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Abstract

This paper examines the problem of repeatedly implementing an efficient social

choice function when the agents’ preferences evolve randomly. We show that the

freedom to set different mechanisms at different histories can give the planner an ad-

ditional leverage to deter undesirable behavior even if the mechanisms are restricted

to be simple and finite. Specifically, we construct a history-dependent sequence of

simple mechanisms such that, with minor qualifications, every pure subgame per-

fect equilibrium delivers the correct social choice at every history, while every mixed

equilibrium is strictly Pareto-dominated. More importantly, when faced with agents

with a preference for less complex strategies at the margin, the (efficient) social

choice function can be repeatedly implemented in subgame perfect equilibrium in

pure or mixed strategies. Our results demonstrate a positive role for complexity

considerations in mechanism design.
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1 Introduction

The success of a society often hinges on the design of its institutions, from markets to

voting. From a game-theoretic perspective, the basic requirement of an institution is

that it admits an equilibrium satisfying properties that the society deems desirable, as

forwarded by the literature on mechanism design. A more satisfactory way of designing an

institution is to have all of its equilibria to be desirable, or to achieve full implementation.

In a recent paper, Lee and Sabourian [21] (henceforth, LS) extend the scope of im-

plementation to infinitely repeated environments in which the agents’ preferences evolve

stochastically, and demonstrate a fundamental difference between the problems of one-

shot and repeated implementation. In particular, they establish, with minor qualifica-

tions, that in complete information environments a social choice function is repeatedly

implementable in Nash equilibrium if and only if it is efficient, thereby dispensing with

Maskin monotonicity [25] that occupies the critical position in one-shot implementation

and yet often amounts to a very restrictive requirement, incompatible with many desirable

normative properties including efficiency (e.g. Mueller and Satterthwaite [34], Saijo [36]).

The notion of efficiency represents the basic goal of an economic system and therefore the

sufficiency results in LS offer strong implications.

Despite the appeal of its results, the full implementation approach has often been

criticized for employing abstract institutions that neither square up to the demands of real

world mechanism design, nor are theoretically appealing. The implementation literature

has therefore engaged in multiple debates as to whether it can maintain the high standards

of its theoretical objective without exposing its key results to hinge on these issues (see, for

instance, the surveys of Moore [30], Jackson [16], Maskin and Sjöström [26], and Serrano

[38]). The purpose of this paper is to bring the repeated analysis of LS to the realm of

these debates. We adopt a novel approach that appeals to bounded rationality of agents

and seek also to gain insights into a broader motivating enquiry: can a small departure

from fully rational behavior on the part of individuals work in the favor of the society to

broaden the scope of implementability? Specifically, we pursue the implications of agents

who have a preference for less complex strategies (at the margin) on the mechanism

designer’s ability to discourage undesired equilibrium outcomes.1

Many strong implementation results (including those of LS) have been obtained through

1The complexity cost in our analysis is concerned with implementation of a strategy. The players are

assumed to have full computational capacity to derive best responses.
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the usage of unbounded integer games which rule out certain undesired outcomes via an

infinite chain of dominated actions. One response in the implementation literature, both

in one-shot and repeated setups, to the criticism of its constructive arguments is that the

point of using abstract mechanisms is to demonstrate what can possibly be implemented

in most general environments; in specific situations, more appealing constructions may

also work. According to this view, the constructions allow us to show how tight the nec-

essary conditions for implementation are. Another response in the one-shot literature has

been to restrict attention to more realistic, finite mechanisms. However, using a finite

mechanism such as the modulo game to achieve Nash implementation brings an important

drawback: unwanted mixed strategy equilibria. This could be particularly problematic in

one-shot settings since, as Jackson [15] has shown, a finite mechanism that Nash imple-

ments a social choice function could invite unwanted mixed equilibria that strictly Pareto

dominate the desired outcomes.

In this paper, we apply our bounded rationality approach to the issue of implementing

efficient social choice functions in a repeated environment with only simple mechanisms.

In order to achieve implementation under changing preferences, a mechanism has to be

devised in each period to elicit the agents’ information. A key insight in LS is that the

mechanisms can themselves be made contingent on past histories in a way that, roughly

put, each agent’s individually rational equilibrium payoff at every history is equal to the

target payoff that he derives from implementation of the desired social choices. Part of

the arguments for this result involves an extension of the integer game.

Here, we show that it is possible to construct a sequence of simple and finite mecha-

nisms that has, under minor qualifications, the following equilibrium features:

• Every pure strategy subgame perfect equilibrium repeatedly implements the efficient

social choice function, while every mixed strategy subgame perfect equilibrium is

strictly Pareto-dominated by the pure equilibria.

• Randomization can be eliminated altogether by making the sequence of mechanisms

non-stationary or history-dependent (different mechanisms are enforced at different

public histories) and by invoking an additional equilibrium refinement, based on a

“small” cost associated with implementing a more complex strategy.

Thus, even with simple finite mechanisms, the freedom to choose different mechanisms

at different histories enables the planner to design a sequence of mechanisms such that
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every pure equilibrium attains the desired outcomes; at the same time, if the players were

to randomize in equilibrium, the strategies would prescribe:

(i) inefficient outcomes, which therefore make non-pure equilibria in our repeated set-

tings less plausible from the efficiency perspective (as alluded to by Jackson [15]);

and, moreover,

(ii) a complex pattern of behavior (i.e., choosing different mixing probabilities at dif-

ferent histories) that could not be justified by payoff considerations, as simpler

strategies could induce the same payoff as the equilibrium strategy at every history.

We emphasize that, although the evolution of mechanisms follows a non-stationary

path, each mechanism that we employ has a simple two-stage sequential structure and a

finite number of actions that is independent of the number of players (unlike the modulo

game, for instance).

Our complexity refinement is particularly appealing and marginal for two reasons. On

the one hand, the notion of complexity needed to obtain the result stipulates only a partial

order over strategies such that stationary behavior (i.e., always making the same choice) is

simpler than taking different actions at different histories (any measure of complexity that

satisfies this will suffice). On the other hand, the equilibrium refinement requires players

to adopt minimally complex strategies among the set of strategies that are best responses

at every history. This is a significantly weaker refinement of equilibrium than the one

often adopted in the literature on complexity in dynamic games that asks strategies to be

minimally complex among those that are best responses only on the equilibrium path (see

Abreu and Rubinstein [2] and the survey of Chatterjee and Sabourian [6], among others).

The paper is organized as follows. In Section 2, we describe and discuss the problem

of repeated implementation. Section 3 presents our main analysis and results for the case

of two agents. The analysis for the case of three of more agents, appearing in Section 4,

builds on from the material on the two-agent case. Section 5 presents several extensions

of our results, and Section 6 offers a detailed discussion of how our work relates to the

existing implementation literature, including previous studies on bounded mechanisms

and mixed strategies in one-shot implementation. Section 7 concludes. Appendices and

a Supplementary Material are provided to present some proofs and additional results

omitted from the main text for expositional reasons.
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2 The Setup

The following describe the repeated implementation setup introduced by LS.

2.1 Basic Definitions and Notation

An implementation problem, P , is a collection P = [I, A,Θ, p, (ui)i∈I ] where I is a finite,

non-singleton set of agents (with some abuse of notation, I also denotes the cardinality

of this set), A is a finite set of outcomes, Θ is a finite, non-singleton set of the possible

states, p denotes a probability distribution defined on Θ such that p(θ) > 0 for all θ ∈ Θ

and agent i’s state-dependent utility function is given by ui : A×Θ→ R.

An SCF f in an implementation problem P is a mapping f : Θ → A, and the range

of f is the set f(Θ) = {a ∈ A : a = f(θ) for some θ ∈ Θ}. Let F denote the set of all

possible SCFs and, for any f ∈ F , define F (f) = {f ′ ∈ F : f ′(Θ) ⊆ f(Θ)} as the set of

all SCFs whose ranges belong to f(Θ).

For an outcome a ∈ A, define vi(a) =
∑

θ∈Θ p(θ)ui(a, θ) as its (one-shot) expected

utility, or payoff, to agent i with v(a) = (vi(a))i∈I . Similarly, for an SCF f , define

vi(f) =
∑

θ∈Θ p(θ)ui(f(θ), θ). Denoting the profile of payoffs associated with f by v(f) =

(vi(f))i∈I , let V =
{
v(f) ∈ RI : f ∈ F

}
be the set of expected utility profiles of all possible

SCFs. Also, for a given f ∈ F , let V (f) =
{
v(f ′) ∈ RI : f ′ ∈ F (f)

}
be the set of payoff

profiles of all SCFs whose ranges belong to the range of f . We refer to co(V ) and co(V (f))

as the convex hulls of the two sets, respectively.

LS define efficiency of an SCF in terms of the convex hull of the set of expected utility

profiles of all possible SCFs since this reflects the set of (discounted average) payoffs

that can be obtained in an infinitely repeated implementation problem. A payoff profile

v′ = (v′1, .., v
′
I) ∈ co(V ) is said to Pareto dominate another profile v = (v1, .., vI) if v′i ≥ vi

for all i with the inequality being strict for at least one agent; v′ strictly Pareto dominates

v if the inequality is strict for all i.

Definition 1 (a) An SCF f is efficient if there exists no v′ ∈ co(V ) that Pareto domi-

nates v(f); f is strictly efficient if it is efficient and there exists no f ′ ∈ F , f ′ 6= f ,

such that v(f ′) = v(f); f is strongly efficient if it is strictly efficient and v(f) is an

extreme point of co(V ).

(b) An SCF f is efficient in the range if there exists no v′ ∈ co(V (f)) that Pareto
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dominates v(f); f is strictly efficient in the range if it is efficient in the range and

there exists no f ′ ∈ F (f), f ′ 6= f , such that v(f ′) = v(f); f is strongly efficient

in the range if it is strictly efficient in the range and v(f) is an extreme point of

co(V (f)).

2.2 Repeated Implementation

We refer to P∞ as the infinite repetitions of the implementation problem P = [I, A,Θ, p, (ui)i∈I ].

Periods are indexed by t ∈ Z++ and the agents’ common discount factor is δ ∈ (0, 1).

In each period, the state is drawn from Θ from an independent and identical probability

distribution p. For an (uncertain) infinite sequence of outcomes a∞ =
(
at,θ
)
t∈Z++,θ∈Θ

,

where at,θ ∈ A is the outcome implemented in period t and state θ, agent i’s (repeated

game) payoff is given by

πi(a
∞) = (1− δ)

∑
t∈Z++

∑
θ∈Θ

δt−1p(θ)ui(a
t,θ, θ).

We assume that the structure of P∞ (including the discount factor) is common knowl-

edge among the agents and, if there is one, the planner. The realized state in each period

is complete information among the agents but unobservable to a third party.

Next, we define mechanisms and regimes. A (multi-stage) mechanism is defined as

g = ((M g(k))Kk=1, ψ), where K is the number of stages of the mechanism, M g(k) =

M g
1 (k) × · · · ×M g

I (k) is a cross product of message spaces at stage k = 1, . . . , K, and,

letting M g ≡ M g(1) × · · · ×M g(K), ψg : M g → A is an outcome function such that

ψg(m) ∈ A for any K-stage history of message profiles m = (m1, . . . ,mK) ∈M g. We say

that mechanism g is finite if K is finite and |M g
i (k)| < ∞ for every agent i and stage k.

Let G be the set of all feasible mechanisms.

A regime specifies history-dependent “transition rules” of mechanisms contingent on

the publicly observable history of mechanisms played and the agents’ corresponding ac-

tions. It is assumed that a planner, or the agents themselves, can commit to a regime at

the outset.

Given mechanism g, define Eg ≡ {(g,m)}m∈Mg , and let E = ∪g∈GEg. Then, H t =

E t−1 (the (t − 1)-fold Cartesian product of E) represents the set of all possible publicly

observable histories over t− 1 periods. The initial history is empty (trivial) and denoted

by H1 = ∅. Also, let H∞ = ∪∞t=1H
t with a typical history denoted by h ∈ H∞.
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We define a regime, R, as a mapping R : H∞ → G.2 Let R|h refer to the continuation

regime that regime R induces at history h ∈ H∞ (thus, R|h(h′) = R(h, h′) for any

h, h′ ∈ H∞). We say that a regime R is history-independent if and only if, for any t and

any h, h′ ∈ H t, R(h) = R(h′), and that a regime R is stationary if and only if, for any

h, h′ ∈ H∞, R(h) = R(h′).

Given a regime, an agent can condition his actions on the past history of realized

states as well as that of mechanisms and message profiles played. Define Ht = (E ×Θ)t−1

as the (t− 1)-fold Cartesian product of the set E ×Θ, and let H1 = ∅ and H∞ = ∪∞t=1H
t

with its typical element denoted by h. Also, since we allow for mechanisms with multi-

stage sequential structure, we additionally describe information available within a period,

or partial history. For any K-stage mechanism g and for any 1 ≤ k ≤ K, let Dg
k =

Θ×M g(1)× · · · ×M g(k− 1) denote the set of partial histories that can occur within the

first k−1 stages of g. Here, we take Dg
1 = Θ; that is, the play of the first stage starts with

the arrival of a random state. Let Dg = ∪kDg
k and D = ∪gDg with its typical element

denoted by d.

