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Abstract

This paper explores the sorting patterns in a two-sided matching market where agents facing

different risks match to share them. When preference belongs to the class of harmonic absolute risk

aversion (HARA), the risk premium is perfectly transferable within each partnership; thus a stable

match minimizes the social cost of risk. In the systematic risk model, where agents are ranked

by their holdings of a common risky asset, the convexity of the joint risk premium in joint risk

size leads to negative assortative matching (NAM). In the idiosyncratic risk model, where agents

are ranked by their independent riskiness in the sense of second-order stochastic dominance (SSD),

NAM arises when preference exhibits decreasing absolute risk aversion (DARA) in the sense of Ross

and riskier background risk leads to more risk-averse behavior. However, it may fail to arise when

riskier background risk leads to more risk-tolerant behavior.
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1 Introduction

When insurance and financial markets are incomplete, individuals often form partnerships to diversify

their risks. For instance, families - mainly in developing countries - often arrange for long-distance mar-

riages for the purpose of sharing production shocks, manufacturing employers often cushion temporary

shocks on profit by sharing with their workers, and different parties in related businesses sometimes

develop joint ventures to share resources and revenues for mutual benefit (Townsend, 1994; Fafchamps

and Lund, 2003; Bigsten et al, 2003). When risk sharing is a primary concern in forming partnerships,

it is legitimate to ask how the agents should match to insure against risks. Do the evidences in the

marriage market or the financial market reflect the mitigation of an incomplete insurance market, or

are they boosted by other concerns at the cost of effi ciency in risk sharing?

In this paper, we examine the sorting patterns in a two-sided matching market where agents facing

different risks match to share them. It is known that when agents have different degrees of risk aversion,

negative assortative matching (NAM) arises because risk bearings are generally substitutes: a very risk-

averse female is a demanding buyer for insurance and a very risk-tolerant male is a ready seller for it

(Chiappori and Reny, 2006; Schulhofer-Wohl, 2006). Rather than employing different degrees of risk

aversion, our paper focuses on different risks that each agent faces. Since the Pareto frontier in a given

match does not have constant slope, standard type-complementarity conditions (Becker, 1973) cannot

be used in general. However, with respect to risk-sharing problems, it is known that when preference

belongs to the class of harmonic absolute risk aversion (HARA), the Pareto frontier in the monetary-

equivalent space is a straight line, or, in other words, the total surplus summarized by the certainty

equivalent is independent of how risk sharing is performed. In this case, the matching game permits

a transferable expected utility representation and the type-complementarity condition translates into

minimizing social risk premium.

We then consider two applications: one where risks are perfectly correlated and one where risks are

independent. In the systematic risk model, agents are ranked by their percentage of ownership of a

common risky asset. Because joint risk premium is a convex function of the joint size of the common

risk, it is extremely costly to pair two highly risky agents together. Hence, negative sorting is socially

preferable and stable. One may wonder to what extent the result of negative sorting depends on the

HARA assumption. As a robustness check, we show that, with general utility functions, NAM still

arises if the supports of all risks are not too large compared with agents’risk-free incomes and/or if

risk tolerance is suffi ciently linear.

In the idiosyncratic risk model, agents are ranked by their independent riskiness in the sense of

second-order stochastic dominance (SSD). NAM arises if the preference exhibits DARA and if riskier

background risk leads to more risk-averse behavior, but may fail to arise when riskier background risk

leads to more risk-tolerant behavior. There are four key points to note here. First, the conditions for

NAM have clear economic implications and are supported by empirical evidence. Guiso et al. (1996)

concluded from Italian survey data that a consumer’s perception of a riskier distribution of uninsurable
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human-capital wealth is negatively related to the proportion of risky assets held in his/her investment

portfolio. Second, the seemingly strong conditions for NAM to arise come from the fact that we are

looking for the equilibrium sorting patterns for any SSD-ordered risks. For a special case of the SSD

order where risks are ranked in the sense of SSD by taking the form of adding independent noise, we only

need HARA and DARA to guarantee NAM. Third, when risks are large with respect to agents’risk-free

incomes, an SSD deterioration in the background risk may lead to more risk-tolerant behavior, and thus,

NAM may fail to arise in equilibrium. Fourth, the different results in the two applications suggest that

one should investigate carefully whether agents are sharing highly correlated risks or independent risks.

The results of this paper may help us to understand the composition of risk-sharing groups in

developing countries. Ghatak (1999) argued that PAM should arise because similar people will find it

easier to monitor and enforce informal contracts. Empirical evidence, however, is mixed: on one hand,

Bacon et al. (2014) found evidence that individuals were more likely to positive assortative mate on

their risk attitude; and Arcand and Fafchamps (2012) also found solid evidence of positive sorting for

peers with respect to physical or ethnic proximity as well as wealth or household size. On the other

hand, Dercon et al. (2006) found little evidence of positive sorting in group-based funeral insurance.

Our results from the idiosyncratic model suggest that the risk-sharing effect might drive matching to

be negative assortative and, therefore, offset the monitoring and enforcing effects; however, when risks

are large compared with individuals’risk-free incomes, it is possible that the two effects might work in

the same direction and drive matching to be positive assortative.

Our work contributes to the recent literature on the risk-sharing matching game. Since the effi cient

risk sharing rule is typically nonlinear, the risk-sharing matching game permits non-transferable utilities,

and thus, standard type-complementarity conditions cannot be used. Legros and Newman (2007)

noticed that the risk-sharing matching game admits a transferable utility representation when agents

have logarithmic or exponential utility functions. Schulhofer-Wohl (2006) generalized their findings,

showing that the game admits a transferable utility representation when preferences are in the harmonic

absolute risk aversion class with identical shape (ISHARA). Both Legros and Newman (2007) and

Schulhofer-Wohl (2006) proved that the equilibrium sorting pattern is negative assortative on risk

preferences. Chiappori and Reny (2006) further showed that negative sorting over risk preferences is

robust under general utility functions. The key difference between our work and the existing literature

is that our paper focuses on different risks that each agent faces rather than different degrees of risk

aversion. Among the papers on risk-sharing matching games, ours is one of the first to investigate

sorting over agents’risk exposure.1

There are two reasons we think examining riskiness is important. First, individual risk preferences

have not proved to be stable across different stimulus domains and situations. For example, the pre-

dictive power of investors’risk taking heavily depends on whether their risk attitudes are elicited in an

1 In their recent paper, Jaramillo, Kempf and Moizeau (2013) studied the formation of risk-sharing coalitions where

individuals differ with respect to their risky exposure. The insurance scheme considered in their work is limited to equal

sharing regardless of agents’ initial incomes, while in our model, there is no barrier to effi cient insurance within the

household.
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investment-related context (Slovic, 1964; MacCrimmon and Wehrung, 1986, 1990; Schoemaker, 1990,

1993; Weber and Milliman, 1997). Second, because income riskiness presumably is easier to observe than

attitudes toward risk, one might expect to drive testable predictions concerning the role of risk-sharing

in the formation of partnerships much more easier if agents are ranked on the basis of riskiness.

Moreover, the results of our paper differ from those in the literature. Chiappori and Reny (2006)

rigorously proved that NAM arises if agents hold the same exogenous risky assets but differ in their risk

attitude. Following their results, Li, Sun and Chen (2013) showed that PAMmay arise if agents’incomes

are endogenous (also see Wang, 2013a). Wang (2013b) showed that the presence of moral hazard may

also lead to PAM. Our results show that without any other confounding factors such as endogenous

income or moral hazard, the counter-intuitive PAM may arise if agents differ in their idiosyncratic risks

instead of their risk preferences: while agents with highly risky assets always try to avoid matching

with other large, perfectly-correlated risks, they might prefer to match with other large, independent

risks.

