μ′(ht ′) as close with respect to d1 as we wish for any ht ′

with 0 ≤ t ′ ≤ t by making μ and μ′ close enough with respect to d̂ . Consequently, we can make 

p
φ

μ

ht ′ (·|α∗(ht ′)) and p
φ

μ′
ht ′ (·|α∗(ht ′)) as close in the �1 norm as we wish for any ht ′ with 0 ≤ t ′ ≤ t

by making μ and μ′ close enough with respect to d̂ . Since the stage game payoff is bounded and 
we use a discounted average payoff criterion, we conclude that μ �→ wσ ∗

i ((ht , y); μ, λ) is a 
continuous real valued function on M for each ht ∈ H . Therefore, we conclude that Γ : M → M

is nonempty valued, convex valued, compact valued and upper hemicontinuous. Applying the 
Fan–Glicksberg fixed point theorem, we can find μ∗ ∈ M such that μ∗ ∈ Γ (μ∗). In particular,

μ∗
i

(
ht

) ∈ arg max
q∈
(Y)

∑
y∈Y

q(y)wσ ∗
i

((
ht , y

);μ∗, λ
)

and

μ∗
i

(
ht

) ∈ arg min
q∈
(Y)

∑
y∈Y

q(y)wσ ∗
i

((
ht , y

);μ∗, λ
)

by construction for every ht ∈ H = Y t and i ∈ N .
By Proposition 1, if γ ∈ (0, λ

6
√|Y |n ) and pφ is γ -regular, then truthful reporting is a Bayesian 

Nash equilibrium in the one-shot information revelation game(
G′,p, (1 − λ)φ + λφα∗(ht ),μ∗(ht ),μ∗(ht ),w

σ ∗((
ht , ·);μ∗, λ

)
, α∗(ht

))
for every ht ∈ H = Y t . Defining φht := φα∗(ht ),μ∗(ht ),μ∗(ht ) and

Φλ := {
(1 − λ)φ + λφht : ht ∈ Y t , t ≥ 0

}(= Φ
(
μ∗, λ

))
completes the proof of the claim. �
Step 3. Checking all one-period deviations.

Claim. For each η > 0, there exist an ε > 0 and γ > 0 with the property stated in the theorem: if 
(G′, p, φ) is an ε-approximation of (G, π) and pφ is γ -regular, then for any η-uniformly strict 
PPE α∗ of G∞

π (δ), there exists a public communication device Φ and a reporting strategy ρ∗
such that σ ∗ = (α∗, ρ∗) is a truthful PPE of G′∞

p (δ, Φ).
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Proof of Step 3. Fix η > 0. Choose λ ∈ (0, 1), ε > 0, and γ ∈ (0, λ

6
√|Y |n ) such that the following 

strict inequality is satisfied

2ε
√

Yκ + 2

(
1 + δ

√|Y |κ
1 − δ

)
ε + 4λ(κ + ε) + 6κγ <

η

3
. (2)

Suppose that (G′, p, φ) is an ε-approximation of (G, π) and pφ is γ -regular. Let α∗ be any 
η-uniformly strict PPE of G∞

π (δ). By Step 2, there exists a collection {φht : ht ∈ Y t , t ≥ 0} and 
a public communication device Φλ = {φλ

ht : ht ∈ Y t , t ≥ 0}, where φλ
ht = (1 − λ)φ + λφht , such 

that truthful reporting is optimal in G′∞
p (δ, Φλ) at each public history ht given α∗. Next, define 

a reporting strategy ρ∗ as follows15: for ht ∈ H , ai ∈ Ai , si ∈ Si ,

ρ∗(si∣∣ht , ai

) =
{

si if ai = α∗
i (ht )

any optimal report if ai 	= α∗
i (ht ).

We will show that σ ∗ = (α∗, ρ∗) is a truthful PPE of the public communication extension 
G′∞

p (δ, Φλ). It is clearly truthful by definition. To verify sequential rationality constraints, we 
apply the principle of optimality and check one-period deviations at every public history ht ∈ H

at the beginning of each period. We must check two types of deviations: those which involve 
a deviation at the action stage and those that do not. By construction of Φλ, honest reporting is 
optimal when the equilibrium action is played within the same period, i.e., when α∗(ht ) is played 
given public history ht . Consequently, the second type of deviation is not profitable. To complete 
the argument, we must show that, for any ht ∈ H = Y t and any i ∈ N , player i cannot profitably 
deviate by first choosing an action ai different from a∗

i (ht ) and then choosing a report contingent 
on ai .

Let

Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] =
∑
y

wα∗
i

(
ht , y

)
π

(
y
∣∣ai, α

∗−i

(
ht

))
.

Since α∗ is η-uniformly strict, at every ht and for every i ∈ N , the following inequality must be 
satisfied for every ai 	= α∗

i (ht )

(1 − δ)
(
gi

(
ai, α

∗−i

(
ht

)) − gi

(
α∗(ht

))) + η

≤ δ
{
Eπ

[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)]}
. (3)

We compare the left hand side and the right hand of this inequality with the corresponding terms 
in G′∞

p (δ, Φλ).
To begin, note that (2) implies that 2ε <

η
3 . Since (G′, p, φ) is an ε-approximation of (G, π), 

it follows that

g′
i

(
ai, α

∗−i

(
ht

)) − g′
i

(
α∗(ht

)) ≤ gi

(
ai, α

∗−i

(
ht

)) − gi

(
α∗(ht

)) + 2ε

< gi

(
ai, α

∗−i

(
ht

)) − gi

(
α∗(ht

)) + η

3
. (4)

