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Abstract

This paper constructs several models in which, unlike the standard neoclassical growth
model, positive news about future technology generates an increase in current con-
sumption, hours and investment. These models are said to exhibit procyclical news
shocks. We find that all models that exhibit procyclical news shocks in our paper have
two commonalities. There are mechanisms to ensure that: (I) consumption does not
crowd out investment, or vice versa; (II) the benefit of forgoing leisure in response
to news shocks outweighs the cost. Among the models we consider, we believe, one
model holds the greatest potential for explaining procyclical news shocks. Its critical
assumption is that news of the future technology also illuminates the nature of this
technology. This illumination in turn permits economic actors to invest in capital that
is forward-compatible, i.e. adapted to the new technology. On the technical side, our
paper reintroduces the Laplace transform as a tool for studying dynamic economies
analytically. Using Laplace transforms we are able to study and prove results about
the full dynamics of the model in response to news shocks.
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1 Introduction

The optimal response of aggregate consumption, investment and hours in the neoclassical

growth model to an unanticipated permanent (or near permanent) technology increase is

well-understood. For most specifications used by researchers, all three variables increase.1

A technology improvement increases capital’s efficiency; thus, the desired capital stock in-

creases. The increase in the actual capital stock twoards its desired level is achieved by

greater investment. Importantly, greater investment need not come at the cost of a drop in

consumption. Rather, since the technology improvement shifts out the production frontier

immediately, creating additional consumption and investment is feasible. Moreover, an hours

increase is optimal because a higher marginal product of labor induces a substitution effect

away from leisure that outweighs the wealth effect, which pushes in the opposite direction.

Next, consider the standard growth model’s response to news of a future technology

increase. The responses of these variables and the incentives that drive these responses are

different. In the standard model, all three variables will not increase. Typically, labor falls

upon the arrival of the news. The above-described wealth effect on leisure is operative;

however, there is no offsetting substitution effect because the technology increase has not

materialized immediately.

With a labor decline, the only way consumption can increase in response to the news

is if investment falls. An investment decline is optimal because there is incentive to delay

building additional capital stock until technology actually increases. Thus, in the standard

model, positive news about future technology can cause a decline in labor and investment,

and an increase in consumption (see Figure 1).2,3

This paper studies variants on the standard model that are capable of generating pro-

cyclical responses. Each model has mechanism(s) to ensure that: (I) consumption does not

1Campbell (1994) establishes this by simulation using several functional forms of preferences and model
parameterizations. He does provide cases where, when preferences are non-separable in consumption and
labor, that consumption declines in response to technology shocks.

2An alternative, but equaling puzzling, response to good news about future technology is that labor hours
increase, while consumption declines. This occurs for a small region of growth model’s parameter space.

3There is some support for procyclical news shocks in U.S. data. Systematic empirical work supporting
the news shock explanation includes Schmitt-Grohe and Uribe (2012) and Beaudry and Portier (2006). The
former estimate a business cycle model with news (anticipated) and current (unanticipated) shocks and find
that news shocks explain a greater fraction of output volatility than current shocks. The latter estimate
that the component of innovations to stock prices, not correlated with current productivity, is correlated
with expected future productivity. Barsky and Sims (2009), using a different identification scheme, deliver
an opposite result (i.e. news shocks are not procyclical). Other relevant empirical research supporting
this explanation includes Beaudry, Dupaigne,and Portier (2008), Beaudry and Lucke (2010), and Khan and
Tsoukalas (2012) as well as Leeper, Walker and Yang (2012).
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crowd out investment, or vice versa; (II) the return to forgoing leisure is sufficiently high.

In our first model, we modify the neoclassical production function to have a convex

production frontier between consumption and investment, i.e. production complementar-

ity. In the standard model, the marginal rate of transformation between consumption and

investment is fixed at one. Here, this marginal rate of transformation depends upon the

consumption-investment ratio. We provide both sufficient and necessary conditions for the

model to exhibit procyclical technology news shocks. These conditions depend upon the

values of the model’s underlying parameters.

With a convex production frontier, greater consumption (investment) increases the marginal

product of labor towards the production of investment (consumption). This effect tends to

increase investment and labor upon the arrival of the news if there is a consumption boom.4

This achieves Condition I: consumption does not crowd out investment.

Consumption-investment complementarity causes the two variables to comove; however,

it is possible that the two variables might fall rather than increase in response to positive

news. In this case, the planner takes leisure over consumption (and capital accumulation) in

the short run. This arises if there is too much curvature in the utility function because, in

this case, the intertemporal smoothing motive for leisure becomes too strong. As such, there

must be sufficiently low curvature in order that hours, consumption and investment comove

procyclically in response to positive news. Restricting the curvature to be low ensures our

Condition II, that the relative benefit of forgoing leisure is sufficiently strong.

Our second model contains a preference-based mechanism for generating procyclical tech-

nology news shocks.5 Here, we assume a preference externality such that the marginal

disutility of own hours worked is falling in the economy-wide average hours worked.6 The

preference externality acts, from each household’s perspective, as a preference shock that

expands each household’s willingness to supply labor. This endogenous labor supply mecha-

nism directly decreases the household utility cost of forgoing leisure (satisfying Condition II)

and the increase in labor expands output sufficiently for both consumption and investment

to increase (satisfying Condition I).

After proving a theorem for each model to exhibit procyclical news shocks, we conduct

a quantitative analysis. Here, we find a drawback with both models. Each generates quan-

4In an extreme but illustrative case, if consumption and investment are produced in a Leontief manner,

then consumption and investment comove perfectly.
5That is, the production side of this second model is neoclassical.
6Despite being non-standard, the preferences are consistent with balanced growth and both consumption

and leisure are normal goods from each household’s perspective.
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titatively small consumption booms in response to positive news. Consumption is nearly

acyclical.

As a result of the near acyclicality of consumption, we develop two distinct extensions of

the production complementarities model. First, we replace balanced-growth preferences with

GHH preferences. Second, we add investment adjustment costs to the model.With either of

these additions we are able to generate quantitatively larger consumption booms and also

support procyclical news shocks with greater curvature in the utility function.

In our view, the greatest promise for explaining the phenomenon is a situation where

Condition II, i.e. a strong return to forgoing leisure, is achieved because there is a benefit

to starting investing early beyond that inherent in the basic neoclassical model. In our

view, it is more plausible that this benefit is production-based rather than preference-based.

To this end, we construct the final model of the paper, which introduces the concept of

“forward-compatible investment.”

The starting point for the forward-compatibility model is a neoclassical economy with

investment-specific technology (IST) shocks and production complementarity. In addition,

we assume investment made between the news arrival and the actual IST increase is partially

forward-compatible; investment can take partial advantage of future technology improve-

ments. This causes an investment boom upon the arrival of the news as the social planner

builds capital in anticipation of the IST increase, even though there is no immediate tech-

nological improvement. This “preparatory-phase” investment is optimal because it allows

the planner to smooth consumption while accumulating capital towards the eventual higher

steady state.

It is beneficial, in our view, for a modification of the neoclassical model to be as minimal

as possible. This makes it less likely that the resulting model does violence to the existing

theory of unanticipated shocks. To this end, we note that adding forward compatibility

of investment is not a significant departure from the neoclassical model along two key di-

mensions. First, our solution adds no new state variables to the neoclassical model. This

is useful because the lack of any new state variables allows for a thorough examination of

the mechanism in a two dimensional space; each additional state variable would add two

more dimensions to the model (a state and a co-state). Second, our model collapses to the

standard neoclassical model with production complementarities when the exogenous driving

process is a contemporaneous shock. That is, the forward compatibility does not operate

when the business cycle is driven by contemporaneous shocks. This allows our model to be

directly comparable to the basic neoclassical model.
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To allow for a complete theoretical analysis, we use a continuous time model. A con-

tinuous time framework allows us to use the method of Laplace transforms. The Laplace

transform is useful for studying linear differential equations with constant coefficients and

exogenous (non-homogeneous) terms with discontinuities.7 Once we log-linearize the growth

model, our differential equations take exactly this form. The discontinuity in our model is

present because of the forecastable jump in future technology.

There are several existing papers on news-driven cycles in dynamic general equilibrium

models. Beaudry and Portier (2007) study the difficulty that the neoclassical model has in

exhibiting procyclical news shocks. They provide necessary condition on production sets for

news shocks to create consumption and investment comovement. Importantly, they observe

that many production technologies used in macro do not satisfy this necessary condition.

Also, they calibrate a model with one feature capable of generating news-driven cycles:

production complementarities of the kind studied in our paper. Their theoretical work

does not explore the analytics underlying the dynamics of news-driven cycles. Beaudry and

Portier (2004) generate news-driven cycles by modeling final consumption as a function of

non-durables and the capital stock. Jaimovich and Rebelo (2009) generate large responses

to news shocks, by adding variable capital utilization and two dynamic state variables to

the neoclassical model: lagged investment through adjustment costs and time non-separable

preferences. Christiano et. al. (2007) use investment adjustment costs and habit persistence

to generate news-driven business cycles. Wang (2012) analyzes and compares three existing

models generating procyclical news shocks via a labor market diagram. This graphical

analysis is very useful for understanding the static relationships in these models, but not as

useful for understanding the models’ dynamics. In the same paper, Wang develops a model

where an endogenous markup resolves this comovement puzzle.

Nah (2009) uses production complementarities and financial frictions to support procycli-

cal news shocks. Gunn and Johri (2011) and Qureshi (2009) each develop a learning-by-doing

model. In response to news about future technological improvement, forward-looking agents

increase hours worked and investment immediately in order to build up their stock of knowl-

edge. This amplifies the benefit of the future technology increase. Gunn and Johri (2009)

show that learning-by-doing combined with variable capital utilization can generate procycli-

cal stock prices. Qureshi (2009) shows that learning-by-doing along with an intratemporal

adjustment cost can generate sectoral comovement in response to news about neutral and

7Several introductory textbooks on differential equations describe the L aplace transform, including Boyce
and DiPrima (1969) and Tenenbaum and Pollard (1985). Early applications of the transform to economics
include Judd (1982, 1985).
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sector-specific technologies. Comin, Gertler and Santacreu (2009) develop a model with

shocks to the number of new ideas capable of increasing the efficiency of capital and labor.

However, resources must be allocated to transform ideas into actual technologies. In their

model, news is the arrival of new ideas; whereas in our model, news is (in part) the arrival of

useful information about the nature of future technologies. Tsai (2009) uses variable capital

utilization and preferences designed to minimize wealth effects on labor supply, along with

fixed costs to adopt new vintages of capital. The latter feature in his model has a feel very

similar to the forward-compatibility assumption in Section 5 of our paper.

Our paper differs from the above numerical/simulation-based results, along with the

theoretical results in Beaudry and Portier (2007), in that, to the best of our knowledge, it

is the first paper to study the full dynamics of news shocks analytically. This allows us to

shed light on how news shocks in general work.

In the next section, we describe the production complementarity model, characterize its

optimal allocation and provide conditions under which the model supports procyclical tech-

nology news shocks. In Section 3, we do the analogous examination of a preference-based

mechanism capable of supporting these type of news shocks. Section 4 analyzes quantita-

tive and calibration issues with the baseline production complementary model, and develops

modifications to address these issues. Section 5 studies a model of forward-compatible in-

vestment, and Section 6 concludes.

2 Procyclical News Shocks via Production Comple-

mentarity

Consider the following variant of the neoclassical growth model.

The Model

Consumption, C (t), and investment, I (t) are produced according to:

F [C (t) , I (t)] = K (t)α (A (t)N (t))1−α (1)

where K (t) and N (t) represent capital and hours respectively. Assume

F (C, I) = [θCυ + (1− θ) Iυ]1/υ (2)

where α, θ ∈ (0, 1) , t ∈ [0,∞] and υ ≥ 1.
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Our sole departure from the neoclassical model pertains to the definition of F (C, I),

which represents the production possibility frontier for consumption and investment given

the amount of inputs. We allow for the possibility of complementarities between the produc-

tion of consumption and investment goods. If υ = 1, the equation collapses to the standard

model. As υ increases, the complementarity between the production of the two goods in-

creases. If υ = ∞, the production frontier takes a Leontief form. Figure 2 shows how the

complementarity between consumption and investment changes as υ changes.

We can interpret υ as measuring the factor substitutability between the consumption

and investment sectors of a more general model. In the basic neoclassical model (υ = 1),

factors are equally productive in both the consumption and investment sectors. As a result,

the relative price of consumption to investment remains constant irrespective of how much

resources are being devoted to producing consumption versus investment. In our model,

factors are not equally productive in both sectors. As υ increases, a factor productive in one

sector is less and less productive in the other sector. For example, a worker that produces

goods in the consumption sector, when moved to the investment sector will become less

productive.8

The law of motion of capital is:

K̇ (t) = I (t)− δK (t) (3)

where δ is the capital depreciation rate.

A social planner ranks utility over different consumption and hours time paths using:

U = (1− σ)−1

∫

∞

0

e−ρt [C (t) exp (−N (t))]1−σ
dt (4)

where σ ≥ 0 is the curvature parameter in the utility function and ρ > 0 is the discount

rate.9

Next, a positive technology news shock is an increase in technology arriving at time T

8An alternative mechanism to the bowed-out production frontier in equation (1) is intersectoral adjust-
ment costs. Suppose that in the planner problem we replace F (C, I) with

FADJ (C, I) ≡ (C + I)

[

1 +
ψY

2

(

1

θ

C

I
− 1

)2
]

Given the above form, the intersectoral adjustment cost and production complementarity models are iso-
morphic up to the log-linearization.

9These preferences exhibit balanced growth. Holding fixed hours, σ is the inverse of the intertemporal
elasticity of substitution for consumption.
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that becomes anticipated at time zero. Thus, at time zero, the perfect foresight time path

for technology becomes:

A (t) =

{

Ā for t ∈ [0, T )

Ā = Ā+ ǫ t ≥ T
(5)

where Ā denotes the initial steady-state technology level. A contemporaneous (or unantici-

pated) technology shock corresponds to the case when T = 0.

It is useful to define the following

Definition 1. A model exhibits procyclical technology news shocks if an anticipated

increase in future technology (i.e. a positive technology news shock) leads to an increase in

current consumption, investment and hours.

Because we only study technology shocks in this paper, we will often omit the word

‘technology’ when referring to technology news shocks.

The Planning Problem and Its Solution

The social planner chooses C, I, K and N to maximize U subject to (1), (2) and (3),

taking as given the initial condition K (0) and time path of technology given by (5).

The current value Hamiltonian associated with the problem is:

H = (1− σ)−1
C1−σ exp [− (1− σ)N ] + Λ (I − δK) + Φ

(

Kα(AN)1−α
− F (C, I)

)

The first-order necessary conditions at an interior solution satisfy the following:

−
UN

UC

= (1− α)
F

N
(FC)

−1 (6)

UC

Λ
=

FC

FI

(7)

Λ̇

Λ
− ρ = δ − α

F

K
(FI)

−1 (8)

along with an initial condition on capital and a transversality condition.

Equation (6) is the intratemporal Euler equation between consumption and labor hours,

equation (7) is the intratemporal Euler equation between consumption and investment, and

equation (8) is the optimal capital accumulation equation. All of these equations are similar

to their neoclassic counterparts. The sole difference is that FC = FI = 1 in the basic
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neoclassical model. With production complementarities FC and FI change with level of

consumption and investment.

Log-linearizing these equations,10 we have the following three optimality conditions:

n = υsI (i− c) (9)

(υ − 1) (i− c) = λ− (−σc− zn) (10)

λ̇ = − (ρ+ δ) [v (1− sI) (c− i) + i− k] (11)

where z = (1− σ) (1− α) / (1− sI) and sI = (αδ) / (ρ+ δ).

Equation (9) ensures an efficient labor allocation. As consumption rises, the marginal

utility of consumption falls and the planner increases leisure. An increase in investment

shifts out labor supply.

Equation (10) ensures an efficient consumption-investment split. The left-hand side is

the price of investment in units of consumption. Because of complementarity, investment

becomes more expensive when production of consumption is relatively low. The right-hand

side is the marginal utility of investment minus the marginal utility of consumption.

Equation (11) is the intertemporal consumption Euler equation. It differs from the neo-

classical model in that λ is not simply the derivative of the marginal utility of consumption.

There is an additional relative price effect because of the convex production frontier.

The two resource constraints and the definition of output are given by:

(1− sI) c+ sIi = αk + (1− α) (a+ n) (12)

k̇ = δ (i− k) (13)

y = αk + (1− α) (a+ n) (14)

Equation (12) is the static resource constraint. Equation (13) is the law of motion for

capital. Equation (14) gives the definition of output.

News-Driven Business Cycles

We next study under what conditions the model exhibits procyclical news shocks. We

10The system is log-linearized around the initial steady-state, which is consistent with the constant tech-

nology ā. A lower case letter denotes the log deviation of that variable from its upper case counterpart.
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subdivide our proof into first establishing the procyclicality and comovement between the

variables at time zero (t = 0), and then the procyclicality and comovement between variables

for time t ∈ (0, T ). The latter results for t ∈ (0, T ) distinguish our theoretical work from

others.

Lemma 1. Suppose the economy experiences a positive technology news shock. Consumption,

investment and hours will comove at time zero if and only if υ > υ∗ = (1− α)−1

Proof. All proofs are contained in Appendix A.

Lemma 2. Suppose the economy experiences a positive technology news shock. Consumption,

investment and hours will comove procyclically, with respect to the expectations of future

technology, at time zero if and only if υ > υ∗ and λ(0) > 0.

The intuition for Lemmas 1 and 2 can be understood using Figure 3. Figure 3 plots the

solution to the static consumption-investment decision holding fixed the marginal utility of

investment. It plots this for the cases with and without production complementarity.

Substituting out the optimal hours from the production equation (12), we have:

αk + (1− α) a =
(

1− φPC

I

)

c+ φPC

I
i (15)

where φPC

I
= (1− υ (1− α)) sI .

This is plotted as L1 in Figure 3(a) and Figure 3(b). In the absence of production

complementarity, this is a downward-sloping line, as seen in Figure 3(a).11 Intuitively, when

consumption rises, hours cannot optimally rise because leisure is a normal good; therefore,

investment must fall. With sufficiently strong complementarity, i.e. υ > (1− α)−1, L1 is

upward sloping as seen in panel (b).

This occurs because, with strong complementarity, an increase in investment raises the

marginal product of labor in producing the consumption good. This higher marginal product

of labor implies that both hours and consumption can increase. An investment decline, on

the other hand, will go hand-in-hand with a reduction in consumption.

Next, consider L2, the consumption-investment Euler equation with optimal hours sub-

stituted out:

γPC

I
i−

(

σ + γPC

I

)

c = λ (16)

11We are assuming that the economy is at its steady-state associated with Ā at time zero.
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where γPC

I
= (υ − 1)− [υ (1− α) (1− σ) sI ] / (1− sI).

In general, the slope of L2 can be either positive or negative. The slope depends most

crucially on ν. To generate procyclical news shocks, ν must be large. To understand why L2

can be upward-sloping, consider the consumption-leisure Euler equation. For the assumed

utility function, consumption equals the real wage (ignoring complementarity in production).

Because the real wage is simply labor’s share in production, hours are a linear function of

the output-consumption ratio. Thus, if the planner decided to increase investment relative

to consumption, hours worked increases. This is seen in equation (9). Note that adding

production complementarity (i.e. setting ν > 1) increases the hours effect because it increases

the marginal product of hours in producing the consumption good.

Next, suppose we consider an increase in the marginal utility of investment, λ, at time

zero.12 First, an increase in λ(0) does not shift L1.
13 Second, an increase in λ(0) induces

a shift leftward of L2 either with or without complementarity. As the marginal utility of

investment increases, the social planner shifts away from consumption for a given level of

investment. Even though L2 moves in the same direction in either case, the implication

for the optimal investment-consumption pair is different between the two cases. Because

L1 is downward sloping without complementarity, investment rises but consumption falls;

however, L1 is upward sloping with complementarity and both investment and consumption

rise. Intuitively, the increase in investment raises the marginal product of labor towards

consumption when there is production complementarity. The fall in the relative price of

consumption leads the planner to increase hours worked.

Lemma 3. Suppose the economy experiences a positive technology news shock. Also, assume

that υ > υ∗. Consumption, investment and hours will comove procyclically for all time t < T

if ∀t < T , λ̇ ≥ 0 and k̇ ≥ 0

Equation (15) implies that if k is increasing over time, then output also increases over

time holding a at its steady state level of zero. As such, k̇ ≥ 0 causes L1 to progressively

shift rightward, shifting out the production frontier. When λ̇ ≥ 0, the marginal utility of

investment is increasing over time. This causes the planner to shift production away from

consumption into investment. This results in a leftward shift in L2. As illustrated in Figure

12For now, we take the increase in λ(0) as given. Later, starting with Lemma 4, we provide a condition
for which time zero news of a technology increase at time T results in an increase in λ(0).

13This is because our preferences imply that labor is stationary along a balanced growth path; the
consumption-leisure Euler equation, and therefore L1 does not depend on the co-state variable.
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4, these two effects cause consumption and investment to continue increasing for all time

t < T .

We have thus far studied what happens to c, i and n when λ(0) increases in response to

good news. We now provide conditions on parameters under which this increase in λ(0)

obtains.

The log-linearized dynamic system is:14

[

λ̇ (t)

k̇ (t)

]

=

[

ΓPC
λ,λ ΓPC

λ,k

ΓPC
k,λ ΓPC

k,k

][

λ (t)

k (t)

]

+

[

bPC
λ,a

bPC
k,a

]

a (t) (17)

In the presence of a news shock, there is a discontinuous forcing term in the dynamic

system. In equation (17), a(t) is a step function which takes on the value zero for all time

t < T and a value of ln(1.01) for all time t ≥ T , i.e. ǫ = .01Ā.