Then, we can write each agent i’s mixed (behavioral) strategy as a mapping σi :

H∞ × G × D → ∪g,kMg
i (k) such that σi(h, g, d) ∈ Mg

i (k) for any h ∈ H∞, g ∈ G and

d ∈ Dg
k. Let Σi be the set of all such strategies, and let Σ ≡ Σ1 × · · · × ΣI . A strategy

profile is denoted by σ ∈ Σ. We say that σi is a Markov (history-independent) strategy

if and only if σi(h, g, d) = σi(h
′, g, d) for any h,h′ ∈ H∞, g ∈ G and d ∈ D. A strategy

profile σ = (σ1, . . . , σI) is Markov if and only if σi is Markov for each i.

Suppose that R is the regime and σ the strategy profile chosen by the agents. Then,

for any date t and history h ∈ Ht, we define the following:

• gh(σ,R) ≡ (Mh(σ,R), ψh(σ,R)) refers to the mechanism played at h.

• πh
i (σ,R), with slight abuse of notation, denotes agent i’s expected continuation

payoff at h. For notational simplicity, let πi(σ,R) ≡ πh
i (σ,R) for h ∈ H1.

• Ah,θ(σ,R) ⊂ A denotes the set of outcomes implemented with positive probability

at h when the current state is θ.

When the meaning is clear, we shall sometimes suppress the arguments in the above

variables and refer to them simply as gh, πh
i and Ah,θ.

2Therefore, we restrict attention to deterministic transitions of mechanisms. We below discuss how

our constructive arguments can be made simpler if one allows for random transitions.
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Let S-equilibrium be a game theoretic solution concept, and given regime R with

discount factor δ, let Ωδ(R) ⊆ Σ denote the set of (pure or mixed) S-equilibrium strategy

profiles. LS propose the following two notions of repeated implementation.3

Definition 2 (a) An SCF f is payoff-repeatedly implementable in S-equilibrium from

period τ if there exists a regime R such that Ωδ(R) is non-empty and every σ ∈ Ωδ(R)

is such that πh
i (σ,R) = vi(f) for any i ∈ I, t ≥ τ and h ∈ Ht(σ,R) on the

equilibrium path.

(b) An SCF f is repeatedly implementable in S-equilibrium from period τ if there ex-

ists a regime R such that Ωδ(R) is non-empty and every σ ∈ Ωδ(R) is such that

Ah,θ(σ,R) = {f(θ)} for any t ≥ τ , θ ∈ Θ and h ∈ Ht(σ,R) on the equilibrium path.

The first notion represents repeated implementation in terms of payoffs, while the

second asks for repeated implementation of outcomes and, therefore, is a stronger concept.

Repeated implementation from some period τ requires the existence of a regime in which

every equilibrium delivers the correct continuation payoff profile or the correct outcomes

from period τ onwards for every possible sequence of state realizations.

With no restrictions on the set of feasible mechanisms and regimes, LS established

that, with some minor qualifications, an SCF satisfying efficiency in the range (strict

efficiency in the range) is payoff-repeatedly implementable (repeatedly implementable) in

Nash equilibrium.4 In this paper, we pursue repeated implementation of efficient social

choice functions using only simple finite mechanisms. Our approach involves adopting

equilibrium refinements that incorporate credibility (subgame perfection) and complexity.

While the corresponding sufficiency results in LS were based on one-shot mechanisms, the

constructive arguments in the main analysis below make use of multi-stage mechanisms

as it better facilitates our complexity treatment. We consider one-shot mechanisms in

Section 5.1.5

3In the analysis of LS, the solution concept is Nash equilibrium and only single-stage mechanisms are

considered.
4LS also showed that weak efficiency in the range is a necessary condition for Nash repeated imple-

mentation when the agents are sufficiently patient. In Section 6 below, we offer a detailed comparison

between our results and the sufficiency results of LS.
5Note that the individuals play multi-stage mechanisms repeatedly in our setup, and therefore, the

requirement of subgame perfection itself does not have the same bite as in one-shot implementation with

extensive form mechanisms.
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2.3 Complexity and Equilibrium

We next introduce a solution concept that incorporates a “small” cost associated with

implementing a more complex strategy.

Complexity of a strategy in a given regime can be measured in a number of ways. For

our analysis, it is sufficient to have a notion of complexity that captures the idea that

stationary behavior (always making the same choice) at every stage within a mechanism

is simpler than taking different actions in the mechanism at different histories.

Definition 3 For any i ∈ I and any pair of strategies σi, σ
′
i ∈ Σi, we say that σi is more

complex than σ′i if the strategies are identical everywhere except, after some partial history

within some mechanism, σ′i always behaves (randomizes) the same way while σi does not.

Formally, there exist some g′ ∈ G and d′ ∈ D with the following properties:

(i) σ′i(h, g, d) = σi(h, g, d) for all h ∈ H∞ and all (g, d) 6= (g′, d′) ∈ G×D.

(ii) σ′i(h, g
′, d′) = σ′i(h

′, g′, d′) for all h,h′ ∈ H∞.

(iii) σi(h, g
′, d′) 6= σi(h

′, g′, d′) for some h,h′ ∈ H∞.

Notice that this definition imposes a very weak and intuitive partial order over the

strategies. It has a similar flavor to the complexity notions used by Chatterjee and

Sabourian [5], Sabourian [35] and Gale and Sabourian [12] who consider bargaining and

market games. Our results also hold with other similar complexity measures, which we

discuss in further detail in Section 5 below.

Using Definition 3, we refine the set of subgame perfect equilibria as follows.

Definition 4 A strategy profile σ is a weak perfect equilibrium with complexity cost

(WPEC) of regime R if σ is a subgame perfect equilibrium (SPE) and for each i ∈ I

no other strategy σ′i ∈ Σi is such that

(i) σ′i is less complex than σi; and

(ii) σ′i is a best response to σ−i at every information set for i (on or off the equilibrium).

WPEC is a very mild refinement of SPE since it requires players to adopt minimally

complex strategies among the set of strategies that are best responses at every informa-

tion set. This means that complexity appears lexicographically after both equilibrium and
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off-equilibrium payoffs in each player’s preferences. This contrasts with the more standard

equilibrium notion in the literature on complexity in repeated and bargaining games that

requires strategies to be minimally complex among those that are best responses only on

the equilibrium path (see Section 3.4 below for a formal definition).6 This latter approach,

however, has been criticized for prioritizing complexity costs ahead of off-equilibrium pay-

offs in preferences. Our notion of WPEC avoids this issue since it only excludes strategies

that are unnecessarily complex without any payoff benefit on or off the equilibrium.7

2.4 Obtaining Target Payoffs

An important feature of the constructive arguments behind LS’s sufficiency results is that

in the repeated implementation setup one can obtain the target expected payoff associated

with the desired SCF for any single player precisely as the (discounted average) expected

payoff of some history-independent and non-strategic regime, as long as the discount factor

is sufficiently large. Such regimes involve enforcement of some constant outcomes and/or

dictatorships.

A constant rule mechanism refers to a mechanism that enforces a single outcome

(constant SCF). Formally, φ(a) = (M,ψ) is a one-stage mechanism such that Mi = {∅}
for all i ∈ I and ψ(m) = a ∈ A for all m ∈ M . Also, for any SCF f ∈ F , let d(i)

denote a (one-stage) dictatorial mechanism (or simply i-dictatorship) in which agent i is

the dictator and can choose any outcome in the range of f ; thus, d(i) = (M,ψ) is such

that Mi = f(Θ), Mj = {∅} for all j 6= i and ψ(m) = mi for all m ∈M .

Note that, for any i, the dictatorship d(i) must yield a unique expected utility vii =∑
θ∈Θ p(θ) maxa∈f(Θ) ui(a, θ) to dictator i if he acts rationally in the mechanism; but since

there may not a be a unique optimal outcome for the dictator, multiple payoffs can arise

for the other players. For simplicity, we assume throughout that, for each i, d(i) also

yields a unique payoff to every j 6= i if i acts rationally. Our results below are not affected

by relaxing this assumption (see Section 1 of the Supplementary Material). Let vij denote

the unique payoff of player j from d(i) if i acts rationally, and let vi = (v1
i , .., v

I
i ). Clearly,

6The two exceptions in the existing literature are Kalai and Neme [18] and Sabourian [35]. The notion

of WPEC was first introduced by [35].
7Note also that complexity cost enters the agents’ preferences lexicographically. All our results below

hold when the decision maker admits a positive trade-off between complexity cost and (on- or off-path)

payoff.
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vii ≥ vi(f).

Next, letW = {vi}i∈I∪{v(a)}a∈A denote the set of all (one-period) payoff profiles from

dictatorial and constant rule mechanisms. Then, by constructing history-independent

regimes that alternate between those mechanisms, we have the following.

Lemma 1 (a) Suppose that δ ∈
(

1
2
, 1
)
. Fix any i ∈ I, and suppose that there exists an

outcome ãi ∈ A such that vi(ã
i) ≤ vi(f). Then, there exists a history-independent regime

that generates a unique (discounted average) payoff to agent i equal to vi(f) in any Nash

equilibrium.

(b) Fix any W∗ ⊂ W and suppose that δ ∈
(

1− 1
|W∗| , 1

)
. Then, for any payoff profile

w ∈ co(W∗) and any ε > 0, there exists a history-independent regime that generates a

unique Nash equilibrium payoff w′ such that | w − w′ |< ε.

Proof. (a) Fix any i. Note that vii ≥ vi(f) ≥ vi(ã
i). Since δ > 1

2
, by the algorithm

of Sorin [40] (see also Lemma 3.7.1 of Mailath and Samuelson [24]), we can construct a

history-independent regime, by appropriately alternating d(i) and φ(ãi), such that player

i obtains a unique equilibrium payoff equal to vi(f).

(b) Fix any w ∈ co(W∗) and any ε > 0. Since δ ∈
(

1− 1
|W∗| , 1

)
, by Sorin [40], there

exists a history-independent regime that appropriately alternates between the dictatorial

and constant rule mechanisms whose one-period payoffs belong to W∗ such that if each

dictator always picks his best one-shot alternative, the resulting discounted average payoff

profile is w. Let us denote this regime by W .

To obtain a regime that induces a unique payoff w′ such that | w−w′ |< ε in any Nash

equilibrium, consider another regime that is identical to W for some finite T periods,

followed by non-contingent implementation of some arbitrary but fixed outcome in every

period thereafter. The resulting Nash equilibrium payoffs are unique since each player

must then pick his best one-shot outcome whenever he is dictator; moreover, if T is

sufficiently large, the payoffs satisfy | w − w′ |< ε.

Part (a) of Lemma 1 also appeared in LS; part (b) is new and will be exploited in

our analysis. We raise two remarks on the constructions in this lemma. First, while for

any w ∈ co(W∗), the algorithm of Sorin [40] implies that there must exist a regime that

induces w as a Nash equilibrium payoff profile by appropriately alternating between dic-

tatorial and constant rule mechanisms, we cannot ensure that this is the case in any Nash

equilibrium of the regime. The reason is that if the regime involves serial dictatorships
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by different players then it may be possible for collusion to occur intertemporally and

induce outcome paths that are different from those in which each dictator always follows

his unique myopic best action. Hence, a regime with infinitely many dictatorships given

to multiple players can generate multiple equilibrium payoffs. To avoid such collusive out-

comes, our construction in the proof of part (b) activates a permanent implementation of

some constant outcome beyond a certain finite period T . The uniqueness of equilibrium

continuation payoff at T ensures, via backward induction, that each player behaves my-

opically whenever he is dictator; at the same time, if T is large, the impact on the average

payoffs is small.

Second, in this paper we restrict ourselves to deterministic regimes. One consequence

of this restriction is that the results described in the above lemma require the discount

factor to be above a certain positive lower bound. Another consequence is that the regimes

constructed in the proof of the above results involve a precise sequencing of dictatorial and

constant rule mechanisms. If the planner were able to condition the choice of mechanism

on some random public signals, each of the results in the above lemma could be obtained

by constructing an alternative regime that initially chooses among the set of dictatorial

and constant rule mechanisms according to the appropriate probability distribution and

then repeats the realized mechanism forever thereafter. Such regimes establish the above

lemma for any δ and do not involve changing the mechanisms at different dates. Thus, with

public randomization, we could do away from imposing any restriction on the discount

factor and construct in some sense simpler mechanisms that do not require precise tracking

of the time.8 A public randomization device may not be available, however.

