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Abstract 

In this paper we consider online auction mechanisms for 
the allocation of !vI items that are identical to each other 
except for the fact that they have different expiration 
times, and each item must be allocated before it expires. 
Players arrive at different times, and wish to buy one 
item before their deadline. The main difficulty is that 
players act "selfishly" and may mis-report their values, 
deadlines, or arrival times. We begin by showing that 
the usual notion of truthfulness (where players folIow a 
single dominant strategy) cannot be used in this case, 
since any (deterministic) truthful auction cannot obtain 
better than an !vI -approximation of the social welfare. 
Therefore, instead of designing auctions in which players 
should follow a single strategy, we design two auctions 
that perform well under a wide class of selfish, "semi­
myopic", strategies. For every combination of such 
strategies, the auction is associated with a different 
algorithm, and so we have a family of "semi-myopic" 
algorithms. We show that any algorithm in this family 
obtains a 3-approximation, and by this conclude that 
our auctions will perform well under any choice of such 
semi-myopic behaviors. We next turn to provide a 
game-theoretic justification for acting in such a semi­
myopic way. We suggest a new notion of "Set-Nash" 
equilibrium, where we cannot pin-point a single best­
response strategy, but rather only a set of possible best­
response strategies. We show that our auctions have a 
Set-Nash equilibrium which is all semi-myopic, hence 
guarantees a 3-approximation. We believe that this 
notion is of independent interest. 
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Noam Nisant 

1 Introduction 
In recent years we have seen a growing body of work 
(e.g. [25, 1, 11, 12, 9, 23]) that analyzes distributed 
computer systems under the the assumption that partic­
ipants will behave "selfishly" in the sense of optimizing 
their own utility, rather than behaving obediently or 
maliciously as was commonly considered in computer 
science. In this model, in order to design algorithms 
that will lead to desirable outcomes, one needs two ill­
gredients. The first is a protocol, handed in to the par­
ticipants. The second is a prediction of expected player 
behaviors (who tune their actions with respect to the 
given protocol). With these, we get a precise algorith­
mic description, and we are able to analyze its perfor­
mance. In principle, for a given protocol, one may ex­
pect several different player behaviors. However, most 
recent works in this area manage to avoid this diHiculty 
by designing truthful auctions. In a truthful auction, 
payments are devised in a sophisticated way so that 
players will maximize their utility by simply revealing 
their true input (Le. follow a very specific, simple be­
havior). By this, the problem reduces to an algorithmic 
construction that should satisfy one more important re­
quirement - truthfulness. The difficulty of analyzing 
several different player behaviors is therefore avoided. 

Unfortunately, for many settings, truthful algo­
rithms are rare, and a need to find other suitable solu­
tions rises. In this paper we study a problem that forces 
us to take a different trail, instead of truthfulness. As 
we (provably) cannot design algorithms for which the 
players will be expected to take one single behavior, we 
design auctions for which many selfish behaviors lead 
to an approximately optimal allocation. Thus, ollr al­
gorithmic construction is of a family of algorithms, each 
one corresponds to a specific combination of players' be­
haviors, and all of them obtain a near optimal outcome. 
The new concept is that, although players are not ex­
pected t.o follow a specific behavior, but ollly one out of 
a set of behaviors, the outcome is still guaranteed to be 
close to optimal, for any choice the players make. We 
also provide some game-theoretic rational why will the 
players limit their choice to this set of actions. We dis-



ClISS some natural strengthenings of the equilibria notion 
we use, still keeping this general idea of "set equilibria" . 
We believe that these concepts offer a Hew way to by­
pass the inherent difficulties of the truthfulness notion, 
in a way that suits the CS worst-case notions. 

The problem we study is the online allocation of M 
items that are all identical except that they "expire" 
at different times: the first item expires at time 1, the 
second at time 2, and so on. Players arrive over time, 
and items must be allocated at or before their expiration 
time. Each player j desires any single item between 
his arrival time, T J' and his deadline, d j , and has a 
value Vj for receiving the item. All information Tj, d j , Vj 

is private to player j, and players act rationally to 
maximize their utility: the value Vj, if they are allocated 
an item, minus any payment that they must pay. Our 
goal is to design a mechanism that maximizes the "social 
welfare", i.e. to allocate the items so that the sum of 
values of players that receive an item is maximized. 

This Illodel seems applicable to Illauy scenarios in 
which items are sequentially allocated as time pro­
gressei:i, where both items and players have a finite "life­
time". In a computational setting, this model is equiva­
lent to online scheduling of unit length jobs with dead­
lines. Focusing on the algorithmic question only, and 
ignoring incentive issues, it is known that the ofHine 
problem can be solved exactly in polynomial time and 
that the online problem has a simple greedy algorithm 
that achieves a 2-approximation [18, 4], but no online al­
gorithm can achieve an approximation ratio better than 
the "golden ratio" [15]. Of course, this algorithm re­
quires each player to reveal his true type (value, arrival 
time, and deadline) and ignores players' strategic con­
Riderations. 

To incorporate the strategic considerations of the 
players, our first attempt was to design a truthful mech­
anism for this problem, in which players are motivated 
to reveal their true input by incorporating some so­
phisticated payment scheme. However, this cannot be 
achieved, as the following strong impossibility result 
shows: 

Theorem: A ny truthful deterministic online mecha­
n'18m cannot obta'in an approximation ratio < M. 

One could approach this difficulty by adding more as­
sumptions about the players. E.g., a common assump­
tion in recent works on online auctions [20, 8, 3, 5, 7, 13, 
2, 19, 2G, 16] is that player values are taken from some 
known interval [Vmin, v max ]. \Vith this, one can con­
struct a randomi7.ed truthfill auction with an appl'OX­
imation ratio of O(log{vmax - 'UmiTJ) (this can be ob­
tained fL.'> a special case of the market clearing algorithm 
of [8J, or by using the general method of [2J to convert 

online algorithms to truthful online algorithms). To our 
view, this is a too heavy toll to pay for truthfulness, as 
a deterministic 2-approximation without any assuwp­
tions on players exists once truthfulness is dropped. In 
addition, the resulting truthful auctions sometimes ap­
pear somewhat artificial (e.g. without real competition 
among the different bidders - all items are sold ill a fixed 
price, determined before the first bidder arrives). 

Instead, we will not assume allY additional assump­
tions on players, but will relax the required notion of 
equilibria: instead of specifying a single tuple of strate­
gies (the equilibrium point) that provides a good ap­
proximation ratio, we will spedfy a large set of strate­
gies with the property that the mechanism will perform 
well on any of them. Our ::;trategic analysis will not be 
able to pinpoint exactly which of these strategies will 
be rationally chosen, but rather only that Olle of them 
will be - this is enough to guarantee good performance. 

At this point we embark with the algorithmic 
analysis of two (variants of) classic ascending auctions, 
under a wide class of pos::;ible player behaviors. The 
first auction we consider is a natural adaptation of the 
iterative auction of Demange, Gale, and Sotomayor [10] 
(similar offline scheduling auctions were also considered 
by [27]). The Online Itemtive Auction constantly 
maintains a current price Pt and a current winner wint 
for every item t. At each time t, each player (in his 
turn) may place his name as the temporary winner of 
some item t f (bid on tf), deleting the previous temporary 
winner, and increasing the price by some fixed small Ii 
(a player can be a temporary winner only for one item). 
When none of the players wishes to bid, the time t phase 
ends: item t is sold to player win, for a price of Pt - 6. 
At time t + 1 the prices and temporary winners from 
time t are kept, and the auction continues similarly. 

In the ofHine setting, where all players arrive at 
time 1, [10J i:ihow that if all players behave myopically, 
i.e. always bid on the item with the lowest price among 
those that interest them, then the auction will reach the 
optimal allocation. Moreover, such myopic behavior is 
indeed the player's best interest [14J. But what will the 
player choose, facing this auction in the online setting'( 
This depeuds on the beliefs of the player about the 
future: if he fears that new competitive bidders will 
arrive in the future, he may bid aggressively for earlier 
items, offering a higher price for them but reducing 
his risk of future competition. To incorporate such 
considerations, we call a player serni-myop'ic if he always 
bids on some item with price lower than his value (not 
necessarily the item with the lowest price, as the myopic 
behavior requires). Thus there exist many semi-myopic 
behaviors, that represent different beliefs. The point 
is ,that the auction wilt obtain near optimal allocation 
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under any combination of such behaviors: 

Theorem: If all players are semi-myopic then the 
Online Iterative Auction achieves a 3-approximatio1t of 
the welfare. 

We prove this by analyz:ing a family of semi-myopic 
algorithms, where each such algorithm corresponds to 
a specific combination of semi-myopic behaviors. One 
algorithm in the family is the greedy algorithml, but the 
analysis of the entire family is completely different and 
non-trivial (even the analysis of the "myopic algorithm", 
which results from the myopic behaviors of the players, 
is completely different). 

The HeeoHd auction we consider is The Sequential 
Japanese Auction: Item t is sold at time t using a clas­
sic one-itelll ascending auction (exact details appear in 
the paper body). Surprisingly, we show that this auc­
tion has a Himilar structure to the previous one (in our 
setting). We define a myopic behavior that leads to 
the optimal allocation in the offline case (when all play­
ers arrive at time 1), and, similarly to above, a fam­
ily of semi-myopic behaviors aimed to capture players' 
uncertainties about the future. These semi-myopic be­
haviors again exactly correspond to our family of semi­
myopic algorithms, hence a 3-approximation is obtained 
for every combination of semi-myopic behaviors. 

But why should the players playas we expect? 
\Ve now turn to give a more accurate game-theoretic 
analysis of thc players' behaviors. As truthful auctions 
do not exist, we instead seek an equilibrium notion that 
will capture the idea advocated above, i.e. that the best 
we can do is recommend on a set of strategies, and not 
on a specific, single strategy. 

In the game-theoretic setting, each player is re­
quired to choose a strategy Si E Si' The resulting pay­
off of each player i is Ui(Sl . .. snrl

. Player i's strategy 
ri E Si is a best response to a specific combination 
of strategies of the other players S-i E S-i if for any 
Sj E S" ui(r"s-i) ? Ui(Sj,S_,). Our notion of "set 
equilibria" captures the situation where we describe a 
subset R, ~ Si of "recommended strategies" (best re­
sponse strategies) to choose from, instead of describing 
a single strategy Ti as the equilibrium point: 

~ch corresponds to the completely aggressive behavior that 
continues to bid on the current item as long as its price is lower 
than the player'~ value (even if the next item has a price of zero). 

2We actually need the framework of games with incomplete 
information, in which each player additionally has a type (in our 
case, a triplet {arrival time, value, and deadline}), and both his 
st,rategy and his payoff may depend on this type; this adds few 
t,echllicalitie~ that we deal with in the paper body, but does not 
change the spirit of the results, as we describe here. 
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Definition: The sets Hi are in Set-Nash equilib­
rium if for any p/ayel' i, and any stmtegy combination 
of the other players S-i E R-i, player i has (1 best "'e­
sponse to S-i in R i . 

