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Abstract

We analyze the dynamic simultaneous ascending auction (SAA), which was pioneered
by the US Federal Communications Commission (FCC) in 1994 and has since become the
standard to conduct large-scale, large-stakes spectrum auctions around the world. We
consider an environment where local bidders, each interested in a single item, compete
against one or more global bidders with super-additive values for combinations of items.
In the SAA, competition takes place on an item-by-item basis, which creates an exposure
problem for global bidders – when competing aggressively for a package, a global bidder
may incur a loss when winning only a subset. We characterize the Bayes-Nash equilibria
of the SAA, evaluate the impact of the exposure problem on revenue and efficiency, and
compare its performance to that of the benchmark Vickrey-Clarke-Groves (VCG) mech-
anism. We show that individual and social incentives are aligned in the SAA in the sense
that bidders’ drop-out levels maximize expected welfare. Unlike the VCG mechanism,
however, the SAA is not fully efficient because when a bidder drops out, information
about others’ values has been only partially revealed. Like the VCG mechanism, the SAA
exhibits perverse revenue properties: due to the exposure problem, the SAA may result
in non-core outcomes where local bidders obtain items at very low prices, and seller rev-
enue can be decreasing in the number of bidders. Moreover, the SAA may result in lower
revenues than the VCG mechanism. Finally, when the number of items grows large, the
SAA and VCG mechanisms become (efficiency and revenue) equivalent.

JEL Code: D44
Keywords: Simultaneous Ascending Auction, Exposure Problem, Auction Design

∗Institute for Empirical Research in Economics, University of Zürich, Blümlisalpstrasse 10, CH-8006, Zürich,
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1. Introduction

In recent years, governments around the world have employed auctions to award licenses for

the rights to operate in certain markets. The spectrum auctions conducted by the US Federal

Communications Commission (FCC) provide a particularly prominent example. In the FCC

auctions, telecom firms compete for blocks of frequencies (typically on the order of 10-20MHz)

defined over certain geographic areas.1 The auction format used by the FCC is the simultaneous

ascending auction (SAA), which is a dynamic, multi-round format in which the items are put

up for sale simultaneously and the auction closes only when bidding on all items has stopped.

The SAA has become the standard to conduct large-scale, large-stakes spectrum auctions and

has generated close to $80 billion for the US Treasury and hundreds of billions worldwide.

An important property of the SAA is that when items are substitutes and bidding is

“straightforward,” i.e. in each round of the auction bidders place minimum acceptable bids

on those licenses that provide the highest current profits, then prices converge to competitive

equilibrium prices and a fully efficient outcome results (Milgrom, 2000; Gul and Stacchetti,

2000). However, in many of the FCC auctions there are synergies between licenses for adjacent

geographic regions, and bidders’ values for combinations of licenses exceed the sum of individ-

ual license values. For example, the bid regressions reported by Ausubel, Cramton, McAfee,

and McMillan (1997) show that the highest losing bid on a license is higher if the bidder who

placed the bid has won or eventually wins a license. Bajari and Fox (2009) apply a structural

econometrics model to data from FCC auction #5 and find evidence for substantial value com-

plementarities: they estimate that the value of a nationwide package is 69% more than the sum

of underlying values.2 Value complementarities were considered even more important in the

recently conducted FCC auction #73, where potential entrants, e.g. Google, competed against

established incumbents such as Verizon and AT&T for highly valuable 700MHz spectrum.3

Most experts believed that an entrant could have a viable business plan only if it would acquire

a “national footprint,” i.e. a set of licenses covering the entire United States.

In this paper, we consider an environment where one or more global bidders (entrants) have

super-additive values for the licenses, i.e. for global bidders licenses are complements rather

than substitutes. For this environment an often cited problem of the item-by-item competition

1The different frequency domains that have been put up for sale in the 73 FCC auctions since 1994 accom-
modate different usages, including wireless and cellular phone applications, mobile television broadcasting, and
air-to-ground communication. See http://wireless.fcc.gov/auctions/default.htm?job=auctions_all.

2FCC auction #5 (also known as the “C-block auction”) was conducted in 1995 and generated over $10
billion in revenue.

3FCC auction #73 was conducted in 2008 and generated a record $19 billion in revenue. It was the first
combinatorial auction conducted by the FCC, based on hierarchically structured packages (Rothkopf, Pekec,
and Harstad, 1998) and a novel pricing rule (Goeree and Holt, 2009).
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that occurs under SAA is that global bidders face an exposure problem – when competing

aggressively for a package, global bidders may incur a loss when winning only an inferior subset.

Foreseeing the possibility of being “exposed,” global bidders may decide to bid cautiously and

drop out early, which could adversely affect the auction’s revenue and efficiency.4 For example,

the counterfactual experiments conducted by Bajari and Fox (2009) demonstrate that in FCC

auction #5 only 50% of the total available surplus was captured.5 In addition, a substantial

body of laboratory evidence documents the negative impact of the exposure problem on the

SAA’s performance (see, e.g., Brunner et al., 2009, and references therein).