3 Two Agents

In this paper, we first report our results for I = 2. Our approach to the case of I ≥ 3

involves more complicated constructions that will build on the material of this section.

8In part (b) of Lemma 1 the payoff vector w is obtained approximately because we want to ensure that

collusion among different dictators does not occur. With public randomization, the collusion possibility

no longer poses an issue and the result in (b) can in fact be obtained exactly.
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3.1 Regime Construction

Our objective is to obtain a repeated implementation result for an SCF that is efficient

in the range. To do so, we introduce two additional properties of the SCF.

First, as in the one-shot implementation problem, there is a difference between the

two-agent and three-or-more-agent cases in our setup for ensuring the existence of truth-

telling equilibrium. This is due to the fact that, with two agents, it is not possible to

identify the misreport in the event of disagreement. One way to deter deviations from

truth-telling in our regime construction with I = 2 is to invoke an additional requirement

known as self-selection, as adopted in the one-shot literature.9 Formally, for any f , i and

θ, let Li(θ) = {a ∈ f(Θ)|ui(a, θ) ≤ ui(f(θ), θ)} be the set of outcomes among the range of

f that make agent i worse off than f . We say that f satisfies self-selection in the range if

L1(θ)∩L2 (θ′) 6= ∅ for any θ, θ′ ∈ Θ. We assume this condition here for ease of exposition.

It can be dropped when the agents are sufficiently patient, since intertemporal incentives

can then be designed to support truth-telling; see Section 2 of the Supplementary Material

for a formal analysis.

Second, as in LS, we consider SCFs induce payoffs that are, for each player, bounded

below by the payoff of some constant outcome. This enables us to appeal to Lemma 1

above to build continuation regimes that provide correct intertemporal incentives for full

repeated implementation.

Condition φ. (i) For all i ∈ I, there exists ãi ∈ f(Θ) such that vi(ã
i) ≤ vi(f).

(ii) For all i ∈ I and γ ∈ [0, 1], v(f) 6= γvi + (1− γ)v(ãi).

Part (i) strengthens condition ω appearing in LS by requiring the outcome ãi to be

found in the range of the SCF, while the inequality here is allowed to be weak. The

restriction to f(Θ) is imposed to obtain repeated implementation of an SCF that is

efficient in the range and hence can be relaxed if one deals with efficiency instead. Part

(ii) is almost without loss of generality. If this were not to hold, the history-independent

regime described in the proof of part (a) of Lemma 1 would induce a unique payoff profile

equal v(f) if δ > 1/2.10

9This condition is originally from Dutta and Sen [8] and is weaker than the “bad outcome” condition

in Moore and Repullo [32].
10In fact, by Fudenberg and Maskin [11], one could also build a regime such that the agents’ continuation

payoffs at every date approximate v(f) with δ sufficiently close to 1.
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Using condition φ, we can construct some history-independent regimes that yield

unique average payoffs with the following specific properties.

Lemma 2 Suppose that I = 2, and fix an SCF f that satisfies efficiency in the range and

condition φ. Suppose also that δ ∈
(

3
4
, 1
)
. Then, we obtain the following:

(a) For each i ∈ I, there exists a history-independent regime, referred to as Si, that

yields a unique Nash equilibrium (discounted average) payoff profile wi = (wi1, w
i
2)

such that

wii = vi(f) and wij < vj(f), j 6= i.

(b) There exist history-independent regimes {X(t)}t=1,2,... and Y that respectively in-

duce unique Nash equilibrium payoff profiles x(t) = (x1(t), x2(t)) and y = (y1, y2)

satisfying the following condition:

w2
1 < y1 < x1(t) < w1

1 and w1
2 < x2(t) < y2 < w2

2. (1)

Proof. (a) Fix any i. Then, by part (a) of Lemma 1, there exists a regime Si that induces

a unique payoff profile wi = (wi1, w
i
2) such that wii = vi(f). Efficiency in the range of f

and part (ii) of condition φ imply that, for j 6= i, wij < vj(f).

(b) To construct regimes {X(t)}t=1,2,... and Y , we first set, for each date t,

x′(t) = λ(t)w1 + (1− λ(t))w2 and y′ = µw1 + (1− µ)w2

for some 0 < µ < λ(t) < 1. Since wji < wii for all i, j, i 6= j, the resulting payoffs satisfy,

for any t,

w2
1 < y′1 < x′1(t) < w1

1 and w1
2 < x′2(t) < y′2 < w2

2. (2)

Since wi is itself generated by a convex combination of vi and v(ãi), it follows that

x′(t) and y′ can be written as convex combinations of v1, v2, v(ã1) and v(ã2). Then, since

δ > 3/4, and by part (b) of Lemma 1, there must exist history-independent regimes that

induce unique equilibrium payoffs that are arbitrarily close to x′(t) and y′. Since x′(t)

and y′ satisfy the strict inequalities described in (2), we also have regimes X(t), for each

t, and Y that induce unique payoffs x(t) and y, respectively, satisfying (1).

We assume throughout in this section that δ > 3/4 as required by Lemma 2. As

mentioned before, this assumption is not needed with a public randomization device as

the results described in Lemma 2 could then be obtained for any δ (see footnote 14 below).
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These constructions are illustrated in Figure 1 below (where, with slight abuse of

notation, πi refers to i’s average repeated game payoff).

Figure 1: Regime construction
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Now, for an SCF f that satisfies efficiency in the range, self-selection in the range and

condition φ, we define the following multi-stage mechanism, referred to as ge:

• Stage 1 - Each agent i = 1, 2 announces a state, θi, from Θ.

• Stage 2 - Each agent announces an integer, zi, from the set Z ≡ {0, 1, 2}.

The outcome function of this mechanism depends solely on the agents’ announcement

of states in Stage 1 and is given below:

(i) If θ1 = θ2 = θ, f(θ) is implemented.

(ii) Otherwise, an outcome from the set L1(θ2) ∩ L2(θ1) is implemented.

Using this mechanism together with the history-independent regimes X(t) and Y

constructed above, we define regime Re inductively as follows.

First, mechanism ge is played in t = 1. Second, if, at some date t ≥ 1, ge is the

mechanism played with a pair of states θ˜ = (θ1, θ2) announced in Stage 1 followed by
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integers z˜ = (z1, z2) in Stage 2, the continuation mechanism or regime at the next period

is given by the transition rules below:

• Rule A.1: If z1 = z2 = 0, then the mechanism next period is ge.

• Rule A.2: If zi > 0 and zj = 0 for some i, j = 1, 2, then the continuation regime is

Si.

• Rule A.3: If z1, z2 > 0, then we have the following:

– Rule A.3(i): If z1 = z2 = 1, the continuation regime is X ≡ X(t̃) for some

arbitrary but fixed t̃, with the payoffs henceforth denoted by x.

– Rule A.3(ii): If z1 = z2 = 2, the continuation regime is X(t).

– Rule A.3(iii): If z1 6= z2, the continuation regime is Y .

This regime thus employs only the outcomes in the range of the SCF, f(Θ). Let us

summarize other key features of this regime construction. First, in mechanism ge, which

deploys only two stages, the implemented outcome depends solely on the announcement of

states, while the integers dictate the continuation mechanism. The set of integers contains

only three elements. Second, announcement of any non-zero integer effectively ends the

strategic part of the game. When only one agent, say i, announces a positive integer this

agent obtains his target payoff vi(f) in the continuation regime Si (Rule A.2). The rest

of transitions are designed to rule out unwanted randomization behavior. In particular,

when both agents report positive integers, by (1), the continuation regimes are such that

the corresponding continuation payoffs, x(t) or y, are strictly Pareto-dominated by the

target payoffs v(f). Furthermore, when both agents report integer 2 (Rule A.3(ii)) the

continuation regimes could actually be different across periods. This feature will later be

used to facilitate our complexity refinement arguments.

Note that, in this regime, the histories that involve strategic play are only those at

which the agents engage in mechanism ge. At any other public history h, the continuation

regime is Si, X(t) for some t or Y involving only dictatorial and constant rule mechanisms.

Furthermore, by Lemma 2, in any subgame perfect equilibrium, the continuation payoff

at any such h is unique and given by wi, x(t) for some t or y, respectively, satisfying the
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conditions described in Lemma 2 if δ > 3/4.11

As mentioned before, the only histories that matter for strategic play here are those

at which the next mechanism is ge. Therefore, with some abuse of notation, we simplify

the definitions of relevant histories and strategies for the above regime as follows.

We denote by Ht the set of all finite histories observed by the agents at the beginning

of period t given that the mechanism to play in t is ge; let H∞ = ∪∞t=1H
t. Let D1 = Θ and

D2 = Θ×ΘI denote the set of partial histories at Stage 1 and at Stage 2 of the two-stage

mechanism ge, respectively. Thus, d = θ is a partial history that represents the beginning

of Stage 1 after state θ has been realized, and d = (θ, θ˜) ∈ D2 refers to the beginning of

Stage 2 after realization of θ followed by profile θ˜ ∈ Θ2 announced in Stage 1.

Then, a mixed (behavioral) strategy of agent i = 1, 2 in regime Re is written simply

as the mapping σi : H∞×D → (4Θ)∪ (4Z) such that, for any h ∈ H∞, σi(h, d) ∈ 4Θ

if d ∈ D1 and σi(h, d) ∈ 4Z if d ∈ D2. Let Σi be the set of i’s strategies in Re. We write

πh
i (σ,Re) as player i’s continuation payoff under strategy profile σ at history h ∈ H∞.

3.2 Subgame Perfect Equilibria

We first consider the set of subgame perfect equilibria of the above regime. Let us begin

by establishing existence of an equilibrium in which the desired social choice is always im-

plemented. In this equilibrium, both players adopt Markov strategies, always announcing

the true state followed by integer zero.

Lemma 3 Regime Re admits a subgame perfect equilibrium (SPE), σ∗, in Markov strate-

gies such that, for any t, h ∈ Ht and θ ∈ Θ, (i) gh(σ∗, Re) = ge and (ii) Ah,θ(σ∗, Re) =

{f(θ)}.

Proof. Consider σ∗ ∈ Σ such that, for all i, σ∗i (h, θ) = θ for all h ∈ H∞ and θ ∈ D1, and

σ∗i (h, (θ, θ˜)) = 0 for all h ∈ H∞ and
(
θ, θ˜) ∈ D2.12 Clearly, this profile satisfies (i) and

(ii) in the claim. Thus, at any h ∈ H∞, πh
i (σ∗, Re) = vi(f) for all i.

11If regimes with random transitions are feasible then we can obtain the same results with no restriction

on δ by constructing an alternative regime that is otherwise identical to Re except that whenever at least

one player announces a positive integer, the counterpart regime randomizes, with appropriate probability

distributions, between four stationary continuation regimes, each of which repeatedly enforces d(1), d(2),

φ(ã1) or φ(ã2).
12Here we have abused the notation slightly to describe pure strategies.
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To show that σ∗ is an SPE, consider a unilateral one-step deviation by any agent i.

Fix any h ∈ H∞. There are two cases to consider. First, fix any partial history θ. By

the outcome function of ge and self-selection in the range, one-step deviation to a non-

truthful state does not improve one-period payoff; also, since the other player’s strategy

is Markov and the transition rules do not depend on Stage 1 actions, the continuation

payoff at the next period is unaffected. Second, fix any partial history
(
θ, θ˜). In this case,

by Rule A.2, the continuation payoff from deviating to any positive integer is identical to

the equilibrium payoff, which is equal to vi(f).

We now turn to characterizing the properties of the set of SPEs. Our next Lemma is

concerned with the players’ equilibrium behavior whenever they face Stage 2 (the integer

part) of mechanism ge. It shows that at any such history both players must be either

playing 0 for sure and obtaining the target payoffs v(f) in the continuation game next

period, or mixing between 1 and 2 for sure and obtaining less than v(f). Thus, in terms of

continuation payoffs, mixing is strictly Pareto-dominated by the pure strategy equilibrium.

Lemma 4 Consider any SPE of regime Re. Fix any t, h ∈ Ht and d = (θ, θ˜) ∈ D2.

Then, one of the following must hold at (h, d):

(a) Each agent i announces 0 for sure and his continuation payoff at the next period is

vi(f).

(b) Each agent i announces 1 or 2 for sure, with the probability of choosing 1 equal to
xi(t)−yi

xi+xi(t)−2yi
∈ (0, 1), and his continuation payoff at the next period is less than vi(f).

Proof. See Appendix A.1.

To gain intuition for the above result, consider the matrix below that contains the

corresponding continuation payoffs when at least one player announces a positive integer.