The rest of this paper is organized as follows. Section 2 presents the risk-sharing matching game.

Section 3 applies a monotonic transformation to this game and characterizes the stable match. Section

4 and 5 consider two applications, one where risks are perfectly correlated and the other where risks

are independent. Section 6 extends the model to allow individuals to have different incomes and face

different risks. Section 7 concludes the paper.

2 Risk-Sharing Matching Game

Consider a one-to-one matching market with two lines of agents. We denote them as N males {i =

1, ..., N} and N females {j = 1, ..., N}. Each agent is endowed with an exogenous risky income, denoted
by w̃i for male i and w̃j for female j. All agents are expected-utility maximizers with respect to the

homogeneous probabilistic belief, and identically risk-averse with vNM utility function u(c), which is

bounded and continuously differentiable in consumption c, with u′(c) > 0 and u′′(c) < 0.

Agents match in order to share risks. At period 0, each agent voluntarily matches with a mate from

the opposite side. Each partnership (i, j) will commit to rules for sharing their joint income, which

depends on the state of the world. At period 1, the value of all shocks are realized, and agents consume

according to the prior sharing rules. We rule out any search or coordination frictions, and there is no

limited commitment or asymmetric information. Denote z̃ij ≡ w̃i + w̃j as the joint income received
by the matched pair (i, j). Division (zij−cij , cij), which is associated with partnership (i, j) prior to the

realization of shocks, specifies individual consumptions to i and j under each realization of z̃ij . Under

this agreement, i’s expected utility is Eu(z̃ij − cij(z̃ij)) and j’s is Eu(cij(z̃ij)).

Assume that risk is shared within each partnership in a Pareto-effi cient way, a situation in which no

agent’s expected utility can be strictly increased without decreasing his/her partner’s. A risk-sharing
rule cij(·) is a deterministic function that maps each realized value of z̃ij to an individual consumption
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level for j. Given the random joint income z̃ij associated with partnership (i, j), a risk-sharing rule

cij(·) is Pareto optimal if and only if there exists a scalar λ ∈ R++ such that cij(·) solves the following
maximization problem:

max
{cij(·)}

{Eu(z̃ij − cij(z̃ij)) + λEu(cij(z̃ij))} (1)

The set of Pareto optimal risk-sharing rules is called Pareto effi cient frontier.

Definition 1 A matching correspondence is an assignment of males to females. A stable match
specifies a matching correspondence and the associated risk-sharing rules for each partnership, which is

immune to coalitional deviations. That is, there does not exist a risk-sharing rule under which a male

and a female, who are not matched to one another, prefer each other to their current assignments.

Assume that incomes strictly differ within each side of the population; further assume that the mar-

ginal utility of consumption is bounded at autarky. The existence of stable matches has been established

by Legros and Newman (2007). Then there is a one-to-one matching of i to j. Under a positive/negative

assortative matching (PAM/NAM), the most risky male is matched with the most/least risky female,

the second-most risky male is matched with the second-most/least risky female, and so on. The formal

definition of the equilibrium matching pattern is stated as follows:

Definition 2 A stable match is positive (negative) assortative if and only if for any i, i′, j and j′,
such that i and i′ are matched with j and j′ respectively, we have

i′ ≥ i⇐⇒ j′ ≥ (≤)j.

3 Stable Match and Social Risk Premium

Becker’s (1973) seminal paper provided a foundation for analyzing the competitive assignments of

partners with transferable utility. But in our risk-sharing matching game, the Pareto effi cient frontier

in the utility space within a given partnership does not necessarily have a constant slope, and thus

standard type-complementarity conditions cannot OKbe used in general. However, a simpler case

arises when it is possible to apply a monotonic transformation to the expected utility levels such that

the transformed Pareto effi cient frontier has a constant slope. In this case, the matching game permits

a transferable expected utility representation as defined below:

Definition 3 The risk-sharing matching game has a transferable expected utility representation if for
any random joint income z̃ij, there exists a constant Cij such that u−1[Eu(cij(z̃ij))] + u−1[Eu(z̃ij −
cij(z̃ij))] = Cij for all Pareto optimal risk sharing rules cij(·).
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A central implication of the above definition is that, if the risk-sharing matching game has a transfer-

able expected utility representation, the joint output, Cij , in terms of the certainty equivalent, depends

only on the characteristics of the members’joint income distribution z̃ij . This output measure allows

agents to compare gains from potential partnerships they may acquire. In other words, Cij can be

treated as the joint monetary output associated with partnership (i, j). Similar to Becker (1973), the

condition for a stable match is to maximize the social output
∑
i,j Cij , which is the sum of the out-

puts over all partnerships for a given matching correspondence. Denote the Joint Risk Premium as

πij = Ez̃ij − Cij , and the associated Social Risk Premium as
∑
i,j πij , that is, the sum of the joint

risk premium over all partnerships for a given matching correspondence. Then, the maximization of

the social output will be equivalent to the minimization the social risk premium.

The existence of transferable expected utility representation is subject to certain regularity condi-

tions. With respect to risk-sharing problems, it is known that when preference belongs to the HARA

class, the Pareto frontier in the monetary-equivalent space is a straight line, or, in other words, the

total surplus summarized by the certainty equivalent is independent of the way risk sharing is performed

(Schulhofer-Wohl, 2006).

Definition 4 Preference belongs to the HARA class if and only if absolute risk tolerance is a linear

function of consumption:

T (c) =
1

γ
c+

1

α
(2)

where risk tolerance T (c) = −u′(c)/u′′(c) > 0 is the reciprocal of the Arrow-Pratt measure of absolute

risk aversion.

In particular, preference exhibits decreasing/increasing absolute risk aversion (DARA/IARA)

if γ > 0 (γ < 0), it exhibits constant absolute risk aversion (CARA) if γ → ∞, it exhibits
constant relative risk aversion (CRRA) if α→∞, and it exhibits risk neutral if γ → 0.

The results for HARA preference can be stated as follows:

Lemma 1 If the preference belongs to the HARA class, then the risk-sharing matching game has a

transferable expected utility representation .2

Proof. The proof can be found in Mazzocco’s (2004) and Schulhofer-Wohl’s (2006) studies.

Because all agents have identical utility function, the solution to (1) when λ = 1 is cij(zij) =
zij
2 .

That is, sharing the joint income equally is one of the Pareto optimal risk-sharing rules. According to

2Schulhofer-Wohl (2006) showed that the risk-sharing matching games admit a transferable expected utility represen-

tation if and only if preferences are in the class of identical shape harmonic absolute risk aversion (ISHARA). In other

words, agents can have different utility functions, but the slope of their risk tolerance must be the same: Ti (c) = 1
γ
c+ 1

αi
.

This is equivalent to saying that all agents have the same HARA utility function, but with different initial wealth. We

discuss the case in which agents differ in both initial wealth and riskiness of their assets in Section 6.
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Definition 3, if the risk-sharing matching game has a transferable expected utility representation, the

joint output Cij , which is associated with partnership (i, j), does not depend on the risk-sharing rules.

Thus, without loss of generality, we can derive Cij by applying the particular risk-sharing rule cij(zij) =
zij
2 , which gives that Cij = 2u−1Eu

(
z̃ij
2

)
. If we define a new utility function v (c) ≡ u

(
c
2

)
, then it

follows that Cij = v−1[Ev(z̃ij)]. Hence, v(·) can be interpreted as the utility function of a representative
agent for any matched pair (i, j). The joint output Cij and the joint risk premium πij = Ez̃ij − Cij
are simply the certainty equivalent and risk premium of the representative agent, respectively. Finally,

using the definition of v(·) and condition (2), one can quickly confirm that preference u(·) belongs to
the HARA class if and only if v(·) also belongs to the same class.

The results for the HARA preferences immediately follow:

Lemma 2 If the preference belongs to the HARA class and if the joint risk premium πij is sub(super)modular

in (i, j), then any stable matching of the risk-sharing matching game will be positive (negative) assor-

tative on the partners’income riskiness.

Proof. See Appendix.

4 Sorting over Systematic Risk

In this section, we consider the application in which risks are perfectly correlated. Agents are ranked by

their holdings of a common risky asset. That is, male i’s income is w̃i = w0+kix̃ and female j’s income

is w̃j = w0 + kj x̃, with ki < ki+1 and kj < kj+1. Define kij ≡ ki + kj . With πij = Ez̃ij − v−1[Ev(z̃ij)]

and z̃ij = 2w0 + kij x̃, we have πij as a function of kij and w0: πij = π(kij , w0). As a result of market

competition, stable match guarantees the minimization of the social cost of risk. According to Lemma

2, stable match will be positive (negative) assortative on risk sizes (ki, kj) if

∂2π(kij , w0)

∂k2ij
≤ 0(≥ 0),

i.e., the joint risk premium is concave (convex) in the size of the joint risk exposure. As suggested by

Eeckhoudt and Gollier (2001), multiplicative risk is self-aggravating in the sense that the cost curve of

risk π(kij , w0) is convex in the unit holdings of such risk kij . Here, if the joint risk premium is a convex

function of the joint size of the common risk, it is extremely costly to pair two highly risky agents

together, and thus NAM is socially preferable and stable. Thus, we have the following proposition:

Proposition 1 If the preference belongs to the HARA class, then the joint risk premium is convex in

the size of joint risk exposure and, therefore, the stable match of the risk-sharing matching game is

negative assortative over the riskiness of the agents’income.
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Proof. Because πij = Ez̃ij − v−1[Ev(2w0 + kij x̃)], we have

∂2πij
∂k2ij

= −
v′(v−1(Ev(2w0 + kij x̃)))E

(
v′′(2w0 + kij x̃)x̃2

)
− (Ev′(2w0 + kij x̃))

2 v′′(v−1(Ev(2w0+kij x̃)))
v′(v−1(Ev(2w0+kij x̃)))

[v′(v−1(Ev(2w0 + kij x̃)))]2

Therefore, ∂
2πij
∂k2ij

≥ 0 iff

− v′′(v−1(Ev(2w0 + kij x̃)))

[v′(v−1(Ev(2w0 + kij x̃)))]2
≤ − E(v′′(2w0 + kij x̃)x̃2)

[E(v′(2w0 + kij x̃)x̃)]2
(3)

Solving for v (c) from (2) and substituting into (3), we find that there will be NAM iff

[E(T (2w0 + kij x̃)
−γ

x̃)]2 ≤ E(T (2w0 + kij x̃)
−(1+γ)

x̃2)ET (2w0 + kij x̃)
1−γ

which holds as a direct application of the Cauchy-Schwarz inequality.

One may wonder to what extent the result of negative sorting depends on the HARA assumption.

Notice that the result of Proposition 1 immediately follows from the fact that the risk premium is

convex in the risk size. Without the HARA assumption, Eeckhoubt and Gollier (2001) show that the

risk premium may not be convex in the size of risk and thus, Proposition 1 may fail. However, as a

robustness check, we are able to show that with general utility functions, NAM still arises if the supports

of all risks are not too large compared with the agents’risk-free incomes and/or if the risk tolerance is

suffi ciently linear.3

In their paper, Chiappori and Reny (2006) show that competitive forces will lead risk-sharing groups

to be composed of individuals who are rather different in their risk preferences. Here, consistent with

their result, we show that it will lead risk-sharing groups to consist of agents with rather different risk

sizes. There are two reasons we believe riskiness is an important factor to explore. First, in practice,

individual risk preferences have not proven to be stable across different stimulus domains and situations.

This creates a diffi culty in assessing agents’risk attitudes because different methods and procedures

often result in different classifications. Second, because risk sizes are much easier to track down, one

may expect to drive testable predictions much more easily.

In the next section, which concerns the two factors that determine agents’risk-taking behavior, i.e.,

agents’risk preferences and risk exposures, we will show that there is a fundamental difference in their

effects: while a highly risk-averse agent always prefers to match with a less risk-averse agent for better

insurance, an agent with a very risky asset may prefer to match with another agent with a very risky

asset for the purpose of risk sharing.

3With general preferences, the utility (under any monotone transformation) is not fully transferable between partners.

In this case, Legros and Newman (2007) presented suffi cient conditions for monotone matching. Applying their “general-

ized difference conditions”, we are able to show that NAM still arises under fairly reasonable assumptions.The proof can

be found in the Appendix.
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5 Sorting over Idiosyncratic Risks

In this section, we consider the application when risks are idiosyncratic. Agents are ranked by their

independent riskiness in the sense of second-order stochastic dominance (SSD). That is, male i’s income

is wmi = w0 + ε̃mi and female j’s income is wfj = w0+ ε̃fj , where ε̃
m
i+1

SSD

- ε̃mi and ε̃fj+1
SSD

- ε̃fj . Again,

the joint risk premium is given by πij = Ez̃ij − v−1[Ev(z̃ij)] with z̃ij = 2w0 + ε̃mi + ε̃fj . Thus, in this

case, we have πij as a function of the joint risk ε̃mi + ε̃fj and the initial wage w0: πij = π
(
ε̃mi + ε̃fj , w0

)
.

Before proceeding, we show through examples that sorting in either direction is possible without further

restrictions other than HARA preference.

5.1 Preliminary Examples

Example 1 (CARA utility). Suppose there are two males m1 and m2 endowed with w0 + ε̃mi , i = 1, 2

and two females f1 and f2 endowed with w0 + ε̃fj , j = 1, 2, where ε̃mi and ε̃fj are independent. Because

all agents have identical CARA utilities, given the initial wage level w0, πij is additive over (ε̃mi , ε̃
f
j ):

π
(
ε̃mi + ε̃fj , w0

)
= π (ε̃mi , w0) + π

(
ε̃fj , w0

)
.Therefore, πij is both (but not strictly) supermodular and

submodular in (i, j), which leads to arbitrary matching.

Example 2 (IARA utility). Suppose instead that all agents have quadratic utility u(c) = c − c2

2 . For

the sake of simplicity, we assume that m1 and f1 are endowed with certain income w0, and that m2 and

f2 are endowed with risky incomes w0+ ε̃m and w0+ ε̃f , respectively, where ε̃m and ε̃f are independently

distributed with zero mean and variance σ2m and σ2f , respectively. Notice that for quadratic utility, the

mean-variance approach is exact. We have joint risk premium πij = w0− (1−
√

(1− w0)2 + V ar(z̃ij)).

We can easily show that, for any given initial wage w0, πij is concave in V ar(z̃ij), which implies that

PAM is stable.

Example 3 (DARA utility). Suppose alternatively that all agents have logarithm utility function

u (c) = ln c. m1 and f1 are endowed with certain income w0 = 3, and m2 and f2 are endowed with risky

income 3+ ε̃m and 3+ ε̃f , respectively, where ε̃m and ε̃f are i.i.d., and Pr (ε̃m = 1) = Pr (ε̃m = −1) = 1
2 .

A simple calculation gives π21 = π12 = 0.17 and π22 = 0.41. Therefore, we have π11 + π22 > π12 + π21,

and thus, NAM is stable.

The key insights from these examples are that all sorting patterns are possible with idiosyncratic

risks and that DARA may be necessary for NAM to arise.
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5.2 General Results

In order to find general results, we can simply look at the 2 × 2 case in which two males are matched

with two females4 . Via Lemma 2, NAM is stable if the following supermodular condition holds:

π(ε̃m1 + ε̃f1 , w0) + π(ε̃f2 + ε̃m2 , w0) ≥ π(ε̃m1 + ε̃f2 , w0) + π(ε̃m2 + ε̃f1 , w0) (4)

Because ε̃m2
SSD

- ε̃m1 , ε̃
f
2

SSD

- ε̃f1 and ε̃mi s, ε̃
f
i s are independent, we have the orders: ε̃f2 + ε̃m2

SSD

-

ε̃m1 + ε̃f2
SSD

- ε̃m1 + ε̃f1 and ε̃
f
2 + ε̃m2

SSD

- ε̃m2 + ε̃f1
SSD

- ε̃m1 + ε̃f1 . Thus, condition (4) holds if the joint risk

premium is “convex”in the riskiness of idiosyncratic risks.5 The first lemma in this section is given as

follows.

Lemma 3 If the preference belongs to the HARA class, then the joint risk premium π(x̃, w0) is convex

in w0.

Proof. Similar to the proof of Proposition 1.

One implication of Lemma 3 is that if the agents all face the same risks but differ in their initial

wealth levels, NAM will arise.

Before proceeding to the general conditions for negative or positive sorting, we introduce the follow-

ing definition:

Definition 5 A utility function u1 is more risk-averse than another utility function u2 in the sense
of Ross if there exist a positive constant λ and a differentiable function g with g′ ≤ 0 and g′′ ≤ 0 such

that

u1 = λu2 + g.

Risk aversion in the sense of Ross is a stronger concept than risk aversion in the sense of Pratt. It is

easy to verify that −u
′′
1

u′1
≥ −u

′′
2

u′2
always holds in this case. To help in further understanding the concept

of “risk aversion in the sense of Ross”, we denote πi (ε̃2 → ε̃1, w) as the price that agent i is ready to

pay to replace lottery ε̃2 with lottery ε̃1 at wealth level w, i.e.,

Eui (w + ε̃2) = Eui (w − π(ε̃2 → ε̃1, w) + ε̃1) . (5)

4The reason for discussing only the 2×2 case is merely for expositional purposes. If there is a complete order of agents’

risks, i.e., εm1 � εm2 � . . . � εmN and εf1 � εf2 � . . . � εfN , then our conditions for NAM/PAM can immediately apply in

the case in which there are equal numbers of males and females, as well as in the case of the matched agents when there

are unequal numbers of males and females, although in the latter case, the identities of the agents who are left unmatched

depend on the distribution of the population.
5Suppose f is a convex function with one variable. Then for any x1 ≤ min (x2, x3) ≤ max (x2, x3) ≤ x4 such that

x1 + x4 = x2 + x3 we must have f(x1) + f(x4) ≥ f(x2) + f(x3).

10



Ross (1981) showed that agent u1 is more risk-averse than agent u2 in the sense of Ross if and only

if agent u1 is ready to pay more than agent u2 for any SSD reduction in risk (i.e., π1 (ε̃2 → ε̃1, w) ≥

π2 (ε̃2 → ε̃1, w) , ∀w, ε̃2 and ε̃1, with ε̃2
SSD

- ε̃1).

Definition 6 A utility function u exhibits DARA in the sense of Ross if π (ε̃2 → ε̃1, w1) ≥ π (ε̃2 → ε̃1, w2) ,

∀w1,w2, ε̃2 and ε̃1, with ε̃2
SSD

- ε̃1 and w1 ≤ w2.

Definition 7 A utility function u satisfies the property that any SSD deterioration in the background

risk increasing risk aversion in the sense of Ross if for any ε̃2
SSD

- ε̃1, U2 is more risk-averse than U1
in the sense of Ross, where

Ui(x) ≡ Eu(x+ ε̃i), for i = 1, 2.

The above notation and results allow us to derive the following proposition:

Proposition 2 If the preference belongs to the HARA class and exhibits DARA in the sense of Ross

and any SSD deterioration in the background risk increases risk aversion in the sense of Ross, then the

risk-sharing matching game will be negative assortative on agents’income riskiness.

Proof. Define π (ε̃2 → ε̃1, w) as the price that agent v is ready to pay to replace lottery ε̃2 with lottery

ε̃1 at wealth level w. From the concept of risk premium and the definition of π (ε̃2 → ε̃1, w), we have

v (w0 − π (ε̃2, w0)) = Ev (w0 + ε̃2)

= Ev (w0 − π(ε̃2 → ε̃1, w0) + ε̃1)

= v (w0 − π(ε̃2 → ε̃1, w0)− π(ε̃1, w0 − π(ε̃2 → ε̃1, w0)))

from which we obtain

π (ε̃2, w0) = π(ε̃2 → ε̃1, w0) + π(ε̃1, w0 − π(ε̃2 → ε̃1, w0)) (6)

The two sides of the above equation represent two equivalent ways of eliminating risk ε̃2. One is to

eliminate ε̃2 once and for all, and agent v is willing to pay π (ε̃2, w0) for this. The other is to eliminate ε̃2
step by step, first replacing ε̃2 with a smaller risk ε̃1 at the price of π(ε̃2 → ε̃1, w0) and then eliminating

ε̃1 at the price of π (ε̃1, w0 − π(ε̃2 → ε̃1, w0)).

A stable match is NAM if

π(ε̃m1 + ε̃f1 , w0) + π(ε̃m2 + ε̃f2 , w0) ≥ π(ε̃m1 + ε̃f2 , w0) + π(ε̃m2 + ε̃f1 , w0) (7)

Applying (6), we can rewrite the above inequality as[
π(ε̃m1 + ε̃f1 , w0) + π(ε̃m2 + ε̃f2 → ε̃m1 + ε̃f2 , w0) + π(ε̃m1 + ε̃f2 , w1)

]
≥

[
π(ε̃m1 + ε̃f2 , w0) + π(ε̃m2 + ε̃f1 → ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 , w2)

]
(8)
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where w1 = w0 − π(ε̃m2 + ε̃f2 → ε̃m1 + ε̃f2 , w0) and w2 = w0 − π(ε̃m2 + ε̃f1 → ε̃m1 + ε̃f1 , w0).

Now we prove

π(ε̃f2 + ε̃m2 → ε̃m1 + ε̃f2 , w0) ≥ π(ε̃m2 + ε̃f1 → ε̃m1 + ε̃f1 , w0) (9)

Consider agent 1 with utility function V1 (x) = Ev(x + ε̃f1 ) and agent 2 with V2 (x) = Ev(x + ε̃f2 ).

As in Gollier (2001), we define the risk premium π1(ε̃
m
2 → ε̃m1 ) as the price that agent 1 is willing

to pay to replace ε̃m2 with ε̃m1 , and we define π2(ε̃
m
2 → ε̃m1 ) as the counterpart for agent 2. Then

π(ε̃m2 + ε̃f1 → ε̃m1 + ε̃f1 , w0) = π1(ε̃
m
2 → ε̃m1 ) and π(ε̃f2 + ε̃m2 → ε̃m1 + ε̃f2 , w0) = π2(ε̃

m
2 → ε̃m1 ). (9) holds

iff V2 is more risk averse than V1 in the sense of Ross, i.e., an SSD deterioration in the background risk

makes the agents more risk averse in the sense of Ross.

Given (9), (8) holds if[
π(ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f2 , w1)

]
≥
[
π(ε̃m1 + ε̃f2 , w0) + π(ε̃m1 + ε̃f1 , w2)

]
(10)

which, by applying (6), can be rewritten as[
π(ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 , w4) + π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w1)

]
≥

[
π(ε̃m1 + ε̃f1 , w3) + π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 , w2)

]
where w4 = w1 − π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w1), w3 = w0 − π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w0). If utility exhibits

DARA in the sense of Ross, we have π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w1) ≥ π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w0). Thus, we

only need to show:[
π(ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 , w4)

]
≥
[
π(ε̃m1 + ε̃f1 , w2) + π(ε̃m1 + ε̃f1 , w3)

]
(11)

To prove (11), we first show that

w0 + w4 ≤ w2 + w3 (12)

Using the expressions to substitute for w0, w2, w3 and w4, (12) can be rewritten as[
π(ε̃m2 + ε̃f2 → ε̃m1 + ε̃f2 , w0) + π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w1)

]
≥

[
π(ε̃m2 + ε̃f1 → ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w0)

]
Via (9), we know that π(ε̃f2 + ε̃m2 → ε̃m1 + ε̃f2 , w0) ≥ π(ε̃m2 + ε̃f1 → ε̃m1 + ε̃f1 , w0). Moreover, the fact

that the utility is DARA in the sense of Ross and w0 > w1 implies that π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w1) ≥
π(ε̃m1 + ε̃f2 → ε̃m1 + ε̃f1 , w0). Hence, the above inequality and therefore (12) hold.

Now, inequality (11) follows by noticing that (i) π is decreasing and convex in w0; (ii) w0 > max(w2, w3) >

min (w2, w3) > w4; and (iii) inequality (12) holds.

Proposition 2 provides a suffi cient condition for NAM: if the preference belongs to the HARA class

and exhibits DARA in the sense of Ross and a higher background risk leads to more risk-averse behavior,

then negative sorting is stable. Thus, in facing risks from the male side, female 2 (taking ε̃f2 as her

background risk) behaves in a more risk-averse way than female 1 (taking ε̃f1 as her background risk).

Therefore, in order to match with the less risky male 1, female 2 is ready to offer male 1 a higher
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premium over male 2 than female 1 is. Similarly, in order to match with the less risky female 1, male

2 is ready to offer female 1 a higher premium over female 2 than male 1 is. Hence, negative sorting is

stable.

One may wonder how restrictive the condition is in Proposition 2. On the theoretical front, Gollier

(2001)6 proved that u1 is more risk averse than u2 in the sense of Ross if and only if there exists a

scalar η such that:

∀x1, x2 :
u′′1 (x1)

u′′2 (x1)
≥ η ≥ u′1 (x1)

u′2 (x1)
.

Applying the above condition, one can easily show that u exhibits DARA in the sense of Ross if

there exists a scalar λ, such that

p (w + y) ≥ λ ≥ r (w + y′) , ∀y, y′, (13)

where p (w) = −u′′′(w)
u′′(w) denotes the measure of absolute prudence and r (w) = −u′′(w)

u′(w) denotes the

measure of absolute risk aversion.

Under our HARA assumption regarding preference, the utility function can be written as u (c) =(
c+ γ

α

)1−γ
. Then, (13) becomes

γ + 1

(w + y) + γ
α

≥ λ ≥ γ

(w + y′) + γ
α

, ∀y, y′.

Suppose the relevant range of wealth is bounded on the interval [a, b]. Then, the above inequality

becomes
γ + 1

b+ γ
α

≥ γ

a+ γ
α

,

which can be simplified to

b− a ≤ 1

α
+

1

γ
a. (14)

When the range of the relevant wealth is not too large, the utility exhibits DARA in the sense of

Ross.

Now, we derive the conditions under which any SSD deterioration in the background risk increases

risk aversion in the sense of Ross. Consider agent 1 with utility function V1 (x) = Ev(x+ ε̃f1 ) and agent

2 with V2 (x) = Ev(x + ε̃f2 ). The condition of Proposition 2 requires that V1 be more risk averse than

V2 in the sense of Ross. That is, there exists a scalar η such that ,

Ev′′(w1 + ε̃2)

Ev′′(w1 + ε̃1)
≥ η ≥ Ev′(w2 + ε̃2)

Ev′(w2 + ε̃1)
,∀w1, w2. (15)

For small risk ε̃i, we have:
Ev′′(w + ε̃i) ≈ v′′ (w) + 1

2v
′′′′ (w)σ2i

Ev′(w + ε̃) ≈ v′ (w) + 1
2v
′′′ (w)σ2i

.

6Proposition 28, Ch 8, page 122.
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Substituting into the condition (15), we have:

v′′′′ (w1)

v′′ (w1)
≥ η ≥ v′′′ (w2)

v′ (w2)
, ∀w1, w2.

Or equivalently:

t (w1) p (w1) ≥ η ≥ p (w2) r (w2) , ∀w1, w2 (16)

where t (w) = −u′′′′(w)
u′′′(w) denotes the measure of absolute temperance, p (w) = −u′′′(w)

u′′(w) denotes the

measure of absolute prudence, and r (w) = −u′′(w)
u′(w) denotes the measure of absolute risk aversion.

Under our specification for the utility function, (16) becomes:

γ + 2(
w1 + γ

α

)2 ≥ γ(
w2 + γ

α

)2 ,∀w1, w2
which holds if the support of income realizations is suffi ciently narrow. In general, for large risks,

deriving the conditions for equation (15) is quite complicated and we leave it for future work.

Although the conditions in Proposition 2 impose strict restrictions on preference, as well as risk

size, the economic implications are clear and supported by the empirical evidence. Guiso et al. (1996)

concluded from Italian survey data that a consumer’s perception of a riskier distribution of uninsurable

human-capital wealth is negatively related to the proportion of risky assets held in his/her investment

portfolio. It is also worthwhile to point out that the seemingly strong conditions for NAM come from

the fact that we are looking for sorting patterns for any SSD ordered risks. In this sense, the conditions

for PAM could be equally if not more restrictive. In the next subsection, we will show that HARA

and DARA are suffi cient to guarantee NAM if risks are ranked in the sense of SSD taking the form of

adding independent noise.

5.3 SSD Risks with Independent Noise

To see a less restrictive condition for monotone sorting, we consider a special case in which ε̃m2 is

an increase in risk of ε̃m1 in the sense of SSD taking the form of adding independent noise ε̃m, and

similarly for ε̃f2 and ε̃
f
1 . That is, assume male 1 and female 1 are endowed with w̃m1 = w0 + ε̃m1 and

w̃f1 = w0+ ε̃f1 , respectively; and assume male 2 and female 2 are endowed with w̃m2 = w0+ ε̃m1 + ε̃m and

w̃f2 = w0 + ε̃f1 + ε̃f , respectively. All idiosyncratic risks and noises are independently distributed with

Eε̃m = Eε̃f = 0. Here, in order to characterize the equilibrium sorting pattern, we need to compare

π(ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 + ε̃m + ε̃f , w0) and π(ε̃m1 + ε̃f1 + ε̃m, w0) + π(ε̃m1 + ε̃f1 + ε̃f , w0).

The following proposition characterizes the equilibrium sorting pattern:

Proposition 3 If the preference belongs to the HARA class and exhibits DARA, and agents are ranked
by their independent riskiness in the sense of SSD taking the form of adding independent noise, then

the risk-sharing matching game will be negative assortative on the agents’income riskiness.

14



Proof. See Appendix.

The concept of risk vulnerability is important in understanding the results of negative sorting. In

their seminal paper, Gollier and Pratt (1996) introduced the concept of risk vulnerability as a basic tool

for examining the effect of an unfair background risk on an agent’s attitude towards other independent

risks. In particular, utility is risk vulnerable if and only if the introduction of an unfair risk increases

the risk premium of every independent risk.7 Gollier and Pratt (1996) have listed several necessary

and suffi cient conditions for risk vulnerability, among which, under HARA, one suffi cient condition is

DARA8 . Risk vulnerability guarantees that SSD deterioration taking the form of adding independent

noise increases the cost of existing independent risks. DARA implies that SSD deterioration taking the

form of adding independent noise increases the cost of the deterioration itself. Multiple risks are, in

this sense, self-aggravating, and thus negative sorting is socially preferable and stable.

A special example in this case occurs when m1 and f1 are endowed with certain income wm1 = wf1 =

w0 (i.e., ε̃m1 = ε̃f1 = 0) and m2 and f2 are endowed with risky income w̃m2 = w0 + ε̃m and w̃f2 = w0 + ε̃f .

Then NAM arises if π(ε̃m + ε̃f , w0) ≥ π(ε̃m, w0) + π(ε̃f , w0): the risk premium of the sum of risks is

larger than the sum of the risk premiums of the risks, which is indeed the case if utility is risk vulnerable

and exhibits DARA.

5.4 An Example of PAM under HARA and DARA

The following example helps us to understand, in general, why we need restrictions beyond HARA and

DARA for NAM to arise. In particular, if SSD ordered risks do not take the form of adding independent

noise, NAM may fail to arise, even when the preference belongs to the HARA class and exhibits DARA.

Example 4 Consider the utility function v (c) =
√
c, and assume w0 = 0, ε̃f1 = (0, 12 ; 1, 12 )9 , ε̃m1 =

(0, 12 ;x, 12 ), ε̃f2 = (0, 12 ; 0.5, 14 ; 1.5, 14 ), ε̃m2 = (0, 12 ; x2 ,
1
4 ; 3x2 ,

1
4 ), where x > 0. ε̃f2 is SSD-dominated by ε̃

f
1

by introducing a zero-mean risk to εf1 = 1; ε̃m2 is SSD-dominated by ε̃m1 by introducing a zero-mean risk

to εm1 = x. Recall that Cij = v−1Ev (z̃ij). After careful calculation, we obtain C11, C12, C21, and C22
as functions of x.10 Define f (x) = (C11 + C22) − (C12 + C21). Then, NAM arises if f (x) < 0, while

PAM arises if f (x) > 0. It can be shown that there exists a threshold x̂, such that f (x) < 0 for x <

7The mathematical definition of risk vulnerability is as follows. Define the generalized risk premium Πε̃(x̃, w) of risk

x̃ in the presence of initial wealth w and background risk ε̃ as the price that an agent with utility function u would be

willing to pay to avoid risk x̃ at an uncertain position w + ε̃: Eu(w + ε̃+ x̃) = Eu(w + ε̃− Πε(x̃, w)). Define π(x̃, w) as

the standard risk premium of risk x̃, which is determined by the following equation: Eu(w + x̃) = Eu(w + ε̃− π(x̃, w)).

We say that u is risk vulnerable if and only if Πε̃(x̃, w) ≥ π(x̃, w) for all w and unfair ε̃ (Eε̃ ≤ 0).
8See Gollier and Pratt (1996) Corollary 1, page 117.
9This formula means that Pr(ε̃f1 = 0) = Pr(ε̃f1 = 1) = 1

2
. Similar explanations apply to other random variables.

10C11 =
(
1
4

√
x+ 1

4
+ 1

4

√
x+ 1

)2
; C12 =

(
1
8

√
x
2

+ 1
8

√
3
2
x+ 1

4

√
1 + 1

8

√
1 + x

2
+ 1

8

√
3
2
x+ 1

)2
;

C21 =
(
1
8

√
0.5 + 1

8

√
1.5 + 1

4

√
x+ 1

8

√
x+ 0.5 + 1

8

√
x+ 1.5

)2
;

C22 =
(
1
8

√
x
2

+ 1
8

√
3
2
x+ 1

8

√
0.5 + 1

16

√
x
2

+ 0.5 + 1
16

√
3x
2

+ 0.5 + 1
8

√
1.5 + 1

16

√
x
2

+ 1.5 + 1
16

√
3x
2

+ 1.5
)2

15



x̂ and f (x) > 0 for x > x̂. This suggests that NAM is more likely to arise if the support of risks is

suffi ciently narrow, while PAM may arise if the support of risks is suffi ciently large.

In this example, we show that for large risks ( x being suffi ciently large), HARA and DARA are not

suffi cient to guarantee NAM. The key point to note here is that an SSD deterioration in the background

risk may reduce an agent’s degree of risk aversion. Define rj (w) =
−Ev′′(w+ε̃fj )
Ev′(w+ε̃fj )

as the Arrow-Pratt

coeffi cient of risk aversion for an agent with utility function v in the presence of background risk ε̃fj .

It can be shown that, there exists a threshold value ŵ, such that r1 (w) > r2 (w) for w < ŵ and

r1 (w) < r2 (w) for w > ŵ11 . This suggests that the agent is more locally risk averse at w < ŵ in the

presence of background risk ε̃f1 than in the presence of background risk ε̃
f
2 . So, in facing risks from the

male side, female 1 (taking ε̃f1 as her background risk) may behave in a more risk-averse way than female

2 (taking ε̃f2 as her background risk)
12 . Therefore, in order to be matched with the less risky male 1,

female 1 may be willing to offer male 1 a higher premium over male 2 than female 2 is. Similarly, in

order to match with the less risky female 1, male 1 may be willing to offer female 1 a higher premium

over female 2 than male 2 is. As a result, PAM may arise in equilibrium.

In their paper, Chiappori and Reny (2006) showed that NAM always arises if agents differ only in

their risk attitude. Following their results, Li, Sun, and Chen (2013) showed that PAM may arise if

agents can make an effort to reduce their income riskiness. Wang (2013b) showed that the presence of

moral hazard may also lead to PAM. Here, without any other confounding factor such as endogenous

income or moral hazard, counter intuitive PAM may arise if agents differ in terms of their idiosyncratic

risks: while agents with highly risky assets always attempt to avoid being matched with other large

perfectly correlated risks, they may prefer to be matched with other large independent risks.

This result helps us to understand the composition of risk-sharing groups in developing countries.

Ghatak (1999) argued that PAM should arise because similar people will find it easier to monitor and

enforce informal contracts. Empirical evidence, however, is mixed: on one hand, Bacon et al. (2014)

found evidence that individuals were more likely to positive assortative mate on their risk attitude;

and Arcand and Fafchamps (2012) also found solid evidence of positive sorting for peers with respect

to physical or ethnic proximity as well as wealth or household size. On the other hand, Dercon et al.

(2006) found little evidence of positive sorting in group-based funeral insurance. Our results suggest

that, the risk-sharing effect may drive matching to be negative assortative and therefore offset the

monitoring and enforcing effects; however, when risks are large compared with individuals’ risk-free

incomes, it is possible that the two effects may work in the same direction and drive matching to be

positive assortative.

11Notice that r1 (w) = 1
2

1
2
w
− 3
2 + 1

2
(1+w)

− 3
2

1
2
w
− 1
2 + 1

2
(1+w)

− 1
2

and r2 (w) =
1
2
w
− 3
2 + 1

4
(0.5+w)

− 3
2 + 1

4
(1.5+w)

− 3
2

1
2
w
− 1
2 + 1

4
(0.5+w)

− 1
2 + 1

4
(1.5+w)

− 1
2

.

12Notice that female 1 is not uniformly more risk averse than female 2. Indeed, she is locally more risk averse than

female 2 for w < ŵ but less risk averse than female 2 for w > ŵ. Therefore, there is no uniform prediction for the two

agents’risk-taking behavior. Depending on the properties of the risk taken, female 1 may or may not behave in a more

risk-averse way than female 2.
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6 Extension: Multidimensional Matching

In general, individuals have different incomes and face different risks. When agents’types are multidi-

mensional, there is not a complete order of types. We therefore only consider two cases with complete

order, that is, the order of agents’riskiness goes in exactly the same or exactly the opposite direction

as their risk-free incomes. We have shown via Lemma 3 that if agents all face the same risks but

differ in their risk-free incomes, NAM will arise. We have also shown via Propositions 1 and 2 that if

agents all have the same risk-free income but differ in the risks they face, NAM will arise under certain

restrictions. Thus, if types are two dimensional, a natural guess would be that NAM will arise based

on riskiness because higher risk-free incomes seem to go in the same direction as higher riskiness for

DARA utilities. We now proceed to show that in fact, both NAM and PAM can arise in this case.

6.1 The Case of Systematic Risk

We first study a multidimensional matching game in which risks are perfectly correlated. Agents are

characterized by a pair (wi, ki). Here we only consider two cases with complete order: (i) agents with

lower risk-free incomes hold larger shares of the common asset, i.e., ki < ki+1 and wi > wi+1, kj < kj+1

and wj > wj+1 and (ii) agents with higher risk-free incomes hold larger shares of the common asset,

i.e., ki < ki+1 and wi < wi+1, kj < kj+1 and wj < wj+1.

In the first case, consider male i, i′ and female j, j′, with i < i′, and j < j′. Remember that NAM

arises if

πij + πi′j′ ≥ πi′j + πij′ (17)

where πij = Ez̃ij−v−1[Ev(wij+kij x̃)] is the joint risk premium for (i, j); wij = wi+wj and kij = ki+kj .

Notice that πij can be written as a function of wij and kij : πij(wij , kij). To simplify, we drop the

subscript “ij”and write the function of joint risk premium as π(w, k) = Ez̃ − v−1[Ev(w + kx̃)], whose

properties are listed below:

Lemma 4 ∂2π(w,k)
∂k2 ≥ 0, ∂

2π(w,k)
∂w2 ≥ 0, ∂

2π(w,k)
∂w∂k ≤ 0.

Proof. See Appendix.

The first inequality is actually Proposition 1. The second inequality implies that if the agents all

hold the same amount of the common asset, there will be NAM on the risk-free income. Higher income

leads to higher tolerance for risk under DARA; thus if we take risk-free income as a proxy for agents’

degree of risk aversion, then Lemma 4 coincides with Chiappori and Reny’s (2006) argument that stable

match is negative assortative on agents’risk attitude. The following lemma is also useful:

Lemma 5 Let f(x, y) be twice continuously differentiable in the domain [0,∞)× [0,∞), with f11 ≥ 0,

f22 ≥ 0 and f12 ≤ 0, where f11 = ∂2f
∂x2 f22 = ∂2f

∂y2 and f12 = ∂2f
∂x∂y . Then for any 0 ≤ x1 ≤ min (x2, x3) ≤
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max (x2, x3) ≤ x4, and y1 ≥ max{y2, y3} ≥ min{y2, y3} ≥ y4 ≥ 0, such that

x1 + x4 = x2 + x3 (18)

y1 + y4 = y2 + y3 (19)

we must have

f(x1, y1) + f(x4, y4) ≥ f(x2, y2) + f(x3, y3) (20)

Proof. See Appendix.

The two lemmata immediately yield the following proposition:

Proposition 4 If the preference belongs to HARA class and exhibits DARA, and agents with lower

risk-free incomes hold larger sizes of common risky assets, then NAM is stable.

Proof. Note that πij + πi′j′ = π(wij , kij) + π(wi′j′ , ki′j′) and πi′j + πij′ = π(wi′j , ki′j) + π(wij′ , kij′).

Because wij = wi + wj and kij = ki + kj , we have wij + wi′j′ = wi′j + wij′ and kij + ki′j′ = ki′j +

kij′ . Because in this case we must have wij > max (wi′j , wij′) > min (wi′j , wij′) > wi′j′ and kij >

max (ki′j , kij′) > min (wi′j , wij′) > ki′j′ , by Lemmata 4 and 5, the following inequality holds: πij +

πi′j′ ≥ πi′j + πij′ . Thus, NAM arises in equilibrium.

Remark: If agents with higher risk-free incomes hold larger sizes of common risky assets, then both
NAM and PAM can arise in equilibrium. Through two examples, we show that both NAM and PAM

are possible. (a) The NAM example. Suppose agent i’s risk-free income is given by wi = w0 + kia,

where ki is the size of the risk held by agent i and a is a constant number. In this example, all agents’

risk-free income and size of risks pairs (wi, ki)s lie on the same line. Define ỹ = a+ x̃. Then, agent i’s

income can be written as wi + kix̃ = w0 + kiỹ. This specification brings us back to the case in which

all agents have the same risk-free income w0 and hold different amounts of a common asset ỹ. Thus,

NAM is stable. (b) The PAM example. Consider a 2 × 2 case in which the utility function belonging

to the HARA class takes the following form: v (w) = lnw. Assume the common risk x̃ is a small risk

with zero mean and variance σ2. Applying Arrow-Pratt approximation, we have π(w, k) ≈ 1
2
1
w k2σ2.

Let wm0 = wf0 = 1, km1 = kf1 = 1, km2 = kf2 = 10, wm1 = wm0 + km1 , w
m
2 = wm0 + km2 , w

f
1 = wf0 + kf1 and

wf2 = wf0 + kf2 ∗ x, with x ≥ 1. In this example, the points (wm1 , k
m
1 ), (wm2 , k

m
2 ) and (wf1 , k

f
1 ) lie on the

same line wi = w0+ki, while the wealthier female’s risk-free income and size of risk pair (wf2 , k
f
2 ) lie off

of the line. The parameter x measures how far away the point (wf2 , k
f
2 ) is from the line wi = w0 + ki .

If x = 1, then the point (wf2 , k
f
2 ) lies exactly on the line wi = w0 + ki, and we are back in our example

of NAM. A simple calculation gives π11 + π22− (π12 + π21) = 1
2

[
22

4 + 202

(12+10x) −
(
112

13 + 112

13+10x

)]
∗ σ2.

It can be shown that there exists a threshold x̂ > 1, such that π11+π22− (π12 + π21) > 0 for x < x̂ and

π11 + π22 − (π12 + π21) < 0 for x > x̂. Thus, NAM arises if x < x̂ and PAM arises if x > x̂. The result

suggests that if agents’risk-free income and size of risks pairs lies suffi ciently away from the same line,

then PAM arises.
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6.2 The Case of Idiosyncratic Risks

We now study a multidimensional matching game in which the risks are independent. Suppose agent

i’s income is wi + ε̃i. Define ε̃i = ε̃i +wi −w0. Then, agent i’s income can be written as w0 + ε̃i. If the

newly defined risks ε̃i can still be ranked in terms of SSD, i.e., ε̃1
SSD

% ε̃2
SSD

% . . .
SSD

% ε̃N , then we are

back to our idiosyncratic model seen in Section 5. The problem is that, even if the original risks can

be ranked in the sense of SSD (ε̃1
SSD

% ε̃2
SSD

% . . .
SSD

% ε̃N ), the newly defined risks ε̃is may not have an

SSD order. Here we consider two cases with a complete order: (i) agents with lower risk-free incomes

face higher risks, i.e., ε̃i
SSD

% ε̃i+1 and wi ≥ wi+1, ε̃j
SSD

% ε̃j+1 and wj ≥ wj+1 and (ii) agents with lower

risk-free incomes face lower risks, i.e., ε̃i
SSD

- ε̃i+1 and wi ≥ wi+1, ε̃j
SSD

- ε̃j+1 and wj ≥ wj+1.

Proposition 5 If the preference belongs to the HARA class and exhibits DARA, any SSD deterioration
in the background risk increases risk aversion in the sense of Ross, and if agents with lower risk-free

incomes face higher idiosyncratic risks, then NAM is stable.

Proof. The newly defined risks ε̃i still have the SSD order ε̃1
SSD

% ε̃2
SSD

% . . .
SSD

% ε̃N , and therefore the

result follows immediately from Proposition 2.

Remark: The following example suggests that, if agents with lower risk-free incomes face smaller
idiosyncratic risks, both NAM and PAM could be stable. Consider a 2×2 case in which utility function

belonging to the HARA class takes the form v (c) = ln c. Assume that the idiosyncratic risks ε̃is are small

with zero mean and variance σ2i . Applying Arrow-Pratt approximation, we have πij ≈ 1
2

σ2i+σ
2
j

wij
. Let

wm1 = wf1 = 1, wm2 = wf2 = 10, σ21m
13 = σ21f = σ2, σ22m = 10σ2 and σ22f = xσ2, with σ2 being arbitrarily

small and x > 1. Note that larger x means that female 2, who has higher risk-free income than female

1, faces larger idiosyncratic risk. A simple calculation gives π11+π22−(π12 + π21) = 1
2

[
9
22 −

9
220x

]
∗σ2,

which is positive if x < 10 and negative if x > 10. Thus, NAM arises if x < 10, and PAM arises if

x > 10. The example illustrates that PAM is likely to arise in equilibrium if agents who have higher

risk-free income face risks that are suffi ciently large (x is suffi ciently large).

7 Concluding Remarks

In this paper, we explore the sorting patterns in a two-sided matching market where agents facing

different risks match to share them. We show that the competitive sorting pattern crucially depends

on the interaction between risks. While negative sorting almost always arises when risks are perfectly

correlated, the counter-intuitive positive sorting may arise when risks are independent. In the case

where risks are independent, negative sorting tends to arise if a riskier background risk leads to more

risk-averse behavior. Our findings enrich the literature on assortative matching, and to the best of our

13The formula σ21m means that the variance of male 1’s income is σ21m.
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knowledge, are among the first attempts to investigate sorting over agents’risk exposure. Our results

help in understanding the composition of risk-sharing groups in developing countries. Behind the mixed

empirical evidence of sorting patterns, there might be a trade-off between the risk-sharing effect and

the monitoring and enforcing effects.

The present research can be extended along several lines. Firstly, in many instances, the riskiness

of income is not entirely exogenous but partially a choice variable. In the developed world, individuals

usually choose their professions and investments as a function of their risk preferences and their abilities.

There could then be a trade-off between competing for the most suitable partner for the purpose of

risk sharing and for the motive of risk control. Li, Sun and Chen (2013) and Wang (2013a) studied

endogenous risks and showed that PAM may arise in equilibrium. However, they only considered the

case where preferences belong to the CARA class and incomes were subjected to normal distributions.

It is therefore worthwhile to explore more general cases. Secondly, an interesting extension would

permit agents to renegotiate sharing rules posterior to matching. Li, Sun, and Wang (2015) introduced

a bargaining stage and showed that PAM may arise in equilibrium. Thirdly, the effect of risk factors

on matching effi ciency is also relevant for financial securities14 or joint venture agreements. Our model

indicates that it is costly to pair two highly risky assets together, which is associated with a high

social cost of risk that the investors have to pay. The recent trend of overconcentration of risks in

the subordinated debts raises our concern that, for the issuers, the main purpose of securitization is

not to share risks with investors, but to keep the risk concentrated so that they can achieve as much

leveraging as possible (Acharya and Richardson, 2010). Further studies are needed in the context of

financial securities and institutions.

References

[1] Acharya, V., and Richardson, M. (2010), “Causes of the Financial Crisis,”in Critical Review, vol.

21, 195-210 (Routledge Publishers).

[2] Arcand, J.-L., and Fafchamps, M. (2012), “Matching in Community-Based Organizations,”Journal

of Development Economics, 98, 203-221

[3] Bacon, M. et al. (2014), “Assortative mating on risk attitude ,”Theory and Decision 77(3), 389-401.

[4] Becker, G. (1973), “A Theory of Marriage: Part I,”Journal of Political Economy 81(4), 813-846.

[5] Bigsten et al, (2003), “Risk Sharing in Labour Markets,”Tinbergen Institute Discussion Paper No.

03-077/2.

[6] Chiappori, P.-A. and Reny, P. (2006), “Matching to Share Risk.”mimeo.

[7] Dercon et al. (2006), “Group-Based Funeral Insurance in Ethiopia and Tanzania”, World Devel-

opment, 34, 685-703.

14We thank an anonymous referee for pointing out the possibility of applying our model in this direction.

20



[8] Eeckhoudt, L. and Gollier, C. (2001), “Which Shape for the Cost Curve of Risk,”The Journal of

Risk and Insurance, vol. 68, No. 3, 387-401.

[9] Fafchamps, M. and Lund, S. (2003), “Risk Sharing Networks in Rural Philippines,” Journal of

Development Economics, 71:261-287.

[10] Ghatak, M. (1999), “Group Lending, Local Information and Peer Selection,”Journal of Develop-

ment Economics, 60, 27-53.

[11] Gollier, C. (2001), The Economics of Risk and Time, Cambridge, MA: The MIT Press.

[12] Gollier, C., and Pratt, J. W. (1996), “Risk Vulnerability and the Tempering Effect of Background

Risk,”Econometrica, vol. 64, No. 5, 1109-1123.

[13] Guiso, L., Jappelli, T., and Terilizzesse, D. (1996), “Income Risk, Borrowing Constraints and

Portfolio Choice,”American Economic Review, 86, 158—172.

[14] Jaramillo, F., Kempf, F. and Moizeau, H. (2013), “Heterogeneity and the Formation of Risk-Sharing

Coalitions,”working paper.

[15] Legros, P. and Newman, A. F. (2007), “Beauty is a Beast, Frog is a Prince: Assortative Matching

with Nontransferabilities,”Econometrica, Econometric Society, vol. 75(4), 1073-1102.

[16] Li, S., Sun, H., and Chen, P. (2013), “Assortative Matching of Risk-Averse Agents with Endogenous

Risk”, Journal of Economics, 109(1): 27-40.

[17] Li, S., Sun, H., and Wang, T. (2015), “Change in Risk and Bargaining Game”, working paper.

[18] MacCrimmon, K. R. and Wehrung, D. A. (1986), Taking Risks: The Management of Uncertainty,

Free Press, New York.

[19] MacCrimmon, K. R. and Wehrung, D. A. (1990), “Characteristics of Risk Taking Executives,”

Management Science, 36, 422-435.

[20] Mazzocco, M. (2004), “Saving, Risk Sharing, and Preferences for Risk,”American Economic Re-

view, 94(4), 1169-82.

[21] Rosenzweig, M. and Stark, O. (1989), “Consumption Smoothing, Migration, and Marriage: Evi-

dence from Rural India,”Journal of Political Economy, 97: 905-926.

[22] Ross, S. A. (1981), “Some Stronger Measures of Risk Aversion in the Small and in the Large with

Applications,”Econometrica 3: 621-38.

[23] Schoemaker, P. J. (1990), “Are Risk-Preferences Related Across Payoff Domains and Response

Modes?”Management Science, 36 1451-1463.

[24] Schoemaker, P. J. (1993), “Determinants of Risk-Taking: Behavioral and Economic Views,”Jour-

nal of Risk and Uncertainty, 6, 49-73.

21



[25] Schulhofer-Wohl, S. (2006), “Negative Assortative Matching of Risk-Averse Agents with Transfer-

able Expected Utility,”Economics Letters, vol. 92, Issue 3, 383-388.

[26] Slovic, P. (1964), “Assessment of Risk Taking Behavior,”Psychological Bulletin, 61, 330-333

[27] Stanton, R. and Wallace, C. (2010), “CMBS Subordination, Ratings Inflation, and the Crisis of

2007-2009,”NBER Working Papers 16206, National Bureau of Economic Research, Inc.

[28] