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Abstract

In this paper we consider online auction mechanisms for
the allocation of M items that are identical to each other
except for the fact that they have different expiration
times, and each itemn must be allocated before it expires.
Players arrive at different times, and wish to buy one
item before their deadline. The main difficulty is that
players act “selfishly” and may mis-report their values,
deadlines, or arrival times. We begin by showing that
the usual notion of truthfulness (where players follow a
single dominant strategy) cannot be used in this case,
since any (deterministic) truthful auction cannot obtain
better than an M-approximation of the social welfare.
Therefore, instead of designing auctions in which players
should follow a single strategy, we design two auctions
that perform well under a wide class of selfish, “semi-
myopic”, strategies. For every combination of such
strategies, the auction is associated with a different
algorithm, and so we have a family of “semi-myopic”
algorithims. We show that any algorithm in this family
obtains a 3-approximation, and by this conclude that
our auctions will perform well under any choice of such
semi-myopic behaviors. We next turn to provide a
game-theoretic justification for acting in such a semi-
myopic way. We suggest a new notion of “Set-Nash”
equilibrium, where we cannot pin-point a single best-
responsc strategy, but rather only a set of possible best-
response strategies. We show that our auctions have a
Set-Nash equilibrium which is all semi-myopic, hence
guarantees a 3-approximation. We believe that this
notion is of independent interest.
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1 Introduction

In recent years we have seen a growing body of work
(e.g. [25, 1, 11, 12, 9, 23]) that analyzes distributed
computer systems under the the assumption that partic-
ipants will bchave “selfishly” in the sense of optimizing
their own utility, rather than behaving obediently or
maliciously as was commonly considered in computer
science. In this model, in order to design algorithms
that will lead to desirable outcomes, one needs two in-
gredients. The first is a protocol, handed in to the par-
ticipants. The second is a prediction of expected player
behaviors (who tune their actions with respect to the
given protocol). With these, we get a precise algorith-
mic description, and we are able to analyze its perfor-
mance. In principle, for a given protocol, one may ex-
pect several different player behaviors. However, most
recent works in this area manage to avoid this difficulty
by designing truthful auctions. In a truthful auction,
payments are devised in a sophisticated way so that
players will maximize their utility by simply revealing
their true input (i.e. follow a very specific, simple be-
havior). By this, the problem reduces to an algorithmic
construction that should satisfy one more important re-
quirement — truthfulness. The difficulty of analyzing
several different player behaviors is therefore avoided.
Unfortunately, for many settings, truthful algo-
rithms are rare, and a need to find other suitable solu-
tions rises. In this paper we study a problem that forces
us to take a different trail, instead of truthfulness. As
we (provably) cannot design algorithms for which the
players will be expected to take one single behavior, we
design auctions for which many selfish behaviors lead
to an approximately optimal allocation. Thus, our al-
gorithmic construction is of a family of algorithms, each
one corresponds to a specific combination of players’ be-
haviors, and all of them obtain a near optimal outcome.
The new concept is that, although players are not ex-
pected to follow a specific behavior, but only one out of
a set of behaviors, the outcome is still guaranteed to be
close to optimal, for any choice the players make. We
also provide some game-theoretic rational why wil! the
players limit their choice to this set of actions. We dis-



cuss some natural strengthenings of the equilibria notion
we use, still keeping this general idea of “set equilibria”.
We believe that these concepts offer a new way to by-
pass the inherent difficulties of the truthfulness notion,
in a way that suits the CS worst-case notions.

The problem we study is the online allocation of M
items that are all identical except that they “expire”
at different times: the first item expires at time 1, the
second at time 2, and so on. Players arrive over time,
and items must be allocated at or before their expiration
time. Each player j desires any single item between
his arrival time, r;, and his deadline, d;, and has a
value v; for receiving the item. All information 7;,d;, v,
is private to player j, and players act rationally to
maximize their utility: the value v;, if they are allocated
an item, minus any payment that they must pay. Our
goal is to design a mechanism that maximizes the “social
welfare”, i.e. to allocate the items so that the sum of
values of players that receive an item is maximized.

This model seems applicable to many scenarios in
which items are sequentially allocated as time pro-
gresses, where both items and players have a finite “life-
time”. In a computational setting, this model is equiva-
lent to online scheduling of unit length jobs with dead-
lines. Focusing on the algorithmic question only, and
ignoring incentive issues, it is known that the offline
problem can be solved exactly in polynomial time and
that the online problem has a simple greedy algorithm
that achieves a 2-approximation {18, 4], but no online al-
gorithm can achieve an approximation ratio better than
the “golden ratio” [15]. Of course, this algorithm re-
quires each player to reveal his true type (value, arrival
time, and deadline) and ignores players’ strategic con-
siderations.

To incorporate the strategic considerations of the
players, our first attempt was to design a truthful mech-
anism for this problem, in which players are motivated
to reveal their true input by incorporating some so-
phisticated payment scheme. However, this cannot be
achicved, as the following strong impossibility result
shows:

Theorem: Any truthful deterministic online mecha-
nism cannot obtain an approrimation ratio < M.