First, from Figure 2, the inequalities of (1) imply that any equilibrium with pure

strategy at the relevant history must play 0. Since the continuation regime Si gives i his

target payoff wii = vi(f) and a payoff, wij, that is strictly lower than yj for the other player

j, a strictly profitable deviation opportunity arises whenever there is an “odd-one-out”

announcing a positive integer; if both players announce positive integers, the fact that

x1(t) > y1 and y2 > x2(t) imply that a deviation opportunity exists for one of the two

players.
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Figure 2: Continuation payoffs

Player 2

0 1 2

0 · w2 w2

Player 1 1 w1 x y

2 w1 y x(t)

Second, if all the players announce zero, it then follows that each player i’s continuation

payoff must be bounded below by vi(f) since, otherwise, the player could deviate by

reporting a positive integer and obtain vi(f) from the continuation regime Si (Rule A.2).

Since this is true for all i, the efficiency in the range of the SCF then implies that the

continuation payoffs are equal to the target payoffs for all agents.

Next, we show that if the players are mixing over integers then zero cannot be chosen.

Since xi(t) > wji and yi > wji for i, j = 1, 2, the transition rules imply that each agent

prefers to announce 1 than to announce 0 if the other player is announcing a positive

integer for sure. It then follows that if agent i attaches a positive weight to 0 then the

other agent j must also do the same, and i’s continuation payoff is at least vi(f), with it

being strictly greater than vi(f) when j plays a positive integer with positive probability.

Applying this argument to both agents leads to a contradiction against the assumption

that the SCF is efficient in the range.

Finally, i’s continuation payoff at the next period when both choose a positive integer

is xi, xi(t) or y. The precise probability of choosing integer 1 by i in the case of mixing is

determined trivially by these payoffs as in the lemma. Also, since these payoffs are all by

assumption less than vi(f), we have that mixing results in continuation payoffs strictly

below the target levels.

Given Lemma 4, we can also show that if the players were to mix over integers at

any history on the equilibrium path, it must occur in period 1; otherwise, both players

must be playing 0 in the previous period where either player i could profitably deviate

by announcing a positive integer and activating continuation regime Si. The properties

of subgame perfect equilibria of our regime can then be summarized as follows.

Proposition 1 Consider any SPE σ of regime Re. Then, one of the following must hold:
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(a) Each agent i announces 0 for sure at any (h, d) ∈ H∞×D2 on the equilibrium path,

and πh
i (σ,Re) = vi(f) for any t ≥ 2 and h ∈ Ht on the equilibrium path.

(b) Each agent i mixes between 1 and 2 at some d ∈ D2 in period 1 on the equilib-

rium path, and his continuation payoff at the next period is less than vi(f); hence,

πi(σ,R
e) < vi(f) if δ is sufficiently large.

Proof. See Appendix A.1.

Thus, if we restrict attention to pure strategies, the first part of this Proposition

and Lemma 3 imply that we obtain payoff-repeated implementation in subgame perfect

equilibrium from period 2.13 Furthermore, any mixed strategy equilibrium of our regime

is strictly Pareto-dominated by any pure strategy equilibrium in terms of continuation

payoffs from period 2.

3.3 WPEC

Our characterization of SPEs of regime Re demonstrates that in any equilibrium the

players must either continue along the desired path of play or fall into coordination failure

early on in the game by mixing over the positive integers in period 1 which leads to strictly

inefficient continuation payoffs. We now introduce our refinement (WPEC) arguments

based on complexity considerations to select the former.

In order to obtain our selection results, we add to the construction of Re the following

property: the sequence of regimes {X(t)}∞t=1 is such that, in addition to (1) above, the

corresponding payoffs {x(t)}∞t=1 satisfy

x1(t′) 6= x1(t′′) and x2(t′) 6= x2(t′′) for some t′, t′′. (3)

Note that one way to achieve this involves taking the sequence {λ(t) : λ(t) ∈ (µ, 1) ∀(t)}
used to construct these regimes in the proof of part (b) of Lemma 2 and set it such that

λ(t′) 6= λ(t′′) for at least two distinct dates t′ and t′′.

Clearly, this additional feature does not alter Lemmas 3 and 4. However, it implies

for any SPE that, if at some period t on or off the equilibrium path, an agent mixes

13Note that, in part (a) of Proposition 1, there might still exist equilibria where players randomize over

different state announcements at the first stage of the extensive form mechanism at any period. Even so,

efficiency implies that they obtain the continuation payoff profile v(f).
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over integers, by choosing integer 1 with probability xi(t)−yi
xi+xi(t)−2yi

, then his behavior in the

integer part of mechanism ge is not stationary across periods.14

We next show that if the players face a small cost of implementing a more complex

strategy, mixing over integers can no longer be part of equilibrium behavior in our regime.

Lemma 5 Fix any WPEC of regime Re. Also, fix any t, h ∈ Ht and d ∈ D2 (on or off

the equilibrium path). Then, each agent announces zero for sure at this history.

Proof. See Appendix A.1.

To obtain this lemma we suppose otherwise. Then, some agent must respond differ-

ently to some partial history d ∈ D2 depending on what happened in the past. But then,

this agent could deviate to another less complex strategy identical to the equilibrium

strategy everywhere except that it always responds to d by announcing 1 and obtain the

same payoff at every history. Three crucial features of our regime construction deliver

this argument. First, the deviation is less complex because the mixing probabilities are

uniquely determined by the date t and, hence, the equilibrium strategy must prescribe

different behaviors at different histories. Second, since the players can only randomize

between 1 and 2, the deviation would not affect payoffs at histories where the equilibrium

strategies randomize. Finally, since at histories where the equilibrium strategies do not

mix they report 0 for sure with continuation payoffs equal to v(f), by reporting 1 the

deviator becomes the “odd-one-out” and ensures the same target payoff.

Note that, since Markov strategies are simplest strategies according to Definition 3,

Lemma 3 continues to hold with WPEC. Thus, combining the previous lemmas, we es-

tablish the following main result.

Theorem 1 Suppose that I = 2 and δ ∈
(

3
4
, 1
)
. If an SCF f is efficient in the range, and

satisfies self-selection in the range and condition φ, f is payoff-repeatedly implementable

in WPEC from period 2.

Proof. This follows immediately from Lemmas 3-5.

14Our results are unaffected by making X(·) dependent on the entire history and not just its date. See

Section 7 for further discussion on this issue.
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Notice that the extent of implementation achieved here actually goes beyond that of

Definition 2 and Theorem 1 since we obtain the desired payoffs at every on- and off -the-

equilibrium history after period 1 at which mechanism ge is played. To see this, combine

Lemma 5 with part (a) of Lemma 4.

To obtain repeated implementation in terms of outcomes, as in LS, we need to go be-

yond efficiency in the range. LS assume pure strategies and hence invoke strict efficiency;

here, we use strong efficiency.

Corollary 1 Suppose that, in addition to the conditions in Theorem 1, f is strongly

efficient in the range. Then, f is repeatedly implementable in WPEC from period 2.

Proof. It suffices to show that every WPEC σ of Re is such that Ah,θ(σ,Re) = {f(θ)}
for any t ≥ 2, h ∈ Ht(σ,Re) and θ ∈ Θ.

Fix any WPEC σ of regime Re. Also, fix any t ≥ 2 and h ∈ Ht. For each θ and

a ∈ f(Θ), let r(a, θ) denote the probability that outcome a is implemented in equilibrium

at (h, θ). By Lemmas 4 and 5, we know that, for any i,

πh
i (σ,Re) = (1− δ)

∑
θ∈Θ,a∈f(Θ)

p(θ)r(a, θ)ui (a, θ) + δvi(f) = vi(f),

which implies that
∑

θ∈Θ,a∈f(Θ) p(θ)r(a, θ)ui (a, θ) = vi(f).

Strong efficiency in the range implies that there does not exist a random SCF ξ : Θ→
4 (f(Θ)) such that v(ξ) = v(f). Therefore, the claim follows.

3.4 Further Refinement and Period 1

Our results do not ensure implementation of the desired outcomes in period 1. One way

to sharpen our results in this direction is to consider a stronger equilibrium refinement in

line with the standard literature on strategic complexity in dynamic games (e.g. Abreu

and Rubinstein [2], Sabourian [35], Lee and Sabourian [20]) and to require the strategies

to be minimally complex mutual best responses only on the equilibrium path.

Definition 5 A strategy profile σ is a perfect equilibrium with complexity cost (PEC) of

regime Re if σ is an SPE and for each i ∈ I no other strategy σ′i ∈ Σi is such that (i) σ′i
is less complex than σi and (ii) σ′i is a best response to σ−i.
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Compared with WPEC, this concept prioritizes the complexity of their strategies over

off-the-equilibrium payoffs and hence selects minimally complex strategies over a larger

set.

An alternative way of thinking about the issue of credibility of strategies and com-

plexity considerations is to introduce two kinds of perturbations and find the limiting

Nash equilibrium behavior as these perturbations become arbitrarily small (e.g. Chatter-

jee and Sabourian [5], Sabourian [35] and Gale and Sabourian [12]). One perturbation

allows for a small but positive cost of choosing a more complex strategy; another per-

turbation represents a small but positive and independent probability of making an error

(off-the-equilibrium-path move). The notions of WPEC and PEC can then be interpreted

as the limiting Nash behavior as the two types of perturbation go to zero. The difference

is that the WPEC results hold for such limiting equilibria independently of the order of

the limiting arguments, while with PEC the order of limit is the complexity cost first and

then the tremble.

Clearly, the Markov equilibrium constructed for Lemma 3 is a PEC, and since WPEC is

itself a PEC, all our previous results on the properties of WPEC above remain valid under

PEC. Additionally, we can show that every PEC in regime Re must be Markov. Therefore,

under the notion of PEC, the same repeated implementation results as in Theorem 1 above

are obtained from period 1.15Appendix A.2 presents the formal details.16

4 Three or More Agents

In this section, we extend the arguments developed for the two-agent case to deal with

the case of three or more agents.

15Similar complexity considerations were introduced by LS (see the Supplemental Material [22]) to their

constructions with integer games to achieve efficient repeated implementation from period 1. Mezzetti

and Renou [29] show repeated Nash implementation of dynamically monotonic SCFs from t = 1.
16Our WPEC and PEC results in this paper assume lexicographic preferences with respect to complexity

cost. The same set of results also hold when the agents make a positive trade-off between complexity

cost and payoffs. This is because the set of equilibria then is contained in the set of equilibria with

lexicographic preferences, while our regime constructions admit an equilibrium that is Markov and hence

cannot be improved upon in terms of complexity.
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4.1 Regime Construction

An important part of our constructive arguments with two agents above was to construct

for each i a history-independent and non-strategic regime Si that generates a payoff profile

wi = (wii, w
i
j) such that wii = vi(f) and wij < vj(f). This was facilitated by condition φ.

To address the problem of three or more agents, we make use of a slightly strengthened

version below. Similarly to before, assume for simplicity that every i-dictatorship yields

unique payoffs under rational dictator.

Condition φ∗. (i) There exists ã ∈ A such that vi(ã) < vi(f) for all i ∈ I.

(ii) vji (f(Θ)) < vi(f) for all i, j ∈ I, i 6= j.

Part (i) states that there exists some outcome that is strictly worse for all agents

than the given SCF in expectation. It is similar to but weaker than the “bad outcome”

condition in Moore and Repullo (1990) as the outcome ã is compared to the SCF only on

average (and not in every state). This amounts to a weak requirement on the SCF and is

naturally satisfied in many environments (e.g. zero consumption in allocation problems).

Part (ii) here would be satisfied with weak inequality when there are two agents and f is

efficient in the range.

Now, consider any SCF that is efficient in the range and satisfies condition φ∗. Then,

as in the two-player case, by part (i) of condition φ∗ and by part (a) of Lemma 1, one

can construct for each agent i a regime Si that induces a unique Nash equilibrium payoff

profile wi = (wi1, . . . , w
i
I) such that wii = vi(f). Efficiency in the range of f and condition

φ∗ imply that, for j 6= i, wij < vj(f).

Fix any two agents k and l, and the corresponding regimes Sk and Sl with unique

payoffs wk and wl. We can further extend part (b) of Lemma 2 for the two-agent case to

show the existence of the following (history-independent) regimes.

Lemma 6 Suppose that f is efficient in the range and satisfies condition φ∗. Also,

suppose that δ ∈
(

1− 1
|I|+1

, 1
)

. Then, for any subset of agents C ⊆ I and each date

t = 1, 2, . . ., there exist regimes SC , X(t), Y that respectively induce unique Nash equilib-
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rium payoff profiles wC , x(t), y ∈ co(V (f)) satisfying the following conditions:17

wlk < yk < xk(t) < wkk and wkl < xl(t) < yl < wll (4)

xk(t
′) 6= xk(t

′′) and xl(t
′) 6= xl(t

′′) for some t′, t′′ (5)

wCk < wkk if C 6= {k} and wCl < wll if C 6= {l} (6)

wCi > w
C\{i}
i for all i ∈ C. (7)

Proof. Given the two fixed agents k and l, and the corresponding regimes Sk and Sl, we

construct regimes {X(t)}t=1,2,... and Y to satisfy (4) and (5) similarly to their two-agent

counterparts.