Laplace transforms lend themselves nicely here. Using these transforms, we can map

our problem into the frequency domain where the problem is continuous and solvable using

standard techniques. Once we have solved the dynamic system in this new domain we can

then map the solution back into the time-domain. The resulting time-paths of k(t) and λ(t)

for our system are:

k (t) =







ΓPC
k,λ

λ(0)

µ1−µ2

eµ1t +
ΓPC
k,λ

λ(0)

µ2−µ1

eµ2t for t ∈ [0, T )
ΓPC
k,λ

λ(0)

µ1−µ2

eµ1t +
ΓPC
k,λ

bPC
λ,a

−ΓPC
λ,λ

bPC
k,a

µ1µ2

+
ΓPC
k,λ

bPC
λ,a

+(µ1−ΓPC
λ,λ)bPC

k,a

µ1(µ1−µ2)
eµ1(t−T ) t ≥ T

(18)

λ (t) =







(µ1−ΓPC
k,k )λ(0)

µ1−µ2

eµ1t +
(µ2−ΓPC

k,k )λ(0)
µ2−µ1

eµ2t for t ∈ [0, T )
(µ1−ΓPC

k,k )λ(0)
µ1−µ2

eµ1t +
ΓPC
λ,k

bPC
k,a

−ΓPC
k,k

bPC
λ,a

µ1µ2

+
ΓPC
λ,k

bPC
k,a

+(µ1−ΓPC
k,k )bPC

λ,a

µ1(µ1−µ2)
eµ1(t−T ) t ≥ T

(19)

where µ1 and µ2 are the eigenvalues of the ΓPC matrix.15 In Appendix B, we prove that µ1

and µ2 are real with one being positive and the other negative. Without loss of generality,

let µ1 < 0 and µ2 > 0.

The solutions for the time paths of k and λ show that the dynamics of the system

before time T are being determined not only by the stable eigenvalue, but also the unstable

eigenvalue. This is important. Without a role for the unstable eigenvalue, the system would

14The values of ΓPC
.,. and b

PC
.,a can be found in the online Appendix B.

15The online Appendix B contains the derivation of (18) and (19)
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be on a new stable manifold, corresponding to a higher permanent level of a(t), for all t < T .

Along the stable manifold capital and the shadow value of investment do not comove. This

will result in a negative comovement between the variables for t ∈ [0, T ). After time T , the

system is on a new stable path and the dynamics are then determined by the new stable

manifold alone.

The above solution has one undetermined variable λ(0). We seek a path for (λ, k) that is

not explosive. In order to achieve this, we choose λ(0) such that the explosive root µ2 does

not determine the evolution of the system for t > T . This ensures that we are on the stable

path. Otherwise, the path for k will be explosive. This restriction on λ(0) is as follows:

ΓPC
k,λλ(0) +

(

µ2 − ΓPC
λ,λ

)

k(0)

(µ2 − µ1)
= −

ΓPC
k,λ b

PC
λ,a +

(

µ2 − ΓPC
λ,λ

)

bPC
k,a

µ2 (µ2 − µ1)
e−µ2T

Studying the above equation in conjunction with the time paths for k and λ, it can be

seen that the discontinuity of a(t) does not cause a discontinuity in the time path of λ or

k. Instead, the discontinuity of the exogenous process shows up in the time paths as a

non-differentiability (kink) at time T .

Using the time paths of k and λ above, along with the restrictions for a stable solution,

we have the following lemmas.

Lemma 4. Suppose the economy experiences a positive technology news shock and υ > υ∗.

λ̇ ≥ 0 and k̇ ≥ 0 ∀t < T if and only if λ(0) > 0.

Lemma 5. Suppose the economy experiences a positive technology news shock and υ > υ∗.

λ(0) > 0 if and only if σ < σ∗, where σ∗ solves

µPC
2

= (ρ+ (1− α) δ) υ/ (γI + σ)

and µPC
2

= µPC
2

(σ) is the positive eigenvalue of ΓPC.

The condition that σ < σ∗ implies that in order to generate procyclical technology news

shocks the model requires a relatively low curvature parameter σ.

Lemmas 1 through 5 lead to the following theorem.

Theorem 1. The production complementarity model exhibits procyclical technology news

shock if and only if υ > υ∗ and σ < σ∗.
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To better understand this theorem, Figure 5 plots the phase diagram for four cases. For

now, we focus on the first three: (a) no production complementarity, (b) complementarity

with a high curvature parameter, (c) complementarity with a low curvature parameter. Only

case (c) results in procyclical news shocks. Initially before the news, as seen in in Figure

5(a), the capital-multiplier pair (kss, λss) lies on the initial manifold M and is at the initial

steady state. Upon the time zero news arrival, the multiplier falls below λss because there

is an immediate consumption boom. Because capital is a stock variable, k0 = kss. After

time zero and before T (which is the instant of the technology arrival), the capital stock falls

indicating that investment is below the steady-state. The consumption boom comes at the

expense of investment. This is one indicator of the comovement problem in the standard

model: investment declines upon the arrival of good news.

Note that between time zero and time T , the capital-multiplier pair flow in the opposite

direction of the stable manifold. This is due to influence of the explosive root (µ2) before the

technology change occurs. At time T , the model is on the new stable manifold M′ and the

system then converges monotonically to the new steady-state. The M and M′ manifolds

are parallel to each other because the technology shock does not change the coefficients

multiplying the endogenous variables.

Figure 5(b) contains the phase diagram with production complementarity, but a high

curvature parameter. As in the case without complementarity, investment initially falls in

response to the news. Investment eventually increases once the technology change actually

occurs. At this point, the system is on the manifold and capital converges monotonically to

the new higher steady state. The desire for smooth consumption, due to the high curvature

parameter, is evident in the path of the multiplier. It jumps downward on impact and then

moves monotonically to the new steady state.

Figure 5(c) contains the phase diagram for the case of greatest interest. It represents the

case when both conditions of Theorem 1 are satisfied: strong production complementarity

and a low curvature parameter. Note that the marginal utility of investment jumps up rather

than down in response to the good news.

Both σ and δ play important roles in affecting λ on impact, through equation (10).16 As

a starting point, note first that according to the consumption-hours Euler equation (9), n

increases if and only if i− c increases.

16The L2 line is exactly equation (10) once the labor term is substituted out using (9).
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Next, rewriting equation (10), we have:

λ
︸︷︷︸

MUI

= (v − 1) (i− c)
︸ ︷︷ ︸

priceI

+

(

−σc−
(1− σ) (1− α)

(1− sI)
n

)

︸ ︷︷ ︸

MUC

(20)

First, a good news shock that causes hours to rise is accompanied by an increase in the price

of investment (in units of consumption) when v > 1. This works to raise the marginal utility

of investment. Next, consumption also rises if the news shock is procyclical. The increases in

c causes the marginal utility of consumption to fall, which offsets the price effect on λ. This

effect is dampened when σ is close to zero. This is a straightforward channel operating in the

standard neoclassical model.17 Intuitively, when σ is close to zero the timing of investment

is governed by production efficiency concerns and not a desire to smooth consumption.

Finally, n appears in the MUC term because consumption and hours are non-separable in

the utility function. σ plays a different role in the term pre-multiplying n. Here, it effects the

degree of complementarity between n and c in preferences. If σ = 1, preferences are separable

and the n term drops out. If σ < 1, then leisure and consumption are complements, which

puts downward pressure on λ. It must be the case that effect of σ on c is dominates its effect

on n.

Thus, a low σ (through a dampened consumption effect) and the production complemen-

tarity lead to an overall increase the shadow value of investment. This makes the return to

forgoing leisure in order to produce the investment good high, which serves the requirement

of Condition II.

Although investment jumps up at time zero, the new steady state must involve k′

ss > kss

and λ
′

ss < λss. This occurs in case (c) because the new manifold eventually crosses into the

fourth quadrant of the phase space.

It is important to note that the conditions of Theorem 1 are independent of the value

of T . As a result, the model preserves the ability to generate procyclical comovements in

response to traditional time zero unanticipated shocks and news shocks for any time into the

future. Many models that can generate procyclical comovements in response to news shocks

are sensitive to the value T .

In addition to providing both the necessary and sufficient conditions for solving the news

shock puzzle, Theorem 1 provides insight into understanding how news shocks work. In

particular, the analysis sheds light on other mechanisms that are capable of solving the news

17If consumption and hours were separable, then σ is simply the inverse of the intertemporal elasticity of

substitution of consumption.
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shock puzzle. We present our understanding via the following observation.

Main Observation
18 A variant of the neoclassical model will exhibit procyclical technology

news shocks if it has one or more features that ensures:

I. consumption does not crowd out investment, or vice versa, and

II. the benefit to forgoing leisure is sufficiently strong.

Next, we consider the marginal effects of changing each of the model’s remaining param-

eter. First, calibrating to a higher value of capital share, α, decreases the cost to forgoing

leisure and thus now allows relatively higher values of σ to generate procyclical news shocks.

Figure 6 plots the minimum curvature parameter needed for λ(0) > 0 when we we

parameterize ν = ∞ in our production based model.19 As the capital share increases, the

required utility curvature parameter falls. A higher capital share in production decreases the

cost to forgoing leisure and thus allows a lower curvature parameter to generate λ(0) > 0.

Similarly, as ρ/δ increases, the minimum required intertemporal elasticity of substitution

falls. An increase in ρ/δ implies either an increase in ρ or a decrease in δ. An increase in ρ

weakens the consumption smoothing motive and strengthens the returns to forgoing leisure.

An increase in ρ/δ allows the model to exhibit procyclical news shocks with relatively low

values of σ.

The second condition for a model to exhibit procyclical news shocks simplifies dramati-

cally when the depreciation rate is near zero.

Lemma 6. For δ sufficiently close to zero, the model exhibits procyclical news shocks if

υ > υ∗ and σ < 1.

What is the role of the depreciation rate? Intuitively, if the capital depreciation rate is

high, then the benefit to forgoing leisure is low. This is because, upon the arrival of the news,

forgoing leisure to increase investment is only optimal if investment undertaken right away

18Lemma 2 and 4 tell us that λ(0) > 0 is both a necessary and sufficient condition to generate procyclical
technology news shocks in a standard neoclassical model with production complementarities. However,
most economic frictions/features that result in λ(0) > 0 have more than just that marginal effect on the
model. Such frictions often also change the static and dynamic relationships in the standard neoclassical
model with production complementarities. As a result of which we state this result as an observation rather
than a theorem.

19ν = ∞ in the Leontief case. In this case λ(0) > 0 if and only if σ < σc. σc = −ξA +
√

ξ2
A
+ ξB ,where

ξA =
(2−3α)(1−α)+(3(1−α)+α

2) ρ
δ
+( ρ

δ )
2

2(1−α)α and ξB =
(1+ ρ

δ )((1−α)2+ ρ
δ )

(1−α)α .
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has a positive effect on the capital stock once the technology actually increases; however, if

the capital depreciation rate is too high, then much of the investment made at the arrival of

the news will have depreciated by the time technology actually increases. A low depreciation

rate implies that the forgone leisure used to produce the investment good is not depreciated

away by the time of the technology arrival.

The importance of σ in Lemma 6 was explained previously in the discussion of Theorem

1. A low σ lessens the negative effect of the consumption boom on λ, allowing the positive

price effect to dominate and thus increase λ.

Next, we plot the impulse responses for a specific model parameterization. Our model

calibration meets the two conditions: υ > υ∗ and σ < σ∗. First, υ = 1.8. Vall’es (1997)

finds that υ = 1.8 best matches the estimated responses of investment to various shocks.

Sims (1989) uses a similar F (C, I) function and chooses υ = 3.

The value of σ in our baseline calibration is 0.5, which implies less curvature than the

oft-used 1.0 (i.e. log utility). However, σ = 0.5 is within the range of some empirical

estimates (e.g. Beaudry & Wincoop (1996), Vissing-Jorgensen & Attanasio (2003) and

Mulligan (2002)). In Section 4, we consider modifications of the production complementarity

model that allow for greater curvature in the utility function. The remaining parameters are

less crucial and entirely in line with existing research. All parameters are reported in Table

1.

The impulse responses are given in Figure 7. At time zero, capital is at the initial steady

state and agents receive news of an expected one-percent permanent increase in technology

that will arrive at T = 4. Examining panels (b), (c) and (d), we see that consumption,

hours and investment all increase on impact. Moreover, as our phase diagram and theorem

dictate, the shadow value of investment λ increases upon the arrival of the news (see panel

(f)).

The response of consumption, seen in panel (b), is positive but nearly zero. This may

be viewed as a deficiency of the model, although we note that non-durable consumption,

the closest analogue in actual data to consumption in our model, contributes very little

to empirical business cycles. In Section 4, we examine how adding various features to the

baseline production complementarity model can affect the impulse responses quantitatively.

Finally, the model exhibits a large increase in consumption, investment, and hours upon

the actual technology increase.
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3 Procyclical News Shocks via a Positive Labor Exter-

nality

This section modifies the preference side of the growth model as a way to sustain procyclical

news shocks. Specifically, we replace the momentary utility function in equation (4) with:

W
(
C,N, N̄

)
= (1− σ)−1

[
C exp

(
−NN̄−γN

)]1−σ

where 0 < γN < 1 and N̄ is the average economy-wide labor input.20 Thus, there is an

external effect of employment on utility. In particular, the marginal disutility of labor falls

as average labor rises. From an individual’s perspective, he would prefer to work additional

hours when others are working. In turn, the labor externality will act, from the household

perspective, similarly to a preference shock that shifts out labor supply. This mechanism

will ensure a low relative cost of forgoing leisure

Also, we add investment adjustment costs by replacing (3) with

K̇ = I − δK −

ψI

2

(

1−
I

δK

)2

I, (21)

This is because no stable dynamic solution exists at low values of σ. With the employment

externality, production complementarity is not necessary to support procyclical news shocks;

as such, we set ν = 1.

The log-linearized equations that characterize a solution to the constrained planner’s

problem are now:

n =
sI

1− γN
(i− c) (22)

λ
︸︷︷︸

MUI

= ψI (i− k)
︸ ︷︷ ︸

priceI

+(−σc− zn)
︸ ︷︷ ︸

MUC

(23)

λ̇ = − (ρ+ δ) [(1− sI) (c− i) + i− k] + ρψI (i− k) (24)

as well as the resource constraints given by equations (12) and (13).

20To characterize the resource allocation in the presence of the externality, we have the social planner
take the time path of N̄ as given when choosing the time paths of (C, I,K,N). Thus, we are studying a
constrained optimal plan. It is straightforward to show that this allocation is the same as what would obtain
in a competitive equilibrium with the externality.
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The term γN only appears in (22), the consumption-labor Euler equation.21and the ad-

dition of investment adjustment costs only alters equations (23) and (24).

We can substitute (22) into (12) to get a new consumption-investment production frontier

(new L1 line):
(

1− φLE
I

)

c+ φLE
I i = αk + (1− α) a (25)

Here, φLE
I =

(

1− 1−α
1−γ

N̄

)

sI . In this model, L1 is upward sloping if φLE
I < 0. This require-

ment, which simplifies to γN > α, is necessary and sufficient for comovement (although not

necessarily procyclical) in response to a news shock.

Lemma 7. Suppose the economy experiences a positive technology news shock. Consumption,

investment and hours comove at time zero if and only if γN > γ∗N = α.

Lemma 7 is the labor externality counterpart to Lemma 1 for the production comple-

mentarity model.

The steps in characterizing the allocation under labor externalities are very similar to

those (previously done) under production complementarities. Two of the five equations,

as noted above, are identical across the two cases. The remaining three equations contain

nearly the same endogenous variables as in the previous model. Differences between the two

sets of preferences are limited to the coefficients multiplying the endogenous variables. As

such, we can apply the previous technique to this model.

The optimal solution satisfies the following conditions:

x = τLEx,k k + τLEx,λ λ+ τLEx,a a for x = c, i, n

[

k̇

λ̇

]

= ΓLE

[

k

λ

]

+ bLEa (26)

The explicit formulas for τLE
·,· , b

LE and ΓLE are given in Appendix B.

As mentioned previously for a model with labor externalities there exists no stable dy-

namic solution for low values of σ. The addition of investment adjustment costs alleviates

this problem. The next lemma holding fixed all other parameter values gives the mini-

mum value of ψI , the investment adjustment cost parameter, under which a stable dynamic

solution exists.
21In fact, if one were to replace 1/ (1− γN ) with the value ν on the left-hand side, the equation would be

identical to (9) from the production complementarity model.
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Lemma 8. Suppose the economy experiences a positive technology news shock. Also, assume

that γN > γ∗N . Then a stable solution to equation (26) exists if

ψI > ψ+

I = −

γLEI + φLE
I σ

1− φLE
I

Lemma 9. Suppose the economy experiences a positive technology news shock. Also, assume

that γN > γ∗N and ψI > ψ+

I . λ(0) > 0 if and only if ψI > ψ∗

I . where, ψ
∗

I solves equality

µLE
2 =

ΓLE
λ,λb

LE
k,a − ΓLE

k,λb
LE
λ,a

bLEk,a

and µLE
2 = µLE

2 (ψI) is the positive eigenvalue of ΓLE.

Theorem 2. The labor externality model exhibits procyclical technology news shock if: γN >

γ∗N and ψI > Max
{

ψ+

I , ψ
∗

I

}

.

Here is the intuition and relation to our main observation. As labor increases, the

marginal product of labor falls, which reduces the incentive to work. Without an exter-

nal effect, the marginal disutility of labor is increasing in labor. Thus, these two effects work

in the same direction. On the other hand, with the external effect, in a symmetric equi-

librium, the effective marginal disutility of labor is falling in labor. If the labor externality,

measured by γN , has a stronger positive labor supply effect than the negative diminishing

returns to labor demand effect, measured by 1 − α, then the employment increase will be

sufficiently large to support both a consumption and investment increase.22 Thus, the labor

externality mechanism achieves Condition I.

Next, equation (23) is critical for ensuring that the marginal utility of investment rises

on impact. The intuition here is identical to that of the production complementarity model

with one difference. In the current model, the price of investment (see the right-hand side

of equation (23)) increases because of investment adjustment costs term, ψI (i− k). In

the production complementarity model, the price of investment (see the right-hand side of

equation (20)) because of the production complementarity term, v (i− c). The adjustment

cost mechanism achieves Condition II.

22For parameter pairs (γN , α) that satisfy the comovement condition, note that there does not exist an
interior solution to the first-best resource allocation. With γN > 0, the social marginal disutility of labor
is declining, rather than rising, as labor increases. With γN > α, this decline occurs more rapidly than the
increase in marginal cost associated with diminishing returns.
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Although the labor externality model has a different mechanism than the production

complementarity model, the relevant diagrams for the two models are identical. Figure

5(c) is the correct phase diagram for the new model; Figures 3 and 4 illustrate the static

relationships for the new model.

Next, we plot the impulse responses for a specific model parameterization. Our model

calibration meets the requirement γN̄ > α and the two conditions on ψI . We set γN =

0.332, ψI = 20 and σ = 1. All parameters values are reported in Table 1.

The values of σ and ψI are in line with thos of existing research. On the other hand, γN

is chosen somewhat arbitrarily because existing research provides no guidance for choosing

its value. This parameter choice is motivated by our desire to demonstrate one mechanism

capable of supporting procyclical news shocks.

The impulse responses are given in Figure 8. Consumption, hours, investment as well

the shadow value of investment all increase upon the arrival of the news. Quantitatively,

we view the results as disappointing. Each of the three main variables is nearly acyclical in

response to the positive news.

4 Quantitative Issues and Calibration Issues

Section 2 established that adding production complementarity to the neoclassical growth

model was sufficient to support procyclical news shocks. The mechanism, by itself, has two

potential drawbacks: the resulting consumption boom is miniscule and it requires low cur-

vature in the utility function. Both drawbacks are also present in the preference-externality

model. This section restricts attention to the production complementarity model and shows

how either changing preferences or adding investment adjustment costs can mitigate these

difficulties.

Greenwood-Hercowitz-Huffman Preferences

Suppose we replace the King, Plosser and Rebello preferences (1988, hereafter KPR),

used earlier in this paper, with those of Greenwood, Hercowitz and Huffman (1988, hereafter

GHH). The instantaneous utility function becomes

V (C,N) =

(

C − ξ
N1+ψ

1 + ψ

)1−ω

/ (1− ω)

where ω, ξ, ψ > 0. The set-up is otherwise identical to the production-complementarity

model.
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The critical feature of these preferences is that the marginal disutility of labor is falling in

consumption. Recall that, in absence of a low σ under the KPR preferences, it was optimal

for the planner to delay the hours boom until the new technology arrives. Under GHH

preferences, the marginal disutility of work is falling in consumption; as such, there is an

preference-driven incentive to work more during a consumption boom.

The log-linearized conditions for an optimum consists of five equations, three of which are

identical to the baseline production-complementarity model.23 The first equation (that does

change) is the intratemporal consumption-hours Euler condition. Under GHH preferences,

it is:

n = vsI (i− c) + c (27)

For comparison, we restate the corresponding equation for the baseline preferences:

n = vsI (i− c)

The production-complementarity effect, reflected by the vsI (i− c) term, is present in

both equations. GHH preferences, additionally, imply that the planner works more hours

when consumption is high. This augments the model’s ability to achieve Condition I.

The second equation (that does change) is the consumption-investment Euler condition.