One could approach this difficulty by adding more as-
sumptions about the players. E.g., a common assump-
tion in recent works on online auctions [20, 8, 3, 5, 7, 13,
2, 19, 26, 16] is that player values are taken from some
known interval {viin,Umas]. With this, one can con-
struct a randomized truthful auction with an approx-
imation ratio of O(log(Vmaz — Vinin)) (this can be ob-
tained as a special case of the market clearing algorithm
of [8], or by using the general method of [2] to convert

online algorithms to truthful online algorithms). To our
view, this is a too heavy toll to pay for truthfulness, as
a deterministic 2-approximation without any assump-
tions on players exists once truthfulness is dropped. In
addition, the resulting truthful auctions sometimes ap-
pear somewhat artificial (e.g. without real competition
among the different bidders — all items are sold in a fixed
price, determined before the first bidder arrives).

Instead, we will not assume any additional assump-
tions on players, but will relax the required notion of
equilibria: instead of specifying a single tuple of strate-
gies (the equilibrium point) that provides a good ap-
proximation ratio, we will specify a large set of strate-
gies with the property that the mechanism will perform
well on any of them. Our strategic analysis will not be
able to pinpoint exactly which of these strategies will
be rationally chosen, but rather only that one of them
will be - this is enough to guarantee good performance.

At this point we embark with the algorithmic
analysis of two (variants of) classic ascending auctions,
under a wide class of possible player behaviors. The
first auction we consider is a natural adaptation of the
iterative auction of Demange, Gale, and Sotomayor [10]
(similar offline scheduling auctions were also considered
by [27]). The Online Iterative Auction constantly
maintains a current price p; and a current winner win,
for every item t. At each time t, each player (in his
turn) may place his name as the temporary winner of
some item ¢’ (bid on t'), deleting the previous temporary
winner, and increasing the price by some fixed small §
(a player can be a temporary winner only for one item).
When none of the players wishes to bid, the time ¢ phase
ends: item t is sold to player win, for a price of p; — 4.
At time ¢ + 1 the prices and temporary winners from
time t are kept, and the auction continues similarly.

In the offline setting, where all players arrive at
time 1, [10] show that if all players behave myopically,
i.e. always bid on the itemn with the lowest price among
those that interest them, then the auction will reach the
optimal allocation. Moreover, such myopic behavior is
indeed the player’s best interest [14]. But what will the
player choose, facing this auction in the online setting?
This depends on the beliefs of the player about the
future: if he fears that new competitive bidders will
arrive in the future, he may bid aggressively for earlier
items, offering a higher price for them but reducing
his risk of future competition. To incorporate such
considerations, we call a player semi-myopic if he always
bids on some item with price lower than his value (not
necessarily the item with the lowest price, as the myopic
behavior requires). Thus there exist many semi-myopic
behaviors, that represent different beliefs. The point
is ‘that the auction will obtain near optimal allocation
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under any combination of such behaviors:

Theorem: If all players are semi-myopic then the
Online Iterative Auction achieves a 3-approzimation of
the welfare.

We prove this by analyzing a family of semi-myopic
algorithms, where each such algorithm corresponds to
a specific combination of semi-myopic behaviors. One
algorithm in the family is the greedy algorithm!, but the
analysis of the entire family is completely different and
non-trivial (even the analysis of the “myopic algorithm”,
which results from the myopic behaviors of the players,
is completely different).

The second auction we consider is The Sequential
Japanese Auction: Ttem t is sold at time t using a clas-
sic one-iten ascending auction (exact details appear in
the paper body). Surprisingly, we show that this auc-
tion has a similar structure to the previous one (in our
setting). We define a myopic behavior that leads to
the optimal allocation in the offline case (when all play-
ers arrive at time 1), and, similarly to above, a fam-
ily of semi-myopic behaviors aimed to capture players’
uncertainties about the future. These semi-myopic be-
haviors again exactly correspond to our family of semi-
myopic algorithims, hence a 3-approximation is obtained
for every combination of semi-myopic behaviors.

But why should the players play as we expect?
We now turn to give a more accurate game-theoretic
analysis of the players’ behaviors. As truthful auctions
do not exist, we instead seek an equilibrium notion that
will capture the idea advocated above, i.e. that the best
we can do is recommend on a set of strategies, and not
on a specific, single strategy.

In the game-theoretic setting, each player is re-
quired to choose a strategy s; € S;. The resulting pay-
off of each player 1 is u,'(sl...sn)‘z. Player i’s strategy
r; € S; is a best response to a specific combination
of strategies of the other players s_; € S_; if for any
s; € 85, ui(ri,s—;) > u;(ss,8~;). Our notion of “set
equilibria” captures the situation where we describe a
subset R; C S; of “recommended strategies” (best re-
sponse strategies) to choose from, instead of describing
a single strategy r; as the equilibrium point:

Twhich corresponds to the completely aggressive behavior that

continues to bid on the current item as long as its price is lower
than the player’s value (even if the next item has a price of zero).
2We actually need the framework of games with incomplete
information, in which each player additionally has a type (in our
case, a triplet {arrival time, value, and deadline}), and both his
strategy and his payoff may depend on this type; this adds tew
technicalities that we deal with in the paper body, but does not
change the spirit of the results, as we describe here. '
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Definition: The sets R; are in Set-Nash equilib-
rium if for any player i, and any strategy combination
of the other players s—; € R_;, player i has a best re-
sponse to s_; in R;.

Thus the definition requires that a best response to any
tuple of recommended strategies of the others may be
found within the recommended strategies of player i.
This becomes equivalent to regular Nash equilibrium
when |R;] = 1 for all i. It should be pointed out
that there always exists a trivial Set-Nash equilibrium
in which the recommended strategies are the entire
set of strategies. Therefore this notion is interesting
only when one can guarantee some performance bound
whenever players play any one of their recommended
strategies, as we do.

Although Set-Nash equilibrium is a weak notion,
certainly weaker than regular Nash equilibrium, it seems
to us that it carry some weight, especially in computer-
ized environments, in which appropriate protocols and
software programs that act “as recommended” are avail-
able, and so a deviation would seem to require some ef-
fort. In such cases players can be realistically expected
to act as recommended unless they have clear incentives
to deviate. Such a clear incentive would seem to be ab-
sent when the recommended strategies are in Set-Nash
equilibrium.

We also provide some discussion on ways to
strengthen the basic definition. We describe a hierarchy
of four “set equilibria” notions, with a growing strength.
While, for our motivating example, we were able to use
only the basic definition, we believe that the complete
hierarchy will turn out to be useful for other models,
in which truthfulness does not exist, and one wishes to
remain within the worst-case framework and to avoid
any strong distributional assumptions.

Returning to our model, we show that both our
online ascending auctions have Set-Nash equilibria that
are all semi-myopic. We leave the description of the
appropriate sets of recommended strategies to the body
of the paper. The main point we arrive at is that
players do not have a clear incentive to deviate outside
of these sets of recommended strategies; and when they
do stay inside the set of recommended strategies, the
mechanism obtains a 3-approximation.

Main Theorem: The Online Iterative Auction and
the Sequential Japanese Auction both have a Set-Nash
equilibrium which s all semi-myopic, hence resulls in a
3-approxzimation of the welfare.

The rest of the paper is organized as follows. The
model and basic definitions are given in section 2. In
section 3 we describe the two online ascending auctions,



and show their algorithmic properties by characterizing
a family of 3-approximations. Section 4 returns to
the strategic setting, showing that no truthful auction
can achieve an approximation ratio better than A.
In section 5 we define the new notion of Set-Nash
equilibrium, and give an exposition to the analysis of
our auctions according to it. Full proofs and additional
details appear in the full paper {21].

2 Model and Basic Definitions

Items: We wish to sell M identical items with different
expiration times. W.l.o.g. we assume that the first item
expires at time 1, the second at time 2, and so on. Each
item must be sold (and received by the buyer) at or
before its expiration time.

Players:  The potential buyers of the items (play-
ers/bidders) arrive over time. Player i arrives to the
market at time ¢(4), and stays in the market for some
fixed period of time, until his deadline d(z). We assume
w.lo.g. that the arrival and departure times are inte-
gersS. Each player desires only one item (unit demand),
that expires no earlier than his arrival time. He must
receive it at or before his departure time!. Player i
obtains a value of v(4) from receiving such an item, oth-
erwise his value is 0. We assume w.l.o.g. that different
players have different values®.

We assume the standard game-theoretic setting:
Player i privately obtains his variables (%), d(i), and
v(i), at time r(i). He acts selfishly in order to maximize
his own utility: his obtained value minus his price. I.e.,
a player may arrive at or after his true arrival time, and
declare or act as if he has any value, and any deadlinc.

Our goal: is to maximize the social welfare: the sum
of (true) values of players that receive an item.

Basic definitions:  Player i is active at time ¢ if
(1) <t < d(i), and ¢ did not win any item before
time ¢t. Let A; be the set of all active players at time
t. An allocation is a mapping of items to players such
that, if player 7 receives item ¢, then r(:) < t < d(4).
Let X; be an allocation of items t,..., M. X,;[d] denotes
the player that receives item d according to X,, and
Xildy, do) = Ujilet [d], the set of players that receive
items d; through d,. By a slight abusc of notation we
also use X, as the set of players X,[t, M). The value of

Tas actions in a non-integral time point can be deferred to the

next integral point with no affect.

40ur auctions also fit the more severe restriction that player
t cannot get an item t > d(z). E.g., player i cannot attend
Saturday’s show if he is leaving on Friday, even if he receives
the ticket before Friday.

®Le. fix some arbitrary order over players, and set v(i) > v(j)
iff v{i) > v(J) or v(i) = v(5) and i > 7.

X is v(Xy) = sizv(XL[d]), i.e. the welfare obtained
by X:. A set S of players is independent with respect
to items t, ..., M if there exists an allocation of (part of)
the items t, ..., M s.t. every player in S receives an item.

The offline allocation problem: The offline prob-
lem, in which all players arrive at time 1, is a matroid: a
set of players is independent if there exists an allocation
of (part of the items) to these players. This is known (17]
for the unit-demand scheduling problem, which is equiv-
alent to ours. This matroid structure is used extensively
in our proofs. See the full paper for details [21].