To construct SC , fix any C ⊆ I, and let wC = 1
|C|
∑

i∈C w
i. Since wjj > wij for all

i, j ∈ I, j 6= i, {wC}C satisfy the strict inequalities described in (6) and (7). Furthermore,

since wi is generated by a convex combination of vi and v(ã), wC can be written as a

convex combination of v1, . . . , vI and v(ã). Then, since δ > 1 − 1
|I|+1

, and by part (b)

of Lemma 1, there must exist a history-independent regime that induces a unique Nash

payoff profile that is arbitrarily close to wC . Since {wC}C satisfy the strict inequalities

as in (6) and (7), there in turn exists a regime SC which induces a unique Nash payoff

profile wC such that (6) and (7) are satisfied.

Using the constructions in Lemma 6, we extend the regime construction for the case

of I = 2 to the case of I ≥ 3. Fix throughout δ > 1− 1
|I|+1

.

First, define the sequential mechanism ĝe as follows:

• Stage 1 - Each agent i announces a state from Θ.

• Stage 2 - Each of agents k and l announces an integer from the set {0, 1, 2}; each

i ∈ I\{k, l} announces an integer from the set {0, 1}.

The outcome function of this mechanism again depends solely on the action of Stage

1 and is given below:

(i) If at least I − 1 agents announce θ, then f(θ) is implemented.

(ii) Otherwise, f(θ̃) for some arbitrary but fixed θ̃ is implemented.

It is important to note that this mechanism extends mechanism ge above by allowing

only two agents to choose from {0, 1, 2} while all the remaining agents choose from just

{0, 1}.
17Note that when C consists of single player i, SC means Si and wC = wi.
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Next, using the constructions in Lemma 6 above, we define new regime R̂e inductively

as follows: (i) mechanism ĝe is implemented at t = 1 and (ii) if, at some date t, ĝe is the

mechanism played with a profile of states θ˜ = (θ1, . . . , θI) announced in Stage 1 and a pro-

file of integers z˜ = (z1, . . . , zI) announced in Stage 2, the continuation mechanism/regime

at the next period is as follows:

• Rule B.1: If zi = 0 for all i, then the mechanism next period is ĝe.

• Rule B.2: If zk > 0 and zl = 0 (zk = 0 and zl > 0), then the continuation regime is

Sk (Sl).

• Rule B.3: If zk, zl > 0, then we have the following:

– Rule B.3(i): If zk = zl = 1, then the continuation regime is X ≡ X(t̃) for some

arbitrary but fixed t̃, with the payoffs henceforth denoted by x.

– Rule B.3(ii): If zk = zl = 2, then the continuation regime is X(t).

– Rule B.3(iii): If zk 6= zl, then the continuation regime is Y .

• Rule B.4: If, for some C ⊆ I\{k, l}, zi = 1 for all i ∈ C and zi = 0 for all i /∈ C,

then the continuation regime is SC .

This regime extends the two-agent counterpart Re by essentially maintaining all the

features for two players (k and l) and endowing the other agents with the choice of just

0 or 1. However, the regime prioritizes these two selected agents when determining the

transition of mechanism: note from Rules B.2 and B.3 that if either k or l plays a non-zero

integer the integer choices of other players are irrelevant to transitions. We emphasize

that the size of the integer set in our construction is actually independent of the number

of agents. Histories, partial histories (within period), strategies and continuation payoffs

are defined similarly to their two-agent counterparts.

4.2 Results

We present below our main results for the case of I ≥ 3. First, we obtain properties of

SPEs of regime R̂e above that parallel Proposition 1 for the two-agent case.

Proposition 2 Consider any SPE σ of regime R̂e. Then, one of the following must hold:
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(a) Each agent i ∈ I announces 0 for sure at any (h, d) ∈ H∞ ×D2 on the equilibrium

path, and πh
i (σ, R̂e) = vi(f) for any t ≥ 2 and h ∈ Ht on the equilibrium path.

(b) Agents k and l mix between 1 and 2 at some d ∈ D2 in period 1 on the equilibrium

path and, for each i ∈ I, the continuation payoff at the next period is less than vi(f);

hence, for each i ∈ I, πi(σ, R̂
e) < vi(f) if δ is sufficiently large.

Proof. See Appendix A.1.

Characterizing the set of equilibria of regime R̂e is more involved but essentially yield

the same set of results as in the case of two agents. The key feature of our regime

construction with I ≥ 3 that extends the previous ideas with I = 2 is that R̂e treats two

(arbitrary but fixed) agents asymmetrically. Let us offer a brief sketch of our arguments

for Proposition 2.

First, suppose that the players choose pure strategies over integers. We want to show

that in this case the agents must all play 0. On the one hand, note that when either of the

two selected agents k and l announces a positive integer the integer choice of any other

agent does not matter at all (Rules B.2 and B.3). Thus, the inequalities in (4) imply

that, by the analogous arguments in the two-agent case above, k and l must report 0 in

equilibrium. On the other hand, if k and l both announce 0 and another agent reports

integer 1, by (6) and Rule B.4, either k or l could profitably deviate by announcing a

positive integer himself.

Second, suppose that some player randomizes over integers. We want to show that

in this case k and l must mix between integers 1 and 2. Suppose otherwise, so that

either k or l plays 0 with positive probability. Similarly to the two-agent case above, our

construction here is such that both k and l strictly prefer to announce a positive integer

over 0 if there is another player (possibly other than themselves) announcing a positive

integer. Therefore, if either k or l chooses 0 with positive probability then every other

agent must do the same and the corresponding continuation payoff for k or l is at least

vk(f) or vl(f), with the inequality being strict if another agent chooses a positive integer

with positive probability. Furthermore, using (7), we can show that it is also true for any

agent i other than k or l that his continuation payoff from choosing 0 is at least vi(f) if

every other agent announces 0 with positive probability. Combining these observations

leads to a contradiction against the assumption that the SCF is efficient in the range.
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Introducing complexity considerations to regime R̂e yields that the players must always

play 0 for sure in any WPEC. Given (5), again, the arguments are similar to those for

the two-agent case. Also, the regime admits a Markov equilibrium in which the agents

always tell the truth and announce 0. Thus, together with Proposition 2, we next obtain

the following.

Theorem 2 Suppose that I ≥ 3 and δ ∈
(

1− 1
|I|+1

, 1
)

. If an SCF f is efficient in

the range and satisfies condition φ∗, f is payoff-repeatedly implementable in WPEC from

period 2.

Proof. See Appendix A.1.

As in Corollary 1 for the case of I = 2, we can strengthen Theorem 2 to outcome

implementation by additionally invoking strong efficiency in the range. Also, we can

introduce the stronger refinement notion of PEC in the same way as in the case of I = 2

and obtain repeated implementation from period 1.

5 Alternative Complexity Measures and Simultane-

ous Mechanisms

5.1 More Complete Complexity Orders and Simultaneous Mech-

anisms

Our notion of complexity in Definition 3 (as well as the alternative notions introduced in

Definitions 7 and 8 below) is a partial order over strategies as it compares only strategies

that always play the same action with those that do not. We could make such ordering

more complete and obtain the same set of results with any notion of complexity that

satisfies the conditions specified in Definition 3 or else. For example, take the two-agent

case and consider two strategies that are identical everywhere except that in the integer

part of the mechanism ge the first strategy always announces integer 0 or 1, while the

second strategy either announces integer 0, 1 or mixes between integers 0 and 1 depending

on the partial history. According to the definitions discussed in the previous subsection,

one cannot rank the two strategies whereas it may be argued that the first strategy is

less complex than the second because the range of choices is smaller for the first. Let us
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present a measure of complexity capturing this idea which is a more complete order than

that in Definition 3. This measure is used in Gale and Sabourian [12].

Definition 6 For any i ∈ I and any pair of strategies σi, σ
′
i ∈ Σi, we say that σi is more

complex than σ′i if the strategies are identical everywhere except, after some partial history

in some mechanism and some set of histories, σ′i always behaves (randomizes) the same

way while σi does not. Formally, there exist some g′ ∈ G, d′ ∈ D and H′ ⊆ H∞ with the

following properties:

(i) σ′i(h, g, d) = σi(h, g, d) if either h ∈ H∞\H′, or h ∈ H′ and (g, d) 6= (g′, d′) ∈ G×D.

(ii) σ′i(h, g
′, d′) = σ′i(h

′, g′, d′) for all h,h′ ∈ H′.

(iii) σi(h, g
′, d′) 6= σi(h

′, g′, d′) for some h,h′ ∈ H′.

(iv) σi(h, g
′, d′) 6= σi(h

′, g′, d′) for all h ∈ H′ and all h′ /∈ H′.

This definition allows us to compare strategies that differ only on some set of histories

H′.18 Clearly, if a strategy σi is more complex than σ′i according to Definition 6 then it is

also more complex according to Definition 3. Hence, all our characterization results hold

with this new definition.

The choice of complexity measure is also related to our constructive arguments. In

particular, our analysis is built on regime constructions employing sequential mechanisms

since, as should be clear from our WPEC arguments above, this allows us to treat com-

plexity of behavior regarding states and integers differently, and invoke a minimal partial

order over the set of strategies as in Definition 3. If one invokes a stronger notion of com-

plexity such as Definition 6, our results can also be obtained with constructions involving

simultaneous mechanisms as long as the agents are sufficiently patient; see Section 3 of

the Supplementary Material.

Finally, it is also possible to adopt complete complexity orders such as counting the

number of “states of the minimal automaton” implementing the strategy (e.g. Abreu

and Rubinstein [2]),19 or the “collapsing state condition” (e.g. Binmore, Piccione and

18Note that condition (iv) is assumed here in order to ensure that the complexity partial order is

asymmetric, as in Gale and Sabourian [12].
19This measure is equivalent to counting the number of “continuation strategies” induced by the strat-

egy (e.g. Kalai and Stanford [19], Lee and Sabourian [20]).
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Samuelson [3]), and obtain all our results above. To gain some intuition, consider an

automaton implementing a WPEC strategy in regime Re which randomizes over integers

at some history; by condition (3), it follows that the automaton must use at least two

different states in order to induce the behavior in the integer part of mechanism ge. But

then, we derive a contradiction as there exists a simpler automaton that does not affect the

corresponding player’s continuation payoff anywhere: the alternative automaton employs

just a single state to play integers in which it announces integer 1.20

5.2 Cost of Recalling History

The basic idea behind our complexity measure is that if a strategy conditions its actions

less on what happened in the “past” than another strategy then the strategy is simpler

than the other. Definition 3 above captures this by saying that, whenever playing some

mechanism, a strategy that at every date t responds identically to some partial history

d, independently of the previous history of play h before t, is less complex than one that

responds differently to the same partial history d but is identical everywhere else.

According to this definition, the “past” that matters for complexity of a strategy in

any given period is not what happened within the period but the play that precedes it.

Thus, a simple strategy may still announce different messages at different partial histories.

An intuitive justification for such an asymmetric treatment of history of outcomes before

and within a period in our definition of complexity is the following: there is a memory

cost for recalling history of actions before the current period whereas the partial history

within the period is just some stimulus that involves no cost of recalling. For example,

in repeated interactions, substantial time lags often exist between periods so that costly

memory is needed to condition the current action on the play of previous periods while

the delay between receiving information about the partial history and taking an action is

insignificant. Since our regimes involve two-stage sequential mechanisms in each period,

this justification of Definition 3 also means that the time lag between players’ turns

across the two stages of each period are inconsequential, or at least less important than

the distance between two periods, in terms of complexity of a strategy.

Such sharp asymmetric treatment, however, may not always be reasonable and one

20Note that the transition from this single state is not an issue since the regime activates a permanent

sequence of dictatorships and constant outcomes, and the game effectively ends, once a positive integer

is announced.
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may want to ask how robust our results are to a less stark treatment of the history before

the period and the partial history within it. We offer two extensions for the strategies in

our regimes Re and R̂e. One possibility is to differentiate the partial histories that occur

in the two stages of the sequential mechanism on the grounds that there is a significant

time lag between stages. More specifically, we can assume that in each period, while

nature’s move θ is simply some stimulus that is known at no cost when the players are

asked to announce a state at the beginning of the first stage, recalling partial history that

occurred in the first stage when making integer announcements in the second stage is

costly, due to the significant time lag between stages. In the presence of such costs, we

need to modify our previous definition of complexity so that conditioning behavior on the

partial history of play in the first stage of the mechanism is also more complex than not

doing so. A complexity measure that reflects this idea is introduced below.

Definition 7 For any i ∈ I and any pair of strategies σi, σ
′
i ∈ Σi, we say that σi is more

complex than σ′i if one of the following holds:

(i) There exists d′ ∈ D1 such that the three conditions in Definition 3 are satisfied.