Under GHH preferences, it is 24

λ = (v − 1) (i− c) +
1

1− sn
[−ωc+ ωsnn]

︸ ︷︷ ︸

MUC

(28)

For the baseline preferences, we have

λ = (v − 1) (i− c) +

[

−σc− (1− σ)

(
1− α

1− sI

)

n

]

︸ ︷︷ ︸

MUC

Recall that in order for comovement to be procyclical with respect to positive news, λ must

increase upon arrival of the news. This is an implication of our Condition II. Under the

baseline preferences, we showed that this was qualitatively possible if v was sufficiently

large and σ was sufficiently close to zero; however, quantitatively the consumption boom

was nearly very small. Examining the KPR preferences, one sees that λ is decreasing in

23The unchanged equations are (11), (12), and (13).
24Here sn = (1−α)

1−sI
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consumption. Roughly speaking, the planner attempts to allocate output to consumption

and investment to equalize their marginal benefit. If consumption rises too much, then the

marginal utility of consumption, MUc, will fall too much. In turn, the marginal utility of

investment would also have to fall.

GHH preferences help support an increase in λ in response to positive news. This is

because, while MUc is falling in consumption, it is rising in hours worked for any ω. Since

labor and consumption comove, this leads to an offsetting effect on MUc.

The steps in characterizing the optimal allocation under GHH preferences are very similar

to those described previously. Three of the five equations, as noted above, are identical across

the two cases. The remaining two equations, (27) and (28), for the GHH-preferences case,

contain the same endogenous variables as in the KPR case. Differences between the two

preference assumptions are limited to the coefficients multiplying the endogenous variables.

As such, we can apply the previous technique.

The optimal solution satisfies the following conditions:

x = τGHH
x,k k + τGHH

x,λ λ+ τGHH
x,a a for x = c, i, n

[

k̇

λ̇

]

= ΓGHH

[

k

λ

]

+ bGHHa

The explicit formulas for τG
·,· and ΓG are given in Appendix B. Appendix B also contains the

conditions on the underlying parameters (α, ω, ρ, δ, ν, ξ) required for the model to exhibit

procyclical news shocks.

Next, we examine the quantitative implications of applying GHH preferences. The three

new model parameters are set at ω = 0.5, ψ = 0.01, and the scale parameter ξ = 6.96 to

match a steady state value of labor N = 0.3.We calibrate the remaining parameters at the

values used in Section 2.

Investment Adjustment Costs

Condition II to generate procyclical news shocks requires a model feature that will ensure

the benefit to forgoing leisure sufficiently outweighs the cost. Parameterizing our model with

a high intertemporal elasticity of substitution led to us satisfy this condition in our basic

production-based model. Further analysis of the marginal effect of other parameters in that

model showed that increasing the marginal returns to investment, either by increasing the

capital share in production or lowering the depreciation rate, also led to an increase in the
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benefit to forgoing leisure, albeit not large enough 25. The natural extension thus would

be to include a feature that generates a very high returns to investment such as investment

adjustment costs.

We make two modifications to the baseline production-complementarity model. First,

we introduce investment adjustment costs by replacing (3) with (21). Second, we set σ = 1

to give us standard log utility in consumption.

This addition alter equations (10) and (11) in our log-linearized system by adding a new

term:

λ = (υ − 1) (i− c) + ψI (i− k)
︸ ︷︷ ︸

priceI

+

(

−σc− (1− σ)

(
1− α

1− sI

)

n

)

(29)

λ̇ = − (ρ+ δ) [υ (1− sI) (c− i) + i− k] + ρψI (i− k) (30)

The remaining three equations are unchanged.

Equation (29) gives us the optimal consumption-investment decision. It is identical to

the baseline production-complementarity model except there is an additional component to

the price of investment, ψI (i− k). This component is due to the investment adjustment

costs, is increasing in i and works to increase λ. The phase diagrams in Section 2 showed

why an increase in λ upon arrival of the news is required in order that a model support

procyclical comovement. Adjustment costs help ensure that increase in λ, and, therefore,

Condition II.

Equation (30) is the intertemporal consumption Euler equation. The sole difference in

this equation from the baseline production-complementarity model is that the rate of change

in the marginal utility of investment reflects the investment adjustment cost.

Next, consider the impact of adjustment costs on Condition I. Even though the addition of

investment adjustment costs alters equation (10), and thus the static system, it can be shown

that the Lemmas 1 through 4 still hold. The L1 line, equation (15), remains the same, and

while the magnitude of the slope of L2 changes qualitatively, there is no qualitative change.

Figures 3(b) and 4 still reflect (qualitatively) the static and required dynamic relationship

in the adjustment cost model.

With investment adjustment costs the dynamic analysis is slightly altered. Lemma 5, and

thus Theorem 1, now place a different parameter restriction required to generate a positive

λ (0). Most importantly the restriction on the critical value of σ is relaxed. High investment

25We still need higher than normal values of the intertemporal elasticity of substitution
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adjustment costs lead to an increase in the returns to investment, which in turn leads to

more capital, which further in turn leads to an increase in the benefit of supplying labor and

forgoing leisure. Finally, the dynamic analysis in the (k, λ) space is qualitatively still given

by Figure 5.

5 Forward-Compatible Investment

One observation, thus far, has been that in order to generate procyclical news shocks we re-

quire a feature or features that increases λ(0), which is an alternative expression of Condition

II. In this section, we describe how this can be achieved by introducing forward-compatible

investment. Physical investment is forward-compatible if additions to the capital made be-

tween the arrival of the news and the actual technology increase are particularly well-suited

to the future technology. For example, if an IT firm is laying down fiber optic cables and it

knows a new, better standard will be in effect in a year then it may be able to ensure that

the fiber optic cables currently being installed can take advantage of the new standard. This

will mean that at least part of the investment done in the preparatory phase (t ∈ [0, T )) will

be able to have an advantage of the new technology improvement once time T arrives.

The Model

Suppose that at time zero, news arrives of a future investment-specific technology shock.26

The technology increase will arrive at T > 0 and will be permanent:

Q (t) =

{

Q̄ for t ∈ [0, T )

Q̃ = 1.01× Q̄ t ≥ T
(31)

We shall refer to time between zero and T as the preparatory phase.

This shock appears in the capital law of motion:

K̇ (t) = Q (t) I (t)− δK (t) +
(

K (t)− e−δT K̄
)

P
(

Q̃, t, T, ǫ
)

(32)

where K̄ is the initial capital stock, which we assume is at the steady-state consistent with

Q̄.

The right-hand side of (32) decomposes the time derivative of capital into three terms.

The first term is the contribution of investment multiplied by the current efficiency of invest-

26Investment-specific technology shocks by themselves cannot generate news-driven procyclical business
cycles, established in Beaudry and Portier (2007).
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ment. The second is the capital lost due to depreciation. The last term embodies the model’s

key assumption. It is the multiple of two functions. The first function is K (t) − e−δT K̄,

representing the investment accumulated during the preparatory phase that has not depre-

ciated. For convenience, define K (t) = K (t) − e−δT K̄. The second function, P (Q, t, T, ε),

is a positive technology shock. It will be constructed so that it permanently increases the

productivity of investment made during the preparatory phase. Thus, investment made after

the arrival of news will be forward-compatible with the yet-to-arrive technology.

This second function will be non-zero only in a small neighborhood of T . Thus, this

positive shock will not come online until time T . The contribution of the third term in (32)

will only apply to K (T ). We refer to K (T ) as partially-adapted capital. We plot the log

deviations of the functions Q and P in Figure 10.

P depends on t because the forward-compatible effect is only operative for a certain

interval of time. The term ε is a small positive number. It will define the neighborhood

(of the time interval) in which the “forward-compatibility” shock occurs. Mathematically,

P (Q, t, T, ε) 6= 0 only if t ∈ [T, T + ε]. A technical detail neccesitates ε.27 Later, we will

drive ε to zero at the appropriate rate. We choose a particular form for P to aid calibration:

P
(

Q̃, t, T, ε
)

=

{

0 for t ∈ [0, T ) ∪ (T + ǫ,∞)
τQ̃

(1−e−ǫ)Q̄
t ∈ [T, T + ǫ]

For notational simplicity, we will sometimes use Pε (t) and suppress the function’s dependence

on Q̃ and T .

A positive investment-specific technology shock is isomorphic to a positive neutral tech-

nology shock combined with a capital depreciation shock. Forward compatability, in the

face of an investment-specific news shock, mitigates where the “capital depreciation” shock

component. That is, capital put in place following the news will not depreicate to the same

degree as the already in-place capital. Thus, forward compatability, by itself, boosts the

relative benefit to forgoing leisure to produce investment upon the news arrival.

Production of consumption occurs according to equations (1) and (2); that is, there is

production complementarity between consumption and investment.28 The utility function is

(4), which is taken from the baseline model of Section 2.

27If P were positive and finite only at one instant, then P will have zero effect on the capital. Instead,

as we let ǫ approach zero, the P will become infinite at the instant T and cause K to jump upward. This

technical detail is not needed in a discrete time model.
28We assume that At = 1, since technology improvements are only investment specific in this model.
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The Planning Problem and Its Solution

The social planner chooses C, I, K and N to maximize U subject to (1), (2) and (32),

taking as given the initial condition K (0) and time path of technology. The current value

Hamiltonian for the problem is:

H = (1− σ)−1
C1−σ exp [− (1− σ)N ] + Λ (QI − δK + PεK) + Φ

(

KαN1−α
− F (C, I)

)

The log-linearized system that solves this Hamiltonian is given by five equations.29 Two

equations, (9) and (12), are identical to those from the baseline production complementarity

model. These are the consumption-hours Euler equation and the production function. The

three new equations are:

λ = (υ − 1) (i− c) + (−σc− zν)− q (33)

λ̇ = − (ρ+ δ) [v (1− sI) c+ q + i− k]− pε (34)

k̇ = δ (q + i− k) + (1− e−δT )pε (35)

Equation (33) ensures an efficient consumption-investment split. It is identical to the cor-

responding equation from the baseline production complementarity except for the final term

on the right-hand side, −q. This is a relative price effect because technology is investment-

specific. Before time T , however, q (t) = 0 because the technology improvement has not yet

arrived.

Equation (34) is the intertemporal consumption Euler equation. It differs from the neo-

classical model in two ways. First, λ is not simply the derivative of the marginal utility of

consumption. There is an additional relative price effect because of the convex production

frontier. Second, λ jumps down at T as a result of pε, that is in the limit as ε → 0.

Equation (35) is the law of motion for capital. On the right-hand side, the first term

is standard and the second reflects an increase in capital at time T . This occurs when

the forward-compatible capital built during the preparatory phase becomes utilized with

the new technology. Recall that pε is positive, and otherwise zero, only in a neighborhood

of T . Below, we take the limit as ε → 0. Then, pε becomes ”infinite at an instant,”

causing an upward jump in the capital stock. The optimal solution also satisfies a standard

transversality condition and an initial condition on capital.

29The non-linear first-order conditions are presented in the appendix.
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Recall that, in order to support procyclical news shocks, a model must have mechanism(s)

that ensure: (I) consumption does not crowd out investment, and (II) a sufficiently large

return to forgoing leisure.

Production complementarity is sufficient to ensure Condition I due to the derivations in

the benchmark production complementary model. Following those derivations (detailed in

the appendix), we have expressions for the jump variables (consumption, investment and

hours) as functions of the state variables.

x = τFC
x,k k + τFC

x,λ λ+ τFC
x,q q for x = c, i, n (36)

Substituting (36) into the k̇ and λ̇ equations, (34) and (35), we have:

[

λ̇ (t)

k̇ (t)

]

= ΓFC

[

λ (t)

k (t)

]

+ bFC
q q (t) + bFC

p p (q̃, t, T, ε) (37)

The explicit formulas for τFC
·,· ,ΓFC , bFC

q and bFC
p are given in the appendix.

Next, we provide a theorem concerning procyclical news shocks in the forward-compatibility

model.

Theorem 3. The forward-compatible investment model exhibits procyclical technology news

shocks if and only if υ (1− α) > 1 and

τ >
ΓFC
k,λ b

FC
λ,q +

(

µFC
2

− ΓFC
λ,λ

)

bFC
k,q

ΓFC
k,λµ

FC
2

bFC
λ,pǫ

+
(

µFC
2

− ΓFC
λ,λ

)

µFC
2

bFC
k,pǫ

(38)

where µFC
2

is the positive eigenvalue of ΓFC.

Let us understand this result: Theorem 3 requires that there is both sufficient comple-

mentarity in production (Condition I) and the new capital accumulated between time 0 and

T must be sufficiently forward compatible (Condition II). Solving the differential equation

(37), the time-paths of (k, λ) are:30

30The online Appendix B contains the derivation of (39) and (40)
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k (t) =







Γk,λλ(0)

µ1−µ2

eµ1t +
Γk,λλ(0)

µ2−µ1

eµ2t for t ∈ [0, T )

Γk,λλ(0)

µ1−µ2

eµ1t +
Γk,λbλ,q−Γλ,λbk,q

µ1µ2

+
Γk,λ(bλ,q+τµ1bλ,pǫ)+(µ1−Γλ,λ)(bk,q+τµ1bk,pǫ)

µ1(µ1−µ2)
eµ1(t−T ) t ≥ T

(39)

λ (t) =







(µ1−Γk,k)λ(0)
µ1−µ2

eµ1t +
(µ2−Γk,k)λ(0)

µ2−µ1

eµ2t for t ∈ [0, T )
(µ1−Γk,k)λ(0)

µ1−µ2

eµ1t +
Γλ,kbk,q−Γk,kbλ,q

µ1µ2

+
Γλ,k(bk,q+τµ1bk,pǫ)+(µ1−Γk,k)(bλ,q+τµ1bλ,pǫ)

µ1(µ1−µ2)
eµ1(t−T ) t ≥ T

(40)

where µ1 and µ2 are the eigenvalues of the ΓFC matrix.31

The above solution has one undetermined variable λ(0). We seek a path for (λ, k) that

is not explosive. We choose λ(0) such that the explosive root µ2 does not determine the

evolution of the system for t > T ; otherwise, the path would be explosive. This restriction

on λ(0) is:

Γk,λλ(0) + (µ2 − Γλ,λ) k(0)

(µ2 − µ1)
= −

Γk,λ (bλ,q + τµ2bλ,pǫ) + (µ2 − Γλ,λ) (bk,q + τµ2bk,pǫ)

µ2 (µ2 − µ1)
e−µ2T

Panel (d) of Figure 5 contains the phase diagram for the forward-compatibility model

when the conditions of Theorem 3 are satisfied. Before the news shock, the economy is at

its initial steady state (kss, λss). The initial capital stock is lower and the shadow value

of investment is larger than their long-run, post-shock counterparts (k′

ss, λ
′

ss). M is the

pre-shock stable manifold and M′ is the corresponding manifold after time T .

At the instant of the news arrival, the shadow value of investment increases. This occurs

because new investment will be more productive relative to previous investment, albeit not

until time T . Capital does not jump instantaneously; however k̇ (0) > 0. This shows that

investment increases in response to the shock—the first of three requirements for procyclical

news shocks. The reader should return to Figure 3(b) to see graphically that the second

requirement–that consumption rises–is satisfied. That figure shows that the increase in λ

results in higher consumption.32 The third requirement—that hours increase– holds because,

otherwise, both consumption and investment could not increase.

31In the above expressions and the expression below, we suppress the superscript FC from several variables

to avoid notational clutter.
32The intuition for this effect is discussed early in the paper.
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At instant T , the actual increase in investment specific technology rises. All future

investment produces an additional one percent of capital. Moreover, because of forward

compatibility, investment made during the preparatory phase becomes τ percent more pro-

ductive. This latter effect causes the capital to jump up at T . This latter effect also causes

λ to jump down from T− to T+. When the capital stock jumps up, the shadow value of

investment, i.e. adding to that capital stock, declines in a discrete fashion. During the

preparatory phase, the explosive root is operative, causing λ to rise.

Next, at after time T+, k and λ lie on the new stable manifold M′. After the news

arrives, the system is saddle path stable. If (k (t) , λ (t)) did not lie on M′ for t > T+, then

the pair would diverge. Intuitively, going from T+ onward, k and λ must be on the new

manifold because technology has reached its new permanently higher level.33

To close this section, we discuss the main restriction on the model parameters:

τ >
Γk,λbλ,q + (µ2 − Γλ,λ) bk,q

Γk,λµ2bλ,pǫ + (µ2 − Γλ,λ)µ2bk,pǫ

In our above discussion, we have outlined that the dynamics crucially depend on the

marginal returns on investment relative to consumption. In particular, we need a sufficiently

large return to induce the planner to increase investment. Both the curvature in the utility

function and the degree of complementarity affect the size of the marginal return on invest-

ment. Low curvature lessens the consumption-smoothing motive and, thus, reduces the cost

of allocating resources towards investment and away from consumption. In the extreme case

when σ = 0, the planner no longer cares about consumption smoothing and his sole aim is

to have capital at its new steady level at time T . This causes the return on investment to

increase. Ideally, the planner would like to jump to the new capital level by only sacrificing

consumption in a small neighborhood before T , however, production complementarity would

cause the price of consumption at that instant to increase dramatically. This results in the

planner smoothing the investment increase between time zero and t = T .

Quantitative Analysis of the Forward-Compatibility Model

33The partial forward-compatible assumption in this model is similar to the time-to-build assumption where
K̇ (t) = Q (t) I (t− ξ)− δK (t) (here ξ gives a measure of how long it takes to build capital). There are two
key differences though: (1) forward-compatible investment is available in the period after it is made, (2)
only part of the current investment is able to take advantage of future technology in the forward compatible
model. That said, it can be shown that in a model with production complementarity and time-to-build if
xi > T then under certain plausible calibrations the model is able to generate procyclical technology news
shocks.
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The only new parameter is τ , the degree of forward compatibility. This is clearly a

difficult parameter to calibrate. We set τ = 0.66. The remaining parameters are set at

values used earlier in the paper.

Figure 11 plots the responses of key variables to a positive news shock. As seen in

panels (b)-(d), consumption, investment and hours all increase upon the arrival of the news.

The three then increase smoothly until the beginning of quarter four. Then technology

actually increases; each of the three jumps upward because the output cost of producing

newly installed capital, 1/Q, falls.

Note that consumption increases by less than investment on impact. The magnitude

of the consumption response is sensitive to parameter values. Specifically, the size of this

response is increasing in the degree of forward compatibility, production complementarity

and the curvature parameter.

Although we set T = 4 (i.e. one year) in our baseline calibration, the model can exhibit

procyclical news shows for much higher values of T . Holding all other parameters fixed at

their benchmark values, calculations using Theorem 3, procyclical news shocks obtain for

any T < 21.3.

Next, the relative price of investment to consumption, seen in panel (e), rises on impact

due to production complementarity along with a larger increase in investment than an in-

crease in consumption in response to the news. Panel (f) shows that the shadow value of

investment is procyclical.

The dynamics of news shocks of every model in this paper are contained in Figure 5. All

models discussed in the paper, excluding the forward-compatible model, achieve λ(0) > 0

by causing the stable manifold to shift upwards. With the forward compatibility, this is not

necessary. We can maintain the stable manifold movements as in the standard neoclassical

model and yet generate procyclical news shocks by instead adding in a friction that results

in a discontinuity in the time path of the state and co-state variables. This allows a fair

amount of flexibility in adding other non-related frictions and still generating procyclical

news shocks.

Including a feature that adds a discontinuity to the state variable allows for a much

richer set of dynamics and places fewer restrictions on the movements of the stable manifold

vis-a-vis the inclusion of other economic frictions in the model.

With respect to existing research, we note that Flóden (2007) constructs a two-period

model that is capable of resolving the comovement puzzle using variable capacity utilization

and vintage capital. In his paper, news arrives in the initial period and technology arrives in
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the second period. The news increases the efficiency of investment made in the initial period

toward producing capital in the second period, which is similar to our forward-compatibility.

We are additionally interested in the value of the capital stock, which can be interpreted

as the value of the stock market in a typical decentralization of our social planner’s prob-

lem. Beaudry and Portier (2006) suggest that the stock price is procyclical with respect to

technology news shocks.

The value of the firm with forward compatible investment, in a decentralization of our

model, is:

V FC(t) =

(

i(t)

c(t)

)ν−1
1

q(t)
k(t)− It<T

[

e−ρ(T−t)UC(T )

UC(t)

(

i(T )

c(T )

)ν−1

e−δT K̄τ

]

(41)

We can break this equation into three distinct parts: (i)
(

i
c

)ν−1
gives the price of invest-

ment due to the interplay between consumption-investment along the bowed-out production

frontier that is generated by production complementarities in the model; (ii) 1
q
gives a mea-

sure of the exogenous changes in the price of capital due to investment-specific shocks. Terms

(i) and (ii) multiply k; (iii) the last term reflects the fact that with forward-compatible in-

vestment not all capital experiences a productivity jump when the news arrives.

The solid line in Figure 12 plots the impulse response of V FC(t). The value of the firm falls

on impact. This is not surprising. In the standard neoclassical model, a contemporaneous

positive investment-specific technology shock causes the value of the firm to fall. Recall

the value of the firm is simply the value of its capital. Higher productivity in the capital-

producing sector depresses the price of capital. Thus, the value of the firm must fall on

impact. This effect, represented by (ii), operates under forward compatibility and with

respect to news shocks as well. It is somewhat dampened by ii; the bowed-out production

frontier and increase in the investment-consumption causes the price of capital to increase.

Finally, term (iii) contributes to a fall in V FC(t) upon the news arrival.

Neutral changes in technology, as opposed to investment-specific, do not necessarily re-

duce the price of capital relative to consumption. Consider the value of the firm in our model

of Section 2. Recall that it contained neutral technology shocks and production complemen-

tarties. In that case, the value of the firm is V PC(t) = (i(t)/c(t))ν−1 k(t). The dotted line in

Figure 12 plots the impulse response for V PC(t).34 For this model, the value of the firm rises

with the arrival of the shock. The presence of production complementarities increase the

34We use the benchmark calibration from Section 2 to compute this impulse response.
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price of investment relative to consumption when the planner moves to increase investment

in response to a news shock. This suggests that models with neutral-technology news shocks

are more likely to generate procyclical stock prices.

6 Conclusion

In this paper, we have made the case that an analytic approach to understanding news

shocks in stochastic growth models helps to generate important insights. Up to a first-

order approximation, we have provided analytic solutions to five variants on the standard

neoclassical model. In each case, we have provided conditions under which the model exhibits

procyclical news shocks. For each model, we have provided a plausible calibration and then

examined the quantitative features of the impulse response functions.

By examining several models, we have identified commonalities across models that resolve

the news-shock comovement puzzle. Each model has a mechanism or mechanisms that ensure

that consumption and investment do not crowd each other out and that the relative benefit

of forgoing leisure outweighs its cost.

As a result of our analysis, we have developed a view on what type of mechanisms best

suited for achieving the above conditions. First, we contend that it is more reasonable to

attribute procyclical news shocks to production-based rather than preference-based compo-

nents. For example, GHH preferences help significantly boost the size of a consumption boom

in the production complementary model, using these preferences creates other problems, not

related to news shock. These include an absence of balanced growth with respect to neutral

technological change. On the other hand, the addition of production complementarity seems

to be a plausible production-based mechanism to ensure that consumption and investment

do not crowd each other out.
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Table 1: Parameterization for computing impulse responses from various models

Parameter Value Description

Production complementarity
β = 1

ρ+1
0.985 Subjective discount factor (quarterly)

α 0.33 Labor share in production is (1− α)
δ 0.025 Depreciation rate of capital

υ 1.8 Degree of complementarity between c and i (> υc = (1− α)−1)
σ 0.5 Utility curvature
θ 0.253 Calibrated to match a steady state price of investment of 1
T 4 Quarters between news and actual technology increase

Labor Externality
σ 1 Utility curvature - separable Utility
γN 0.332 Degree of labor externality
ψI 20 Investment adjustment cost

GHH preferences
ω 0.5 Utility curvature
1

ψ
100 Frisch Elasticity

ξ 6.96 Calibrated to match steady state labor of 0.3
Investment Adjustment Costs

σ 1 Utility curvature - separable utility
ψI 10 Investment adjustment cost

Forward Compatible Investment
σ 1 Utility curvature
τ 0.66 Degree of forward compatibility
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Figure 2: Production frontier between consumption and investment as ν changes.
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Figure 5: Phase diagrams in (k, λ) space for a positive news shock

k

λ

(a) Standard Production, σ =1

(k
0
,λ

0
)

(k
T
,λ

T
)

(k
ss

,λ
ss

)

(k'
ss

,λ'
ss

)

M

M'

(c)  Production Complementarities, 
 Low σ

λ

k

(k
0
,λ

0
)

(k
T
,λ

T
)

(k
ss

,λ
ss

)
(k'

ss
,λ'

ss
)

M

M'

k

λ

(b) Production Complementarities, 
 High σ

(k
0
,λ

0
)(k

T
,λ

T
)

(k
ss

,λ
ss

)

(k'
ss

,λ'
ss

)

M

M'

k

λ

(d) Production Complementarities,
 Partial Forward Compatibility

(k
0
,λ

0
)

(k
T -

,λ
T -

)

(k
ss

,λ
ss

)

(k'
ss

,λ'
ss

)

M

M'

(k
T+

,λ
T+

)

42



F
ig
u
re

6:
C
ri
ti
ca
l
U
ti
li
ty

C
u
rv
at
u
re

(σ
∗
)
v
s.

O
th
er

M
o
d
el

P
ar
am

et
er
s

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5

0
0
.2

0
.4

0
.6

0
.8

1

1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.92

Critical Value of Utility Curvature (σ
c
)

C
a

p
it

a
l 

S
h

a
re

 i
n

 P
ro

d
u

c
ti

o
n

 (
α

)

R
a

ti
o

 o
f 

D
is

c
o

u
n

t 
F

a
c

to
r 

to
 C

a
p

it
a

l 
D

e
p

re
c

ia
ti

o
n

 R
a

te
 (

ρ
/δ

)

43



F
ig
u
re

7
:
Im

p
u
ls
e
R
es
p
o
n
se

to
a
P
o
si
ti
v
e
N
ew

s
S
h
o
ck

-
B
en
ch
m
a
rk

P
ro
d
u
ct
io
n
C
o
m
p
le
m
en
ta
ri
ty

M
o
d
el

0
5

1
0

1
5

0

0
.2

0
.4

0
.6

0
.81

(a
) 

T
e
c
h

n
o

lo
g

y

Log Deviations

0
5

1
0

1
5

0

0
.2

0
.4

0
.6

0
.8

(b
) 

C
o

n
s
u

m
p

ti
o

n

0
5

1
0

1
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

(c
) 

In
v
e
s
tm

e
n

t

0
5

1
0

1
5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5
(d

) 
L

a
b

o
r

Log Deviations

P
e
ri

o
d

s
0

5
1
0

1
5

0

0
.1

0
.2

0
.3

0
.4

0
.5

(e
) 

P
ri

c
e
 o

f 
In

v
e
s
tm

e
n

t

P
e
ri

o
d

s
0

5
1
0

1
5

−
0
.1

5

−
0
.1

−
0
.0

50

0
.0

5
(f

) 
S

h
a
d

o
w

 V
a
lu

e
 o

f 
In

v
e
s
tm

e
n

t

P
e
ri

o
d

s

44



F
ig
u
re

8:
Im

p
u
ls
e
R
es
p
on

se
to

a
P
os
it
iv
e
N
ew

s
S
h
o
ck

-
L
ab

or
E
x
te
rn
al
it
y
M
o
d
el
)

0
5

1
0

1
5

0

0
.2

0
.4

0
.6

0
.81

(a
) 

T
e
c
h

n
o

lo
g

y

Log Deviations

0
5

1
0

1
5

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

(b
) 

C
o

n
s
u

m
p

ti
o

n

0
5

1
0

1
5

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2
(c

) 
In

v
e
s
tm

e
n

t

0
5

1
0

1
5

−
0
.3

−
0
.2

5

−
0
.2

−
0
.1

5

−
0
.1

−
0
.0

50

0
.0

5
(d

) 
L

a
b

o
r

Log Deviations

P
e
ri

o
d

s
0

5
1
0

1
5

0

0
.51

1
.5

(e
) 

P
ri

c
e
 o

f 
In

v
e
s
tm

e
n

t

P
e
ri

o
d

s
0

5
1
0

1
5

0

0
.2

0
.4

0
.6

0
.81

(f
) 

S
h

a
d

o
w

 V
a
lu

e
 o

f 
In

v
e
s
tm

e
n

t

P
e
ri

o
d

s

45



F
ig
u
re

9
:
Im

p
u
ls
e
R
es
p
o
n
se

to
a
P
o
si
ti
v
e
N
ew

s
S
h
o
ck

-
V
a
ri
a
n
ts

o
n
th
e
P
ro
d
u
ct
io
n
C
o
m
p
le
m
en
ta
ri
ty

M
o
d
el
:
G
H
H

P
re
fe
re
n
ce
s
a
n
d
In
v
es
tm

en
t
A
d
ju
st
m
en
t
C
o
st
s

0
5

1
0

1
5

0

0
.2

0
.4

0
.6

0
.81

Log Deviations

(a
) 

T
e
c
h

n
o

lo
g

y

 

 

G
H

H
 P

re
fe

re
n

c
e

s

In
v

e
s

tm
e

n
t 

A
d

ju
s

tm
e

n
t.

 C
o

s
ts

0
5

1
0

1
5

0

0
.51

1
.52

2
.53

3
.5

(b
) 

C
o

n
s
u

m
p

ti
o

n

0
5

1
0

1
5

0123456
(c

) 
In

v
e
s
tm

e
n

t

0
5

1
0

1
5

−
1012345

(d
) 

L
a
b

o
r

Log Deviations

P
e
ri

o
d

s
0

5
1
0

1
5

0

0
.51

1
.52

(e
) 

P
ri

c
e
 o

f 
In

v
e
s
tm

e
n

t

P
e
ri

o
d

s
0

5
1
0

1
5

0

0
.51

1
.52

2
.5

(f
) 

S
h

a
d

o
w

 V
a
lu

e
 o

f 
In

v
e
s
tm

e
n

t

P
e
ri

o
d

s

46



Figure 10: Efficiency of Different Types of Capital
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A Lemmas and Theorems

Proof of Lemma 1. Substituting (9) into (12):

αk + (1− α) a = (1− (1− υ (1− α)) sI) c+ (1− υ (1− α)) sIi

=
(

1− φPC

I

)

c+ φPC

I
i (42)

Here φPC

I
= (1− υ (1− α)) sI .

k(0) = 0 and a(0) = 0, therefore (42) can be written as:

0 =
(

1− φPC

I

)

c(0) + φPC

I
i(0) (43)

First, if υ (1− α) > 1, then φPC

I
< 0 &

(

1− φPC

I

)

> 0 . Therefore, if υ (1− α) > 1 and c(0)

increases then for (43) to hold i(0) must also increase.

Further, if υ (1− α) > 1, then
(

1− φPC

I

)

=
(

−φPC

I
+ 1

)

> −φI . Therefore, if c(0) in-

creases, then for (43) to hold i(0) must increase by a larger magnitude than c(0), this

implies (i(0)− c(0)) increases when c(0) increases, which in turn due to (9) implies that n(0)

must increase.

Therefore, if υ (1− α) > 1, then consumption, investment, and hours will comove at time

zero.

Second, if υ (1− α) < 1, then φPC

I
∈ (0, 1) and

(

1− φPC

I

)

> 0. Therefore, if c(0) increases

then for (43) to hold i(0) must decrease. Therefore, if υ (1− α) < 1, then consumption,

investment and hours will not comove at time zero.

Proof of Lemma 2. Substituting (9) into (10):

γPC

I
i−

(

σ + γPC

I

)

c = λ (44)

Here γPC

I
= (υ − 1)− (υ (1− α) (1− σ) sI) / (1− sI).
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Further, substituting (42) into (44) and solving for c at time 0 leads to:

c(0) =
−φPC

I

γPC
I + φPC

I σ
λ(0) (45)

First, from the proof of lemma 1 we know that −φPC
I > 0 if υ (1− α) > 1. Also, γPC

I +

φPC
I σ > 0 if υ (1− α) > 1.35 From equation (45) if λ(0) > 0 then c(0) will increase. If

c(0) > 0 then from the proof of lemma 1 we know that both i(0) and n(0) will also increase.

As a result, if υ (1− α) > 1 and λ(0) > 0, then consumption, investment, and labor hours

will comove procyclically at time zero in response to a news shock about technology in time

T > 0.

Second, by Lemma 1 we also know that if υ (1− α) < 1 and λ(0) > 0, then consumption

and investment will not comove at time zero.

Proof of Lemma 3. Solving (42) and (44) simultaneously for the values of c and i:

c = τPC
c,k k + τPC

c,λ λ+ τPC
c,a a (46)

i = τPC
i,k k + τPC

i,λ λ+ τPC
i,a a (47)

n = τPC
n,k k + τPC

n,λ λ+ τPC
n,a a (48)

Here τPC
c,k , τPC

c,λ τPC
i,k , τPC

i,λ , τPC
n,k , and τPC

n,λ are all positive.36

It follows directly that if λ̇ ≥ 0 and k̇ ≥ 0 ∀t < T then ċ ≥ 0, i̇ ≥ 0, and ṅ ≥ 0 for all t < T .

Again, remember for ∀t < T , a(t) = 0.

Proof of Lemma 4. Recall k(0) = 0. As a result, the time derivatives of the k(t) and λ(t)

35For the proof see Lemma B.3 in Appendix B (Supplementary Appendix).
36For the proof see Lemma B.4 in Appendix B (Supplementary Appendix).
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paths for all t < T :

k̇ (t) =
ΓPC
k,λ

(

µPC
2

eµ
PC
2

t − µPC
1

eµ
PC
1

t
)

µPC
2

− µPC
1

λ(0)

λ̇ (t) =

[

(

µPC
2

− ΓPC
k,k

)

µPC
2

− µPC
1

µPC
2

eµ
PC
2

t
−

(

µPC
1

− ΓPC
k,k

)

µPC
2

− µPC
1

µPC
1

eµ
PC
1

t

]

λ(0)

First, for 0 ≤ t < T :
(

ΓPC
k,λ

(

µPC
2

eµ
PC
2

t − µPC
1

eµ
PC
1

t
))

/
(

µPC
2

− µPC
1

)

is positive as ΓPC
k,λ > 0,

37 and we know that µPC
2

> 0 and µPC
1

< 0. Therefore the sign(k̇ (t)) = sign(λ0).

Second, for the λ̇ equation:
(

µPC
2

− ΓPC
k,k

)

µPC
2

eµ
PC
2

t/
(

µPC
2

− µPC
1

)

is positive because µPC
2

−

ΓPC
k,k = ΓPC

λ,λ − µPC
1

,38 and we know µPC
1

< 0 and ΓPC
λ,λ > 0.39

(

µPC
1

− ΓPC
k,k

)

µPC
1

eµ
PC
1

t/
(

µPC
2

− µPC
1

)

may be either positive or negative. If µPC
1

− ΓPC
k,k > 0,

then the second term on the right-hand side is positive. In this case, λ̇ (t) > 0. However, if

µPC
1

−ΓPC
k,k < 0, then

(

µPC
1

− ΓPC
k,k

)

µPC
1

eµ
PC
1

t/
(

µPC
2

− µPC
1

)

is negative. In this case, we must

show that
(

µPC
2

− ΓPC
k,k

)

µPC
2

eµ
PC
2

t/
(

µPC
2

− µPC
1

)

is larger than
(

µPC
1

− ΓPC
k,k

)

µPC
1

eµ
PC
1

t/
(

µPC
2

− µPC
1

)

in order that λ̇ (t) > 0. Because µPC
2

> 0 > µPC
1

, in this second case, the smallest value for

λ̇ (t) occurs at t = 0.

λ̇ (0) =
λ(0)

µPC
2

− µPC
1

[

µPC
2

(

µPC
2

− ΓPC
k,k

)

− µPC
1

(

µPC
1

− ΓPC
k,k

)]

= λ0

[

µPC
2

+ µPC
1

− ΓPC
k,k

]

= λ0

[

ΓPC
k,k + ΓPC

λ,λ − ΓPC
k,k

]

= λ0Γ
PC
λ,λ

As ΓPC
λ,λ > 0, this establishes that sign(λ̇ (t)) = sign(λ0).

37For the proof see Lemma B.5 in Appendix B (Supplementary Appendix).
38This follows because tr(ΓPC) = µPC

1
+ µPC

2
.

39For the proof see Lemma B.5 in Appendix B (Supplementary Appendix).
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Proof of Lemma 5. Recall µPC
2 > 0 and

k (t) =











ΓPC
k,λ

λ(0)+(µPC
1

−ΓPC
λ,λ)k(0)

µPC
1

−µPC
2

eµ
PC
1

t +
ΓPC
k,λ

λ(0)+(µPC
2

−ΓPC
λ,λ)k(0)

µPC
2

−µPC
1

eµ
PC
2

t for t ∈ [0, T )

ΓPC
k,λ

λ(0)+(µPC
1

−ΓPC
λ,λ)k(0)

µPC
1

−µPC
2

eµ
PC
1

t +
ΓPC
k,λ

bPC
λ,a

−ΓPC
λ,λ

bPC
k,a

µPC
1

µPC
2

+
ΓPC
k,λ

bPC
λ,a

+(µPC
1

−ΓPC
λ,λ)bPC

k,a

µPC
1 (µPC

1
−µPC

2 )
eµ

PC
1

(t−T ) t ≥ T

Then as k(0) = 0 a non-explosive path for [λ k]′ requires that we choose λ(0) such that

the terms involving the explosive root µPC
2 in the exponential are ‘zeroed out’ for all t > T .

Otherwise the path for k(t) will be explosive. This imposes the following restriction on λ(0):

(

ΓPC
k,λ

µPC
2 − µPC

1

)

λ0 = −
ΓPC
k,λ b

PC
λ,a +

(

µPC
2 − ΓPC

λ,λ

)

bPC
k,a

µPC
2 (µPC

2 − µPC
1 )

e−µPC
2

T

This can be re-written as:

λ0 = −

[

ΓPC
k,λ b

PC
λ,a +

(

µPC
2 − ΓPC

λ,λ

)

bPC
k,a

ΓPC
k,λµ

PC
2

]

e−µPC
2

T (49)

Because ΓPC
k,λ > 0, λ(0) > 0 if and only if ΓPC

k,λ b
PC
λ,a +

(

µ2 − ΓPC
λ,λ

)

bPC
k,a < 0. Also, ΓPC

k,λ b
PC
λ,a +

(

µ2 − ΓPC
λ,λ

)

bPC
k,a < 0 algebraically simplifies to µPC

2 < (ρ+ (1− α) δ) υ/ (γI + σ) .

Proof of Theorem 1. ⇐. If υ (1− α) > 1 and µPC
2 < (ρ+ (1− α) δ) υ/

(

γPC
I + σ

)

, then

a technology news shock is procyclical. Lemmas 2 and 5 prove the procyclical comovement

at t = 0, while Lemmas 3, 4 and 5 establish the procyclical comovement for 0 < t < T .

⇒. If υ (1− α) < 1 or µPC
2 < (ρ+ (1− α) δ) υ/

(

γPC
I + σ

)

, then a technology news shock is

not procyclical. This follow trivially from Lemma 2, as the procyclical comovement will not

occur at time t = 0 if either of the above conditions are not met.

Proof of Lemma 6. The condition µPC
2 < (ρ+ (1− α) δ) υ/

(

γPC
I + σ

)

can be rewritten

implicitly as σ < σ∗. As δ → 0 we have σ∗ → 1. The above lemma thus follows directly

from Theorem 1.
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Proof of Lemma 7. Substituting (22) into (12):

αk + (1− α) a =

(

1−

(

1−
1− α

1− γN

)

sI

)

c+

(

1−
1− α

1− γN

)

sIi

=
(

1− φLE
I

)

c+ φLE
I i (50)

Here φLE
I =

(

1− 1−α
1−γ

N̄

)

sI .

k(0) = 0 and a(0) = 0, therefore (50) can be written as:

0 =
(

1− φLE
I

)

c(0) + φLE
I i(0) (51)

First, if γN > α, then φLE
I < 0 &

(

1− φLE
I

)

> 0 . Therefore, if γN > α and c(0) increases

then for (51) to hold i(0) must also increase.

Further, if γN > α, then
(

1− φLE
I

)

=
(

−φLE
I + 1

)

> −φLE
I . Therefore, if c(0) increases, then

for (51) to hold i(0) must increase by a larger magnitude than c(0), this implies (i(0)− c(0))

increases when c(0) increases, which in turn due to (22) implies that n(0) must increase.

Therefore, if γN > α, then consumption, investment, and hours will comove at time zero.

Second, if γN < α, then φLE
I > 0 and

(

1− φLE
I

)

> 0. Therefore, if c(0) increases then for

(51) to hold i(0) must decrease. Therefore, if γN < α, then consumption, investment and

hours will not comove at time zero.

Proof of Lemma 8. For a stable solution to exist one eigenvalue of ΓLE should be positive

and the other negative. The product of the eigenvalues is given by the determinant of the

ΓLE matrix.

det
(

ΓLE
)

=
−δ (ρ+ δ)

(φLE
I σ + γLEI + ψI (1− φLE

I ))
[(1− sI) (1− α)]

First, if ψI > ψ+

I = −

γLE

I
+φLE

I
σ

1−φLE

I

then the product of the eigenvalues is negative and it follows

that the eigenvalues have opposite signs. Further, it can be shown that tr
(

ΓLE
)

= ρ which
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gives the sum of the two eigenvalues.

Second, if ψI < ψ+

I = −
γLE

I
+φLE

I
σ

1−φLE

I

then the product of the eigenvalues is positive and with

tr
(

ΓLE
)

= ρ, which gives the sum of the two eigenvalues, it follows that the eigenvalues are

both positive.

Proof of Lemma 9. Recall µLE2 > 0. Also, ΓLEk,λ > 0.40 For a stable solution we need:

λ0 = −

[

ΓLEk,λb
LE
λ,a +

(

µLE2 − ΓLEλ,λ
)

bLEk,a

ΓLEk,λµ
LE
2

]

e−µ
LE

2
T (52)

As a result λ(0) > 0 if and only if ΓLEk,λb
LE
λ,a +

(

µLE2 − ΓLEλ,λ
)

bLEk,a < 0.

Proof of Theorem 2. Given the proofs and results of lemmas 7 through 9, to prove

this theorem we must establish that when γN > γ∗N and ψI > ψ+

I three results hold: (1)

c(0) > 0 if and only if λ(0) > 0. (2) Consumption, investment and hours will comove pro-

cyclically for all time t < T if ∀t < T , λ̇ ≥ 0 and k̇ ≥ 0. (3) if λ(0) > 0 then λ̇ ≥ 0 and k̇ ≥ 0.