3 Two Online Ascending Auctions

We first describe online adaptations of two well-known
ascending auctions. These have the property that
players do not have to choose specific actions for the
auction to perform well: a 3-approximation is obtained
for a large, reasonable family of behaviors that we term
“semi-myopic”. Under any such player behaviors, each
of our auctions belongs to a general family semi-myopic
algorithins, that we characterize. We then show that
any semi-myopic algorithm obtains a 3-approximation,
and therefore conclude that our auctions lead to a
near optimal allocation for any choice of semi myopic
behaviors of the players.

In this section, we focus on the algorithmic side.
Therefore we give only intuitive justifications for the
player behaviors that we assume. For the same reason,
we also omit few technicalities about prices and tie-
breaking rules from the definitions. These are detailed
when we analyze the strategic properties of our auctions.

3.1 The Online Iterative Auction We consider an
online adaptation of the iterative auction of Demange,
Gale, and Sotomayor [10]:

DEFINITION 3.1. (THE ONLINE ITERATIVE AUCTION)
The Online Iterative Auction constantly maintains o
current price p, and a current winner wing for every
item t. These are nitialized to zero at t = 0, and
updated according to players’ actions at each time t, as
follows:

o Each player, in his turn, may place his name as
the temporary winner of some item t', causing the
previous winner to be deleted, and the price to
increase by some fired small 6. A player cannot
perform this action, aend must relinquish his turn,
if he is already a temporary winner.

o When none of the players that are not temporary
winners wishes to place their names somewhere, the
time t phase ends: item t is sold to the player win,
for a price of pr - 8.
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o Attimet+1 the prices and temporary winners from
time t are kept. If additional players arrive then the
auction continues according to the above rules.

Before analyzing the online auction, it is useful to
take a glimpse at the offline case, in which all players
arrive at time 1. This is a special case of the unit-
demand model studied by (10}, [14]:

DErINITION 3.2. ({10]) Player ¢ has a myopic strat-
egy in the iterative auction if, in his turn, he always
places lis name on the item t < d(i) with the minimal
price, unless the minimal price > v(i), in which case he
does not place his name at all.

LeEmma 3.1. ([10], [14]) If all players are myopic and
arrive at time 1 then the online iterative auction obtains
the optimal allocation. Furthermore, if all other players
are myopic then player i will mazimize his utility by
playing myopically.

In the online setting, however, a player might not be
completely myopic, depending on his beliefs about the
future. For example, he may bid aggressively for the
current item, not placing his name on future items at
all. This is reasonable if he anticipates tight competition
from players that will arrive later on. Viewing this
behavior as one extreme, and the completely myopic
behavior as the other, it seems that any combination of
the two cannot be “ruled-out”. On the other hand, a
player might choose not to participate at all for some
time units — if, for example, there are M high valued
players that desire any item 1 through M, but they all
do not participate up to time A, then the resulting
welfare will be low. As it turns out, this is the only
type of behavior we need to exclude:

DEFINITION 3.3. Player i is semi-myopic if, in his
turn, i places his name on some item t with p(t) < v(3)
and r{(i) < t < d(i) (not necessarily the one with
the lowest price). If there is no such item, i stops
partictpating.

THEOREM 3.1. If all players are semi-myopic then
the online iterative auction achieves almost o 3-
approzimation: v(OPT) < 3.v(ON) +2-M . §, where
OPT,ON are the optimal, online allocations.

The proof shows that, under any semi-myopic behavior,
the online iterative auction is a semi myopic algorithm
{see section 3.3 below), hence obtains the desired ap-
proximation (by lemma 3.3).

3.2 The Sequential Japanese Auction A differ-

ent possibility is to sell item ¢ at time ¢ using a simple
one item ascending auction:
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DEFINITION 3.4. (A JAPANESE AUCTION) The (clas-
sic, one item) Japanese auction operates as follows:
An auctioneer gradually raises a price, starting from 0.
Each participating player should decide whether to drop
out or to stay (once a player drops out, he cannot join
again), as the price ascends. The price stops increasing
ezactly when all players, besides one, have dropped out.
The winner is the player that did not drop out, and he
pays the price that was reached.

A natural adaptation of this to the online case is:

DEFINITION 3.5. (THE SEQUENTIAL JAPANESE AUCTION)

The Sequential Japanese Auction sells each item t at
time t, separately, using a Japanese auction with one
modification: the participants are allowed to observe
how many drop-outs occur as the price ascends (and to
incorporate this into their drop-out decision). °

As before, it is useful to first consider this auction
for the offline case, in which a rather surprising notion
of myopic behavior leads to the optimal allocation:

DEFINITION 3.6. Player i is myopic in the Sequential
Japanese Auction if, in the auction of any time t, (for
(i) <t < d(i)), he drops exactly when either the price
reaches v(i), or when there are exactly d(i) —t other
players that did not drop yet.

The logic for dropping when d(i) — t players remain is
that at this point the player is assured that there are
enough items before his deadline to be allocated to all
bidders who are willing to pay the current price.

Lemma 3.2, If all players are myopic and arvive at
time 1 then the Sequential Japanese Auction obtains the
optimal allocation.

Our assumption that player have different values is
important here. It is not hard to verify that this lemma
actually follows from the proof of the online strategic
setting. In this case, a myopic behavior (in the offline
case) is a best response when all others are myopic
only when using the modified prices of this auction
{described in the full paper).

In the online setting, again, players might not
play myopically, and may insist on closer items (i.e.
stay longer in the auction) if they anticipate much
competition in the future. In the extreine, when every
player remains in the auction until the price reaches
his true value, we actually simulate the simple greedy

TPrices are also modified. The time-t-winner pays the highest

price among all time-t’-auctions in which he tied the time-t/-
winner. Defining “a tie” is delicate, and requires the players to
drop simultaneously. See the fuli paper.



algorithm, which is a 2-approximation. As before, any
behavior between the two extremes can cause only a
minor performance degradation. All we wish is that
players will not drop out “too soon”. Indeed, dropping
out early in the auction also have disadvantages, as
future auctions might be much more competitive, due
to new arriving players.

DEFINITION 3.7. Player i’s strategy is semi-myopic
(for the Sequential Japanese Auction) if, at every time t,
he drops no later than when the price reaches his value,
v(i), and no earlier than when only d(i)—t other players
remain in the auction.

THEOREM 3.2. If all players play semi-myopic strate-
gies then the Sequential Japanese Auction achieves a
3-approzimation.

In a similar manner to the iterative auction above, this
theorem is proved by showing that, under any semi-
myopic behavior, the Sequential Japanese Auction is a
semi myopic algorithm.

3.3 Semi-Myopic Algorithms For each combina-
tion of player strategies, the above auctions are asso-
ciated with a different algorithm. In order to analyze
their performance for a family of strategies, we there-
fore need to characterize a family of algorithms, that
we call semi-myopic algorithms. The main point is that
any semi myopic algorithm obtains a 3-approximation
of the welfare.

Specifically, the current best schedule at time t, S, is
the allocation with maximal value among all allocations
of items ¢,..., M to the active players, 4,7. Define:
By fi={jes|
S;\ j is independent w.r.t items ¢t +1,..., M },

The set f, contains all players that can receive item t,
when one plans to allocate items ¢, ..., M to the players
of S; (i.e. these are all the potentially first players).
Now define the critical value at time t, v}, as:

v = minjes {v(7)} S # fe
¢ 0 otherwise

All active players with value larger than v} must belong
to S, because of its optimality (w.l.o.g the first player
in S, has value vy, and if there was a higher valued
player outside of S, we could switch between them and
increase the value of S;). Thus, it seems reasonable
not to allocate item t to a player with value less

There exists one such allocation, by the matroid structure,

and since different players have different values.

than v}, as this player cannot. belong to any optimal
allocation. Surprisingly, this condition is enough to
obtain approximately optimal allocations:

DEFINITION 3.8. (A SEM1 MYOPIC ALGORITHM) An
algorithm 1s semi myopic if every item t is sold at tirne
t to some player j with v(j) > v}. 8

LEMMA 3.3. The Online Iterative Auction with semi-
myopic players and the Sequential Japanese Auction
with semi-myopic players are both semi myopic algo-
rithms.

The family of semi-myopic algorithms can be viewed
as the entire range between the following two extremes:
the first is the greedy algorithm that always chooses the
player with maximal value®, and the second is the “mny-
opic” algorithm that always chooses the player that de-
termined v;. Thesc two extremes are 2-approximations
(both were studied in the context of online schedul-
ing [18, 6]). The entire family has only a slightly larger
approximation ratio:

THEOREM 3.3. Any semi-myopic algorithm is a 3-
approzimation of the welfare, and this is tight.

Proof. We will show that any online allocation algo-
rithm that produces an allocation ON has v(OPT \
ON) < 25°M w2, where OPT is the optimal allo-
cation. From this, the theorem will follow immedi-
ately, as any semi-myopic algorithm has v(ON|t]) > v},
and therefore v(OPT) = v(OPT \ ON) + V(ON) <
25 v + v(ON) < 2-v(ON) +v(ON) = 3-v(ON).

We first state two useful claims about the structure
of offline allocations.

PRrROPOSITION 3.1. Let A, B be sets of players, where
A C B. Let Sp,Sp be the allocation with optimal value
for A, B, respectively (both are over the same set of
items). Then if j € A but 3 ¢ Sa then j ¢ Sp.

PROPOSITION 3.2. Let S be the allocation with mazimal
value over the set of players A and the set of items
t,...., M. Assume that S is not independent w.r.t items
t+1,...,M. Let j € S be the player with minimal value
such that S\ j is independent w.r.t stems t +1,..., M.
Then S\ j has marimal value among ull independent
sets w.r.t itemst +1,..., M and players in A.

BA worst-case approximation cannot sell item t before time ¢,

as a player with high value only for ¢t may appear.