(ii) σ′i(h, d) = σi(h, d) for all h ∈ H∞ and all d ∈ D1,

σ′i(h, d) = σ′i(h
′, d′) for all h,h′ ∈ H∞ and all d, d′ ∈ D2, and

σi(h, d) 6= σi(h
′, d′) for some h,h′ ∈ H∞ and some d, d′ ∈ D2.

Notice that the continuation payoff at the beginning of each first stage before the

players announce states may depend on the partial history at that stage (the payoff in

the current stage depends on the true state θ), whereas the continuation payoff at the

beginning of the second stage does not depend on the partial history at the the second

stage. Assuming that players have the knowledge of current and future payoffs would

therefore mean that one should treat nature’s move differently from other partial histories

for its payoff relevance. This provides another justification for the different treatments in

Definition 7 of the partial histories across the two stages .

It is straightforward to verify that our WPEC results above are not affected in any

way by imposing Definition 7 instead. In particular, recall from the proof of Lemma 5

that if a WPEC were to involve mixing over integers at any history, deviating to another

strategy that is otherwise the same except that it always announces integer 1 at every
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information set in the second stage would always generate the same payoff. This deviating

strategy is simpler than the equilibrium strategy according the new definition as well.

Yet another approach to the treatment of the partial histories would be to treat in-

formation at any decision node identically and say that a strategy that announces the

same integer or state regardless of both the history before the date and the partial history

within the date is less complex than one that announces different integers or states while

being identical everywhere else.

Definition 8 For any i ∈ I and any pair of strategies σi, σ
′
i ∈ Σi, we say that σi is more

complex than σ′i if there exists l ∈ {1, 2} with the following properties:

(i) σ′i(h, d) = σi(h, d) for all h ∈ H∞ and all d /∈ Dl.

(ii) σ′i(h, d) = σ′i(h
′, d′) for all h,h′ ∈ H∞ and all d, d′ ∈ Dl.

(iii) σi(h, d) 6= σi(h
′, d′) for some h,h′ ∈ H∞ and some d, d′ ∈ Dl.

Under this definition, complexity-averse players may want to economize even on the

responsiveness of their behavior to nature’s move θ at the beginning of each period. As we

have already argued, this approach may not be as plausible as Definition 3 or 7 because

nature’s moves are payoff-relevant and therefore assuming that it is costly to recall them

amounts to assuming that the knowledge of continuation payoffs are costly to acquire.

With Definition 8, our characterization of WPECs of the regimes Re for I = 2 and

R̂e for I ≥ 3 actually remain valid via identical arguments. However, these regimes may

not admit an equilibrium since the players may find it beneficial to economize on the

complexity of their reports in the first stage by make unconditional state announcements.

To see this, consider the type of strategies that we have used to obtain existence in which

the true state is always announced. Here, a unilateral deviation from truth-telling leads

to either one-period outcome according to self-selection when I = 2 or no change in the

outcome when I ≥ 3. Thus, in the latter case, deviating to always announcing the same

state may reduce complexity cost without affecting payoffs; in the former case, each player

faces the same incentive if the self-selection condition holds with equality.

In order to obtain our WPEC results on the basis of this alternative complexity mea-

sure, we therefore need to have equilibria where such a deviation generates a strict reduc-

tion in the continuation payoff. This would be possible if deviations from truth-telling
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induced a strict one-period punishment. With I = 2, this would be the case if the self-

selection condition held with strict inequalities.

With more than two players, suppose that there exists a “bad outcome” ã ∈ A such

that ui(ã, θ) < ui(f((θ), θ) for all i and θ (e.g. zero consumption in a market; see Moore

and Repullo [32]). Then, we could alter R̂e above and obtain our WPECs implementation

results with Definition 8 by simply modifying the outcome function of its stage mechanism

as follows: whenever all agents announce the same state θ in Stage 1, f(θ) is implemented

while, otherwise, the bad outcome ã is implemented. Such a modification does not change

the decision problems regarding integers and hence all our characterization results remain

unaffected; the Markov strategy profile in which the true state and integer 0 are always

announced is a WPEC with Definition 8 because any deviation from truth-telling induces

the bad outcome.

If the agents are sufficiently patient, another way to obtain the same results with

Definition 8 is to modify the regime in a way that strict punishment for deviation from

truth-telling arises in the continuation game, rather than from one-shot incentives via

strict self-selection (in the range) or bad outcome. In the Supplementary Material (Section

2), we formally provide such a construction for the two-agent case.21

6 Relation to the Existing Literature

LS consider the same repeated implementation problem as this paper and show how to

repeatedly implement an SCF f satisfying efficiency in the range in Nash equilibrium,

using the following regime.22 In a given period, the agents simultaneously report a state

and a non-negative integer. The profile of state announcements determines the outcome

implemented in the current period, and the profile of integer announcements induces the

continuation regime as follows: (I) If every player announces zero, the same mechanism

is repeated next period; (II) if all but one agent, say i, announces zero integer, the

continuation regime Si is such that i obtains a payoff exactly equal to vi(f), his expected

payoff from the target SCF f ; and (III) in every other case the agent announcing the

highest integer becomes dictator forever thereafter. The last transition rule corresponds

21This is the same construction mentioned at the beginning of Section 3 for deriving the results there

without self-selection.
22Similar constructions are used by Lee and Sabourian [23] who consider repeated implementation with

incomplete information.
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to the so-called integer game arguments, and it ensures that there is no, pure or mixed,

equilibrium in which any player reports a positive integer on the outcome path. Given

this, the second part of transition offers each i an opportunity to pre-emptively deviate

should his continuation payoff fall below vi(f).

The constructions proposed in this paper have a similar structure in that the agents

are also asked to report two messages (albeit sequentially), where the former dictates

the current implementation and the latter the continuation play. In contrast to LS, the

support of the second message is finite, consisting of at most three numbers 0, 1 and 2.

With such a structure the integer arguments cannot be applied to exclude undesirable

equilibria. Hence, we replace transition rule (III) in LS by transitions to continuation

regimes described by {X(t)}∞t=1 and Y , while retaining the opportunities of pre-emptive

deviation that ensure at least the target payoff vi(f) for each player i. The continuation

regimes {X(t)}∞t=1 and Y are designed precisely to ensure that (a) every pure strategy

equilibrium entails announcements of 0, and (b) mixing occurs only between 1 and 2;

furthermore, any equilibrium mixing would involve non-stationary behavior that can be

replaced by a simpler strategy without any payoff consequence on- or off-path.

As in the constructions of LS, when there is an odd-one-out i reporting a non-zero

integer, our regimes activate Si in the next period. However, to achieve (a) and (b)

above, each continuation regime Si in our setup not only delivers payoff vi(f) to agent i

but also a payoff strictly worse than vj(f) to every other agent j. With two agents, there

is almost no additional loss of generality relative to LS in achieving this, since condition

φ in Lemma 2 would be true generically if f instead satisfied condition ω in LS. With

three or more agents, we invoke condition φ∗ (see Lemma 6).

The payoff structure of Si in this paper which keeps one agent’s payoff fixed at the

target level while lowering the payoffs of others strictly below their targets has a flavor of

the separability assumption invoked by Jackson, Palfrey and Srivastava [17] and Sjöström

[39] in one-shot implementation. Separability involves the following two elements: (i)

there exists some bad outcome a∗ ∈ A such that ui(a
∗, θ) < ui(f(θ), θ) for any i and θ,

and (ii) for any a ∈ A, i and θ, there exists some a′ ∈ A such that ui(a
′, θ) = ui(a, θ)

and uj(a
′, θ′) = uj(a

∗, θ′) for all j 6= i and θ′. Separability is satisfied in economic

environments like an allocation problem without externalities, where zero consumption

vector would satisfy (i) and a consumption vector with only a single positive element

would correspond to (ii).
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The second part of separability shares some similarity to the payoff structure of Si

in our paper. However, note that we require Si to lower another agent j’s payoff below

vj(f), and not necessarily to a “worst” level, as stipulated by outcome a∗ in the separable

case. Also, in our repeated setup, the ability to construct regime Si with such a payoff

structure is derived from condition φ for the case of I = 2, or from condition φ∗ when

I ≥ 3. The first part of conditions φ and φ∗ are in turn implied by part (i) of separability

(the former, for example, only assume an outcome whose expected payoff is less than the

target payoff for each agent). The second part of our conditions concerns the payoff that

a player derives from the SCF as compared to the case when another player is dictator.

Despite the above similarity, our objectives and arguments differ from those of Jackson,

Palfrey and Srivastava [17] and Sjöström [39]. In particular, our paper is concerned

with the problem of repeated implementation with randomly evolving preferences, and

we adopt a novel approach that invokes individuals’ bounded rationality to deal with

unwanted mixed strategy equilibria and enhance the scope of implementability beyond

LS. The objective of Jackson, Palfrey and Srivastava [17] and Sjöström [39] is to show

that in separable one-shot environments any social choice function can be implemented

in undominated Nash equilibrium with finite mechanisms.23 In their setup, this is done

for example by requiring each agent to report either a profile of states or outcomes (but

not both). Since the mechanism is such that each agent guarantees implementation of

a∗ from announcing outcomes it follows from part (i) of separability that announcing

outcomes is dominated by announcing states; the other part of separability is used to

make truth-telling the only undominated choice of state announcement.24

Could we exploit a similar separability argument to derive that announcing zero is the

only undominated strategy in our constructions? The difficulty in our setup is that our

arguments are applied to continuation payoffs; in particular, we do not know a priori the

continuation payoffs when the agents all announce zero. This is pinned down only after

the players’ equilibrium integer choices have been derived.

23Refinement arguments allow these authors to obtain their one-shot implementation results without

Maskin monotonicity. Other approaches in this direction include using dynamic mechanisms and subgame

perfection (e.g. Moore and Repullo [31]) and virtual implementation (e.g. Abreu and Matsushima [1]).
24In a recent paper, Mezzetti and Renou [28] identify sufficient conditions for mixed Nash implemen-

tation with finite mechanisms in separable environments. In their construction, “odd-one-out” leads to

deviating opportunities similar to ours but they assume that such opportunities can be constructed using

outcomes that are themselves desired social choices. See also Goltsman [14].
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Mezzetti and Renou [29] characterize the repeated Nash implementation setup of LS

in terms an alternative property that they call dynamic monotonicity. Their character-

ization applies to both infinitely and finitely repeated setups. The sufficiency results of

Mezzetti and Renou [29] also use mechanisms that involve unbounded integers and are

therefore open to the same criticisms against LS that the present paper addresses. In

this paper, we do not consider dynamically monotone SCFs and consider only infinitely

repeated implementation of efficient SCFs via bounded mechanisms. In the infinite setup

with sufficiently patient agents, there is not much of a loss in this approach as dynamic

monotonicity is generically equivalent to the notion of efficiency invoked by both LS and

the current paper.25 It may however be possible to extend the ideas and techniques de-

veloped in this paper to the case of finitely repeated, or even one-shot, implementation of

dynamically monotone social choices.

While a full investigation is beyond the scope of this paper, there are several issues

to note in this regard. On the one hand, some of our key arguments, in particular,

constructing {Si}i∈I , {X(t)}∞t=1 and Y , can be exactly replicated in any finite setup if the

planner can randomly choose mechanisms (see footnote 11). The main idea of complexity

definition, that stationary behavior is simpler than otherwise, can be applied to any

finitely repeated setup, as well as any (within-period) extensive form mechanisms. On the

other hand, repeatedly implementing a dynamically monotone SCFs via finite mechanisms

may not be so straightforward as the regimes proposed by Mezzetti and Renou [29] are

more complex than those used in LS.26 For instance, they ask players to report their

continuation payoffs in addition to states, outcomes and unbounded integers. Also, our

arguments cannot be directly applied to the one-shot environment since the ideas of

pre-emptive deviation to bound equilibrium payoffs and using complexity to eliminate

non-stationary behavior are based on multiple rounds of play.

Finally, our paper contributes to a growing body of papers that study the implica-

tions of individual bounded rationality for implementation in static environments. This

literature has so far introduced agents who make mistakes (Eliaz [10]), are partially hon-

est (Matsushima [27], Dutta and Sen [9]), choose best responses adaptively (Cabrales

and Serrano [4]) and have context-dependent preferences (Saran [37], de Clippel [7]),

among others. Complexity considerations in mechanism design have been analyzed in a

25Non-generically, the concepts are different depending on the precise details of conditions.
26Mezzetti and Renou [29] actually obtain their characterization by restricting attention to pure strate-

gies as well as allowing for random choice of mechanisms, in contrast to LS and this paper.
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principal-agent context by Glazer and Rubinstein [13]. Their model of bounded rational-

ity is different from ours, but interestingly, their results turn out to offer a broadly similar

message: faced with boundedly rational agent, complexity of the mechanism may actually

help the principal’s cause.

7 Conclusion

In summary, this paper explores how to repeatedly implement an efficient social choice

function when the agents have a preference for less complex strategies at the margin.