(1): c(0) > 0 if and only if λ(0) > 0 and γN > γ∗N follows from the observation that we can

substitute 22 into 23, and the result into 51 to get an equation of the form c(0) = ζLEλ(0)

where ζLE =
−φLE

I

γLE

I
+φLE

I
σ+ψI(1−φLE

I )
. ζLE > 0 follows trivially from ψI > ψ+

I and γN > γ∗N ⇒

φLE < 0.

(2): We can solve for and define x = τLEx,k k + τLEx,λ λ + τLEx,a a for x = c, i, n. Here τLEc,k , τ
LE
c,λ ,

τLEi,k , τLEi,λ , τLEn,k , and τ
LE
n,λ are all positive41, as result it trivially follows that if ∀t < T , λ̇ ≥ 0

and k̇ ≥ 0 then consumption, investment and hours will comove procyclically for all time

t < T .

(3): The dynamic system given by (26) takes the same form as the dynamic system given

by (17). As a result showing that λ̇ ≥ 0 and k̇ ≥ 0 if λ(0) > 0 amounts, exactly as in lemma

4, to proving that ΓLEk,λ > 0 and ΓLEλ,λ > 0. 42 ΓLEk,λ > 0 and ΓLEλ,λ > 0 follow from ψI > ψ+

I and

γN > γ∗N ⇒ φLE < 0.

40For the proof see Lemma B.10 in Appendix B (Supplementary Appendix).
41For the proof see Lemma B.9 in Appendix B (Supplementary Appendix).
42For the proof see Lemma B.10 in Appendix B (Supplementary Appendix).

55



Results (1) - (3) together establish that if γN > γ∗N , ψI > ψ+

I , and λ(0) > 0 then the labor

externality model exhibits procyclical technology news shocks. From lemma 9 we further

know that λ(0) > 0 if and only if ψI > ψ∗

I .

Proof of Theorem 3. ΓFC = ΓPC and τFC
x,y = τPC

x,y for x = i, c, n and y = k, λ. Hence, for

a model with forward compatible investment lemmas 1 through 4 still hold as before.

Now, recall µFC
2 = µPC

2 > 0. Also, ΓFC
k,λ = ΓPC

k,λ > 0. For a stable solution we need:

λ(0) = −

[

ΓFC
k,λ

(

bFC
λ,q + τµFC

2 bFC
λ,p

)

+
(

µFC
2 − ΓFC

λ,λ

) (

bFC
k,q + τµFC

2 bFC
k,p

)

ΓFC
k,λµ

FC
2

]

e−µFC
2

T (53)

As a result λ(0) > 0 if and only if τ >
ΓFC
k,λ

bFC
λ,q

+(µFC
2

−ΓFC
λ,λ)bFC

k,q

ΓFC
k,λ

µFC
2

bFC
λ,pǫ

+(µFC
2

−ΓFC
λ,λ)µFC

2
bFC
k,pǫ

.

⇐. If υ (1− α) > 1 and τ >
ΓFC
k,λ

bFC
λ,q

+(µFC
2

−ΓFC
λ,λ)bFC

k,q

ΓFC
k,λ

µFC
2

bFC
λ,pǫ

+(µFC
2

−ΓFC
λ,λ)µFC

2
bFC
k,pǫ

, then a investment technology

news shock is procyclical. Lemmas 2 and the result above prove the procyclical comovement

at t = 0, while Lemmas 3, 4 and the result above establish the procyclical comovement for

0 < t < T .

⇒. If υ (1− α) < 1 or τ >
ΓFC
k,λ

bFC
λ,q

+(µFC
2

−ΓFC
λ,λ)bFC

k,q

ΓFC
k,λ

µFC
2

bFC
λ,pǫ

+(µFC
2

−ΓFC
λ,λ)µFC

2
bFC
k,pǫ

, then a technology news shock is

not procyclical. This follow trivially from Lemma 2, as the procyclical comovement will not

occur at time t = 0 if either of the above conditions are not met.

B The Model Economies (Supplementary Appendix For Online Publication)

B.1 A Model with Production Complementarities

B.1.1 The Model Economy

A social planner has the following preferences

U = (1− σ)−1

∫

∞

0

e−ρt [C (t) exp (−N (t))]1−σ dt

over time paths for consumption C and hours worked N . We assume this functional form

for the utility to preserve balanced growth. Also, ρ = 1/β− 1 > 0 and σ ≥ 0, where β is the
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subjective discount factor and σ is the inverse of the intertemporal elasticity of substitution.

The planner is subject to the following constraints:

F [C (t) , I (t)] = K (t)α (A (t)N (t))1−α (54)

K̇ (t) = I (t)− δK (t) (55)

Here K, I and A represent capital, investment and the level of technology. The path of

technology and the initial capital stock are exogenous. The depreciation rate, δ, and the

elasticity of output with respect to capital, α, both lie between zero and one.

Further, we assume:

F (C, I) ≡ [θCυ + (1− θ) Iυ]1/υ

where θ ∈ (0, 1) and υ ≥ 1. When υ = 1, the equation collapses to the standard neo-classical

case, which has infinite substitutability between the two goods. As υ increases, the com-

plementarity between the production of the two goods increases. If υ = ∞, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the technology news shock. The planner again

has perfect foresight, with

A (t) =

{

Ā for t ∈ [0, T )

Ã = 1.01× Ā t ≥ T

For the contemporaneous improvements case T = 0 in the above specification.

B.1.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize U subject to (54) and (55) taking as

given the initial condition K (0) and time path of technology. We can express the problem

as a current value Hamiltonian:

H = C1−σ exp [− (1− σ)N ] + Λ (I − δK) + Φ
(

Kα (AN)1−α
− F (C, I)

)
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The first-order necessary conditions at an interior solution satisfy :

−

UN

UC

= (1− α)
F

N
(FC)

−1 (56)

UC

Λ
=

FC

FI

(57)

Λ̇

Λ
− ρ = δ − α

F

K
(FI)

−1 (58)

along with our initial condition on capital and a transversality condition on Λ.

Equation (56) is the intratemporal Euler equation between consumption and labor hours,

equation (57) is the intratemporal Euler equation between consumption and investment, and

equation (58) is the optimal capital accumulation equation.

B.1.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1− sI) c+ sIi = αk + (1− α) (a+ n) (59)

υsI (i− c) = n (60)

λ = (1− υ) (c− i)− σc−
(1− σ)(1− α)

(1− sI)
n (61)

k̇ = δ (i− k) (62)

λ̇ = − (ρ+ δ) [υ (1− sI) (c− i) + i− k] (63)
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Here, sI =
αδ
ρ+δ

.

We can substitute (60) into (59) to get the consumption-investment production frontier (L1

line):
(

1− φPC
I

)

c+ φPC
I i = αk + (1− α) a (64)

Here, φPC
I = (1− (1− α) υ) sI

We can also substitute (60) into (61) to get the consumption-investment euler equation (L2

line):

γPC
I i−

(

σ + γPC
I

)

c = λ (65)

Here, γPC
I = (υ − 1)− υ(1−α)(1−σ)sI

(1−sI)
.

Equations (64) and (65) now give us a system of equations in i and c (treating λ, k, and a

as exogenous).

We solve the system of equations above for c, i, n, k̇, and λ̇, assuming as given the state

variable λ and k, and the exogenous variable a:

c = τPC
c,k k + τPC

c,λ λ+ τPC
c,a a (66)

i = τPC
i,k k + τPC

i,λ λ+ τPC
i,a a (67)

n = τPC
n,k k + τPC

n,λ λ+ τPC
n,a a (68)

k̇ = ΓPC
k,k k + ΓPC

k,λλ+ bPC
k,a a
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λ̇ = ΓPC
λ,k k + ΓPC

λ,λλ+ bPC
λ,a a

where,

τPC
c,k = ∂c

∂k
=

γPC

I
α

φPC

I
σ+γPC

I

ΓPC
k,k = ∂k̇

∂k
=

−δ((1−α)γPC

I
+φPC

I
σ−ασ)

φPC

I
σ+γPC

I

τPC
c,λ = ∂c

∂λ
=

−φPC

I

φPC

I
σ+γPC

I

ΓPC
k,λ = ∂k̇

∂λ
=

δ(1−φPC

I )
φPC

I
σ+γPC

I

τPC
c,a = ∂c

∂a
=

γPC

I
(1−α)

φPC

I
σ+γPC

I

ΓPC
λ,k = ∂λ̇

∂k
=

(ρ+δ)((1−α)γPC

I
+φPC

I
σ−ασ+ασυ(1−sI))

φPC

I
σ+γPC

I

τPC
i,k = ∂i

∂k
=

α(γPC

I
+σ)

φPC

I
σ+γPC

I

ΓPC
λ,λ = ∂λ̇

∂λ
=

(ρ+δ)(φPC

I
−(1−υ(1−sI)))

φPC

I
σ+γPC

I

τPC
i,λ = ∂i

∂λ
=

1−φPC

I

φPC

I
σ+γPC

I

bPC
k,a = ∂k̇

∂a
=

δ(γPC

I
+σ)(1−α)

φPC

I
σ+γPC

I

τPC
i,a = ∂i

∂a
=

(1−α)(γPC

I
+σ)

φPC

I
σ+γPC

I

bPC
λ,a = ∂λ̇

∂a
=

(ρ+δ)(1−α)(σ(υ(1−sI)−1)−γPC

I )
φPC

I
σ+γPC

I

τPC
n,k = ∂n

∂k
= υsIασ

φPC

I
σ+γPC

I

τPC
n,λ = ∂n

∂λ
= υsI

φPC

I
σ+γPC

I

τPC
n,a = ∂n

∂a
= υsI(1−α)σ

φPC

I
σ+γPC

I

Recall: sI =
αδ
ρ+δ

, φPC
I = (1− (1− α) υ) sI , and γPC

I = (υ − 1)− υ(1−α)(1−σ)sI
(1−sI)

B.1.4 The Dynamic System

Let us now solve the dynamic system:

[

λ̇ (t)

k̇ (t)

]

=

[

ΓPC
λ,λ ΓPC

λ,k

ΓPC
k,λ ΓPC

k,k

][

λ (t)

k (t)

]

+

[

bPC
λ,a

bPC
k,a

]

a (t) (69)

In order to solve this system we must first determine the eigenvalues of the Γ matrix. For

now we assume that a stable solution exists and that one of the eigenvalues is positive and
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the other negative. We will later prove this to be true. Let us label the eigenvalues µPC
1

and µPC
2

and without loss of generality, we will assume henceforth that µPC
1

< 0 and µPC
2

> 0.

We now introduce the technology news shock – a permanent increase in technology in period

T . Specifically,

a (t) = w (t) =

{

0 for t ∈ [0, T )

1 t ≥ T
(70)

To analyze the resulting system, it will be useful to introduce the Laplace transform opera-

tor.

The Laplace transform of a function p (t) is:

L [p (t)] = P̄ (s) =

∫

∞

0

e−stp (t) dt

We will use P̄ rather than P to distinguish the Laplace transform of the log deviation of a

variables from the level of said variable.

Moreover, we know from Theorem 6.3 from Boyce and Diprima (1969), that

L [p′ (t)] = sL (p (t))− p (0)

Taking the Laplace transform of the differential equations in
[

λ k

]

′

and applying this

theorem, we get:

[

Λ̄ (s)

K̄ (s)

]

= (sI − Γ)−1

{[

λ(0)

k(0)

]

+

[

bPC
λ,a

bPC
k,a

]

W̄ (s)

}

(71)

Given (70), it can be shown that

W̄ (s) = L [w (t)] =
1

s
e−sT
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Rewriting equation (71), we get:

[

Λ̄ (s)

K̄ (s)

]

=
1

(s− µPC
1 ) (s− µPC

2 )

[

s− ΓPC
k,k ΓPC

λ,k

ΓPC
k,λ s− ΓPC

λ,λ

]{[

λ(0)

k(0)

]

+

[

bPC
λ,a

bPC
k,a

]

W̄ (s)

}

(72)

Remember, µPC
1 and µPC

2 are the eigenvalues of ΓPC , and µPC
1 < 0 and µPC

2 > 0.

The lower row of (72) gives us:

K̄ (s) =
ΓPC
k,λλ(0) +

(

s− ΓPC
λ,λ

)

k(0)

(s− µPC
1 ) (s− µPC

2 )
+

[

ΓPC
k,λ b

PC
λ,a +

(

s− ΓPC
λ,λ

)

bPC
k,a

s (s− µPC
1 ) (s− µPC

2 )

]

e−sT

Next, we take the inverse Laplace transform of K (s) to recover k as a function of time. After

some algebra,

k (t) =
ΓPC
k,λλ(0)

µPC
1− µPC

2

eµ
PC
1

t +
ΓPC
k,λλ(0)

µPC
2− µPC

1

eµ
PC
2

t +

(

µPC
1 − ΓPC

λ,λ

)

k(0)

µPC
1 − µPC

2

eµ
PC
1

t +

(

µPC
2 − ΓPC

λ,λ

)

k(0)

µPC
2 − µPC

1

eµ
PC
2

t

+uT (t)

(

ΓPC
k,λ b

PC
λ,a − ΓPC

λ,λb
PC
k,a

µPC
1 µPC

2

)

+uT (t)

(

ΓPC
k,λ b

PC
λ,a +

(

µPC
1 − ΓPC

λ,λ

)

bPC
k,a

µPC
1 (µPC

1 − µPC
2 )

eµ
PC
1

(t−T )

)

+uT (t)

(

ΓPC
k,λ b

PC
λ,a +

(

µPC
2 − ΓPC

λ,λ

)

bPC
k,a

µPC
2 (µPC

2 − µPC
1 )

eµ
PC
2

(t−T )

)

where uT (t) is a step function that takes on a value of one for all t ≥ T , and zero otherwise.

Recall that we assume the initial capital stock is at the steady-state level associated with

the pre-shock technology level. As such, k(0) = 0:
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k (t) =
ΓPC
k,λλ(0)

µPC
1− µPC

2

eµ
PC
1

t +
ΓPC
k,λλ(0)

µPC
2− µPC

1

eµ
PC
2

t

+uT (t)

(

ΓPC
k,λ b

PC
λ,a − ΓPC

λ,λb
PC
k,a

µPC
1 µPC

2

)

+uT (t)

(

ΓPC
k,λ b

PC
λ,a +

(

µPC
1 − ΓPC

λ,λ

)

bPC
k,a

µPC
1 (µPC

1 − µPC
2 )

eµ
PC
1

(t−T )

)

+uT (t)

(

ΓPC
k,λ b

PC
λ,a +

(

µPC
2 − ΓPC

λ,λ

)

bPC
k,a

µPC
2 (µPC

2 − µPC
1 )

eµ
PC
2

(t−T )

)

This gives us the solution to a differential equation with one undetermined variable λ(0).

We now seek a path for
[

λ k

]

′

that is not explosive. In order to achieve this, we choose

λ(0) such that the explosive root µPC
2 is ‘zeroed out’ for all t > T . Otherwise, the path for

k (t) will be explosive. This restriction on λ(0) is:

(

ΓPC
k,λ

µPC
2 − µPC

1

)

λ(0) = −

ΓPC
k,λ b

PC
λ,a +

(

µPC
2 − ΓPC

λ,λ

)

bPC
k,a

µPC
2 (µPC

2 − µPC
1 )

e−µPC
2

T

This can be re-written as:

λ(0) = −

[

ΓPC
k,λ b

PC
λ,a +

(

µPC
2 − ΓPC

λ,λ

)

bPC
k,a

ΓPC
k,λµ

PC
2

]

e−µPC
2

T (73)

Let us also solve the second half of our laplace transform. This will allow us to study the

path of λ(t) over time. The first row of (72) gives us:

Λ̄ (s) =

(

s− ΓPC
k,k

)

λ(0) + ΓPC
λ,k k(0)

(s− µPC
1 ) (s− µPC

2 )
+

[

(

s− ΓPC
k,k

)

bPC
λ,a + ΓPC

λ,k b
PC
k,a

s (s− µPC
1 ) (s− µPC

2 )

]

e−sT

Now we can take the inverse Laplace transform of Λ (s) to recover λ as a function of time.

After some algebra and setting k(0) = 0 we get:
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λ (t) =

(

µPC
1 − ΓPC

k,k

)

λ(0)

µPC
1− µPC

2

eµ
PC
1

t +

(

µPC
2 − ΓPC

k,k

)

λ(0)

µPC
2− µPC

1

eµ
PC
2

t

+uT (t)

(

ΓPC
λ,k b

PC
k,a − ΓPC

k,k b
PC
λ,a

µPC
1 µPC

2

)

+uT (t)

(

(

µPC
1 − ΓPC

k,k

)

bPC
λ,a + ΓPC

λ,k b
PC
k,a

µPC
1 (µPC

1 − µPC
2 )

eµ
PC
1

(t−T )

)

+uT (t)

(

(

µPC
2 − ΓPC

k,k

)

bPC
λ,a + ΓPC

λ,k b
PC
k,a

µPC
2 (µPC

2 − µPC
1 )

eµ
PC
2

(t−T )

)

Given that we choose a λ(0) such that the explosive root µPC
2 is ‘zeroed out’ for all t > T ,

we can simplify our equations for the time paths of k(t) and λ(t) to the following:

k (t) =







ΓPC
k,λ

λ(0)

µPC
1

−µPC
2

eµ
PC
1

t +
ΓPC
k,λ

λ(0)

µPC
2

−µPC
1

eµ
PC
2

t for t ∈ [0, T )

ΓPC
k,λ

λ(0)

µPC
1−

µPC
2

eµ
PC
1

t +
ΓPC
k,λ

bPC
λ,a

−ΓPC
λ,λ

bPC
k,a

µPC
1

µPC
2

+
ΓPC
k,λ

bPC
λ,a

+(µPC
1

−ΓPC
λ,λ)bPC

k,a

µPC
1 (µPC

1
−µPC

2 )
eµ

PC
1

(t−T ) t ≥ T

(74)

λ (t) =











(µPC
1

−ΓPC
k,k )λ(0)

µPC
1

−µPC
2

eµ
PC
1

t +
(µPC

2
−ΓPC

k,k )λ(0)
µPC
2

−µPC
1

eµ
PC
2

t for t ∈ [0, T )

(µPC
1

−ΓPC
k,k )λ(0)

µPC
1

−µPC
2

eµ
PC
1

t +
ΓPC
λ,k

bPC
k,a

−ΓPC
k,k

bPC
λ,a

µPC
1

µPC
2

+
ΓPC
λ,k

bPC
k,a

+(µPC
1

−ΓPC
k,k )bPC

λ,a

µPC
1 (µPC

1
−µPC

2 )
eµ

PC
1

(t−T ) t ≥ T

(75)

Equations (66), (67), (68), (74), and (75), along with equation (73) give us a stable solution

to our model economy for a 1% technology shock that occurs in period T .

B.1.5 Proofs & Expressions

In this section we will sign the various expressions needed for Lemma 1-5 and Theorem 1.
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First, let us recall the proof for Lemma 1. For consumption, investment and hours to comove

at time zero (on impact of the news) we required υ (1− α) > 1 which resulted in φPC
I < 0

and thus a positively sloped L1 line. For this section we will assume that υ > (1− α)−1

Assumption: υ > υ∗ = (1− α)−1

Lemma B.1: γPC
I > 0

Proof.

γPC
I = (υ − 1)−

υ (1− α) (1− σ) sI
(1− sI)

= (υ − 1)−
(1− α) δ

(ρ+ (1− α) δ)
(1− σ) υα

> (υ − 1)− υα

= υ (1− α)− 1 > 0

Lemma B.2: The slope of the L2 line in the consumption-investment space is positive.

Proof. The L2 line is given by:

i =

(

σ + γPC
I

)

γPC
I

c+
1

γPC
I

λ (76)

If γPC
I > 0 then the slope,

(σ+γPC

I )
γPC

I

, must be positive.

Lemma B.3: φPC
I σ + γPC

I > 0
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Proof.

φPC

I
σ + γPC

I
= (1− (1− α) υ) sIσ + (υ − 1)−

υ (1− α) (1− σ) sI
(1− sI)

= sIσ − (1− α) υsIσ + (υ − 1)−
((1− α) υsI − (1− α) υsIσ)

1− sI

= sIσ + (υ − 1)−
(1− α) υsI

1− sI
+

(1− α) υs2
I
σ

1− sI

= υ − (1− σsI)

[

1 + (1− α) υ
sI

1− sI

]

= υ

{

1− (1− σsI)

[

1

υ
+ (1− α)

sI

1− sI

]}

> 0

The last inequality follows from the following observations:

If (1− σsI) < 0, then we are done. If (1− σsI) > 0, then we can define:

χ (υ) =

{

1− (1− σsI)

[

1

υ
+ (1− α)

sI

1− sI

]}

Now,

χ (∞) =

{

1− (1− σsI) (1− α)
sI

1− sI

}

=

{

1− (1− σsI)α
(1− α) δ

ρ+ (1− α) δ

}

> 0

χ (υc) =

{

1− (1− σsI)

[

(1− α) + (1− α)
sI

1− sI

]}

=

[

1− (1− σsI)
(1− α)

1− sI

]

=

[

1− (1− σsI)
(1− α) ρ+ (1− α) δ

ρ+ (1− α) δ

]

> 0
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χ′ (υ) =
(1− σsI)

υ2
> 0

Therefore, for υ ∈ (υc,∞) , χ (υ) > 0. Given Assumption 1 this translates to χ (υ) > 0

Lemma B.4: τPC
c,k , τPC

c,λ , τPC
c,a , τPC

i,k , τPC
i,λ , τPC

i,a , τPC
n,k , τ

PC
n,λ , and τPC

n,a are all positive

Proof. This result follows trivially lemma’s B.2 and B.3 and our assumption, υ > (1− α)−1,

which ensures φPC
I < 0.