9Interestingly, this is a special case of the greedy algorithin
of {22] for combinatorial auctions with sub-modular valuations.
They study the offline case, but it is easy to verify that their
algorithm actually works online.
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We can now prove the theorem. Fix some scenario,
and let OPT and ON be the optimal and online
allocations for this scenario. We describe f : OPT \
ON — {1,.., M} such that fis 2 to 1 and v(j) < v},
for any j € OPT \ ON. Our claim immediately follows.
The function f is defined as follows. Let X, be the
optimal allocation of items ¢t + 1,..., M among players
in OPT[1,t]\ ON. For any j € OPT \ ON (say
J = OPT[]), let t; = min{t > t' | j ¢ X: }. Then
we fix f(j) =t].

PROPOSITION 8.3. V j € OPT \ ON, v}y > v(j).

Proof. Let t = f(j). First notice that j € A;: j ¢ ON,
r(j) < tas j € OPT[1,t], and d(j) > t since either
J € Xi—1 or j = OPT[t]. Let m, € S; be the player
who determined vy, (if v; = 0 then set m, = null,
so 8; \my = S;). We first show that, by subclaim 3.1,
Jj ¢ Si\my: define A as OPT[1,t}\ON minus all players
with deadline < t, and B = A;. Clearly A C B. By
definition, X, is optimal for A (over items ¢t -+ 1,..., M).
St \ my is optimal for B (over items t + 1,...,M): if
m, = null this follows from the optimality of S, and if
my # null this follows from sub-claim 3.2. Thercfore,
since 7 ¢ X, then 5 ¢ S; \ my. If j # my then j ¢ S,
and since j € A, it follows from the optimality of S;
that v(j) < v(m,). If j = m, then this trivially holds.
Therefore v(j) < v(m;) = v}y, and the claim follows.

ProposiTION 3.4. fis2 to 1.

Proof. Fix any time t. We need to show that f maps
at most two players to t. Let 73 € X;—; be the player
with minimal value such that X,_ \ j; is an allocation
of items t +1,..., M, and denote Y = X;_; \ 71 (if X~y
itself is independent w.r.t items t + 1,...,M then set
Y = X;—1). If Xy C Y then by the optimality of
X, it follows that X; = Y and the claim follows: by
definition, f maps only ji and OPT[t] to t. Otherwise,
X:\Y # 0. We first show that X;\Y = {OPT[t]}. This
is implied by sub-claim 3.1: sct A = OPT[1,t—1]\ON,
and B = OPT[1,t} \ ON. Since Y is optimal for
A (by sub-claim 3.2) and X, is optimal for B (by
definition) it follows that, if j € OPT[1,t — 1] but
J ¢ Y then j ¢ X;, ie. that X;\Y = {OPT[t]}. To
conclude, we observe that X, is a base in the matroid
over items t + 1,..., M and players OPT[1,t]\ ON, and
that Y is an independent set of that matroid. Therefore
[Y\X:] <X \Y]| =1, and thus | X;-1 \ X¢| < 2. Since
OPT[t] € X, then, by definition, the players mapped to
t are exactly those in | X,_; \ X¢|, and the claim follows.
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4 The Impossibility of Truthful

Approximations

We now move from algorithmic considerations to game-
theoretic ones, in order to analyze player strategies.
Since our goal is to find approximately optimal allo-
cations with respect to the true variables of the players,
we would prefer to design truthful algorithms: an al-
gorithm is truthful if there exist price functions such
that, regardless of how the other players act, player ¢
will maximize his utility by declaring his true variables
to the algorithm!®, More formally, let T; be the do-
main of all valid player ¢ types/bids (r(7), v(¢), d(i)), and
let T_; = x;»;T;. Consider the allocation constructed
by the algorithm upon receiving the type b; € T; from
player i and b_; € T_; from the other players, and let
v(i,b) be the value that player i obtains from this al-
location, i.e. v(i) if ¢ receives one of his desired items,
and 0 otherwise.

DEFINITION 4.1. (TRUTHFULNESS) An algorithm s
truthful if there exist price functionsp; : Ty x---xT,, —
R such that, for any i, any b_; € T_;, any true type
b; € T}, and any b; # b;'':

(i, bi, b—i) — Pi(biyb—s) > v(i, b, b_;) — palbs, b_y).

Such a property is highly desirable, as it guarantees that
each player will be motivated to reveal his true type to
the algorithm, by an argument similar to the traditional
worst-case arguments of Computer Science. Indeed,
many recent examples show truthful algorithms for
various CS models (some are cited in our introduction).
However, for our model, no such algorithm performs
well:

THEOREM 4.1. Any truthful deterministic algorithm
for our online allocation problem cannot obtain an ap-
prozimation ratio better than M.

Proof. Assume w.l.o.g. that a player that does not win
any itemn pays (). This implies that #’s price must not be
higher than his value.

LEMMA 4.1. Fiz some truthful deterministic mecha-
nism with some fized approximation ratio. Then, for
any player i with (i) = 1 there exists a price function
pi: Ty — R such that, for any combination of players
that arrive at time 1, b_;:

o Ifu(i) > pi(b_;) then i wins item 1 and pays p;{(b—)
(regardless of his deadline).
0By the revelation principle [24], it is w.l.o.g. to consider only
algorithins that receive, as input, the players’ types.
1'We actually restrict the possible b;’s such that 7; > 7.



o Ifv(i) < pi(b-;) then i does not win any item.