We identify some minor conditions under which such implementation is achieved with

using only finite mechanisms and allowing for mixed strategies. Compared with LS, when

faced with complexity-averse agents, the freedom to set different mechanisms at different

histories gives the planner an additional leverage to deter undesirable (mixing) behavior

even if the mechanisms themselves are simple. Another feature of our constructions is

that all mixed equilibria are strictly Pareto-dominated by pure equilibria which attain the

desired outcome paths.

The key feature in our regime constructions driving the WPEC results is the non-

stationarity of continuation regimes {X(t)}∞t=1, activated if two players announce the same

positive integer 1 or 2 at each period t. Although each mechanism in our regimes is simple

and does not employ integer games, one may suggest that the non-stationary sequence

of regimes poses another kind of implausible design. Our response is two-fold. First, the

criticism leveled at integer games is not about the implausibility of unboundedness per

se but rather about the fact that integer games kill off unwanted equilibria by strategies

that are themselves dominated. Our constructions achieve full implementation without

appealing to such arguments. Second, as specified in condition (3) above, our WPEC

results require X(t) to be distinct at just two dates. Thus, the degree of non-stationarity

or complexity in our regime constructions needs not be overly demanding.

Regarding the latter point, however, it is worth pointing out that greater non-stationarity

in {X(t)}∞t=1 also means more complex mixed strategy SPEs, and therefore, strengthens

the agents’ incentives to economize on complexity cost associated with such behavior. In

general, the planner could even write X(·) as a function of the entire (publicly observable)

history instead of just its date.

Another related issue that can be raised against our complexity analysis is why we
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consider a preference for less complexity only by the agents and not by the planner. We

note here that our complexity notion only calls for any additional complexity of a strategy

to be justified by payoffs. In a similar vein, for the planner the cost of implementing a

more complex regime could be warranted if it led to better implementation results.

Our notions of complexity apply to any regimes defined with extensive form mech-

anisms and therefore would be used to address the necessary conditions for repeated

implementation in WPEC or other related solution concepts. LS establish the following

result: if an SCF is repeatedly implementable via some regime but the SCF is strictly

Pareto-dominated by another SCF whose range belongs to that of the former, then the

regime admits another equilibrium that achieves the superior payoffs by triggering the

original equilibrium with lower payoffs upon any deviation. An interesting future research

question would be to see whether a similar argument can be extended to the notion of

WPEC.

A more broad lesson from our analysis is that complexity may help the planner’s

cause: by deliberately constructing a complex institution, the planner may guide the

agents to adopt desired strategies if they are simple while other equilibria involve complex

behavior. In our particular exploration, the agents are assumed to have preference for

less complex strategies at the margin, where complexity is concerned with the degree

of history-dependence of behavior. The complexity of regime that exploited these traits

was manifested in the non-stationarity of the sequence of mechanisms enforced. Indeed,

one can find many real world cases of complex institutions that have survived the test

of time (for an illuminating example, see the voting protocol for electing the Doge of

Venice between 1268 and 1797; Mowbray and Gollmann [33]).27 A potentially fruitful

direction for future research would be to uncover other relationships between complexity

and mechanism/institution design beyond the premises of this paper.

27The authors thank Romans Pancs for the example.
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A Appendix

A.1 Omitted Proofs

Proof of Lemma 4

For each i = 1, 2, let Πi denote i’s continuation payoff at the next period if both agents

announce zero at the given history (h, d). Also, let zi denote the integer that i ends up

choosing at (h, d). At this history the players either randomize (over integers) or do not

randomize. We consider each case separately.

Case 1: No player randomizes.

In this case we show that each player must play 0 for sure. Suppose otherwise; then

some i plays zi 6= 0 for sure and the other announces zj for sure. We derive contradiction

by considering the following subcases.

Subcase 1A: zi > 0 and zj = 0.

The continuation regime at the next period is Si (Rule A.2). But then, since yj > wij by

construction, j can profitably deviate by choosing a strategy identical to the equilibrium

strategy except that it announces the positive integer other than zi at this history, which

activates the continuation regime Y instead of Si (Rule A.3(iii)). This is a contradiction.

Subcase 1B: zi > 0 and zj > 0.

The continuation regime is either X, X(t) or Y (Rule A.3). Since y2 > x2(t) for any t,

it follows that if the continuation regime is X or X(t) then player 2 can profitably deviate

just as in Subcase 1A, a contradiction. Since x1 > y1, if the continuation regime is Y

player 1 can profitably deviate and we obtain a contradiction.

Thus, both players choose 0 for sure at this history, and ge must be the mechanism

at the next period. We next show that Πi = vi(f) for all i. For this, suppose first

that Πi < vi(f) for some i. But then, by Rule A.2, i could deviate at this history

(h, d) by announcing a positive integer and obtain a continuation payoff equal to vi(f), a

contradiction. It therefore follows that Πi ≥ vi(f) for all i. Then, suppose that Πi > vi(f)

for some i. But, since regime Re only employs outcomes from the set f(Θ), and since

f is efficient in the range, it must be that Πj < vj(f) for j 6= i. This contradicts that

Πi ≥ vi(f) for all i.

Case 2: Some player randomizes.
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We proceed by first establishing the following two claims.

Claim 1 : For each i, the continuation payoff from announcing 1 is greater than that

from announcing 0, if zj > 0 for sure, j 6= i.

Proof of Claim 1. If i announces zero, by Rule A.2, his continuation payoff is wji . If he

announces 1, by Rules A.3(i) and A.3(iii), the continuation payoff is xi > wji or yi > wji .

Claim 2 : Suppose that agent i announces 0 with positive probability. Then the other

agent j must also announce 0 with positive probability and Πi ≥ vi(f). Furthermore,

Πi > vi(f) if j does not choose 0 for sure.

Proof of Claim 2. By Claim 1, playing 1 must always yield a higher continuation

payoff for player i than playing 0, except when j plays 0. Since i plays 0 with positive

probability, it must then be that j also chooses 0 with positive probability. Hence, we

obtain that Πi ≥ vi(f) with the inequality being strict if j plays a positive integer with

positive probability.

We now show that, in this Case 2, both players choose a positive integer for sure. To

show this suppose otherwise; then some player chooses 0 with positive probability. By

Claim 2, the other player must also play 0 with positive probability and, also, Πi ≥ vi(f)

for any i = 1, 2. Moreover, since this case assumes that some player is choosing 0 with

probability less than one, by appealing to Claim 2 once again, it must be that at least one

of the inequalities Π1 ≥ v1(f) or Π2 ≥ v2(f) is strict. Note also that regime Re involves

only outcomes in the range of f . Therefore, since f is efficient in the range, we have a

contradiction.

In this case, therefore, both players mix between 1 and 2 for sure and, by simple com-

putation, it must be that each i plays 1 with probability xi(t)−yi
xi+xi(t)−2yi

∈ (0, 1). Furthermore,

since for each i, vi(f) exceeds xi, xi(t) or y, it follows that the continuation payoff at the

next period must be less than vi(f).

Proof of Proposition 1

Given Lemma 4, it suffices to show that any mixing over integers in equilibrium must

occur in period 1. Suppose not; so, there exists an SPE σ such that, for some t > 1, there

exist ht ∈ Ht and d ∈ D2 that occur on the equilibrium path at which the players are

mixing over integers.
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First, note that by Lemma 4 the players must have all announced 0 for sure in the

previous period and, moreover, πht

i (σ,Re) = vi(f) for all i = 1, 2. Second, for any d′ ∈ D2,

we can apply similar reasoning to show that π
ht,d′,z˜i (σ,Re) = vi(f) for all i if z˜ = (0, 0)

and (ht, d′, z˜) occurs on the equilibrium path.

Next, let r(d′, z˜) denote the probability of (d′, z˜) ∈ D2 × Z2 occurring at ht under

σ, and let ah
t,d′ denote the outcome implemented at (ht, d′). Then, with slight abuse of

notation, i’s continuation payoff at ht can be written as

πht

i (σ,Re) =
∑

(d′,z˜)∈D2×Z2

r(d′, z˜)
[
(1− δ)ui(ah

t,d′ , d′) + δπ
ht,d′,z˜i (σ,Re)

]
= vi(f). (8)

Lemma 4 implies that, for any i and any d′, it must be either that z˜ = (0, 0) and

hence, by the argument above, π
ht,d′,z˜i = vi(f), or that both players announce a positive

integer and hence π
ht,d′,z˜i < vi(f) for all i. Thus, since we assume that mixing over positive

integers occurs after d, it follows from (8) that
∑

(d′,z˜) r(d
′, z˜)ui(aht,d′ , d′) > vi(f) for all i.

But this contradicts that f is efficient in the range.

Proof of Lemma 5

Suppose not. Then, by Lemma 4, there exists a WPEC, σ, such that, at some t, ht ∈ Ht

and d ∈ D2, the two agents play integer 1 or 2 for sure and each i plays 1 with probability
xi(t)−yi

xi+xi(t)−2yi
. Furthermore, by construction, there exist t′ and t′′ such that x(t′) 6= x(t′′)

and, therefore, it follows that, for all i, we have either σi(h
t, d) 6= σi(h

t′ , d) for some

ht
′ ∈ Ht′ , or σi(h

t, d) 6= σi(h
t′′ , d) for some ht

′′ ∈ Ht′′ .

Now, consider any i = 1, 2 deviating to another strategy σ′i that is identical to the

equilibrium strategy σi except that, for all h ∈ H∞, σ′i(h, d) prescribes announcing 1 with

probability 1. Since σ′i is less complex than σi, we obtain a contradiction by showing that

πh
i (σ′i, σ−i, R

e) = πh
i (σ,Re) for all h ∈ H∞. To do so, fix any history h and suppose that

the given partial history d occurs after h. Given Lemma 4, there are two cases to consider

at (h, d).

First, suppose that j plays 0 for sure. Then, by part (a) of Lemma 4, i also plays 0 for

sure and obtains a continuation payoff equal to vi(f) in equilibrium. By Rule B.2 of the

regime, the deviation also induces the same continuation payoff vi(f). Second, suppose

that j is mixing. Then, by part (b) of Lemma 4, j mixes between 1 and 2 and i is also

indifferent between choosing 1 and 2.
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Proofs of Proposition 2 and Theorem 2

These results are proved by the next three lemmas.

Lemma 7 Regime R̂e admits an SPE, σ∗, in Markov strategies such that, for any t,

h ∈ Ht and θ ∈ Θ, (i) gh(σ∗, Re) = ge and (ii) Ah,θ(σ∗, Re) = {f(θ)}.

Proof. The proof is similar to that of Lemma 3.

Lemma 8 Consider any SPE of regime R̂e. Fix any t, h ∈ Ht and d ∈ D2. Then, one

of the following must hold at (h, d):

(a) Each i ∈ I announces 0 for sure and his continuation payoff at the next period is

equal to vi(f).

(b) Each i ∈ {k, l} announces 1 or 2 for sure, with the probability of choosing 1 equal to
xi(t)−yi

xi+xi(t)−2yi
∈ (0, 1). Furthermore, for all j ∈ I, the continuation payoff at the next

period is less than vj(f).

Proof. For each i, let Πi denote i’s continuation payoff at the next period if all agents

announce zero at the fixed history (h, d) ∈ Ht ×D2. Also, let zi denote the integer that

i ends up choosing at (h, d). At this history the players either randomize (over integers)

or do not randomize. We shall prove the claim by considering each case separately.

Case 1: No player randomizes.

In this case, we show that, each player must play 0 for sure. Suppose otherwise;

then some i plays zi 6= 0 for sure. We derive contradiction by considering the following

subcases.

Subcase 1A: zk > 0 and zl = 0, or zk = 0 and zl > 0.

Consider the former case; the latter case can be handled analogously. The continuation

regime at the next period is Sk (Rule B.2). But then, since yl > wkl by (4), l can

profitably deviate by choosing a strategy identical to the equilibrium strategy except

that it announces the positive integer other than zl at this history, which activates the

continuation regime Y instead of Sk (Rule B.3(iii)). This is a contradiction.

Subcase 1B: zk > 0 and zl > 0.
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The continuation regime is either X,X(t) or Y (Rule B.3). Suppose that it is X or

X(t). By (4), we have yl > xl(t
′) for all t′. But then, l can profitably deviate by choosing a

strategy identical to the equilibrium strategy except that it announces the positive integer

other than zl at this history, which activates Y (Rule B.3(iii)). This is a contradiction.

Similarly, since xk > yk by (4), when the continuation regime is Y , player k can profitably

deviate and we obtain a similar contradiction.

Subcase 1C: For some C ⊆ I\{k, l}, zi = 1 for all i ∈ C and zi = 0 for all i /∈ C.

The continuation regime is SC (Rule B.4). By (6), we have wjj > wCj for j ∈ {k, l}.
But then, j can profitably deviate by choosing a strategy identical to the equilibrium

strategy except that it announces a positive integer at this history, which activates Sj

(Rule B.2).