Despite the potential shortcomings of the item-by-item competition underlying SAA, it

has been the preferred choice for most spectrum auctions. Alternatives allowing for package

bids were either considered too complex or thought to be prone to “free riding” (Milgrom,

2000).6 Furthermore, the familiar Vickrey-Clarke-Groves (VCG) mechanism, which guarantees

full efficiency even in the presence of value complementarities, is generally dismissed because

of its perverse revenue properties. In particular, the VCG mechanism can lead to non-core

outcomes that result in high bidder profits and low seller revenue. Moreover, seller revenue

can decrease when more bidders participate. The following three-bidder, two-item example

provided by Ausubel and Milgrom (2006) illustrates these shortcomings. Suppose local bidder

1 is interested only in item A, local bidder 2 is interested only in item B, the global bidder 3 is

interested only in the package AB, and all bidders’ values (for individual items or the package)

are $1 billion. The VCG mechanism assigns the items efficiently to bidders 1 and 2, but at

zero prices!7 Besides generating the lowest possible revenue, this outcome is outside the core as

the seller and global bidder can form a blocking coalition. Moreover, excluding one of the local

bidders, raises the seller’s revenue to $1 billion. These perverse revenue properties, shown here

in a complete-information setting, carry over to the Bayesian framework studied in this paper

where bidders’ values are private information.8

4Milgrom (2000) argues that the different per-unit-of-bandwidth prices observed for small and large licenses
in the Dutch DCS-1800 auction reflect the exposure problem. A similar observation applies to the recent FCC
auction #66, where 12 large (F-band) licenses providing 20MHz of nationwide coverage sold for $4.2 billion
while 734 small (A-band) licenses also providing 20MHz of nationwide coverage went for $2.3 billion.

5Bajari and Fox (2009) show that surplus could have been doubled had the FCC offered large regional licenses
or a nationwide package in addition to individual licenses.

6In package auctions, small bidders who drop out early (“free ride”) may earn windfall profits when other
small bidders remain active and outbid the global bidders. After all, a small bidder’s concern is simply whether
as a group they meet the threshold set by a global bidder’s package bid. Of course, if all local bidders free ride
this threshold may never be met, with adverse effects for the auction’s revenue and efficiency – this is known
as the threshold problem.

7Ausubel and Milgrom (2006) develop this example further in a theorem that shows that bidders’ Vickrey
payoffs are the highest payoffs over all points in the core.

8For instance, when bidders’ values in the example above are uniformly distributed between 0 and 1, the
revenue of the VCG mechanism is 1

3 with only a single local bidder, 1
4 with two local bidders, and 1

10 with three
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The goal of this paper is to compare the performance of the SAA to that of the VCG

mechanism in a setting with complementarities. We provide a complete characterization of

equilibrium bidding in the SAA, which allows us to determine the impact of the exposure

problem on efficiency and revenue. Our setup is general in that we allow for arbitrary numbers

of local and global bidders, arbitrary distributions of local and global bidders’ values, and a

general convex valuation function to capture global bidders’ value complementarities.

For this general environment we prove that individual and socially optimal incentives are

aligned in the SAA, as is the case in the VCG mechanism. In particular, bidders’ drop-out

levels, chosen to maximize their expected profits, also maximize expected welfare (efficiency).

Unlike VCG, however, the SAA is not fully efficient because when a bidder drops out there is

residual uncertainty about the values of other active bidders. We show that the efficiency gain

of the VCG mechanism does not benefit the seller, however, but merely results in higher profits

for the global bidders.

We also demonstrate that the SAA shares the poor revenue-generating features of the VCG

mechanism. Due to the exposure problem the SAA can result in non-core outcomes character-

ized by low seller revenues – indeed, seller revenue in the SAA may be less than in the VCG

mechanism. In addition, seller revenue in the SAA can be declining in the number of bidders.9

Finally, the similarities between the SAA and VCG mechanisms become even stronger as the

number of items grows, and the two mechanisms are (revenue and efficiency) equivalent in the

limit.

Our findings contrast with those for the substitutes environment that typically is assumed

to analyze the SAA (e.g. Milgrom, 2000). Since value complementarities are the rule rather

than the exception, our results reinforce the interest of policy makers in further improving the

design of auctions to award spectrum licenses, including the possibility of allowing for package

bids.

1.1. Related Literature

Auctions in which bidders have synergistic values have often been analyzed within a complete-

information setting, see, for instance, Szentes and Rosenthal (2003a,b). There are relatively

few theoretical papers that apply the standard Bayesian framework of incomplete information.

An early exception is Krishna and Rosenthal (1996) who study the simultaneous sealed-bid

second-price auction (SSA). Similar to our bidding environment, local bidders in their setup

local bidders.
9For the aforementioned example (see footnote 8), SAA revenue is 1

3 with a single local bidder, 0.27 with
two local bidders, and 0.087 with three local bidders.
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are interested in only one object while global bidders are interested in multiple objects for which

they have synergistic values. Krishna and Rosenthal derive an explicit solution for the case of

two items and show how it varies with the synergy level. They also discuss the extension to

more than two items and provide a numerical comparison of revenue in alternative formats.

Other papers that study the SSA include Rosenthal and Wang (1996), who allow for common

values and partially overlapping bidder interests, and a more recent paper by Chernomaz and

Levin (2008) who use theory and experiments to analyze the SSA and a package bidding variant

when local bidders have identical values.