Thus the definition requires that a best response to any 
tuple of recommended strategies of the others may be 
found within the recommended strategies of player ·i. 
This becomes equivalent to regular Nash equilibrium 
when IRil = 1 for all i. It should be pointed out 
that there always exists a trivial Set-Nash equilibrium 
in which the recommended strategies are the entire 
set of strategies. Therefore this notion is interesting 
only when one can guarantee some performance bound 
whenever players play anyone of their recommeIlded 
strategies, as we do. 

Although Set-Nash equilibrium is a weak notion, 
certainly weaker than regular Nash equilibriulll, it seems 
to us that it carry some weight, especially ill computer­
ized environments, in which appropriate protocols and 
software prognulls that act "as recommended" are avail­
able, and so a deviation would seem to require some ef­
fort. In such cases players can be realistically expected 
to act as recommendeu unless they have clear incentives 
to deviate. Such a clear incentive would seem to be ab­
sent when the recommended strategies are ill Set-Nash 
equilibrium. 

We also provide some discussion on ways to 
strengthen the basic definition. We describe a hierarchy 
of four "set equilibria" notions, with a growing Htrengtli. 
While, for our motivating example, we were able to use 
only the basic definitiOll, we believe that the cOlnplete 
hierarchy will turn out to be useful for other models, 
in which truthfulness does not exist, and one wishes to 
remain within the worst-case framework and to avoid 
any strong distributional assumptioIls. 

Returning to our model, we show that both our 
online ascending auctions have Set-Nash equilibria that 
are all semi-myopic. We leave the description of the 
appropriate sets of recommended strategies to the body 
of the paper. The main point we arrive at is that 
players do not have a clear incentive to deviate outside 
of these sets of recommended strategies; and when they 
do stay inside the set of recommended strateo'ies the 
mechanism obtains a 3-approximation. <:>' 

Main Theorem: The Online Itemtive A'uction and 
the Sequential Japanese Auction both have a Set-Nash 
equilibri'um which is all semi-myopic, hence results in a 
3-approximation of the welfare. 

The rest of the paper is organized as follows. The 
model and basic definitiolls are given in scc:tioJl 2. In 
section 3 we describe the two online ascending auctions, 



and show their algorithmic properties by characterizing 
a family of 3-approximations. Section 4 returns to 
the strategic setting, showing that no truthful auction 
can achieve an approximation ratio better than 111. 
In section 5 we define the new notion of Set-Nash 
equilibrium, and give an exposition to the analysis of 
our auctions according to it. Full proofs and additional 
details appear in the full paper [21]. 

2 Model and Basic Definitions 

Items: We wish to sell !vI identical items with different 
expiration times. W.l.o.g. we assume that the first item 
expires at time 1, the second at time 2, and so Oll. Each 
item must be sold (and received by the buyer) at or 
before its expiration time. 

Players: The potential buyers of the items (play­
ers/bidders) arrive over time. Player i arrives to the 
market at time r(i), and stays in the market for some 
fixed period of time, until his deadline d( i). We assume 
w.l.o.g. that the arrival and departure times are inte­
l1.;ers3 . Each player desires only one item (unit demand), 
th"t expires no earlier than his arrival time. He must 
receive il at or before his departure time4 . Player i 
obtains a value of veil from receiving such an item, oth­
erwise his value is O. We assume w.l.o.g. that different 
players have different values5 . 

We aSSllme the standard game-theoretic setting: 
Ph,yer i privately obtains his variables rei), dCi), and 
v(i), at t.ime T(i). He acts selfishly in order to maximize 
his own utility: his obtained value minus his price. I.e., 
a player may arrive at or after his true arrival time, and 
declare or act as if he has any value, and any deadline. 

Our goal: is to maximize the sodal welfare: the sum 
of (true) values of players that receive an item. 

Basic definitions: Player i is acti7Jc at time t if 
r(i) :s t :s d(i), and i did not win any item before 
time t. Let At be the set of all active players at time 
t. An allocation is a mapping of items to players Stich 
that, if player i receives item t, then r-('i) :s t :s d( i). 
Let X t be an allocation of items t, ... ,!vI. Xtld] denotes 
the player that receives item d according to Xt, and 
Xdd\, d2 J = U~~dj Xddj, the set of players that receive 
items d j through d2 . By a slight il,huse of notatiun we 
also lise X t as the set of players Xdt, 111]. The 'value of 

~ctil>ns ill a non-integral time point can be deferred to the 
next integral point with no affect. 

40ur auctions also fit the more severe restriction that player 
i cannot get an item t > d(i). E.g., player i cannot attend 
Saturday'S show if he is leaving 011 Friday, even if he receives 
the ticket before Friday. 

51.c. fix some arbitrary order over players, and set v('i) ;- v(j) 
iff v(;) > v(j} or v(i} = vCi} and i ;- J. 

X t is v(Xt ) = L~~t v (Xdd]) , i.e. the welfare obtained 
by Xt. A set S of players is independent with respect 
to items t, , .. , !vI if there exists an allocation of (part of) 
the items t, ... , !vI s. t. every player in S receives an item. 

The omine allocation problem: The offline prob­
lem, ill which all players arrive at time 1, is a matroid: a 
set of players is independent if there exists an allocation 
of (part of the items) to these players. This is known [17] 
for the unit-demand scheduling problem, which is equiv­
alent to ours. This matroid structure is used extensively 
in our proofs. See the full paper for details [21]. 

3 Two Online Ascending Auctions 

We first describe online adaptations of two well-known 
ascending auctions. These have the property t.hat 
players do not have to choose specific actions for the 
auction to perform well: a 3-approximation is obtained 
for a large, reasonable family of behaviors that we term 
"semi-myopic". Under any such player behaviors, each 
of our auctions belongs to it gelJeral family semi-myopic 
algorithms, that we characterize. We then show that 
any semi-myopic algorithm obtains it 3-approximation, 
and therefore conclude that our auctions lead to a 
near optimal allocation for any choice of semi myopic 
behaviors of the players. 

In this section, we focus on the algorithmic side. 
Therefore we give only intuitive justifications for the 
player behaviors that we assume. For the same reason, 
we also omit few technicalities about prices and tie­
breaking rules from the definitions. These are detctiled 
when we analyze the strategic properties of our auctions. 

3.1 The Online Iterative Auction We consider an 
online adaptation of the iterative auction of Demange, 
Gale, and Sotomayor [10]: 

DEFINITION 3.1. (THE ONLINE ITERATIVE AUCTION) 

The Online Iterative Auction constantly maintains a 
current price Pt and a current 'winneT wint fOT f.vcrU 
item t. The,~e aTe in'itialized to zero at t = 0, and 
updated according to playeTs' actions at each time t, as 
follows: 

• Each player, 'in his turn, may place his name as 
the temporary winneT of some item t', CaU8'Lng the 
prev'io'us winner to be deleted, and the price to 
incr'ease by some fixed small Ii. A player cannot 
perfO'l17! this action, and must relinquish his turn, 
if he is already a temporar-y winner. 

• When none of the players that are not tempoTary 
winners wishes to place their names somewher'e, the 
time t phase ends: item t is sold to the player' wint 
for' a price of Pt - Ii. 
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• A t time t + 1 the prices and tempomry winners fm'ffi 
time t are kept. If additional players arrive then the 
auction continues according to the above rules. 

Before analyzing the online auction, it is useful to 
take a glimpse at the offline case, in which all players 
arrive at time 1. This is a special case of the unit­
demand model studied by [10], [14]: 

DEFINITION 3.2. ([10]) Player i has a myopic strat­
egy in the iterative a'uction if, in his tum, he always 
places his name on the 'item t :::; d( i) with the minimal 
price, unless the minimal price 2: v(i), in which case he 
docs not place his name at all. 

LEMMA 3.1. ([10], [14]) If all players are myopic and 
arrive at time 1 then the onl'ine iterative a'uction obtains 
the optimal allocation, Furthermore, if all other players 
ar'e myopic then player i will maximize his utility by 
playing myopically. 

In the online setting, however, a player might not be 
completely myopic, depending on his beliefs about the 
future, Fol' example, he may bid aggressively for the 
current item, not placing his name on future items at 
all. This is reasonable if he anticipates tight competition 
from playerH that will arrive later on. Viewing this 
behavior as one extreme, and the completely myopic 
behavior as the other, it seems that any combination of 
the two cannot be "ruled-out". On the other hand, a 
player might choose not to participate at all for some 
time units - if, for example, there are !vI high valued 
players that desire any item 1 through !vI, but they all 
do not participate up to time AI, then the resulting 
welfare will be low. As it turns out, this is the only 
type of behavior we need to exclude: 

DEFINITION ~{.3. PlayeT i is semi-myopic if, in his 
t'Ur"n, i places his name on some item t with pet) :::; v(i) 
and T(i) :::; t :::; d(i) (not necessarily the one with 
the lowest price). If there is no such item, i stops 
participating. 

THEOREM 3.1. If all playeTs are semi-myopic then 
the online iterative a'uction achieves almost a 3-
approximation: v(OPT) :::; 3 'v(ON) + 2·!vI ' 0, where 
OPT, ON aTe the optimal, online allocations. 

The proof shows that, under any semi-myopic behavior, 
the online iterative auction is a semi myopic algorithm 
(see section 3.3 below), hence obtains the desired ap­
proximation (by lemma 3.3), 

3.2 The Sequential Japanese Auction A differ­
ent possibility is to sell item t at time t using a simple 
one item ascending auction: 
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DEFINITION 3.4. (A JAPANESE AUCTION) The (clas­
sic, one item) Japanese auction operates as follows: 
An auctioneeT 9'radually mises a price, star·ting from O. 
Each participating playel' should decide 'Whether to drop 
out or to stay (once a player drops o'ut, he cannot Join 
again), as the price ascends. The price stops increasing 
exactly 'When all players, besides one, have dropped out. 
The winner is the player that did not drop out, and he 
pays the p'rice that was r-eached. 

A natural adaptation of this to the online case is: 

DEFINITION 3,5. (TilE SEQUENTIAL JAPANESE AUCTION) 
The Sequential Japanese A'uction sells each item t at 
time t, separately, using a Japanese auction with one 
modification: the participants are allowed to observe 
how many drop-outs occur as the price ascends (and to 
incorporate this into their drop-out decision). 6 

As before, it is useful to first consider this auction 
for the offline case, in which a rather surprising notion 
of myopic behavior leads to the optimal allocation: 

DEFINITION 3.6. Player'i is myopic in the Sequential 
Japanese Auction if, in the a'uction of any time t, (fOT 
r( i) :::; t :::; d,( i)), he drops exactly when edher the price 
reaches v(i), 01' when there are exactly d(i) - t other 
playeTs that did not drop yet. 

The logic for dropping when d(i) - t players remain is 
that at this point the player is assured that there are 
enough items before his deadline to be allocated to all 
bidders who are willing to pay the current price, 

LEMMA 3.2. If all player's are myop'ic and aT'live at 
time 1 then the Sequential Japanese Auction obtains the 
optimal allocation. 

Our assumption that player have different values is 
important here. It is not hard to veritY that this lemma 
actually follows from the proof of the online strategic 
setting. In t.hi::; case, a myopic behavior (in the offline 
case) is a best response when all others are myopic 
only when using the modified pri<:es of t.his auction 
(described in the full paper). 

In the online setting, again, players might Hot 
play myopi<:ally, and may insist on closer items (Le. 
stay longer in the auction) if they anticipate much 
competition in the future. In the extreme, when every 
player remains in the auction until the price reaches 
his true value, we actually simulate the simple greedy 

--upr;ce~ are also modified, The time-t-winner pays the highest 
price among all time-t' -auctions in which he tied the time-t'­
winner. Defining "a tie" is delicate, and requires the players to 
drop simUltaneously, See the full paper. 



algorithm, which is a 2-approximation. As before, any 
behavior between the two extremes can cause only a 
minor performance degradation. All we wish is that 
playeni will not drop out "too soon". Indeed, dropping 
out early in the auction also have dh;advantages, as 
futme auctions might be much more competitive, due 
to new arriving players. 

DEFINITION 3.7. Player i's strategy is semi-myopic 
(Jor the Sequential Japanese Auction) if, at every time t, 
he drops no late'r than when the price reaches his val'uc, 
v(i), and no earlier than when only d(i)-t other players 
rcmain 'in the a·uction. 

THEOREM 3.2. If all player's play semi-myopic strate­
gies th"n the Sequential Japanese Auction achieves a 
3 -app1'Oximation. 

In a simihl.r manner to the iterative auction above, this 
theorem is proved by showing that, under any semi­
myopic behavior, the Sequential Japanese Auction is a 
semi myopic algorithm. 

3.3 Semi-Myopic Algorithms For each combina­
tion of player strategies, the above auctions are asso­
ciated with a different algorithm. In order to analyze 
their performance for a family of strategies, we there­
fore need to characterize a family of algorithms, that 
we call semi-myopic algorithms. The main point is that 
any semi myopic algorithm obtains a 3-approximation 
of the welfare. 

Specifically, the current best schedule at time t, St, is 
the allocation with maximal value among all allocations 
of items t, ... , 1\.1 to the active players, At 7. Define: 

(3.1) ft = { JESt I 
St \ j is independent W.r.t items t + 1, ... , M }, 

The set. ft contains all players that can receive item t, 
when one plans to "llocate items t, ... , lv! to the players 
of St (i.e. these are all the potentially first players). 
Now define the critical value at time t, v;, as: 

v; = { ~injEf' {'O(j)} St oF ft 
otherwise 

All active players with value larger than v; must belong 
to St, because of its optimality (w.l.o.g the first player 
in St has value v;, and if there was a higher valued 
player outside of St, we could switch between them and 
increase the value of Sd. Thus, it seems reasouable 
not to allocate item t to a player with value less 

~re exist" one slich allocation, by tbe matroid structure, 
and sinc" different players have different values 

than v;, as this player cannot belong to any optimal 
allocation. Surprisingly, this condition is enough to 
obtain approximately optimal allocations: 

DEFINITIOK 3.8. (A SEMI MYOPIC ALGORIT(1) An 
algorithm is semi myopic if every item t is sold at time 
t to some player j with v(j) ::::: v7. 8 

LEMMA 3.3. The Online Iterative Auction with semi­
myopic players and the Sequent·tal Japanese Auction 
with semi-myopic players aTe both semi myopic algo­
rithms. 

The family of semi-myopic algorithms can be viewed 
as the entire range between the following two extremes: 
the first is the greedy algorithm that alwllYs chooses the 
player with maximal value9

, and the second is the "my­
opic" algorithm that always chooses the player tlmt de­
termined v;. These two extremes are 2-approximations 
(both were studied in the context of online schedul­
ing [18, 6]). The entire family has ollly a slightly larger 
approximation ratio: 

THEOREM 3.3. Any semi-myopic algorithm is a 3-
nppmximation of the welfare, and th.·is is tight. 

Proof. We will show that any online allocatioll algo­
rithm that produces an allocation ON has 'O(OPT \ 

ON) :::; 2 ~~~l v;, where OPT is the optimal allo­
cation. From this, the theorem will follow immedi­
ately, as any semi-myopic algorithm has v(ONlt]) ::::: vi, 
and therefore v(OPT) = v(OPT \ ON) + V(ON) :::; 
2 ~~~l v; + v(ON) :::; 2· v(ON) + v(ON) = 3· v(ON). 

vVe first state two useful claims about the structure 
of offline allocations. 

PROPOSITION 3.1. Let A, B be sets of players, whe're 
A c B. Let SA, S B be th" allocation zuith optimal value 
for A, B, respectively (both are over the same set of 
items). Then if j E A b'ut j t/:. SA then j t/:. SB. 

PROPOSITION 3.2. Let S be the allocation with rna:cimal 
varue over the set of players A and th" set of items 
t, ... , M. Ass'ume that S is not independent w.r.t items 
t + 1, ... , lvI. Let j E S be the player uJ'ili! minimal valu" 
such that S \ j is independent w. T. t items t + 1, ... , 111. 
Then S \ j has maximal value among all independent 
sets 1JJ.T.t items t + 1, ... , 1\.£ and players in A. 

~orst-case approximation cannot sell itern t before time t, 
as a player with high value only for t may appear. 

9 Interestingly, t.his is a special case of the greedy algorithm 
of [22] for comuinatorial auctions with sub-mooular vrduatioIl". 
They "tudy the offline case, but it is easy to verify that their 
algorithm actually works onlille. 
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We can now prove the theorem. Fix some scenario, 
and let OPT and ON be the optimal and online 
allocations for this scenario. We describe f : OPT \ 
ON --> {1, ... , M} snch that f is 2 to 1 and v(j) :::; vj(j) 
for any j E OPT\ ON. OUf claim immediately follows. 
The function f is defined as follows. Let X t be the 
optimal allocation of items t + 1, ... , tvI among players 
in OPT[l, t] \ ON. For any j E OPT \ ON (say 
j = OPT[t'J), let t; = "rIlin{t 2 t' I j % X t }. Then 
we fix f(j) = t;. 

PROPOSITION 3.3. V j E OPT \ ON, vj(j) 2 v(j). 

Proof. Let t = f(j). First notice that j EAt: j % ON, 
r(j) :::; t as j E OPT[l, t), and d(j) 2 t since either 
j E X t - 1 or j = OPT[tJ. Let"rllt E St be the player 
who determined v;, (if v; = 0 then set mt = null, 
so St \ mt = Sd. We first show that, by subclaim 3.1, 
j % St \mt: define A as OPT[l, t]\ON minus all players 
with deadline < t, and B = At. Clearly A ~ B. By 
definition, X t is optimal for A (over items t + 1, ... , 111). 
St \"rIlt is optimal for B (over items t + 1, ... , M): if 
mt = null this follows from the optimality of St, and if 
mt =J:. null this follows from sub-claim 3.2. Therefore, 
since j % X t then j 1:. St \ mt· If j =J:. fItt then j % St, 
and since j E At it follows from the optimality of St 
that v(j) :::; v(mt). If j = mt then this trivially holds. 
Therefore v(j) :::; v(mt) = vj(j)' and the claim follows. 

PROPOSITION 3.4. f is 2 to 1. 

Pmoj. Fix any time t. We need to show that f maps 
at most two players to t. Let iI E X t - 1 be the player 
with minimal value such that X t - 1 \ jl is an allocation 
of items t + 1, ... , M, and denote Y = X t - 1 \jl (if X t - 1 

itself is independent w.r.t items t + 1, ... , M then set 
Y = Xt-t). If X t ~ Y then by the optimality of 
X t it follows that X t = Y and the claim follows: by 
definition, f maps only jl ami OPT[t] to t. Otherwise, 
X t \ Y =J:. 0. We first show that X t \ Y = {OPT[t]}. This 
is implied by sub-claim 3.1: set A = OPT[l, t -1] \ ON, 
and B = OPT[l, t] \ ON. Since Y is optimal for 
A (by sub-claim 3.2) and X t is optimal for B (by 
definition) it follows that, if j E OPT[l, t - 1] but 
j % Y then j % Xt, i.e. that X t \ Y = {OPT[t]}. To 
conclude, we observe that X t is a base in the matroid 
over items t + 1, ... , M and players OPT[l, t] \ ON, and 
that Y is an independent set of that matroid. Therefore 
IY\XtI :::; IXt \ YI = 1, and thus IXt - 1 \ XL! :::; 2. Since 
OPT[t] EXt then, by definition, the players mapped to 
t are exactly those in IXt - 1 \ Xt I, and the claim follows. 
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4 The Impossibility of Truthful 
Approximations 

We now move from algorithmic considerations to game­
theoretic ones, in order to analyze player strategies. 
Since our goal is to find approximately optimal allo­
cations with respect to the t'rue variables of the players, 
we would prefer to design truthful algorithms: an al­
gorithm is truthful if there exist price functions such 
that, regardless of how the other players act, player i 
will maximize his utility by declaring his true variables 
to the algorithm1o . More formally, let T; be the do­
main of all valid player i types/bids (r(i), v(i), dO)), and 
let T -i = x j#; T j . Consider the allocation constructed 
by the algorithm upon receiving the type bi E T; ti·OIll 

player i and b_ i E T-i from the other players, and let 
v(i, b) be the value that player i obtains from this al­
location, i.e. v( i) if i receives one of his desired items, 
and 0 otherwise. 

DEFINITION 4.1. (TRUTHFULNESS) An algorithm is 
truthful if there exist price fltnctions p, : Tl x ... x Tn -> 

R s·uch that, for any i, any Li E T_;, any tr·ue type 
bi E Ti, and any b; =J:. bill: 

Such a property is highly desirable, as it guarantees that 
each player will be motivated to reveal his true type to 
the algorithm, by an argument similar to the traditional 
worst-case arguments of Computer Science. Indeed, 
many recent examples show truthful algorithms for 
various CS models (some are cited in our introduction). 
However, for our model, no such algorithm performs 
well: 

THEOREM 4.1. Any truthful deterministic aLgorithm 
for our online allocation problem cannot obtain an ap­
proximation ratio better than M. 

Proof. Assume w.l.o.g. that a player that does not win 
any item pays o. This implies that i's price must not be 
higher than his value. 

LEMMA 4.1. Fix some truthful dderministic mecha­
nism with some fixed appmximation mtio. Then, for 
any player i with r( i) = 1 there exist.~ a price function 
Pi : T-i --> R such that, for any combination of players 
that arrive at time 1, L i : 

• Ifv(i) > Pi(b_ i ) then i wins item 1 and pays Pi(L,) 
(regardless of his deadline). 

---nJBythe revelation principle [24], it is w.l.o.g. to cOllsider only 
algorithms that receive, as input, the players' types. 

11 We actually restrict the possible Iii'S such that Tj ::: '.j. 



• /fu('i) < Pi(Li) then i does not w'in any item. 

P1'00j. Fix ally combination of players that arrive at 
time 1, b_,. Suppose first that i has deadline equal to 
1. For this case, the player becomes one parameter, and 
by truthfulness there exist a price function according to 
the claim [1]12. 

We now show that this function Pi satisfies the 
conditions of the claim, regardless of i's deadline. Fix 
any deadline d(i) of i. If v(i) > Pi(L i ) t.hen i must win 
some item until his deadline, otherwise he can declare 
d; = 1 and have strictly better utility. But then, if i 
does not win item 1, the adversary will produce players 
with higher and higher values, forcing the mechanism 
not to allocate any item to i in order to maintain the 
approximation ratio, thus contradicting truthfulness. 
Therefore i will receive item 1. He will pay Pi(L i ) 

as otherwise, if he pays a higher price, he will declare 
d, = 1 and will reduce his price, and if he pays less, 
t.hen if i will have deadline equals 1 he will declare 
d(i) instead, thus still winning item 1 but paying less. 
Therefore the function Pi satisfies the first condition. 

Suppose now that v(i) < Pi(L;), and suppose there 
exist.s a scenario in which 'i wins one of his desired items. 
His price must be at most v( i) < Pi (L i ). But then, if i 
had some value larger than Pi (b-il he would have been 
better off declaring v( i) instead, by this still winning 
but paying le::>1;. Therefore i cannot win any item at all, 
and the claim follows. 

We now finish the proof of the theorem. Fix any 
price functions p, : T-i -7 IR. For any f > 0 we show 
theexistenceofplayertypesb1, ... ,bM s.t. 'i'i: 1'(i) = 1, 
d(i) = M, 1 ~ v(i) ~ 1 + f, and v(i) i= Pi(L i ). By the 
above claim, it follows that the mechanism can obtain 
welfare of at most 1 + f, while the optimal allocation is 
at least lvI, and the theorem follows. To verify that such 
types exist, fix L > M real values in [1,1 + oj. Choose 
IvI values v('i) uniformly at random from these L values. 
Then, for any given i, Pr(v(i) = pi(v(-i))) ~ I/L, 
as the values were drawn LLd. Thus, P1'(3i, v('i) = 

pi(v(-i))) ~ M/L < 1, hence there exist a choice of 
values with v('i) f. Pi(V( -i)) for all i. 

Remark 1: Although the proof utilizes an extreme 
scenario with players with very large values, the worst 
case ratio OCCllrs in common, simple scenarios, as the 
proof demonstrates. I.e., since the algorithm defends it­
self agaillst sllch extremes, it must make wrong decisions 
even in simple ca.ses. 

~ argument essentially states that, if i wins for sOllle veil 
then he ins with any higher value, and pays the same. Therefore 
there exists a threshold value pi = pi (b_ i ), such that i wins and 
pays pi if veil > pi, and looses otherwise. 

Remark 2: A simple truthful deterministic i\I­
approximation exists: For any player i, set Pi to be the 
highest bid received in time slots 1, ... , t, excluding i'fi 

own bid. Sell item t to player i if and only if v(i) > Pi, 
for a price of Pi. 

5 Will Players Act As Expected? 

Our main motivation at this point is to justify the as­
sumption that players will behave "as expected". We 
desire a rational justification, i.e. one that shows that 
expected strategies are, in some sense, utility maximiz­
ers for the player::>. The Hettings that we are interested in 
are ones in which "recommended" strategies are indeed 
to be intuitively expect.ed, and deviating from them 
would seem to require some effort. In such cases, even 
rather weak notions of rational justification carry some 
weight. Such settings include, in particular, situations 
where computer protocols are annoullced and appropri­
ate software that acts "as expected" is available. Our 
notions are intended for cases where the existing stan­
dard notions do not apply; truthfulness is impossible, 
and no distributional assumptions can be made since we 
seek "worst-case" notions as in computer science. 

5.1 A Game Theoretic Framework: Implemen­
tation in Set-Nash Equilibria 01J]' setting contains 
n players, where each player i has a privately known 
type (input) t, E T i , and T = 1'1 X ... x 'l~. Each 
player i has a strategy space Si, and a utility function 
Ui ; T, x S -+ IR, where Ui(t" Si, S-i) denotes i's payoff 
when his type is ti, he plays strategy Si and the oth­
ers play the strategy tuple Li' We model a situation 
in which a set of recommended strategies is defined for 
each player. Specifically, a function Ri : 1~ ---> 25 ; is 
given, where Ri(t;) <;;; Si is the set of strategies that 
player i may be expected to follow. We denote also 
Ri (*) = Ut;ET,Ri(t,). The motivating scenario is where 
it is known that if all players i play strategies s, E R, (t;), 
then the outcome is "good" in some sense. E.g., in our 
case, the obtained social welfare approximates the opti­
malone. We would like to capture the notion that the 
sets Ri are in equilibrium. In other words, formalize 
when can it be said that given that other players j f i 
all play strategies in Rj(t)), then player'i also rationally 
plays some strategy iII Ri(ti). 

DEFINITION 5.1. The set junctions {RiC)} aT'e i:(! Set­
Nash equilibrium (for pU7'e strategies) if J01' every 
i, every ti E Ti , every S-i E R_ i ( *), and every s, E 

Si there exists 1'i E R,(t'i) s'llch that Ui(ti, 1'" Li) ::;:> 

Ui(t" s" L.;). I.e. if all others play some recommended 
strategies (not necessarily accor'ding to their tme types) 
then there exists a best response stmtegy for ·i that is 
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one of 'I 's recommended strategies (according to his i1-ue 
type), 

Although this definition is weak, we believe that this 
"set equilibrium" concept is important. Specifically, it 
captures the intuitive rational behind playing a "semi­
myopic" strategy ill our model, as we show below. 
To answer the weak points of the definition, while 
still maintaining its spirit, we suggest a hierarchy of 
strengthened definitions in the full paper, and discuss 
their different properties. 

It seems most appropriate to formalize our main 
theorem using the framework of Implementation The­
ory. This will also help us to describe the structure of 
our proof, below. In this setting, we have a set of out­
comes/alternatives, A, from which we have to choose 
Olle outcome. The choice depends 011 the players types 
t E T, according to some social rule F : T --+ 2A. In 
our case, A is the set of all valid allocations of items 
to players, and F( t) outputs all allocations that are 3-
approximations w.r.t t. This social rule represents the 
fact that our goal is to obtain a 3-approximation of the 
welfare, and any allocation that obtains this will sat­
isfy us. All the classic definitions from implementation 
theory can be adapted to our Set-Nash definition: 

DEFINITION 5.2. Given F : T -; 2A , an imple­
mentation in Set-Nash equilibrium is a mechanism 
with strategy sets S 1, ... , Sn, and an outcome function 
g(S1, ... , sn) E A, s'uch that there exists a Set-Nash equ'i­
librium {RiC)}i that satisfies that g(s) E F(t) for all 
SER(t). 

The celebrated revelation principle states that 
whenever we can implement a social function in some 
equilibrium, we can also implement it using a direct rev­
elation implemelltation, in which the strategy space of 
the players is simply to reveal their type. For our "set 
equilibrium" notion, we can have an "extended direct 
revelation" implementation which is "extended truth­
ful": 

DEFINITION 5.3. An implementation is an "extended 
direct revelation implementation" if the strategies of the 
players are of the form (t i , li), wheTe ti E 'ii, and l; 
repr'esents any additional information. 

An extended direct revelation implementation is 
"extended truthful" (in Set-Nash equilibrium) if there 
exists IL Sfd-Nash equilibrium in which R;(ti) = (ti'*)' 
i. e. the player declares his true type in every one of his 
recommended strategies. 

PROPOSITION 5.1. (An extended revelation principle) 
Every junction F : T ---> 2A that can be implemented in 
Set-Nash equilibrium can be implemented by an extended 
truthful implementation. 
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5.2 Main Theorem The above Definitions enable us 
to exactly state the game-theoretic properties of our two 
ascending auctions: 

Main Theorem: The Online Iterative Auction and 
the Sequential Japanese auction both implement a :~­

approximation of the welfare in Set-Nash equilibrium. 

In other words, both auctions have a Set-Nash equi­
librium with the property that, for any combination of 
strategies from the recommended sets, the reslllting wel­
fare is at most one third of the optimal welfare. 

We prove this in two steps. \\Fe first explicitly de­
scribe an extended direct revelation mechanism that im­
plements a :~-approxirnatioll of the welfare. We then 
show that the this mechanism is "embedded" in both 
our auctions (which are not direct revelation mecha­
nisms, of-course, and are seemingly different). We next 
give a short exposition to both these arguments. Exact 
definitions and proofs are given in the full paper [21). 

The extended direct revelation mechanism, which 
we call a "semi-myopic mechanism", is as follows. 
Each player declares his type (arrival time, value, and 
deadline) plus an additional "false" deadline. At each 
time t, the mechanism computes the sets At, St, and 
ft, which are the the natural parallels of the notions 
in definition 3.8, where the deadline of each player is 
taken to be his "false" deadline if that has not already 
passed, and his "true" deadline otherwise. The winner 
is chosen to be some player from It (this is actually 
a family of mechanisms, as the exact rule of choosing 
from ft is not specified). We associate a "time-t-pl'ice" 
to every player in ft. which equals the value of the 
highest player remained outside of St. The winner pays 
his maximal "time-t-price" over all time periods. The 
recommend strategy set R i (-) of player 'i is to declare 
his true type plus any "false" deadline not higher than 
his true deadline. \\Fe have: 

Lemma: For any player i, and any B-i E R-i(*), i 
has a best response to B-i in Ri(ti). 

Lemma: For any combination of I'f~commended 
strategies, the semi-myopic mechanism is a semi-myopic 
algorithm. 

Corollary: The semi-myopic mechanism Set-Nash 
implements a 3-approximation of the welfare. 

The next step is to use this building block to prove 
the main claim (the argument below is repeated [or 
each auction separately, in a similar way). We first 
show that the ascellding auction is an "extension" of 
a semi myopic mechanism: Define a subset of the 
strat'~gies of the ascending auction as follows. Each 
player chooses a false deadline, plays myopically with 



it until it expires, and then plays myopically with the 
true deadline. This creates an obvious mapping between 
the two strategy (sub)sets. We show that when players 
play such strategies in the ascending auction the result 
(allocation plus payments) satisfies the requirements of 
a semi myopic mechanism (this follows from the offline 
properties of the auctions). Thus we conclude that the 
desirable Set-Nash equilibrium exists in the ascending 
auction, when strategies are restricted in this manner. 
The last argument then shows that other strategies do 
not improve the situation of the player, Le. do not 
contain strictly better actions. This concludes the proof. 
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