Thus, all players choose 0 for sure at this history, and ĝe must be the mechanism at

the next period. We next show that Πi = vi(f) for all i. Suppose not. First, suppose

that Πi < vi(f) for some i. But then, i could deviate at this history (h, d) by announcing

a positive integer and obtain a continuation payoff equal to vi(f), a contradiction. It

therefore follows that Πi ≥ vi(f) for all i. In the continuation game, we either have

implementation of outcomes in the range of f or end up activating continuation regimes

from {Si}Ii=1 ∪{X(t)}∞t=1 ∪Y whose payoffs are all Pareto-dominated by v(f). Therefore,

if f is efficient in the range Πi = vi(f) for all i.

Case 2: Some player randomizes.

We proceed by establishing the following claims.

Claim 1 : For each agent k or l, the continuation payoff (at the next period) from

announcing 1 is greater than that from announcing 0, if there exists another player an-

nouncing a positive integer.

Proof of Claim 1. Consider k and any z˜−k 6= (0, . . . , 0). The other case for l can be

proved identically. There are two possibilities:

First, suppose that zl > 0. In this case, if k announces zero, by Rule B.2, his con-

tinuation payoff is wlk. If he announces 1, by Rules B.3(i) and B.3(iii), the continuation

payoff is xk or yk. But, by (4), we have xk > yk > wlk.

Second, suppose that zl = 0. In this case, since z˜−k 6= (0, . . . , 0), there must exist a

non-empty set C ⊆ I\{k, l} such that zi = 1 for all i ∈ C and zi = 0 for all i ∈ I\{C∪k}.
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Then if k announces 0, by Rule B.4, his continuation payoff is wCk , whereas if he announces

1, by Rule B.2, the continuation payoff is wkk . But, by (6), we have wkk > wCk .

Claim 2 : If agent k or l announces zero with positive probability, then every other

agent must also announce zero with positive probability.

Proof of Claim 2. Suppose not. Then, suppose that k plays 0 with positive probability

but some i 6= k chooses 0 with zero probability. (The other case for l can be proved

identically.) But then, by Claim 1, the latter implies that k obtains a lower continuation

payoff from choosing 0 than from choosing 1. This contradicts the supposition that k

chooses 0 with positive probability.

Claim 3. Suppose that some agent i ∈ {k, l} announces 0 with positive probability.

Then, Πi ≥ vi(f) with this inequality being strict if some other agent announces a positive

integer with positive probability.

Proof of Claim 3. For any agent i ∈ {k, l}, by Claim 1, playing 1 must always yield a

higher continuation payoff i than playing 0, except when all other agents play 0. Since i

plays 0 with positive probability, the following must hold:

(i) If all others announce 0, i’s continuation payoff when he announces 0 must be no

less than that he obtains when he announces 1, i.e. Πi ≥ vi(f).

(ii) If some other player attaches a positive weight to a positive integer, i’s continuation

payoff must be greater when he chooses 0 than when he chooses 1 in the case in which all

others choose 0, i.e. Πi > vi(f).

Claim 4 : For each agent i ∈ I\{k, l}, the continuation payoff from announcing zero

is no greater than that from announcing 1, if there exists another player announcing a

positive integer.

Proof of Claim 4. For each i ∈ I\{k, l}, the continuation payoff is independent of his

choice if zk > 0 or zl > 0. So, suppose that zk = zl = 0. Then if i chooses 1 he obtains

wCi , for some C ∈ I\{k, l} such that i /∈ C, while he obtains w
C∪{i}
i from choosing 1. By

(7), wCi ≤ w
C∪{i}
i . Thus, the claim follows.

Claim 5. For each agent i ∈ I\{k, l}, Πi ≥ vi(f) if all players announce 0 with positive

probability.

Proof of Claim 5. Note that, if zj = 0 for all j 6= i, i obtains Πi from choosing 0

and obtains vi(f) from choosing 1. Since, by assumption, i announces 0 with positive
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probability, announcing 0 must be weakly preferred to either positive integer. The claim

then follows immediately from the previous claim.

Claim 6. Both k and l choose a positive integer for sure.

Proof of Claim 6. Suppose otherwise; then some i ∈ {k, l} chooses 0 with positive

probability. Then, by Claim 2, every other agent must play 0 with positive probability.

By Claims 3 and 5, this implies that Πj ≥ vj(f) for every j. Moreover, since in this

case there is randomization, some player must be choosing a positive integer with positive

probability. Then, by appealing to Claim 3 once again, we must also have that at least

one of the inequalities Πk ≥ vk(f) or Πl ≥ vl(f) is strict. Since f is efficient in the range,

this is a contradiction.

Claim 7. Both k and l choose each of the integers 1 and 2 with positive probability.

Proof of Claim 7. Suppose not; then by the previous claim one of either k or l must

choose one of the positive integers for sure. But then, (4) implies that the other must also

do the same. But, by applying (4) once again, this induces a contradiction (the argument

is exactly the same as in Subcase 1B of Case 1 with no randomization).

Given the last two claims, simple computation verifies that both agents k and l must

be playing 1 with unique probability as in the statement. The continuation payoffs, for

each i ∈ I, when k or l chooses a positive integer are xi, xi(t) or y. Moreover, by (4), each

of these payoffs is less than vi(f). Therefore, it follows that, in this case, the continuation

payoff at the next period must be less than vi(f) for all i.

Lemma 9 Fix any WPEC of regime R̂e. Also, fix any t, h ∈ Ht and d ∈ D2. Then,

every agent announces zero for sure at this history.

Proof. Suppose not. Then, by Lemma 8 above, there exists a WPEC, σ, such that, at

some t, ht ∈ Ht and d ∈ D2, each i ∈ {k, l} plays integer 1 or 2 for sure and integer 1

is chosen with probability xi(t)−yi
xi+xi(t)−2yi

. Furthermore, by construction, there exist t′ and t′′

such that xk(t
′) 6= xk(t

′′) and xl(t
′) 6= xl(t

′′). Thus, it follows that, for each i ∈ {k, l},
we have either σi(h

t, d) 6= σi(h
t′ , d) for some ht

′ ∈ Ht′ , or σi(h
t, d) 6= σi(h

t′′ , d) for some

ht
′′ ∈ Ht′′ .

Now, consider any i ∈ {k, l} deviating to another strategy σ′i that is identical to the

equilibrium strategy σi except that, for all h ∈ H∞, σ′i(h, d) prescribes announcing 1
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for sure. Since σ′i is less complex than σi, we obtain a contradiction by showing that

πh
i (σ′i, σ−i, R

e) = πh
i (σ,Re) for all h ∈ H∞. To this end, fix any history h and suppose

that the given partial history d occurs at h. Given Lemma 8, there are two cases to

consider at (h, d).

First, suppose that every agent plays 0 for sure. Then, by part (a) of Lemma 8, i

also plays 0 for sure and obtains a continuation payoff equal to vi(f) in equilibrium. By

Rule B.2 of the regime, the deviation also induces the same continuation payoff vi(f).

Otherwise, by part (b) of Lemma 8, agents k and l mix between 1 and 2; thus, i is

indifferent.

A.2 PEC and Period 1

Lemma 10 Every PEC, σ, of regime Re is Markov: for all i ∈ I, σi(h
′, d) = σi(h

′′, d)

for all h′,h′′ ∈ H∞ and all d ∈ D.

Proof. Suppose not. Then, there exists some PEC, σ, such that σi(h
′, d) 6= σi(h

′′, d′) for

some i,h′,h′′ and d′. By Lemma 5, we know that d′ ∈ D1; let d′ = θ.

Consider i deviating to another strategy σ′i that is identical to σi except that, irre-

spective of past history, (i) whenever d = θ, it does what the equilibrium strategy does

in period 1 after the given partial history, and (ii) whenever d = (θ, θ˜) for any θ˜ ∈ Θ2,

i.e. any Stage 2 partial history following realization of the given state θ̃, it announces 1.

Formally, for all h ∈ H∞ and θ˜ ∈ Θ2, σ′i(h, θ̃) = σi(∅, θ) and σ′i(h, θ, θ˜) = 1 (where the

latter slightly abuses notation to denote a pure strategy).

Clearly, σ′i is less complex than σi. Furthermore, the deviation alters neither i’s one-

period payoff in period 1 at θ̃ nor, by Rule A.2 of the regime, and since the opponent

player’s equilibrium strategy announces 0, his continuation payoff as of period 2 on the

equilibrium path. This contradicts the assumption of PEC.

Together with Theorem 1, this lemma immediately implies the following.

Theorem 3 Suppose that I = 2 and δ ∈
(

3
4
, 1
)
. If an SCF f is efficient in the range,

and satisfies self-selection in the range and condition φ, there exists a regime R such that

(i) a PEC exists and (ii) every PEC σ satisfies πht

i (σ,R) = vi(f) for any i ∈ I, t ≥ 1 and

h ∈ Ht(σ,R).

47



References

[1] Abreu, D. and H. Matsushima (1992): “Virtual Implementation in Iteratively Un-

dominated Strategies I: Complete Information,” Econometrica, 60, 993-1008.

[2] Abreu, D. and A. Rubinstein (1988): “The Structure of Nash Equilibria in Repeated

Games with Finite Automata,” Econometrica, 56, 1259-1282.

[3] Binmore, K. M. Piccione and L. Samuelson (1998): “Evolutionary Stability in

Alternating-Offers Bargaining Games,” Journal of Econic Theory, 80, 257-291.

[4] Cabrales, A. and R. Serrano (2011): “Implementation in Adaptive Better-Response

Dynamics: Towards a General Theory of Bounded Rationality in Mechanisms,”

Games and Economic Behavior, 73, 360-374.

[5] Chatterjee, K. and H. Sabourian (2000): “Multiperson Bargaining and Strategic

Complexity,” Econometrica, 68, 1491-1509.

[6] Chatterjee, K. and H. Sabourian (2009): “Game Theory and Strategic Complexity,”

in Encyclopedia of Complexity and System Science, ed. by R. A. Meyers, Springer.

[7] de Clippel, G. (2014): “Behavioral Implementation,”forthcoming in American Eco-

nomic Review.

[8] Dutta, B. and A. Sen (1991): “A Necessary and Sufficient Condition for Two-Person

Nash Implementation,” Review of Economic Studies, 58, 121-128.

[9] Dutta, B. and A. Sen (2012): “Nash Implementation with Partially Honest Individ-

uals,” Games and Economic Behavior, 74, 154-169.

[10] Eliaz, K. (2002): “Fault-Tolerant Implementation,” Review of Economic Studies, 69,

589-610.

[11] Fudenberg, D. and E. Maskin (1991): “On the Dispensability of Public Randomiza-

tion in Discounted Repeated Games,” Journal of Economic Theory, 53, 428-438.

[12] Gale, D. and H. Sabourian (2005): “Complexity and Competition,” Econometrica,

73, 739-770.

48



[13] Glazoer, J. and A. Rubinstein (2014): “Complex Questionnaires,” forthcoming in

Econometrica.

[14] Goltsman, M. (2011): “Nash Implementation Using Simple Mechanisms without

Undesirable Mixed-Strategy Equilibria,” Mimeo.

[15] Jackson, M. O. (1992): “Implementation in Undominated Strategies: A Look at

Bounded Mechanisms,” Review of Economic Studies, 59, 757-775.

[16] Jackson, M. O. (2001): “A Crash Course in Implementation Theory,” Social Choice

and Welfare, 18, 655-708.

[17] Jackson, M. O., T. Palfrey and S. Srivastava (1994): “Undominated Nash Implemen-

tation in Bounded Mechanisms,” Games and Economic Behavior, 6, 474-501.

[18] Kalai, E. and A. Neme (1992): “The Strength of a Little Perfection,” International

Journal of Game Theory, 20, 335-355.

[19] Kalai, E. and W. Stanford (1988): “Finite Rationality and Interpersonal Complexity

in Repeated Games,” Econometrica, 56, 397-410.

[20] Lee, J. and H. Sabourian (2007): “Coase Theorem, Complexity and Transaction

Costs,” Journal of Economic Theory, 135, 214-235.

[21] Lee, J. and H. Sabourian (2011a): “Efficient Repeated Implementation,” Economet-

rica, 79, 1967-1994.

[22] Lee, J. and H. Sabourian (2011b): “Supplement to ‘Efficient Re-

peated Implementation’,” Econometrica Supplemental Material, 79,

http://www.econometricsociety.org/ecta/Supmat/8859 proofs.pdf.

[23] Lee, J. and H. Sabourian (2013): “Repeated Implementation with Incomplete Infor-

mation,” Mimeo.

[24] Mailath, G. J. and L. Samuelson (2006): Repeated Games and Reputations: Long-run

Relationships, Oxford University Press.

[25] Maskin, E. (1999): “Nash Equilibrium and Welfare Optimality,” Review of Economic

Studies, 66, 23-38.

49
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