Next, we show that

15 We do not derive the optimal reporting strategy off the equilibrium path explicitly, as it is not needed for our proof.
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E
φλ

ht
[
wσ ∗

i

(
ht , ·)∣∣α∗(ht

)] − E
φλ

ht
[
wσ ∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

]
> Eπ

[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] − η

3
. (5)

To see this, note that player i’s expected loss at ht in G′∞
p (δ, Φλ) satisfies, for any deviation 

ai 	= α∗
i (ht ) and ri ∈ Ri ,

E
φλ

ht
[
wσ ∗

i

(
ht , ·)∣∣α∗(ht

)] − E
φλ

ht
[
wσ ∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

]
≥ (1 − λ)Eφ

[
wσ ∗

i

(
ht , ·)∣∣α∗(ht

)] − (1 − λ)Eφ
[
wσ ∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

] − 2λ(κ + ε)

≥ Eφ
[
wσ ∗

i

(
ht , ·)∣∣α∗(ht

)] − Eφ
[
wσ ∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

] − 4λ(κ + ε)

≥ Eφ
[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

]
− 2

(
1 + δ

√|Y |κ
1 − δ

)
ε − 4λ(κ + ε) (by Step 1)

= {
Eφ

[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)]}
+ {

Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] − Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

]}
− 2

(
1 + δ

√|Y |κ
1 − δ

)
ε − 4λ(κ + ε).

The first term on the right hand side of this expression can be bounded from below as follows:

Eφ
[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)]
=

∑
y∈Y

wα∗
i

(
ht , y

)(
pφ

(
y
∣∣α∗(ht

)) − π
(
y
∣∣α∗(ht

)))
+

∑
y∈Y

wα∗
i

(
ht , y

)(
π

(
y
∣∣α∗(ht

)) − π
(
y
∣∣ai, α

∗−i

(
ht

)))
+

∑
y∈Y

wα∗
i

(
ht , y

)(
π

(
y
∣∣ai, α

∗−i

(
ht

)) − pφ
(
y
∣∣ai, α

∗−i

(
ht

)))
≥ Eπ

[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)]
− ∥∥wα∗

i

(
ht , ·)∥∥2

∥∥pφ
(·∣∣α∗(ht

)) − π
(·∣∣α∗(ht

))∥∥
2

− ∥∥wa∗
i

(
ht , ·)∥∥2

∥∥π
(·∣∣ai, α

∗−i

(
ht

)) − pφ
(·∣∣ai, α

∗−i

(
ht

))∥∥
2

≥ Eπ
[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] − 2ε
√

Yκ.

For the second term on the right hand side, we have

Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] − Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

]
=

∑
y∈Y

wα∗
i

(
ht , y

)(
pφ

(
y
∣∣ai, α

∗−i

(
ht

)) − pφ
(
y
∣∣ai, α

∗−i

(
ht

)
, ri

))
≥ −κ

∑
y∈Y

∣∣pφ
(
y
∣∣ai, α

∗−i

(
ht

)) − pφ
(
y
∣∣ai, α

∗−i

(
ht

)
, ri

)∣∣
= −κ

∑∣∣∣∣∑
s

[
pφ

(
y
∣∣ai, α

∗−i

(
ht

)
, si

) − pφ
(
y
∣∣ai, α

∗−i

(
ht

)
, si , ri(si)

)]
p
(
si

∣∣ai, α
∗−i

(
ht

))∣∣∣∣

y∈Y i
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≥ −κ
∑
y∈Y

∑
si

∣∣pφ
(
y
∣∣ai, α

∗−i

(
ht

)
, si

) − pφ
(
y
∣∣ai, α

∗−i

(
ht

)
, si , ri(si)

)∣∣p(
si

∣∣ai, α
∗−i

(
ht

))
= −κ

∑
si

∥∥pφ
(·∣∣ai, α

∗−i

(
ht

)
, si

) − pφ
(·∣∣ai, α

∗−i

(
ht

)
, si , ri(si)

)∥∥
1p

(
si

∣∣ai, α
∗−i

(
ht

))
≥ −3κ

∑
si

v
φ
i

(
si , ri(si), a

)
p
(
si

∣∣ai, α
∗−i

(
ht

))
(by Lemma 1)

≥ −3κγ
∑
si

Λ
φ
i

(
si , ri(si), a

)
p
(
si

∣∣ai, α
∗−i

(
ht

))
(by γ -regularity)

Since Λφ
i (si, ri(si), a) is at most 2 by definition (see footnote 9), we have

Eφ
[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eφ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] ≥ −6κγ.

Therefore player i’s expected loss at ht in G′∞
p (δ, Φλ) for any deviation ai 	= α∗

i (ht ) and ri is 
bounded from below by

Eπ
[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)]
− 2ε

√
Yκ − 2

(
1 + δ

√|Y |κ
1 − δ

)
ε − 4λ(κ + ε) − 6κγ

> Eπ
[
wα∗

i

(
ht , ·)∣∣α∗(ht

)] − Eπ
[
wα∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)] − η

3

(
by (2)

)
.

Combining (3), (4) and (5), we conclude that

(1 − δ)
(
g′

i

(
ai, α

∗−i

(
ht

)) − g′
i

(
α∗(ht

))) + 2η

3

< δ
(
E

φλ
ht

[
wσ ∗

i

(
ht , ·)∣∣α∗(ht

)] − E
φλ

ht
[
wσ ∗

i

(
ht , ·)∣∣ai, α

∗−i

(
ht

)
, ri

])
for every ri ∈ Ri , ai 	= α∗

i (ht ), ht and i ∈ N . Let η′ = 2η
3 . Then we can conclude that the sug-

gested strategy σ ∗ = (α∗, ρ∗) is a η′-uniformly strict truthful PPE of G′∞
p (δ, Φλ). This completes 

the proof of the theorem. �
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