Proof. Fix any combination of players that arrive at
time 1, b-;. Suppose first that ¢ has deadline equal to
1. For this case, the player becomes one parameter, and
by truthfulness there exist a price function according to
the claim [1]1%.

We now show that this function p; satisfies the
conditions of the claim, regardless of i’s deadline. Fix
any deadline d(i) of i. If (i) > p;(b._;) then ¢ must win
some item until his deadline, otherwise he can declare
d; = 1 and have strictly better utility. But then, if ¢
does not win item 1, the adversary will produce players
with higher and higher values, forcing the mechanism
not to allocate any item to 4 in order to maintain the
approximation ratio, thus contradicting truthfulness.
Therefore i will receive item 1. He will pay pi(b-:)
as otherwise, if he pays a higher price, he will declare
d, = 1 and will reduce his price, and if he pays less,
then if i will have deadline equals 1 he will declare
d(i) instead, thus still winning item 1 but paying less.
Therefore the function p; satisfies the first condition.

Suppose now that v(i) < p;(b_;), and suppose there
exists a scenario in which ¢ wins one of his desired items.
His price must be at most v(z) < p;(b—;). But then, if ¢
had some value larger than p;(b-;) he would have been
better off declaring (i) instead, by this still winning
but paying less. Therefore ¢ cannot win any item at all,
and the claim follows.

We now finish the proof of the theorem. Fix any
price functions p; : T_; — R. For any ¢ > 0 we show
the existence of player types by, ...,bar s.t. Vi r(i) =1,
d(i) = M, 1< v() <1+e¢, and v(i) # pi(b_;). By the
ahove claim, it follows that the mechanism can obtain
welfare of at most 1 + €, while the optimal allocation is
at least M, and the theorem follows. To verify that such
types exist, fix L > M real values in [1,1 + €]. Choose
M values v(¢) uniformly at random from these L values.
Then, for any given i, Pr{v(i) = p;(v(~1))) < 1/L,
as the values were drawn i.id. Thus, Pr(3i, v(i) =
pi{v(—1))) < M/L < 1, hence there exist a choice of
values with v(i} # pi(v(—t)) for all 4.

Remark 1: Although the proof utilizes an extreme
scenario with players with very large values, the worst
case ratio occurs in common, simple scenarios, as the
proof demonstrates. Le., since the algorithm defends it-
self against such extremes, it must make wrong decisions
even in simple cases.

T?The argument essentially states that, if i wins for some v(i)

then he ins with any higher value, and pays the same. Therefore
there exists a threshold value p} = p}(b_;), such that i wins and
pays p} if v(i) > p}, and looses otherwise.

Remark 2: A simple truthful deterministic M-
approximation exists: For any player 4, set p; to be the
highest bid received in time slots 1,...,¢t, excluding 7’s
own bid. Sell item ¢ to player 4 if and only if v(i) > p;,
for a price of p;.

5 Will Players Act As Expected?

Qur main motivation at this point is to justify the as-
sumption that players will behave “as expected”. We
desire a rational justification, i.e. one that shows that
expected strategies are, in some sense, utility maximiz-
ers for the players. ‘The settings that we are interested in
are ones in which “recommended” strategies are indeed
to be intuitively expected, and deviating from them
would seem to require some effort. In such cases, even
rather weak notions of rational justification carry some
weight. Such settings include, in particular, situations
where computer protocols are announced and appropri-
ate software that acts “as expected” is available. Our
notions are intended for cases where the existing stan-
dard notions do not apply: truthfulness is impossible,
and no distributional assumptions can be made since we
seek “worst-case” notions as in computer science.

5.1 A Game Theoretic Framework: Implemen-
tation in Set-Nash Equilibria Our setting contains
n players, where each player i has a privately known
type (input) t; € T;, and T = 171 x ... x T;;. Each
player i has a strategy space S;, and a utility function
u; : T, x § — R, where u;(t;, si, 5_;) denotes i’s payoft
when his type is t;, he plays strategy s; and the oth-
ers play the strategy tuple s_;. We model a situation
in which a set of recommended strategies is defined for
each player. Specifically, a function R; : T, — 25 is
given, where R;(t;) € S; is the set of strategies that
player i may be expected to follow. We denote also
Ri(*) = Ug, et Ri(t,). The motivating scenario is where
it is known that if all players ¢ play strategies s; € R;(t;),
then the outcome is “good” in some sense. E.g., in our
case, the obtained social welfare approximates the opti-
mal one. We would like to capture the notion that the
sets R; are in equilibrium. In other words, formalize
when can it be said that given that other players j # ¢
all play strategies in R;(t,), then player ¢ also rationally
plays some strategy in R;(t;).

DerINITION 5.1. The set functions {R;(-)} are in Set-
Nash equilibrium (for pure strategies) if for every
v, every t; € T, every s_; € R_;(x), and every s; €
S; there exists v; € R,(t;) such that ui{ti,r,,s-;) >
ui(t,, 8:,5-;). Le. if all others play some recommended
strategies (mot necessarily according to their true types)
then there exists a best response strategy for i that is
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one of i's recommended strategies (according to his true
type).

Although this definition is weak, we believe that this
“set equilibrium” concept is important. Specifically, it
captures the intuitive rational behind playing a “semi-
myopic” strategy in our model, as we show Dbelow.
To answer the weak points of the definition, while
still maintaining its spirit, we suggest a hierarchy of
strengthened definitions in the full paper, and discuss
their different properties.

It scems most appropriate to formalize our main
theorem using the framework of Immplementation The-
ory. This will also help us to describe the structure of
our proof, below. In this setting, we have a set of out-
comes/alternatives, A, from which we have to choose
one outcome. The choice depends on the players types
t € T, according to some social rule F : T" — 24, In
our case, A is the set of all valid allocations of items
to players, and F'(t) outputs all allocations that are 3-
approximations w.r.t . This social rule represents the
fact that our goal is to obtain a 3-approximation of the
welfare, and any allocation that obtains this will sat-
isfy us. All the classic definitions from implementation
theory can be adapted to our Set-Nash definition:

DEFINITION 5.2. Given F T — 24 an imple-
mentation in Set-Nash equilibrium is a mechanism
with strategy sets Sy, ...,Sn, and an outcome function
9(81,..,Sn) € A, such that there exists a Set-Nash equi-
librium {R;(-)}; that satisfies that g(s) € F(t) for all
s € R(t).

The celebrated revelation principle states that
whenever we can implement a social function in some
equilibrium, we can also implement it using a direct rev-
elation implementation, in which the strategy space of
the players is simply to reveal their type. For our “set
equilibrium” notion, we can have an “extended direct
revelation” implementation which is “extended truth-
ful”:

DEFINITION §.3. An implementation is an “extended
direct revelation implementation” if the strategies of the
players are of the form (t;,0;), where t; € T;, and l;
represents any additional information.

An extended direct revelation implementation is
“extended truthful” (in Set-Nash equilibrium) if there
exists a Set-Nash equilibrium in which Ri(t;) = (t;,*),
i.e. the player declares his true type in every one of his
recomrnended strategies.

PROPOSITION 5.1. (An extended revelation principle)
Every function F : T — 24 that can be implemented in
Set-Nash equilibrium can be implemented by an extended
truthful implementation.
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5.2 Main Theorem The above Definitions enable us
to exactly state the game-theoretic properties of our two
ascending auctions:

Main Theorem: The Online Iterative Auction and
the Sequential Japanese auction both implement a 3-
approximation of the welfare in Set-Nash equilibrium.

In other words, both auctions have a Set-Nash equi-
librium with the property that, for any combination of
strategies from the recommended sets, the resulting wel-
fare is at most one third of the optimal welfare.

We prove this in two steps. We first explicitly de-
scribe an extended direct revelation mechanism that im-
plements a 3-approximation of the welfare. We then
show that the this mechanism is “embedded” in both
our auctions {which are not direct revelation mecha-
nisms, of-course, and are seemingly different). We next
give a short exposition to both these arguments. Exact
definitions and proofs are given in the full paper [21}.

The extended direct revelation mechanism, which
we call a “semi-myopic mechanism”, is as follows.
Each player declares his type (arrival time, value, and
deadline) plus an additional “false” deadline. At each
time t, the mechanism computes the sets A;, S;, and
fi, which are the the natural parallels of the notions
in definition 3.8, where the deadline of each player is
taken to be his “false” deadline if that has not already
passed, and his “true” deadline otherwise. The winner
is chosen to be some player from f; (this is actually
a family of mechanisms, as the exact rule of choosing
from f, is not specified). We associate a “time-t-price”
to every player in f;, which equals the value of the
highest player remained outside of S;. The winner pays
his maximal “time-t-price” over all time periods. The
recommend strategy set R;(-) of player i is to declare
his true type plus any “false” deadline not higher than
his true deadline. We have:

Lemma: For any player 1, and any s_; € R_;(x), ¢
has a best response to s_; in Ry(t;).

Lemma: For any combination of recommended
strategies, the semi-myopic mechanism is a semi-myopic
algorithm.

Corollary:  The semi-myopic mechanism Set-Nash
implements a 3-approximation of the welfare.

The next step is to use this building block to prove
the main claim (the argument below is repeated for
each auction separately, in a similar way). We first
show that the ascending auction is an “extension” of
a semi myopic mechanism: Define a subset of the
strategies of the ascending auction as follows. Each
player chooses a false deadline, plays myopically with



it until it expires, and then plays myopically with the
true deadline. This creates an obvious mapping between
the two strategy (sub)sets. We show that when players
play such strategies in the ascending auction the result
(allocation plus payments) satisfies the requirements of
a semi myopic mechanism (this follows from the offline
properties of the auctions). Thus we conclude that the
desirable Set-Nash equilibrium exists in the ascending
auction, when strategies are restricted in this manner.
The last argument then shows that other strategies do
not improve the situation of the player, i.e. do not
contain strictly better actions. This concludes the proof.
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