Ascending formats have been analyzed either assuming a clock price that rises in response

to excess demand or assuming that bidders can name their own bids (i.e. submit any bid

they want). In the latter category, Brusco and Lopomo (2002) demonstrate the possibility of

collusive demand-reduction equilibria in the SAA. They find that increasing the number of

bidders and objects narrows the scope for collusion. Brusco and Lopomo (2009) analyze the

effects of budget constraints. Zheng (2008) shows that jump bidding may serve as a signaling

device to alleviate the inefficiencies that result from the exposure problem. Albano, Germano,

and Lovo (2006) analyze a (“Japanese style”) clock version of the ascending auction (as we do

in this paper) for a setting with only two items. They note the equivalence between the SAA

and a “survival auction” and point out that many of the collusive or signaling equilibria that

occur when bidders can name their bids do not arise for the clock variant of the SAA.

1.2. Organization

This paper is organized as follows. Section 2 provides an equilibrium analysis of the SAA

for the case of one global bidder. Section 3 proves the social optimality of bidder’s drop-out

choices, and Section 4 extends the result to an arbitrary number of global bidders. Section 5

establishes the equivalence of the SAA and VCG mechanisms as the number of items grows

large. Section 6 concludes.

2. The Simultaneous Ascending Auction

Consider an environment with n ≥ 1 local bidders and K ≥ 1 global bidders who compete

for n items labeled 1, . . . , n. Local bidder i is interested only in acquiring item i, for which she

has value vi. The local bidders’ values are identically and independently distributed according

to F (·). Global bidder j’s value for winning k items is α(k)V j, where the V j are identically

and independently distributed according to G(·), and α(k) is increasing in k with α(0) = 0 and
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α(n) = 1.10 We define the “marginal values” V j
k = (α(n+1−k)−α(n−k))V j for k = 1, . . . , n

so that global bidder j’s marginal value of the first item is V j
n , of the second item is V j

n−1, . . .,

and of the n-th item is V j
1 .

Assumption 1 (complementarities). For global bidder j = 1, . . . , K, the marginal values

form a non-decreasing sequence V j
n ≤ V j

n−1 ≤ . . . ≤ V j
1 . Moreover, we say that

(i) there are “no complementarities” when V j
n = . . . = V j

1 = V j/n.

(ii) there are “extreme complementarities” when V j
n = . . . = V j

2 = 0 and V j
1 = V j.

The simultaneous ascending auction (SAA) is modeled using n price clocks that tick upward

(at equal and constant pace) when two or more bidders accept the current price levels. If at

most one bidder accepts the new price then the price clock for that item stops and the bidder

who accepted the higher price is allocated the item at the last price accepted by other bidders

(ties are resolved randomly). Under this mechanism, local bidders have a dominant strategy

to bid up to their values. A global bidder’s strategy is complicated by the fact that when

competing aggressively for a package, the global bidder may suffer a loss when she is able to

win only an inferior subset. Foreseeing the possibility of being “exposed” and incurring a loss,

the global bidder may decide to bid cautiously and drop out early, which could adversely affect

the auction’s revenue and efficiency — this is known as the exposure problem.

2.1. Single Global Bidder

We’ll use the notation BK
k (V ) to denote a global bidder’s bidding function when K global

bidders and k out of n local bidders are active. In this section we focus on the case of a single

global bidder (K = 1). To derive the optimal strategy for the global bidder, suppose first

that there is only one item for sale (k = 1). It will prove useful to introduce the notation

Fn(vn|p) = 1− ((1− vn)/(1− p))n, which is the conditional probability that the minimum of n

local bidders’ values is less than vn given that the minimum is no less than p.

If the current price level is p and the global bidder chooses a drop-out price level B1
1(V ),

her expected profits are

Π1
1(V, p) =

∫ B1
1(V )

p
(V1 − v1)dF1(v1|p),

with v1 the local bidder’s value. The integrand π1
1(V, v1) = V1−v1 is the global bidder’s profit if

the local bidder drops out at price v1. Clearly, the global bidder’s expected profit is maximized

by choosing the drop-out price B1
1(V ) such that π1

1(V, B1
1(V )) = 0, or B1

1(V ) = V1.

10The assumption that (local and global) bidders’ values are identically distributed can easily be relaxed (at
the cost of extra notation).
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Next, consider the case k = 2. Suppose the current price level is p and the global bidder

chooses a drop-out price level B1
2(V ) (for both items), her expected profit is non-trivial only

when the local bidder with the lower value drops out before B1
2(V ). Once a local bidder drops

out, the global bidder faces competition only in a single market and she is willing to bid up to

V1 in this market. The reason is that her profit for the item on which bidding stopped is sunk

(i.e. independent of whether or not she wins an additional item). The global bidder’s expected

profit can be written as

Π1
2(V, p) =

∫ B1
2(V )

p

{∫ V1

v2

(V1 − v1)dF1(v1|v2) + (V2 − v2)
}
dF2(v2|p),

where v2 (v1) denotes the lower (higher) of the local bidders’ values. The integrand π1
2(V, v2) =

∫ V1
v2

(V1− v1)dF1(v1|v2) + (V2− v2) is the global bidder’s expected profit conditional on the local

bidder with the lower value dropping out at v2. The first term arises when the global bidder

wins the remaining item, i.e. when v1 ≥ v2 is less than V1 (since the global bidder bids up to

V1 for the remaining item) in which case the global bidder wins the additional item and pays

v1 for it. The second term indicates that the global bidder profits V2 − v2 from the item for

which bidding stopped first, irrespective of whether she wins the additional item.