Lemma B.5: ΓPC
k,λ and ΓPC

λ,λ are both positive.

Proof. ΓPC
k,λ > 0 follows trivially from lemma B.3 and our assumption, υ > (1− α)−1

⇒

φPC
I < 0.

To prove ΓPC
λ,λ =

(ρ+δ)(φPC

I
−(1−υ(1−sI)))

φPC

I
σ+γPC

I

> 0 it suffices to show
(

φPC
I − (1− υ (1− sI))

)

> 0,

because by lemma B.3 we know φPC
I σ + γPC

I > 0.

φPC
I − (1− υ (1− sI)) =

(1− υ (1− α))αδ

ρ+ δ
+

(υ − 1) ρ+ (υ (1− α)− 1) δ

ρ+ δ

=
(υ − 1) ρ+ (1− α) (υ (1− α)− 1) δ

ρ+ δ
> 0

Lemma B.4 above proves that ΓPC
k,λ and ΓPC

λ,λ are both positive. For our analysis we do not

need to sign ΓPC
k,k and ΓPC

λ,k
43.

Lemma B.6: One of the eigenvalues of the ΓPC matrix is positive and other negative.

43It can be shown that both these variables are positive for σ ∈ [0, 1]
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Proof. The product of the eigenvalues is given by the determinant of ΓPC :

det
(

ΓPC
)

=
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[(

α
(

γPC
I + σ

)

− φPC
I σ − γPC

I

) (

(1− υ (1− sI))− φPC
I

)]

+
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[(

1− φPC
I

) (

(1− α) γPC
I −

(

α− φPC
I

)

σ + αυ (1− sI) σ
)]

=
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[(

(α− 1) γPC
I −

(

φPC
I − α

)

σ
) (

(1− υ (1− sI))− φPC
I

)]

+
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[(

1− φPC
I

) (

(1− α) γPC
I −

(

α− φPC
I

)

σ + αυ (1− sI) σ
)]

=
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[(

(1− α) γPC
I −

(

α− φPC
I

)

σ
)

υ (1− sI)−
(

1− φPC
I

)

ασυ (1− sI)
]

=
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[(

(1− α) γPC
I −

(

α− φPC
I

)

σ
)

υ (1− sI)−
(

1− φPC
I

)

ασυ (1− sI)
]

=
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
2

[

υ (1− sI) (1− α)
(

γPC
I + σφPC

I

)]

=
−δ (ρ+ δ)

(φPC
I σ + γPC

I )
[υ (1− sI) (1− α)] < 0

As the product of the eigenvalues is negative it follows that the eigenvalues have opposite

signs.

Lemma B.7: The sum of the eigenvalues of the ΓPC matrix is ρ.

Proof. The sum of the eigenvalues is given by the trace of ΓPC :

tr
(

ΓPC
)

= ΓPC
λ,λ + ΓPC

k,k

=
δ
(

(α− 1) γPC
I + ασ − φPC

I σ
)

− δ
(

1− υ (1− sI)− φPC
I

)

− ρ
(

1− υ (1− sI)− φPC
I

)

φPC
I σ + γPC

I

=
−δ (1− α) γPC

I + σδ
(

α− φPC
I

)

+ (ρ+ δ)φPC
I − (ρ+ δ) (1− υ (1− sI))

φPC
I σ + γPC

I
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=
−δ (1− α) γPC

I + σδ
(

α− φPC
I

)

+ (1− (1− α) υ)αδ + (υ − 1) ρ+ (υ (1− α)− 1) δ

φPC
I σ + γPC

I

=
−δ (1− α) γPC

I + σδ
(

α− φPC
I

)

+ (υ − 1) ρ+ (1− α) (υ (1− α)− 1) δ

φPC
I σ + γPC

I

=
−δ (1− α) γPC

I + σδ
(

α− φPC
I

)

+ γPC
I (ρ+ (1− α) δ)− σ (υ (1− α)αδ)

φPC
I σ + γPC

I

=
ργPC

I + σδ
(

α− φPC
I − υα (1− α)

)

φPC
I σ + γPC

I

=
ργPC

I + σδ
(

α (1− υ (1− α))− φPC
I

)

φPC
I σ + γPC

I

=
ργPC

I + σδ ((α− sI) (1− υ (1− α)))

φPC
I σ + γPC

I

=
ρ
(

γPC
I + σsI (1− υ (1− α))

)

φPC
I σ + γPC

I

=
ρ
(

φPC
I σ + γPC

I

)

φPC
I σ + γPC

I

= ρ > 0

B.2 A Model with Labor Externalities

B.2.1 The Model Economy

A private agent in the economy has has the following preferences

U = (1− σ)−1

∫

∞

0

e−ρt
[

C (t) exp
(

−N (t) N̄ (t)−γN
)]1−σ

dt

over time paths for individual consumption C, hours worked N , and aggregate hours N̄ . We

assume this functional form for the utility to preserve balanced growth. Also, ρ = 1/β−1 > 0

and σ ≥ 0, where β is the subjective discount factor and σ is the inverse of the intertemporal

elasticity of substitution. γN̄ ∈ (−∞, 1] measures the degree of the labor externality

The private agent is subject to the following constraints:

C (t) + I (t) = K (t)α (A (t)N (t))1−α (77)
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K̇ (t) = I (t)− δK (t)−
ψI

2

(

1−
I (t)

δK (t)

)

2

I (t) (78)

Here K, I and A represent capital, investment and the level of technology. The path of

technology and the initial capital stock are exogenous. The depreciation rate, δ, and the

elasticity of output with respect to capital, α, both lie between zero and one. ψI ∈ [0,∞)

gives a measure of the magnitude of the convex investment adjustment costs.

We include convex adjustment costs as a way to generate an increase in the shadow value of

investment in response to a news technology shock. In the basic model we achieved this by

a low IES. Unfortunately, in a model with labor externalities a low IES leads to a non-stable

solution.

Next, let us define the exogenous processes - the technology news shock. The private agents

have perfect foresight, with

A (t) =

{

Ā for t ∈ [0, T )

Ã = 1.01× Ā t ≥ T

For the contemporaneous improvements case T = 0 in the above specification.

B.2.2 The Model Economy’s First Order Conditions

The private agents choose C, I, K, and N to maximize U subject to (77) and (78) taking as

given the initial condition K (0) and time path of technology. We can express the problem

as a current value Hamiltonian:

H = C1−σ exp
[

− (1− σ)NN̄−γLE

N̄

]

+Λ

(

I − δK −
ψI

2

(

1−
I

δK

)

2

I

)

+Φ
(

Kα (AN)1−α
− F (C, I)

)

The first-order necessary conditions at an interior solution in a symmetric equilibrium satisfy

:

−
UN

UC

= (1− α)
F

N
(79)

UC = Λ

[

1−
ψI

2

(

1−
I

δK

)

2

+ ψI

(

1−
I

δK

)

I

δK

]

(80)
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Λ̇

Λ
− ρ = δ + ψI

(

1−
I

δK

)(

I

δK

)2

− α
F

K

UC

Λ
(81)

along with our initial condition on capital and a transversality condition on Λ.

Equation (79) is the intratemporal Euler equation between consumption and labor hours,

equation (80) is the intratemporal Euler equation between consumption and investment, and

equation (81) is the optimal capital accumulation equation.

B.2.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1− sI) c+ sIi = αk + (1− α) (a+ n) (82)

sI

1− γN
(i− c) = n (83)

λ = −σc−
(1− σ)(1− α)

(1− sI)
n+ ψI (i− k) (84)

k̇ = δ (i− k) (85)

λ̇ = − (ρ+ δ) [(1− sI) (c− i) + i− k] + ρψI (i− k) (86)

Here, sI =
αδ
ρ+δ

. Notice that the term γN only enters into equation (83).

We can substitute (83) into (82) to get the consumption-investment production frontier (L1

line):
(

1− φLE
I

)

c+ φLE
I i = αk + (1− α) a (87)
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Here, φLE
I =

(

1− 1−α
1−γN

)

sI

We can also substitute (83) into (84) to get the consumption-investment euler equation (L2

line):
(

γLEI + ψI

)

i−
(

σ + γLEI

)

c = λ (88)

Here, γLEI = −

(1−α)(1−σ)sI
(1−sI)(1−γN )

.

Equations (87) and (88) now give us a system of equations in i and c (treating λ, k, and a

as exogenous).

We also solve the system of equations above for c, i, n, k̇, and λ̇, assuming as given the state

variable λ and k, and the exogenous variable a:

c = τLEc,k k + τLEc,λ λ+ τLEc,a a (89)

i = τLEi,k k + τLEi,λ λ+ τLEi,a a (90)

n = τLEn,k k + τLEn,λλ+ τLEn,a a (91)

k̇ = ΓLE
k,kk + ΓLE

k,λλ+ bk,aa

λ̇ = ΓLE
λ,kk + ΓLE

λ,λλ+ bLEλ,aa
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where,

τLEc,k = ∂c
∂k

=
γLE
I,LE

α+ψI(α−φLE
I,LE)

φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

ΓLEk,k = ∂k̇
∂k

=
−δ((1−α)γLE

I,LE
+φLE

I,LE
σ−ασ)

φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

τLEc,λ = ∂c
∂λ

=
−φLE

I,LE

φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

ΓLEk,λ = ∂k̇
∂λ

=
δ(1−φLE

I,LE)
φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

τLEc,a = ∂c
∂a

=
(γLE

I,LE
+ψI)(1−α)

φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

ΓLEλ,k = ∂λ̇
∂k

=
(ρ+δ)((1−α)γLE

I,LE
+φLE

I,LE
σ−ασ+ασ(1−sI))

φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

τLEi,k = ∂i
∂k

=
α(γLE

I,LE
+σ)+ψI(1−φLE

I,LE)
φLE
I,LE

σ+γLE
I,LE

+ψI(1−φLE
I,LE)

+
ψI[(ρ+δ)(1−SI)(1−α)−ρ((1−α)γLE

I
+(φLE

I
−α)σ)]

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

τLEi,λ = ∂i
∂λ

=
1−φLE

I

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

ΓLEλ,λ = ∂λ̇
∂λ

=
(ρ+δ)(φLE

I
−sI)+ρψI(1−φLE

I )
φLE
I

σ+γLE
I

+ψI(1−φLE
I )

τLEi,a = ∂i
∂a

=
(1−α)(γLE

I
+σ)

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

bLEk,a = ∂k̇
∂a

=
δ(γLE

I
+σ)(1−α)

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

τLEn,k = ∂n
∂k

= 1
1−γN

sI(ασ+ψI(1−α))

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

bLEλ,a = ∂λ̇
∂a

=
−(ρ+δ)(1−α)(σsI+γLE

I )
φLE
I

σ+γLE
I

+ψI(1−φLE
I )

τLEn,λ = ∂n
∂λ

= 1
1−γN

sI

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

+
ψI(1−α)[ρ(σ+γLE

I )−(ρ+δ)(1−SI)]
φLE
I

σ+γLE
I

+ψI(1−φLE
I )

τLEn,a = ∂n
∂a

= 1
1−γN

sI(1−α)(σ−ψI)

φLE
I

σ+γLE
I

+ψI(1−φLE
I )

Recall: sI =
αδ
ρ+δ

, φLEI =
(

1− 1−α
1−γN

)

sI , and γLEI = −

(1−α)(1−σ)sI
(1−sI)(1−γN )

B.2.4 The Dynamic System

The general solution to the dynamic system remains the same as before, but now with

different coefficient values for τLEx,x ’s, Γ
LE
x,x ’s and bx,x’s. The new values for τLEx,x ’s, Γ

LE
x,x ’s and

bx,x’s are given above. The solution to the dynamic system is:

λ(0) = −

[

ΓLEk,λb
LE
λ,a +

(

µLE2 − ΓLEλ,λ
)

bLEk,a

ΓLEk,λµ
LE
2

]

e−µ
LE
2

T (92)
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k (t) =







ΓLE
k,λ

λ(0)

µLE
1

−µLE
2

eµ
LE
1

t +
ΓLE
k,λ

λ(0)

µLE
2

−µLE
1

eµ
LE
2

t for t ∈ [0, T )

ΓLE
k,λ

λ(0)

µLE
1−

µLE
2

eµ
LE
1

t +
ΓLE
k,λ

bLE
λ,a

−ΓLE
λ,λ

bLE
k,a

µLE
1

µLE
2

+
ΓLE
k,λ

bLE
λ,a

+(µLE
1

−ΓLE
λ,λ)bLE

k,a

µLE
1 (µLE

1
−µLE

2 )
eµ

LE
1

(t−T ) t ≥ T

(93)

λ (t) =











(µLE
1

−ΓLE
k,k)λ(0)

µLE
1

−µLE
2

eµ
LE
1

t +
(µLE

2
−ΓLE

k,k)λ(0)
µLE
2

−µLE
1

eµ
LE
2

t for t ∈ [0, T )

(µLE
1

−ΓLE
k,k)λ(0)

µLE
1

−µLE
2

eµ
LE
1

t +
ΓLE
λ,k

bLE
k,a

−ΓLE
k,k

bLE
λ,a

µLE
1

µLE
2

+
ΓLE
λ,k

bLE
k,a

+(µLE
1

−ΓLE
k,k)bLE

λ,a

µLE
1 (µLE

1
−µLE

2 )
eµ

LE
1

(t−T ) t ≥ T

(94)

Equations (89), (90), (91), (93), and (94), along with equation (92) give us a stable solution

to our model economy for a 1% technology shock that occurs in period T .

B.2.5 Proofs & Expressions

In this section we will sign the various expressions needed for Lemma 7-9 and Theorem 2.

First, let us recall the proof for Lemma 6. For consumption, investment and hours to comove

at time zero (on impact of the news) we required γN > α which resulted in φLE
I < 0 and thus

a positively sloped L1 line. Also, by lemma 8 we know that for a stable solution we need

ψI > −
γLE
I

+φLE
I

σ

1−φLE
I

. For this section we will assume both that γN > α and ψI > −
γLE
I

+φLE
I

σ

1−φLE
I

Assumption: γN >= γ∗N = α and ψI > ψ+
I = −

γLE
I

+φLE
I

σ

1−φLE
I

Lemma B.8: φLE
I,LEσ + γLEI,LE + ψI

(

1− φLE
I,LE

)

> 0

Proof. Follows trivially from our assumption that ψI > −
γLE
I

+φLE
I

σ

1−φLE
I

Lemma B.9: τLEc,k , τ
LE
c,λ , τ

LE
i,k , τLEi,λ , τLEn,k , and τ

LE
n,λ are all positive
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Proof. This result follows trivially lemma B.8 and our assumption, γN > α, which ensures

φLE
I < 0.

Lemma B.10: ΓLE
k,λ and ΓLE

λ,λ are both positive.

Proof. ΓLE
k,λ > 0 follows trivially from lemma B.8 and our assumption, γN > α ⇒ φLE

I < 0.

On the other hand ΓLE
λ,λ > 0 follows trivially from lemma B.8, and our assumptions, γN >

α ⇒ φLE
I < 0 and ψI > −

γLE

I
+φLE

I
σ

1−φLE

I

.

B.3 A Model with Forward Compatible Investment

B.3.1 The Model Economy

A social planner has the following preferences

U = (1− σ)−1

∫

∞

0

e−ρt [C (t) exp (−N (t))]1−σ dt

over time paths for consumption C and hours worked N . We assume this functional form

for the utility to preserve balanced growth. Also, ρ = 1/β − 1 > 0 and σ ≥ 0.

The planner is subject to the following constraints:

F (C (t) , I (t)) = K (t)αN (t)1−α (95)

K̇ (t) = Q (t) I (t)− δK (t) +
(

K (t)− e−δT K̄
)

P
(

Q̃, t, T, ǫ
)

(96)

Here K, I and q represent capital, investment and the level of technology embodied in the

capital created at a point in time. The path of technology and the initial capital stock are

exogenous. The depreciation rate, δ, and the elasticity of output with respect to capital,

α, both lie between zero and one. For ǫ → 0, P
(

Q̃, t, T, ǫ
)

represents the level of forward

compatibility. We talk about this process in detail later. In short, this represents the idea

that capital might embody technology that does not become useful until a future date -

forward compatibility of capital with future technology.
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Further, we assume:

F (C, I) ≡ [θCυ + (1− θ) Iυ]1/υ

where θ ∈ (0, 1) and υ ≥ 1. When υ = 1, the equation collapses to the standard neo-classical

case, which has infinite substitutability between the two goods. As υ increases, the com-

plementarity between the production of the two goods increases. If υ = ∞, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the level of capital embodied technology and the

process that defines forward compatibility. We will consider two types of capital embodied

technology shocks that occur at time zero: contemporaneous improvements, i.e. a current

shock, and news of future improvements, i.e. a news shock. For both types of shocks, suppose

the capital stock is at an initial steady state consistent with a particular fixed and unchanged

level of technology q̄. In the case of the future shock, the planner again has perfect foresight,

with

Q (t) =

{

Q̄ for t ∈ [0, T )

Q̃ = 1.01× Q̄ t ≥ T

For the contemporaneous improvements case T = 0 in the above specification

The process that defines the forward compatibility is as follows:

P
(

Q̃, t, T, ε
)

=

{

0 for t ∈ [0, T ) ∪ (T + ǫ,∞)
τFCQ̃

(1−e−ǫ)Q̄
t ∈ [T, T + ǫ]

τFC ∈ [0, 1] here represents the degree of forward compatibility of the capital accumulated

between time 0 and the current period for ǫ → 0. When τFC = 0, this capital embodies none

of the technology that will be useful this period onwards. While when τFC = 1, this capital

embodies all of the technology that will become useful from this period onwards. At time T,

all future investment becomes more productive in augmenting the capital stock. This can

be equivalently thought of as a fall in the price of investment.
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B.3.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize U subject to (95) and (96) taking

as given the initial condition K (0) and time path of technology and shocks to the capital

stock. We can express the problem as a current value Hamiltonian:

H = C1−σ exp [− (1− σ)N ] + Λ (QI − δK + PεK) + Φ
(

KαN1−α
− F (C, I)

)

The first-order necessary conditions at an interior solution satisfy :

−
UN

UC

= (1− α)
F

N
(FC)

−1 (97)

UC

QΛ
=

FC

FI

(98)

Λ̇

Λ
− ρ = δ − Pǫ − αQ

F

K
(FI)

−1 (99)

along with our initial condition on capital and a transversality condition on Λ.

B.3.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1− sI) c+ sIi = αk + (1− α)n (100)

υsI (i− c) = n (101)

λ+ q = (1− υ) (c− i)− σc−
(1− σ)(1− α)

(1− sI)
n (102)

k̇ = δ (q + i− k) + (1− eδT )pǫ (103)
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λ̇ = −pǫ − (ρ+ δ) [υ (1− sI) (c− i) + q + i− k] (104)

Here, sI =
αδ
ρ+δ

.

We can substitute (101) into (100) to get:

(

1− φFC
I

)

c+ φFC
I i = αk (105)

Here, φFC
I = (1− (1− α) υ) sI

We can also substitute (101) into (102) to get:

γFC
I i−

(

σ + γFC
I

)

c = λ+ q (106)

Here, γFC
I = (υ − 1)− υ(1−α)(1−σ)sI

(1−sI)
.