Again, the global bidder’s optimal drop-out level follows from π1
2(V,B1

2(V )) = 0, which yields

B1
2(V ) = V2 + Π1

1(V,B1
2(V )). Note that the global’s profit can be recursively expressed using

the profit for the single local-bidder case: Π1
2(V, p) =

∫ B1
2(V )

p {Π1
1(V, v2) + (V2 − v2)}dF2(v2|p).

This recursive relation can be generalized to the case of more than two items.

Proposition 1. The global bidder’s optimal drop-out level solves B1
k(V ) = Vk+Π1

k−1(V, B1
k(V )),

where the payoffs satisfy the recursive relation

Π1
k(V, p) =

∫ B1
k(V )

p
{Π1

k−1(V, vk) + (Vk − vk)}dFk(vk|p), (2.1)

with Π1
0(V, p) = 0.

The proposition implies a set of fixed-point equations from which the optimal bids can be solved

recursively: B1
1(V ) = V1, B1

2(V ) = V2 +
∫ B1

1(V )

B1
2(V )

(V1 − v1)dF1(v1|B1
2(V )),

B1
3(V ) = V3 +

B1
2(V )∫

B1
3(V )

{ B1
1(V )∫

v2

(V1 − v1)dF1(v1|v2) + (V2 − v2)
}
dF2(v2|B1

3(V )),

etc. The intuition behind these bidding functions stems form a familiar break-even condition:

when a license is marginally won at price B1
n(V ), its value plus the expected payoffs from con-
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Figure 1. The Global Bidder’s Optimal Drop-Out Level When Complementari-
ties are Extreme: B1

n(V ) (left) For n = 1, . . . , 5 and B2
n(V ) (right) For n = 0, . . . , 5.

tinuing (knowing all remaining bidders’ values exceed B1
n(V )) must balance this cost.

Example 1. To illustrate, suppose n = 2 and the local bidders’ values are uniformly dis-

tributed. We have B1
1(V ) = V1 and a simple calculation shows that

B1
2(V ) =

1

3

(
1 + V1 + V2 −

√
(2− V1 − V2)2 − 3(1−min(1, V1))2

)
(2.2)

For the case of extreme complementarities (V2 = 0, V1 = V ), these bidding functions are

illustrated by the two left-most lines in the left panel of Figure 1 (the right panel will be

discussed in Section 4). The left panel also shows the optimal bidding functions B1
n(V ) for

higher values of n.

This setup can be used to show the perverse revenue properties of the VCG mechanism

and the SAA. Figure 2 displays, for different levels of the global bidder’s value (0 ≤ V ≤ 1.5)

and three local bidders (n = 3), the expected welfare, revenue, global bidder’s profit, and local

bidders’ profits in the VCG (solid) and SAA (dashed) mechanisms. Comparing the top panels

of Figure 2 shows that the difference in welfare between the two mechanisms is the same as the

difference in the global bidder’s profit. Likewise, comparing the bottom panels shows that the

difference in revenue is equal to the difference in local bidders’ profits. These results are not

special to the uniform case – in the next section we prove them more generally. The bottom

panels show that for low values of V , local bidders have higher profits in the SAA and seller

revenue is lower as a consequence – the exposure problem causes the global bidder to drop

out early, resulting in windfall profits for local bidders.11 Note that both the SAA and VCG

11These results can be used to generate the revenue numbers of the example in the Introduction (see footnotes
8 and 9). If the global bidder’s value for package is uniformly distributed on [0, 1] (and complementarities are
extreme so that the global’s value for a single item is 0) then revenues of the VCG mechanism are ( 1

3 , 1
4 , 1

10 )
for n = 1, 2, 3 while revenues of the SAA are ( 1

3 , 0.27, 0.087).
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Figure 2. Welfare (top-left), Revenue (bottom-left), the Global Bidder’s
Profit (top-right), and the Local Bidders’ Profits (bottom-right) for
VCG (solid) and SAA (dashed) as Functions of the Global Bidder’s Value
0 ≤ V ≤ 1.5 with Three Local Bidders and Uniform Valuations.

generate non-core outcomes: when the global bidder’s is V = 0.4, for example, the seller’s

revenue is close to 0 and the seller and global bidder could thus form a blocking coalition.

3. Social Optimality

The optimal drop-out levels of the global bidder shown in the left panel of Figure 1 illustrate

the effects of the exposure problem in equilibrium. Consider, for instance, the case of five local

bidders and suppose the global bidder is equally strong in expectation, i.e. the global bidder’s

value for the package is 2.5. When all five local bidders are active, the global bidder drops out

when the price for each item is 0.2 (see the lowest line in the left panel of Figure 1), which

means that the global bidder drops out at 40% of the package value! This does not necessarily

mean, however, that efficiency is negatively affected. The lowest line in the left panel of Figure

1 only applies when all five local bidders are active, and if this occurs at an item price of 0.2

then the sum of the local bidders’ expected values is 3 (not 2.5). Hence, efficiency may be

improved when the global bidder drops out (especially when complementarities are extreme, as

in Figure 1, and the global bidder derives no value from winning less than five items).