Equations (105) and (106) now give us a system of equations in i and c (treating λ, k, and

q as exogenous). Solving this system, we get:

c =

(

φFC
I

φFC
I σ + γFC

I

)(

γFC
I α

φFC
I

k − λ− q

)

(107)

i =

(

γFC
I + σ

φFC
I σ + γFC

I

)

αk +

(

1− φFC
I

φFC
I σ + γFC

I

)

(λ+ q) (108)

Further, substituting these above equations into (101), we also get an expression for n in

terms of λ, k, and q:

n =
υsI

φFC
I

((

1−
γFC
I

φFC
I σ + γFC

I

)

αk +
φFC
I

φFC
I σ + γFC

I

(λ+ q)

)

(109)

Finally, we can also simplify our two dynamic equations (103) and (104) in terms of λ, k,

and q, by using (107), (108), and (109):
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k̇ =
δ

φFC
I σ + γFC

I

[

−

(

(1− α) γFC
I + φFC

I σ − ασ
)

k +
(

1− φFC
I

)

λ+
(

1− φFC
I + φFC

I σ + γFC
I

)

q
]

+
(

1− e−δT
)

pǫ (110)

λ̇ = −pǫ +
ρ+ δ

φFC
I σ + γFC

I

[(

(1− α) γFC
I + φFC

I σ − ασ + ασυ (1− sI)
)

k
]

+ (111)

ρ+ δ

φFC
I σ + γFC

I

[(

φFC
I − (1− υ (1− sI))

)

λ+
(

φFC
I − (1− υ (1− sI))− φFC

I σ − γFC
I

)

q
]

Equations (107) - (111) now give us a simplified system of equations that define a dynamic

stochastic general equilibrium for our model economy. For ease of use in this appendix we

take this one step further and rewrite these equations as follows:

c = τFC
c,k k + τFC

c,λ λ+ τFC
c,q q (112)

i = τFC
i,k k + τFC

i,λ λ+ τFC
i,q q (113)

n = τFC
n,k k + τFC

n,λ λ+ τFC
n,q q (114)

k̇ = ΓFC
k,k k + ΓFC

k,λλ+ bk,qq + bFC
k,p pǫ

λ̇ = ΓFC
λ,k k + ΓFC

λ,λλ+ bλ,qq + bFC
λ,p pǫ
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Here,

τFC
c,k = ∂c

∂k
=

γFC

I
α

φFC

I
σ+γFC

I

ΓFC
k,k = ∂k̇

∂k
=

−δ((1−α)γFC

I
+φFC

I
σ−ασ)

φFC

I
σ+γFC

I

τFC
c,λ = ∂c

∂λ
=

−φFC

I

φFC

I
σ+γFC

I

ΓFC
k,λ = ∂k̇

∂λ
=

δ(1−φFC

I )
φFC

I
σ+γFC

I

τFC
c,q = ∂c

∂q
=

−φFC

I

φFC

I
σ+γFC

I

ΓFC
λ,k = ∂λ̇

∂k
=

(ρ+δ)((1−α)γFC

I
+φFC

I
σ−ασ+ασυ(1−sI))

φFC

I
σ+γFC

I

τFC
i,k = ∂i

∂k
=

α(γFC

I
+σ)

φFC

I
σ+γFC

I

ΓFC
λ,λ = ∂λ̇

∂λ
=

(ρ+δ)(φFC

I
−(1−υ(1−sI)))

φFC

I
σ+γFC

I

τFC
i,λ = ∂i

∂λ
=

1−φFC

I

φFC

I
σ+γFC

I

bk,q =
∂k̇
∂q

= δ
(

1−φFC

I

φFC

I
σ+γFC

I

+ 1
)

τFC
i,q = ∂i

∂q
=

1−φFC

I

φFC

I
σ+γFC

I

bλ,q =
∂λ̇
∂q

=
(ρ+δ)(φFC

I
−(1−υ(1−sI))−φFC

I
σ−γFC

I )
φFC

I
σ+γFC

I

τFC
n,k = ∂n

∂k
= υsIασ

φFC

I
σ+γFC

I

bFC
k,p = ∂k

∂pǫ
=

(

1− e−δT
)

τFC
n,λ = ∂n

∂λ
= υsI

φFC

I
σ+γFC

I

bFC
λ,p = ∂λ

∂pǫ
= −1

τFC
n,q = ∂n

∂q
= υsI

φFC

I
σ+γFC

I

Recall: sI =
αδ
ρ+δ

, φFC
I = (1− (1− α) υ) sI , and γFC

I = (υ − 1)− υ(1−α)(1−σ)sI
(1−sI)

B.3.4 The Dynamic System

Let us now look at the dynamic system:

[

λ̇ (t)

k̇ (t)

]

=

[

ΓFC
λ,λ ΓFC

λ,k

ΓFC
k,λ ΓFC

k,k

][

λ (t)

k (t)

]

+

[

bλ,q

bk,q

]

q (t) +

[

bFC
λ,p

bFC
k,p

]

pǫ (115)

Let µFC
1 and µFC

2 represent the two eigenvalues of ΓFC . From the production complemen-

tarity model, we know that:

1. µFC
1 + µFC

2 > 0

2. µFC
1 µFC

2 < 0
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Therefore, one of the eigenvalues must be negative and the other positive. Without loss of

generality, we will assume henceforth that µFC
1

< 0 and µFC
2

> 0.

We now introduce a permanent increase in technology in period T . Specifically,

q (t) = w (t) =

{

0 for t ∈ [0, T )

1 t ≥ T
(116)

Further, let us define the shock to capital stock (we will take the limits later):

wpǫ (t) =

{

0 for t ∈ [0, T ) ∪ (T + ǫ,∞)
τFC

1−e−ǫ t ∈ [T, T + ǫ]
(117)

To analyze the resulting system, it will be useful to introduce the Laplace transform opera-

tor.

The Laplace transform of a function p (t) is:

L [p (t)] = P̄ (s) =

∫

∞

0

e−stp (t) dt

We will use P̄ rather than P to distinguish the Laplace transform of the log deviation of a

variables from the level of said variable.

Moreover, we know from Theorem 6.3 from Boyce and Diprima (1969), that

L [p′ (t)] = sL (p (t))− p (0)

Taking the Laplace transform of the differential equations in
[

λ k

]

′

and applying this

theorem, we get:

[

Λ̄ (s)

K̄ (s)

]

=
(

sI − ΓFC
)

−1

{[

λ(0)

k(0)

]

+

[

bλ,q

bk,q

]

W (s) +

[

bFC
λ,p

bFC
k,p

]

Wpǫ (s)

}

(118)

Given (116), it can be shown that

W̄ (s) = L [w (t)] =
1

s
e−sT
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Given (117), it can be shown that

W̄pǫ (s) = L [wǫκ (t)] = τFC e
−sT − e−s(T+ǫ)

s(1− e−ǫ)

Rewriting equation (118), we get:

[

Λ̄ (s)

K̄ (s)

]

=
1

(s− µFC
1 ) (s− µFC

2 )

[

s− ΓFC
k,k ΓFC

λ,k

ΓFC
k,λ s− ΓFC

λ,λ

]{[

λ(0)

k(0)

]

+

[

bλ,q

bk,q

]

W (s) +

[

bFC
λ,p

bFC
k,p

]

Wpǫ (s)

}

(119)

Remember from the previous section, µFC
1 and µFC

2 are the eigenvalues of ΓFC , and µFC
1 < 0

and µFC
2 > 0.

The lower row of (119) gives us:

K̄ (s) =
ΓFC
k,λλ(0) +

(

s− ΓFC
λ,λ

)

k(0)

(s− µFC
1 ) (s− µFC

2 )
+

[

ΓFC
k,λ bλ,q +

(

s− ΓFC
λ,λ

)

bk,q

s (s− µFC
1 ) (s− µFC

2 )

]

e−sT

+

[

ΓFC
k,λ b

FC
λ,p +

(

s− ΓFC
λ,λ

)

bFC
k,p

s (s− µFC
1 ) (s− µFC

2 )

]

τFC
(

e−sT − e−s(T+ǫ)
)

1− e−ǫ

Next, we take the inverse Laplace transform of K (s) to recover k as a function of time. After

some algebra,

k (t) =
ΓFC
k,λλ(0)

µFC
1− µFC

2

eµ
FC
1

t +
ΓFC
k,λλ(0)

µFC
2− µFC

1

eµ
FC
2

t +

(

µFC
1 − ΓFC

λ,λ

)

k(0)

µFC
1 − µFC

2

eµ
FC
1

t +

(

µFC
2 − ΓFC

λ,λ

)

k(0)

µFC
2 − µFC

1

eµ
FC
2

t

+uT (t)

(

ΓFC
k,λ bλ,q − ΓFC

λ,λbk,q

µFC
1 µFC

2

)

+uT (t)

(

ΓFC
k,λ bλ,q +

(

µFC
1 − ΓFC

λ,λ

)

bk,q

µFC
1 (µFC

1 − µFC
2 )

eµ
FC
1

(t−T )

)

+uT (t)

(

ΓFC
k,λ bλ,q +

(

µFC
2 − ΓFC

λ,λ

)

bk,q

µFC
2 (µFC

2 − µFC
1 )

eµ
FC
2

(t−T )

)
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+
τFC (uT (t)− uT+ǫ (t))

1− eǫ

(

ΓFC
k,λ b

FC
λ,p − ΓFC

λ,λb
FC
k,p

µFC
1 µFC

2

)

+
τFC

(

uT (t)− uT+ǫ (t) e
−µFC

1
ǫ
)

1− eǫ

(

ΓFC
k,λ b

FC
λ,p +

(

µFC
1 − ΓFC

λ,λ

)

bFC
k,p

µFC
1 (µFC

1 − µFC
2 )

eµ
FC
1

(t−T )

)

+
τFC

(

uT (t)− uT+ǫ (t) e
−µFC

2
ǫ
)

1− eǫ

(

ΓFC
k,λ b

FC
λ,p +

(

µFC
2 − ΓFC

λ,λ

)

bFC
k,p

µFC
2 (µFC

2 − µFC
1 )

eµ
FC
2

(t−T )

)

where uT (t) is a step function that takes on a value of one for all t ≥ T , and zero otherwise.

Now taking the limit as ǫ → 0 we get:

k (t) =
ΓFC
k,λλ(0)

µFC
1− µFC

2

eµ
FC
1

t +
ΓFC
k,λλ(0)

µFC
2− µFC

1

eµ
FC
2

t +

(

µFC
1 − ΓFC

λ,λ

)

k(0)

µFC
1 − µFC

2

eµ
FC
1

t +

(

µFC
2 − ΓFC

λ,λ

)

k(0)

µFC
2 − µFC

1

eµ
FC
2

t

+uT (t)

(

ΓFC
k,λ bλ,q − ΓFC

λ,λbk,q

µFC
1 µFC

2

)

+uT (t)

(

ΓFC
k,λ

(

bλ,q + τFCµFC
1 bFC

λ,p

)

+
(

µFC
1 − ΓFC

λ,λ

) (

bk,q + τFCµFC
1 bFC

k,p

)

µFC
1 (µFC

1 − µFC
2 )

eµ
FC
1

(t−T )

)

+uT (t)

(

ΓFC
k,λ

(

bλ,q + τFCµFC
2 bFC

λ,p

)

+
(

µFC
2 − ΓFC

λ,λ

) (

bk,q + τFCµFC
2 bFC

k,p

)

µFC
2 (µFC

2 − µFC
1 )

eµ
FC
2

(t−T )

)

Recall that we assume the initial capital stock is at the steady-state level associated with

the pre-shock technology level. As such, k(0) = 0:

k (t) =
ΓFC
k,λλ(0)

µFC
1− µFC

2

eµ
FC
1

t +
ΓFC
k,λλ(0)

µFC
2− µFC

1

eµ
FC
2

t +

+uT (t)

(

ΓFC
k,λ bλ,q − ΓFC

λ,λbk,q

µFC
1 µFC

2

)

+uT (t)

(

ΓFC
k,λ

(

bλ,q + τFCµFC
1 bFC

λ,p

)

+
(

µFC
1 − ΓFC

λ,λ

) (

bk,q + τFCµFC
1 bFC

k,p

)

µFC
1 (µFC

1 − µFC
2 )

eµ
FC
1

(t−T )

)

+uT (t)

(

ΓFC
k,λ

(

bλ,q + τFCµFC
2 bFC

λ,p

)

+
(

µFC
2 − ΓFC

λ,λ

) (

bk,q + τFCµFC
2 bFC

k,p

)

µFC
2 (µFC

2 − µFC
1 )

eµ
FC
2

(t−T )

)

This gives us the solution to a differential equation with one undetermined variable λ(0).
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We now seek a path for
[

λ k

]

′

that is not explosive. In order to achieve this, we choose

λ(0) such that the explosive root µFC
2 is ‘zeroed out’ for all t > T . Otherwise, the path for

k (t) will be explosive. This restriction on λ(0) is:

(

ΓFC
k,λ

µFC
2 − µFC

1

)

λ(0) = −

ΓFC
k,λ

(

bλ,q + τFCµFC
2 bFC

λ,p

)

+
(

µFC
2 − ΓFC

λ,λ

) (

bk,q + τFCµFC
2 bFC

k,p

)

µFC
2 (µFC

2 − µFC
1 )

e−µFC
2

T

This can be re-written as:

λ(0) = −

[

ΓFC
k,λ

(

bλ,q + τFCµFC
2 bFC

λ,p

)

+
(

µFC
2 − ΓFC

λ,λ

) (

bk,q + τFCµFC
2 bFC

k,p

)

ΓFC
k,λµ

FC
2

]

e−µFC
2

T (120)

Let us also solve the second half of our laplace transform. This will allow us to study the

path of λ(t) over time. The first row of (119) gives us:

Λ̄ (s) =

(

s− ΓFC
k,k

)

λ(0) + ΓFC
λ,k k(0)

(s− µFC
1 ) (s− µFC

2 )
+

[

(

s− ΓFC
k,k

)

bλ,q + ΓFC
λ,k bk,q

s (s− µFC
1 ) (s− µFC

2 )

]

e−sT

+

[

(

s− ΓFC
k,k

)

bFC
λ,p + ΓFC

λ,k b
FC
k,p

s (s− µFC
1 ) (s− µFC

2 )

]

τFC
(

−sT
− e−s(T+ǫ)

)

1− eǫ

Now we can take the inverse Laplace transform of Λ (s) to recover λ as a function of time.

After some algebra, and then similar to before, taking the limit and setting k(0) = 0 we get:

λ (t) =

(

µFC
1 − ΓFC

k,k

)

λ(0)

µFC
1− µFC

2

eµ
FC
1

t +

(

µFC
2 − ΓFC

k,k

)

λ(0)

µFC
2− µFC

1

eµ
FC
2

t

+uT (t)

(

ΓFC
λ,k bk,q − ΓFC

k,k bλ,q

µFC
1 µFC

2

)

+uT (t)

(

(

µFC
1 − ΓFC

k,k

) (

bλ,q + τFCµFC
1 bFC

λ,p

)

+ ΓFC
λ,k

(

bk,q + τFCµFC
1 bFC

k,p

)

µFC
1 (µFC

1 − µFC
2 )

eµ
FC
1

(t−T )

)

+uT (t)

(

(

µFC
2 − ΓFC

k,k

) (

bλ,q + τFCµFC
2 bFC

λ,p

)

+ ΓFC
λ,k

(

bk,q + τFCµFC
2 bFC

k,p

)

µFC
2 (µFC

2 − µFC
1 )

eµ
FC
2

(t−T )

)

Given that we choose a λ(0) such that the explosive root µFC
2 is ‘zeroed out’ for all t > T ,
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we can simplify our equations for the time paths of k(t) and λ(t) to the following:

k (t) =















ΓFC
k,λλ(0)

µFC
1

−µFC
2

eµ
FC
1

t +
ΓFC
k,λλ(0)

µFC
2

−µFC
1

eµ
FC
2

t for t ∈ [0, T )

ΓFC
k,λλ(0)

µFC
1−

µFC
2

eµ
FC
1

t +
ΓFC
k,λbλ,q−ΓFC

λ,λbk,q

µFC
1

µFC
2

+
ΓFC
k,λ

(

bλ,q+τFCµFC
1

bFC
λ,p

)

+
(

µFC
1

−ΓFC
λ,λ

)(

bk,q+τFCµFC
1

bFC
k,p

)

µFC
1

(µFC
1

−µFC
2

)
eµ

FC
1

(t−T ) t ≥ T

(121)

λ (t) =















(

µFC
1

−ΓFC
k,k

)

λ(0)

µFC
1

−µFC
2

eµ
FC
1

t +

(

µFC
2

−ΓFC
k,k

)

λ(0)

µFC
2

−µFC
1

eµ
FC
2

t for t ∈ [0, T )
(

µFC
1

−ΓFC
k,k

)

λ(0)

µFC
1

−µFC
2

eµ
FC
1

t +
ΓFC
λ,kbk,q−ΓFC

k,k bλ,q

µFC
1

µFC
2

+
ΓFC
λ,k

(

bk,q+τFCµFC
1

bFC
k,p

)

+
(

µFC
1

−ΓFC
k,k

)(

bλ,q+τFCµFC
1

bFC
λ,p

)

µFC
1

(µFC
1

−µFC
2

)
eµ

FC
1

(t−T ) t ≥ T

(122)

Equations (112), (113), (114), (121), and (122), along with equation (120) give us a stable

solution to our model economy for a 1% technology shock that occurs in period T . Simulta-

neously in period T the capital stock carried forward from period 0 (steady state) decreases

by τFC
κ percent.

B.4 A Model with Investment Adjustment Costs

B.4.1 The Model Economy

A social planner has the following preferences

U = (1− σ)−1

∫ ∞

0

e−ρt [C (t) exp (−N (t))]1−σ dt

over time paths for consumption C and hours worked N . We assume this functional form

for the utility to preserve balanced growth. Also, ρ = 1/β− 1 > 0 and σ ≥ 0, where β is the

subjective discount factor and σ is the inverse of the intertemporal elasticity of substitution.

The planner is subject to the following constraints:

F [C (t) , I (t)] = K (t)α (A (t)N (t))1−α (123)

K̇ (t) = I (t)− δK (t)−
ψI

2

(

1−
I (t)

δK (t)

)2

I (t) (124)

Here K, I and A represent capital, investment and the level of technology. The path of
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technology and the initial capital stock are exogenous. The depreciation rate, δ, and the

elasticity of output with respect to capital, α, both lie between zero and one. ψI ∈ [0,∞)

gives a measure of the magnitude of the convex investment adjustment costs.

Further, we assume:

F (C, I) ≡ [θCυ + (1− θ) Iυ]1/υ

where θ ∈ (0, 1) and υ ≥ 1. When υ = 1, the equation collapses to the standard neo-classical

case, which has infinite substitutability between the two goods. As υ increases, the com-

plementarity between the production of the two goods increases. If υ = ∞, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the technology news shock. The planner again

has perfect foresight, with

A (t) =

{

Ā for t ∈ [0, T )

Ã = 1.01× Ā t ≥ T

For the contemporaneous improvements case T = 0 in the above specification.

B.4.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize U subject to (123) and (124) taking

as given the initial condition K (0) and time path of technology. We can express the problem

as a current value Hamiltonian:

H = C1−σ exp [− (1− σ)N ]+Λ

(

I − δK −
ψI

2

(

1−
I

δK

)

2

I

)

+Φ
(

Kα (AN)1−α
− F (C, I)

)

The first-order necessary conditions at an interior solution satisfy :

−
UN

UC

= (1− α)
F

N
(FC)

−1 (125)

FI

FC

UC = Λ

[

1−
ψI

2

(

1−
I

δK

)

2

+ ψI

(

1−
I

δK

)

I

δK

]

(126)

86



Λ̇

Λ
− ρ = δ + ψI

(

1−
I

δK

)(

I

δK

)2

− α
F

K

UC

ΛFC

(127)

along with our initial condition on capital and a transversality condition on Λ.

Equation (125) is the intratemporal Euler equation between consumption and labor hours,

equation (126) is the intratemporal Euler equation between consumption and investment,

and equation (127) is the optimal capital accumulation equation.

B.4.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1− sI) c+ sIi = αk + (1− α) (a+ n) (128)

υsI (i− c) = n (129)

λ = (1− υ) (c− i)− σc−
(1− σ)(1− α)

(1− sI)
n+ ψI (i− k) (130)

k̇ = δ (i− k) (131)

λ̇ = − (ρ+ δ) [υ (1− sI) (c− i) + i− k] + ρψI (i− k) (132)

Here, sI =
αδ
ρ+δ

.

We can substitute (129) into (128) to get the consumption-investment production frontier

(L1 line):
(

1− φINV
I

)

c+ φINV
I i = αk + (1− α) a (133)
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Here, φINV
I = (1− (1− α) υ) sI

We can also substitute (129) into (130) to get the consumption-investment euler equation

(L2 line):
(

γINV
I + ψI

)

i−
(

σ + γINV
I

)

c = λ+ ψIk (134)

Here, γINV
I = (υ − 1)− υ(1−α)(1−σ)sI

(1−sI)
.

Equations (133) and (134) now give us a system of equations in i and c (treating λ, k, and

a as exogenous).

We also solve the system of equations above for c, i, n, k̇, and λ̇, assuming as given the state

variable λ and k, and the exogenous variable a:

c = τ INV
c,k k + τ INV

c,λ λ+ τ INV
c,a a (135)

i = τ INV
i,k k + τ INV

i,λ λ+ τ INV
i,a a (136)

n = τ INV
n,k k + τ INV

n,λ λ+ τ INV
n,a a (137)

k̇ = ΓINV
k,k k + ΓINV

k,λ λ+ bINV
k,a a

λ̇ = ΓINV
λ,k k + ΓINV

λ,λ λ+ bINV
λ,a a
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where,

τ INVc,k = ∂c
∂k

=
γINV

I
α+ψI(α−φINV

I )
φINV

I
σ+γINV

I
+ψI(1−φINV

I )
ΓINVk,k = ∂k̇

∂k
=

−δ((1−α)γINV

I
+φINV

I
σ−ασ)

φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVc,λ = ∂c
∂λ

=
−φINV

I

φINV

I
σ+γINV

I
+ψI(1−φINV

I )
ΓINVk,λ = ∂k̇

∂λ
=

δ(1−φINV

I )
φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVc,a = ∂c
∂a

=
(γINV

I
+ψI)(1−α)

φINV

I
σ+γINV

I
+ψI(1−φINV

I )
ΓINVλ,k = ∂λ̇

∂k
=

(ρ+δ)((1−α)γINV

I
+φINV

I
σ−ασ+ασυ(1−sI))

φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVi,k = ∂i
∂k

=
α(γINV

I
+σ)+ψI(1−φINV

I )
φINV

I
σ+γINV

I
+ψI(1−φINV

I )
+

ψI[(ρ+δ)υ(1−SI)(1−α)−ρ((1−α)γINV

I
+(φINV

I
−α)σ)]

φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVi,λ = ∂i
∂λ

=
1−φINV

I

φINV

I
σ+γINV

I
+ψI(1−φINV

I )
ΓINVλ,λ = ∂λ̇

∂λ
=

(ρ+δ)(φINV

I
−(1−υ(1−sI)))+ρψI(1−φINV

I )
φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVi,a = ∂i
∂a

=
(1−α)(γINV

I
+σ)

φINV

I
σ+γINV

I
+ψI(1−φINV

I )
bINVk,a = ∂k̇

∂a
=

δ(γINV

I
+σ)(1−α)

φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVn,k = ∂n
∂k

= υsI(ασ+ψI(1−α))

φINV

I
σ+γINV

I
+ψI(1−φINV

I )
bINVλ,a = ∂λ̇

∂a
=

(ρ+δ)(1−α)(σ(υ(1−sI)−1)−γINV

I )
φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVn,λ = ∂n
∂λ

= υsI

φINV

I
σ+γINV

I
+ψI(1−φINV

I )
+

ψI(1−α)[ρ(σ+γINV

I )−(ρ+δ)υ(1−SI)]
φINV

I
σ+γINV

I
+ψI(1−φINV

I )

τ INVn,a = ∂n
∂a

= υsI(1−α)(σ−ψI)

φINV

I
σ+γINV

I
+ψI(1−φINV

I )

Recall: sI =
αδ
ρ+δ

, φINVI = (1− (1− α) υ) sI , and γINVI = (υ − 1)− υ(1−α)(1−σ)sI
(1−sI)

B.4.4 The Dynamic System

The general solution to the dynamic system remains the same as before, but now with

different coefficient values for τ INVx,x ’s, ΓINVx,x ’s and bx,x’s. The new values for τ INVx,x ’s, ΓINVx,x ’s

and bx,x’s are given on the previous page. The solution to the dynamic system is:

λ(0) = −

[

ΓINVk,λ bINVλ,a +
(

µINV2 − ΓINVλ,λ

)

bINVk,a

ΓINVk,λ µINV2

]

e−µ
INV

2
T (138)
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k (t) =







ΓINV
k,λ

λ(0)

µINV
1

−µINV
2

eµ
INV
1

t +
ΓINV
k,λ

λ(0)

µINV
2

−µINV
1

eµ
INV
2

t for t ∈ [0, T )

ΓINV
k,λ

λ(0)

µINV
1−

µINV
2

eµ
INV
1

t +
ΓINV
k,λ

bINV
λ,a

−ΓINV
λ,λ

bINV
k,a

µINV
1

µINV
2

+
ΓINV
k,λ

bINV
λ,a

+(µINV
1

−ΓINV
λ,λ )bINV

k,a

µINV
1 (µINV

1
−µINV

2 )
eµ

INV
1

(t−T ) t ≥ T

(139)

λ (t) =











(µINV
1

−ΓINV
k,k )λ(0)

µINV
1

−µINV
2

eµ
INV
1

t +
(µINV

2
−ΓINV

k,k )λ(0)
µINV
2

−µINV
1

eµ
INV
2

t for t ∈ [0, T )

(µINV
1

−ΓINV
k,k )λ(0)

µINV
1

−µINV
2

eµ
INV
1

t +
ΓINV
λ,k

bINV
k,a

−ΓINV
k,k

bINV
λ,a

µINV
1

µINV
2

+
ΓINV
λ,k

bINV
k,a

+(µINV
1

−ΓINV
k,k )bINV

λ,a

µINV
1 (µINV

1
−µINV

2 )
eµ

INV
1

(t−T ) t ≥ T

(140)

Equations (135), (136), (137), (139), and (140), along with equation (138) give us a stable

solution to our model economy for a 1% technology shock that occurs in period T .

B.4.5 Proofs & Expressions

In this section for each lemma 1 - 5 and theorem 1 for the basic model with production

complementarities we will either prove that the lemma or theorem for the basic model with

production complementarities also holds for a model with investment adjustment costs, or

we will present and prove an analagous lemma or theorem for a model with investment ad-

justment costs.

Lemma B.11: Lemma 1 from our analysis of the basic model also holds for a model with

investment adjustment costs.

Proof. The consumption-investment production frontier given by equation (133) is identi-

cal to its counterpart in the basic model. The proof of lemma 1 depends purely on the

consumption-investment production frontier equation. As a result Lemma 1 from the origi-

nal model holds.

Lemma B.12: Lemma 2 from our analysis of the basic model also holds for a model with

investment adjustment costs.

Proof. Given that the consumption-investment production frontier is identical to the basic

model, to prove that lemma 2 holds for the investment adjustment cost model we only need
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to show that c(0) > 0 if λ(0) > 0.

Substituting (133) into (134) and solving for c at time 0 leads to:

c(0) =
−φINV

I

γINV
I + φINV

I σ + ψI (1− φINV
I )

λ(0) (141)

If υ (1− α) > 1 then −φINV
I > 0 and γINV

I + φINV
I σ > 0 44. Also, by assumption ψI > 0.

As a result from equation (141) if λ(0) > 0 then c(0) will increase.

Lemma B.13: Lemma 3 from our analysis of the basic model also holds for a model with

investment adjustment costs.

Proof. To prove lemma 3 still holds we need to prove that the new τ INV
c,k , τ INV

c,λ τ INV
i,k , τ INV

i,λ , τ INV
n,k ,

and τ INV
n,λ for the investment adjustment cost model are all positive. This follows trivially

from the fact that if υ (1− α) > 1 then −φINV
I > 0, γINV

I > 0, and γINV
I + φINV

I σ > 0 45,

and by assumption ψI > 0.

Lemma B.14: Lemma 4 from our analysis of the basic model also holds for a model with

investment adjustment costs.

Proof. Identical to the basic model the dynamic system for a model with investment ad-

justment costs can be written as equation (17), albeit with different expressions for ΓINV
x,x ’s

and bx,x’s. As a result to prove lemma 4 still holds it suffices to show that the new ΓINV
k,λ

and ΓINV
λ,λ are still positive. ΓINV

k,λ > 0 and ΓINV
λ,λ > 0 for a model with investment adjust-

ment costs follows trivially from the fact that if υ (1− α) > 1 then −φINV
I > 0, γINV

I > 0,
(

φINV
I − (1− υ (1− SI))

)

> 0and γINV
I + φINV

I σ > 0, and by assumption ψI > 0.

Lemma 5 and theorem 1 now change to reflect how movements in ψI cause λ(0) to change.

Lemma B.15: Suppose the economy experiences a positive technology news shock. Also,

assume that υ > υ∗ = (1− α)−1. λ(0) > 0 if and only if ψI > ψINV ∗

I where ψINV ∗

I is given

by the equality ΓINV
k,λ bλ,a +

(

µINV
2

− ΓINV
λ,λ

)

bINV
k,a = 0.

44For the proof see Lemma B.3.
45For the proof see Lemma B.1 & B.3.
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Proof. Recall µINV2 > 0 and ΓINVk,λ > 0, with:

λ0 = −

[

ΓINVk,λ bINVλ,a +
(

µINV2 − ΓINVλ,λ

)

bINVk,a

ΓINVk,λ µINV2

]

e−µ
INV

2
T (142)

As a result λ(0) > 0 if and only if ΓINVk,λ bλ,a +
(

µINV2 − ΓINVλ,λ

)

bINVk,a < 0.

Theorem B.1: The investment adjusment cost model exhbits procyclical technology news

shocks if and only if υ > υ∗ and ψI > ψINV ∗

I .

Proof of Theorem 1. ⇐. If υ (1− α) > 1 and ΓINVk,λ bλ,a+
(

µINV2 − ΓINVλ,λ

)

bINVk,a < 0, then a

technology news shock is procyclical. Lemmas B.12 and B.15 prove the procyclical comove-

ment at t = 0, while Lemmas B.13, B.14 and B.15 establish the procyclical comovement for

0 < t < T .

⇒. If υ (1− α) < 1 or ΓINVk,λ bλ,a+
(

µINV2 − ΓINVλ,λ

)

bINVk,a > 0, then a technology news shock is

not procyclical. This follow trivially from Lemma B.12, as the procyclical comovement will

not occur at time t = 0 if either of the above conditions are not met.

Lemma B.16: One of the eigenvalues of the ΓINV matrix is positive and other negative.

Proof. The product of the eigenvalues is given by the determinant of ΓINV . The determinant

of ΓINV matrix can be shown to be equal to

det
(

ΓINV
)

=
−δ (ρ+ δ)

(φINVI σ + γINVI + ψI (1− φINVI ))
[υ (1− sI) (1− α)] < 0

As the product of the eigenvalues is negative it follows that the eigenvalues have opposite

signs. Further, it can be shown that tr
(

ΓINV
)

= ρ.

B.5 A Model with Greenwood-Hercowitz-Huffman Preferences

B.5.1 The Model Economy

A social planner has the following preferences

V = (1− ω)−1

∫

∞

0

e−ρt
[

C − ξ
N1+ψ

1 + ψ

]1−ω

dt
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over time paths for consumption C and hours worked N . We assume this functional form

for the utility to preserve balanced growth. Also, ρ = 1/β − 1 > 0, ω ≥ 0,ψ ≥ 0, and ξ > 0,

where β is the subjective discount factor, ω is the inverse of the intertemporal elasticity of

substitution, ψ is the inverse of the Frisch elasticity of labor, and ξ is a scale parameter on

the disutility of labor.

The planner is subject to the following constraints:

F [C (t) , I (t)] = K (t)α (A (t)N (t))1−α (143)

K̇ (t) = I (t)− δK (t) (144)

Here K, I and A represent capital, investment and the level of technology. The path of

technology and the initial capital stock are exogenous. The depreciation rate, δ, and the

elasticity of output with respect to capital, α, both lie between zero and one.

Further, we assume:

F (C, I) ≡ [θCυ + (1− θ) Iυ]1/υ

where θ ∈ (0, 1) and υ ≥ 1. When υ = 1, the equation collapses to the standard neo-classical

case, which has infinite substitutability between the two goods. As υ increases, the com-

plementarity between the production of the two goods increases. If υ = ∞, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the technology news shock. The planner again

has perfect foresight, with

A (t) =

{

Ā for t ∈ [0, T )

Ã = 1.01× Ā t ≥ T

For the contemporaneous improvements case T = 0 in the above specification.
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B.5.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize V subject to (143) and (144) taking

as given the initial condition K (0) and time path of technology. We can express the problem

as a current value Hamiltonian:

H = (1− ω)−1

[

C − ξ
N1+ψ

1 + ψ

]1−ω

+ Λ (I − δK) + Φ
(

Kα (AN)1−α − F (C, I)
)

The first-order necessary conditions at an interior solution satisfy :

−

VN

VC
= (1− α)

F

N
(FC)

−1 (145)

FI

FC
VC = Λ (146)

Λ̇

Λ
− ρ = δ − α

F

K

VC

ΛFC
(147)

along with our initial condition on capital and a transversality condition on Λ.

Equation (145) is the intratemporal Euler equation between consumption and labor hours,

equation (146) is the intratemporal Euler equation between consumption and investment,

and equation (147) is the optimal capital accumulation equation.

B.5.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1− sI) c+ sIi = αk + (1− α) (a+ n) (148)

(1 + ψ)n = υsI (i− c) + c (149)

λ = (v − 1) (i− c) +
1

1− sn
1+ψ

[−ωc+ ωsnn] (150)
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k̇ = δ (i− k) (151)

λ̇ = − (ρ+ δ) [υ (1− sI) (c− i) + i− k] (152)

Here, sI =
αδ
ρ+δ

and sn = 1−α
1−SI

.

We can substitute (149) into (148) to get the consumption-investment production frontier

(L1 line):
(

1−
1− α

1 + ψ
− φGHHI

)

c+ φGHHI i = αk + (1− α) a (153)

Here, φGHHI =
(

1− 1−α
1+ψ

υ
)

sI

We can also substitute (149) into (150) to get the consumption-investment euler equation

(L2 line):

γGHHI i−
(

ω + γGHHI

)

c = λ (154)

Here, γGHHI = (υ − 1) + ωυsI
1+ψ

sn
−1

.

Equations (153) and (154) now give us a system of equations in i and c (treating λ, k, and

a as exogenous).

We also solve the system of equations above for c, i, n, k̇, and λ̇, assuming as given the state

variable λ and k, and the exogenous variable a:

c = τGHHc,k k + τGHHc,λ λ+ τGHHc,a a (155)

i = τGHHi,k k + τGHHi,λ λ+ τGHHi,a a (156)

n = τGHHn,k k + τGHHn,λ λ+ τGHHn,a a (157)

k̇ = ΓGHHk,k k + ΓGHHk,λ λ+ bGHHk,a a
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λ̇ = ΓGHHλ,k k + ΓGHHλ,λ λ+ bGHHλ,a a

where,

τGHHc,k = ∂c
∂k

=
αγGHHI

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

ΓGHHk,k = ∂k̇
∂k

=
−δ((1−α− 1−α

1+ψ )γGHHI +φGHHI ω−αω)
φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

τGHHc,λ = ∂c
∂k

= −

φGHHI

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

ΓGHHk,λ = ∂k̇
∂λ

=
δ(1− 1−α

1+ψ
−φGHHI )

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

τGHHc,a = ∂c
∂a

=
(1−α)γGHHI

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

ΓGHHλ,k = ∂λ̇
∂k

=
(ρ+δ)((1−α− 1−α

1+ψ )γGHHI +φGHHI ω−αω+ασυ(1−sI))
φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

τGHHi,k = ∂i
∂k

=
α(γGHHI +ω)

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

ΓGHHλ,λ = ∂λ̇
∂λ

=
(ρ+δ)(φGHHI −(1− 1−α

1+ψ )(1−υ(1−sI)))
φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

τGHHi,λ = ∂i
∂λ

=
(1− 1−α

1+ψ )−φGHHI

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

bGHHk,a = ∂k̇
∂a

=
δ(1−α)(ω+γGHHI )

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

τGHHi,a = ∂i
∂a

=
(1−α)(ω+γGHHI )

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

bGHHλ,a = ∂λ̇
∂a

=
(ρ+δ)(1−α)(ω(υ(1−sI)−1)−γGHHI )

φGHH
I

ω+(1− 1−α
1+ψ )γGHHI

τGHHn,k = ∂n
∂k

=
α(γGHHI +νsIω)

(1+ψ)(φGHHI
ω+(1− 1−α

1+ψ )γGHHI )

τGHHn,λ = ∂n
∂λ

=
υsI(1− 1−α

1+ψ )−φGHHI

(1+ψ)(φGHHI
ω+(1− 1−α

1+ψ )γGHHI )

τGHHn,a = ∂n
∂a

=
(1−α)(γGHHI +νsIω)

(1+ψ)(φGHHI
ω+(1− 1−α

1+ψ )γGHHI )

Recall: sI =
αδ
ρ+δ

, sn = 1−α
1−SI

, φGHHI =
(

1− 1−α
1+ψ

υ
)

sI , and γGHHI = (υ − 1) + ωυsI
1+ψ

sn
−1

B.5.4 The Dynamic System

The general solution to the dynamic system remains the same as before, but now with

different coefficient values for τGHHx,x ’s, ΓGHHx,x ’s and bGHHx,x ’s. The new values for τGHHx,x ’s,

ΓGHHx,x ’s and bGHHx,x ’s are given on the previous page. The solution to the dynamic system is:

λ(0) = −

[

ΓGHHk,λ bGHHλ,a +
(

µGHH2 − ΓGHHλ,λ

)

bGHHk,a

ΓGHHk,λ µGHH2

]

e−µ
GHH
2

T (158)

96



k (t) =







ΓGHH
k,λ λ(0)

µGHH
1

−µGHH
2

eµ
GHH
1

t +
ΓGHH
k,λ λ(0)

µGHH
2

−µGHH
1

eµ
GHH
2

t for t ∈ [0, T )

ΓGHH
k,λ λ(0)

µGHH
1−

µGHH
2

eµ
GHH
1

t +
ΓGHH
k,λ bGHH

λ,a −ΓGHH
λ,λ bGHH

k,a

µGHH
1

µGHH
2

+
ΓGHH
k,λ bGHH

λ,a +(µGHH
1

−ΓGHH
λ,λ )bGHH

k,a

µGHH
1 (µGHH

1
−µGHH

2 )
eµ

GHH
1

(t−T ) t ≥ T

(159)

λ (t) =











(µGHH
1

−ΓGHH
k,k )λ(0)

µGHH
1

−µGHH
2

eµ
GHH
1

t +
(µGHH

2
−ΓGHH

k,k )λ(0)
µGHH
2

−µGHH
1

eµ
GHH
2

t for t ∈ [0, T )

(µGHH
1

−ΓGHH
k,k )λ(0)

µGHH
1

−µGHH
2

eµ
GHH
1

t +
ΓGHH
λ,k bGHH

k,a −ΓGHH
k,k bGHH

λ,a

µGHH
1

µGHH
2

+
ΓGHH
λ,k bGHH

k,a +(µGHH
1

−ΓGHH
k,k )bGHH

λ,a

µGHH
1 (µGHH

1
−µGHH

2 )
eµ

GHH
1

(t−T ) t ≥ T

(160)

Equations (155), (156), (157), (159), and (160), along with equation (158) give us a stable

solution to our model economy for a 1% technology shock that occurs in period T .

B.5.5 Proofs & Expressions

In this section for each lemma 1 - 5 and theorem 1 for the basic model with production

complementarities we will either prove that the lemma or theorem for the basic model with

production complementarities also holds for a model with GHH preferences, or we will present

and prove an analagous lemma or theorem for a model with GHH for ψ → 0.

Lemma B.17: Lemma 1 from our analysis of the basic model also holds for a model with

GHH Preferences.

Proof. The consumption-investment production frontier is given by equation (153). For ψ →

0 φPCI = φGHHI , and thus for υ (1− α) > 1 we have φGHHI < 0 and
((

1− 1−α
1+ψ

)

− φGHHI

)

> 0
46.As a result Lemma 1 from the original model holds and the proof follows from the proof

of Lemma 1.

Lemma B.18: Lemma 2 from our analysis of the basic model also holds for a model with

GHH Preferences with the added condition that ω < 1

δ
.

46
(

1− 1−α
1+ψ

)

= ψ+α
1+ψ > 0
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Proof. Given that the consumption-investment production frontier is upward sloping to prove

that lemma 2 holds for the GHH model we only need to show that c(0) > 0 if λ(0) > 0.

Substituting (153) into (154) and solving for c at time 0 leads to:

c(0) =
−φGHHI

(

1− 1−α
1+ψ

)

γGHHI + φGHHI ω
λ(0) (161)

If υ (1− α) > 1 then −φGHHI > 0 and for ω < 1

δ
we also have

(

1− 1−α
1+ψ

)

γGHHI +φGHHI ω > 0.

As a result from equation (161) if λ(0) > 0 then c(0) will increase.

Lemma B.19: Lemma 3 from our analysis of the basic model also holds for a model with

GHH Preferences.

Proof. To prove lemma 3 still holds we need to prove that the new τGHHc,k , τGHHc,λ τGHHi,k , τGHHi,λ , τGHHn,k ,

and τGHHn,λ for the GHH preferences model are all positive. This follows trivially from the

fact that
(

1− 1−α
1+ψ

)

> 0, if υ (1− α) > 1 then −φGHHI > 0, γGHHI > 0, additionally for

ω < 1

δ
we also have

(

1− 1−α
1+ψ

)

γGHHI + φGHHI ω > 0.

Lemma B.20: Lemma 4 from our analysis of the basic model also holds for a model with

GHH Preferences.

Proof. Identical to the basic model the dynamic system for a model with GHH preferences

can be written as equation (17), albeit with different expressions for ΓGHHx,x ’s and bGHHx,x ’s. As

a result to prove lemma 4 still holds it suffices to show that the new ΓGHHk,λ and ΓGHHλ,λ are

still positive. ΓGHHk,λ > 0 and ΓGHHλ,λ > 0 for a model with GHH prefences follows trivially

from the fact that
(

1− 1−α
1+ψ

)

> 0, if υ (1− α) > 1 then −φGHHI > 0, γGHHI > 0, and
(

φGHHI −

(

1− 1−α
1+ψ

)

(1− υ (1− SI))
)

> 0.

Lemma 5 and theorem 1 now change to reflect how movements in ω cause λ(0) to change.

Lemma B.21: Suppose the economy experiences a positive technology news shock. Also,

assume that υ > υ∗ = (1− α)−1. λ(0) > 0 if and only if ω > ω∗ where ω∗ is given by the

equality ΓGHHk,λ bGHHλ,a +
(

µGHH2 − ΓGHHλ,λ

)

bGHHk,a = 0.
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Proof. Recall µGHH2 > 0 and ΓGHHk,λ > 0, with:

λ0 = −

[

ΓGHHk,λ bGHHλ,a +
(

µGHH2 − ΓGHHλ,λ

)

bGHHk,a

ΓGHHk,λ µGHH2

]

e−µ
GHH
2

T (162)

As a result λ(0) > 0 if and only if ΓGHHk,λ bλ,a +
(

µGHH2 − ΓGHHλ,λ

)

bGHHk,a < 0.

Theorem B.2: The GHH Preference model exhbits procyclical technology news shocks if

and only if υ > υ∗ and ω > ω∗.

Proof of Theorem 1. ⇐. If υ (1− α) > 1 and ΓGHHk,λ bλ,a +
(

µGHH2 − ΓGHHλ,λ

)

bGHHk,a < 0,

then a technology news shock is procyclical. Lemmas B.17 and B.18 prove the procyclical

comovement at t = 0, while Lemmas B.19-B.21 establish the procyclical comovement for

0 < t < T .

⇒. If υ (1− α) < 1 or ΓGHHk,λ bλ,a+
(

µGHH2 − ΓGHHλ,λ

)

bGHHk,a > 0, then a technology news shock

is not procyclical. This follow trivially from Lemma B.17, as the procyclical comovement

will not occur at time t = 0 if either of the above conditions are not met.

Lemma B.22: One of the eigenvalues of the ΓGHH matrix is positive and other negative.

Proof. The product of the eigenvalues is given by the determinant of ΓGHH . The determinant

of ΓGHH matrix can be shown to be equal to

det
(

ΓGHH
)

=
−δ (ρ+ δ)

(1 + ψ)
(

φGHHI ω +
(

1− 1−α
1+ψ

)

γGHHI

) [ψυ (1− sI) (1− α)] < 0

As the product of the eigenvalues is negative it follows that the eigenvalues have opposite

signs. Further, it can be shown that tr
(

ΓGHH
)

= ρ.
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