We next determine what a bidder’s drop-out level would be if it were chosen to maximize

expected welfare (rather than to maximize expected profits). When a bidder drops out, her
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information consists of her own value, the values of bidders that have already dropped out,

and updated information about the values of bidders that are still active. In other words, the

welfare function to be maximized is based on a mixture of “ex post” information (values of

bidders that have dropped out) and “ex ante” information (values of active bidders). As a

result, there are necessarily some inefficiencies in the SAA unlike the VCG mechanism where

the welfare function is based on only “ex post” information about bidders’ values.

Obviously, for a local bidder the socially optimal drop-out level is equal to her value. To

derive the socially optimal drop-out level for the global bidder consider first the case of a single

item (k = 1). The social planner would choose B1
1(V ) to maximize

W 1
1 (V, p) =

∫ B1
1(V )

p
V1dF1(v1|p) +

∫ 1

B1
1(V )

v1dF1(v1|p)

where the first (second) term corresponds to the global (local) bidder winning the item. Com-

paring the expression for welfare to the global’s profit Π1
1(V, p) in Section 2.1 shows that

W 1
1 (V, p) = Π1

1(V, p) + E(v|v > p). In other words, welfare and the global bidder’s profit

differ only by a constant independent of B1
1(V ). Hence, the drop-out level chosen by a profit-

maximizing bidder maximizes welfare. We next generalize this to an arbitrary number of items.

Proposition 2. Bidders’ drop-out levels maximize expected welfare.

Proof. We prove, by induction, that W 1
k (V, p) = Π1

k(V, p) + kE(v|v > p) for all k ≥ 1. Above

we have shown it is true for k = 1. For k ≥ 2 we have:

W 1
k (V, p) =

∫ B1
k(V )

p
W 1

k−1(V, vk)dFk(vk|p) +
∫ 1

B1
k
(V )

k∑

i=1

vi dFk(vk|p)

=
∫ B1

k(V )

p
(Π1

k−1(V, vk)− vk)dFk(vk|p) +
∫ B1

k(V )

p
((k − 1)E(v|v > vk) + vk)dFk(vk|p)

+
∫ 1

B1
k
(V )

k∑

i=1

vi dFk(vk|p)

= Π1
k(V, p) + kE(v|v > p)

In the first line, the second term on the right side corresponds to the case where the global

bidder drops out before the local bidder with the lowest value among the k active local bidders,

in which case all remaining items are awarded to the local bidders. The first term corresponds

to the case where the local bidder drops out first (at price level vk), in which case the social

planner optimizes the continuation welfare W 1
k−1(V, vk) with one fewer local bidder. In going

from the first to the second line we used the induction hypothesis, and in going from the second

to the third line we used the recursive property of the global bidder’s profit, see Proposition
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1. Since welfare and the global bidder’s profit differ only by a constant, B1
k(V ) is chosen in a

socially optimal manner. Q.E.D.

As in the benchmark Vickrey-Clarke-Groves (VCG) mechanism, the individual and social in-

centives are aligned in the SAA. The difference is that in the VCG mechanism all values are

revealed at once, and the social planner maximizes welfare (not expected welfare) to ensure

100% efficiency. In contrast, in the SAA, bidders’ drop-out levels maximize expected welfare

(where the expectation is with respect to the values of bidders that are still active), which

precludes full efficiency.

The efficiency gain in the VCG mechanism does not benefit the seller, however, but only the

global bidder. Let W SAA(V ), RSAA(V ), ΠSAA(V ), and πSAA(V ) denote the expected welfare,

expected revenue, expected global bidder’s profit, and expected local bidders’ total profit under

the SAA mechanism, where the (ex ante) expectation is taken over local bidders’ values only.

Similar definitions apply with respect to the VCG mechanism.

Corollary 1. The efficiency gain of the VCG mechanism accrues to the global bidder

W V CG(V )−W SAA(V ) = ΠV CG(V )− ΠSAA(V ) (3.1)

while differences in the seller’s revenue accrue to the local bidders

RSAA(V )−RV CG(V ) = πV CG(V )− πSAA(V ) (3.2)

Proof. Recall that W SAA(V ) = W 1
n(V, 0) and ΠSAA(V ) = Π1

n(V, 0) differ by nE(v), see

the proof of Proposition 2. Suppose the VCG mechanism assigns k of the n licenses to the

global bidder for which she pays the opportunity cost, which is the sum of the k lowest local

bidders’ values. Let Π̂V CG and Ŵ V CG denote the global’s profit and welfare respectively as a

function of the entire profile of bidders’ valuations: Π̂V CG =
∑k

`=1(Vn−`+1−vn−`+1) and Ŵ V CG =
∑k

`=1 Vn−`+1+
∑n

`=k+1 vn−`+1, so Ŵ V CG = Π̂V CG(V )+
∑n

k=1 vk. Taking expectations with respect

to local bidders’ value shows that the global’s expected profit ΠV CG(V ) and expected welfare

W V CG(V ) differ by nE(v). This establishes (3.1). The equality in (3.2) now follows from the

“accounting identity” R = W − Π− π. Q.E.D.

As we show in Section 5, the differences between the VCG and SAA mechanisms vanish when

the number of items grows large. First, we extend the optimality result of Proposition 2 to the

case of more than one global bidder.
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4. Multiple Global Bidders

A global bidder’s optimal bidding function when there are multiple global bidders follows

from the same ‘break even’ logic that underlies the result of Proposition 1. First, consider the

case of K = 2 global bidders and suppose k out the n local bidders are still active: the optimal

bid B2
k(V ) is determined by requiring that at this price level the marginal costs and benefits

of staying in a little longer (i.e. by bidding as of type V + ε) cancel. There are two possible

marginal events: one occurs when a local drops out, in which case the other global bidder has a

value no less than V . Hence, the continuation profits for a global bidder with value V are zero

in this case: Π2
k−1(V, B2

k(V )) = 0. Alternatively, the other global bidder drops out, in which

case the continuation profits are given by Π1
k(V, B2

k(V )). Furthermore, the global bidder now

wins all the (n − k) items for which the local bidders had already dropped out at a price of

B2
k(V ) for each item. Finally, when there are K ≥ 3 global bidders, the only non-vanishing

marginal term results from K−1 global bidders dropping out at the same time, which produces

the same marginal equation as when K = 2.

Proposition 3. The global bidder’s optimal drop-out level satisfies BK
k (V ) = B2

k(V ) for K ≥ 2

and

Π1
k(V, B2

k(V )) +
n∑

`=k+1

(V` −B2
k(V )) = 0, (4.1)

where the Π1
k(V, p) satisfy the recursion relations of Proposition 1.

It is worthwhile pointing out a few cases: k = 0 corresponds to the case where all local bidders

have dropped out two (or more) global bidders are active. We then have B2
0(V ) = V/n since at

a price of V/n the global bidder is indifferent between winning nothing and winning everything

at that price. For k = n we have Π1
n(V, B2

n(V )) = 0 so B2
n(V ) = B1

n(V ). Likewise, for k = n−1

we have Π1
n−1(V, B2

n−1(V )) + Vn = B2
n−1(V ), which implies B2

n−1(V ) = B1
n(V ) (see Proposition

1). In other words,

B2
n(V ) = B2

n−1(V ) = B1
n(V ). (4.2)

The intuition is that both B2
n(V ) and B2

n−1(V ) are determined by the marginal event where

the global bidder wins her first item: B2
n(V ) corresponds to the case where the other global

bidder first drops out and then a local bidder, and B2
n−1(V ) corresponds to the case where a

local bidder first drops out and then the other global bidder. Under both scenarios, however,

the marginal equation results from considering the cost and benefit of winning the first item,

which yields B1
n(V ) as the optimal drop-out level.
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Example 1 (continued). The right panel of Figure 1 shows the global bidder’s optimal drop-

out levels B2
n(V ) for 0 ≤ n ≤ 5 when local bidders’ values are uniform and complementarities

are extreme (see also Example 1). Note that there are five (not 6) lines since B2
5(V ) = B2

4(V ),

see (4.2), and that B2
k(V ) ≤ B1

k+1(V ) ≤ B1
k(V ) for all k.

As we show next, the ranking of the global bidders’ optimal drop-out levels holds more

generally. Competition from other global bidders aggravates the exposure problem and lowers

a global bidder’s optimal drop-out level: B2
k(V ) ≤ B1

k(V ) for all k. In fact, we can show

something stronger.

Lemma 1. B2
k(V ) ≤ B1

k+1(V ) for k = 0, 1, . . . , n− 1.

Proof. For k = n − 1, this follows from (4.2). To prove the lemma for k ≤ n − 2 note that

when B2
k(V ) = B1

k+1(V ) the left-side of (4.1) is equal to

Π1
k(V,B1

k+1(V )) +
n∑

`=k+1

(V` −B1
k+1(V )) =

n∑

`=k+2

(V` −B1
k+1(V )) ≤

n∑

`=k+2

(V` − Vk+1) ≤ 0

where the first equality follows since Π1
k(V,B1

k+1(V )) = B1
k+1(V )−Vk+1 (see Proposition 1), the

first inequality follows since B1
k+1(V ) ≥ Vk+1, and the second inequality follows from Assump-

tion 1. Since the left side of (4.1) is strictly decreasing in B2
k(V ) the above inequality implies

that B2
k(V ) ≤ B1

k+1(V ) for k = 0, 1, . . . , n− 1. Q.E.D.

The fact that global bidders are more cautious when facing competition from other global bid-

ders does not hurt efficiency. On the contrary, it implies that global bidders who do not have

the highest value, and who should therefore not win any items in the optimal allocation, drop

out before local bidders that should win items in the optimal allocation do.

Proposition 4. Bidders’ drop-out levels maximize expected welfare for any K ≥ 1.

Proof. Consider the global bidder with the highest value, V , among all the global bidders and

suppose in the optimal allocation this global bidder is assigned k∗ items. Once other global

bidders have dropped out, social optimality follows from Proposition 2, i.e. B1
k(V ) > vk for

k = n−k∗+1, . . . , n and B1
k(V ) < vk for k = 1, . . . , n−k∗. We need to show that all other global

bidders drop out before B1
n−k∗+1. This follows since for all V ′ < V and k = n− k∗ + 1, . . . , n,

we have BK
k (V ′) = B2

k(V
′) ≤ B1

k+1(V
′) ≤ B1

k(V
′) < B1

k(V ) ≤ B1
n−k∗+1(V ). Q.E.D.

Efficiency in the SAA is lower than that of the VCG only because when a bidder who drops out

she does not know the values of those that are active, and, hence, her optimal drop-out level

maximizes expected welfare instead of (ex post) welfare as in VCG. This difference vanishes
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when the number of items grows large and local bidders drop out at a predictable rate governed

by the distribution function F (·).

5. Large Auctions

In many of the applications of the SAA the number of items is very large, e.g. in some of the

FCC spectrum auctions more than a thousand items were sold. In this section we show that the

differences between VCG and SAA vanish in this limit. In particular, the SAA becomes fully

efficient and generates the same profits for the bidders and the seller as the VCG mechanism.

Let V denote the highest of the global bidders’ values and vn ≤ . . . ≤ v1 denote the (ordered)

local bidders’ values. When the highest-value global bidder wins k of n items, welfare is

W (k, V ) =
n∑

`=n−k+1

V` +
n−k∑

`=1

v`.

In the limit when n → ∞ the sum of local bidders’ values will diverge, and we assume that

the highest of the global bidders’ values diverges as well, i.e. V = nV̂ where V̂ is distributed

according to G(·) with bounded support.12 We can then normalize welfare and profits on a

per-item basis. Suppose the highest-value global bidder wins a fraction κ of all items then

normalized welfare is W (κ, V̂ ) = limn→∞ W (κn, nV̂ )/n and the global bidder’s normalized

value of winning a fraction κ of all items is V(κ) = limn→∞ α(κn)V̂ . Assumption 1 implies that

α(·) is convex, and, hence, so is V(·). To simply notation, below we simply write V instead of

V̂ to indicate the normalized value.

The welfare maximizing fraction of items assigned to the highest-value global bidder now

follows from W (V ) ≡ maxκ W (κ, V ), or, equivalently,

W (V ) = max
0≤κ≤ 1

V(κ) +
∫ 1

F (−1)(κ)
vdF (v), (5.1)

where we used that in the limit when n grows large, v(1−κ)n is asymptotically normally dis-

tributed with mean F (−1)(κ) and variance of order 1/n (David and Nagajara, 2003). The

solution to the maximization problem in (5.1) is denoted κ∗(V ) = argmax(W (κ, V )) so that

W (V ) = W (κ∗(V ), V ).

In the SAA, local bidders drop out at a known rate, e.g. at price level p a total of F (p)

local bidders have dropped out. Suppose there is only one global bidder (K = 1). The global

12Otherwise the fraction of items that the global bidders win tends to zero in the limit as n →∞.
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bidder’s optimal strategy is to bid up to a level B1(V ) that maximizes her per-item profit:

Π(V ) = V(F (B1(V )))−
∫ B1(V )

0
vdF (v).

Note that Π(V ) = W (F (B1(V )), V ) − E(v) so the global bidder’s optimal drop-out level is

simply B1(V ) = F (−1)(κ∗(V )).

Next consider the case of multiple global bidders. First, let K = 2. The optimal drop-out

level B2(V ) follows by requiring that the marginal benefits and costs of staying in a little longer

(by bidding as of type V + ε) cancel. This deviation affects the outcome only when the rival

global bidder drops out in between (with probability εg(V )), in which case the net benefit is

V(F (B2(V )))−B2(V )F (B2(V )) +
∫ B1(V )

B2(V )
(V ′(F (y))− y)dF (y) = 0.

Here the first term reflects the value of the F (B2(V )) items the global bidder wins when

her rival drops out, the second term is how much she pays for them, and the third term is

her continuation profit when she proceeds to win additional items by bidding up to B1(V ).

Integrating this last term and using the definition of W (V ) shows that B2(V ) solves

B2(V )F (B2(V )) +
∫ 1

B2(V )
ydF (y)−W (V ) = 0. (5.2)

It is easily verified that the left side of (5.2) is strictly increasing in B2(V ) so the solution is

unique. We next show that B2(V ) ≤ B1(V ). Evaluating the left side of (5.2) at B2(V ) = B1(V )

yields

B1(V )F (B1(V ))− V(F (B1(V )) = κ∗(V )F (−1)(κ∗(V ))− V(κ∗(V ))

≥ κ∗(V )(F (−1)(κ∗(V ))− V ′(κ∗(V )))

= 0,

where the equality in the first line follows form the definition of B1(V ), the weak inequality in

the second line follows from convexity of V , and the equality in the third line follows from the

first-order condition for κ∗(V ), see (5.1).13 Since the left side of (5.2) is strictly increasing in

B2(V ) this implies that B2(V ) ≤ B1(V ).

13To be precise, the equality in the third line holds only for interior solutions. To account for possible
boundary solutions, note that for κ∗(V ) = 0 the expression in the second line vanishes. Furthermore, if
κ∗(V ) = F (B1(V )) = 1, then the global bidder’s optimal drop-out level is determined solely by the event when
other global bidders drop out and B1(V ) = B2(V ) = V(1).
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Finally, when K ≥ 3, the marginal equation that determines BK(V ) follows by requiring

that the marginal benefits and costs of staying in a little longer (e.g. by bidding as of type

V + ε) cancel. This deviation affects the outcome only when all rival global bidders drop out

in between, and the resulting marginal equation is the same as when K = 2. In the next

proposition, G(Z|V ) denotes the conditional distribution of a global bidder’s value, Z, given

that her value is less than V .

Proposition 5. With a large number of items, the global bidders’ optimal drop-out levels satisfy

B1(V ) = F (−1)(κ∗(V )), where κ∗(V ) maximizes the welfare in (5.1), and BK(V ) = B2(V ) ≤
B1(V ) for K ≥ 2, where B2(V ) solves (5.2). Moreover:

W SAA(V ) = W V CG(V ) = W (V )

RSAA(V ) = RV CG(V ) =
∫ V

0
W (Z)dG(Z|V )K−1 −

∫ 1

B1(V )
(1− F (v))dv

ΠSAA(V ) = ΠV CG(V ) =
∫ V

0
(W (V )−W (Z))dG(Z|V )K−1

πSAA(V ) = πV CG(V ) =
∫ 1

B1(V )
(1− F (v))dv

Proof. The best global bidder wins F (B1(V )) = κ∗(V ) items so welfare is maximized:

W SAA(V ) = W (V ). To determine the best global bidder’s profit note that she wins an optimal

fraction of items F (B1(V )), which she values at V(F (B1(V ))), and for which she pays

∫ V

0
{B2(Z)F (B2(Z)) +

∫ B1(V )

B2(Z)
ydF (y)}dG(Z|V )K−1

Here the first term in the integral corresponds to the items the best global bidder wins (all at

once) when the second-best global bidder drops out at B2(Z), and the second term corresponds

to the items she wins when local bidders subsequently drop out between B2(Z) and B1(V ).

Using (5.2), we can rewrite the global bidder’s profit as stated in the proposition. (Note that

for K = 1, the expression reduces to W (V )−W (0) = W (V )−E(v).) Local bidders with values

higher than B1(V ) win an item at a price B1(V ) and the total profits for local bidders as a

group therefore are

∫ 1

B1(V )
(v −B1(V ))dF (v) =

∫ 1

B1(V )
(1− F (v))dv

where we used partial integration. The seller’s revenue follows from R = W −Π−π. It is stan-

dard to verify the expressions for welfare, revenue, and profits for the VCG mechanism. Q.E.D.
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Figure 3. Global Bidder’s Optimal Drop-Out Level with One (solid) or Two
(dashed) Global Bidders and Weak (left) or Strong (right) Complementarities.

Example 2. Suppose value complementarities are parameterized as V(κ) = κρ V with 1 ≤
ρ ≤ 2 and a global bidder’s value, V , is uniformly distributed on [0, 1]. A straightforward

computation shows that

B1(V ) =





(ρV )1/(2−ρ) if V ≤ 1/ρ

1 if V ≥ 1/ρ

and

B2(V ) =





√
2
ρ
− 1 (ρV )1/(2−ρ) if V ≤ 1/ρ

√
2V − 1 if V ≥ 1/ρ

which are shown by the solid and dashed lines in Figure 3 for weak complementarities (ρ = 1.1)

on the left and strong complementarities (ρ = 1.9) on the right. Note that the exposure problem

gets worse as complementarities become stronger, causing low-value global bidders to drop out

earlier and high-value global bidders to bid more aggressively.

6. Conclusions

We provide a general Bayes-Nash equilibrium analysis of the simultaneous ascending auction

(SAA) when global bidders, with super-additive values for combinations of items, compete

against smaller bidders interested in a single item. Due to the item-by-item competition in

the SAA, global bidders face an exposure problem – when competing aggressively for the entire

package, a global bidder may incur a loss when winning an inferior subset. The equilibrium

analysis of this paper allows us to quantify the adverse effects of the exposure problem on

efficiency and revenue of the SAA, and compare its performance to that of the benchmark

Vickrey-Clarke-Groves (VCG) mechanism.
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Our setup is very general in that it allows for arbitrary numbers of local and global bid-

ders, arbitrary distributions of local and global bidders’ values, and a general convex valuation

function to capture global bidders’ value complementarities. For this general environment we

prove that individual and social optimal incentives coincide in the SAA, as is the case in the

VCG mechanism. In particular, bidders’ drop-out levels, which follow from profit-maximizing

behavior, maximize expected welfare. Unlike VCG, however, the SAA is not fully efficient

because at the time a bidder drops out, she does not know the values of other active bidders.

Consequently, bidders’ drop-out levels maximize expected welfare, not welfare (as in the VCG

mechanism).

Importantly, our equilibrium analysis demonstrates that the exposure problem results in

perverse revenue properties of the SAA. In particular, the SAA can easily lead to non-core

outcomes in which local bidders obtain the items at very low prices. Moreover, the seller’s

revenue may decline as more bidders enter the auction. These shortcomings, which are well

known for the VCG mechanism (e.g. Ausubel and Milgrom, 2006), were hitherto not known for

the SAA simply because a general equilibrium analysis did not exist. The similarity between

the SAA and VCG mechanisms becomes even more pronounced in larger auctions: when the

number of items grow large, as is the case in many FCC spectrum auctions, SAA and VCG

yield identical profits for the bidders and the seller.

The low-revenue outcomes the SAA produces in an environment with complementarities

contrast with its superior properties when licenses are substitutes (e.g. Milgrom, 2000). Rev-

enue of the SAA can even be less than that of the VCG mechanism, which is generally dismissed

for giving too much surplus to bidders and leaving too little for the seller (e.g. Ausubel and

Milgrom, 2006). Our findings demonstrate the adverse effects the exposure problem can have

in item-by-item formats, and reinforce the interest of policy makers in more flexible auction

institutions that accommodate bidders’ synergistic preferences.
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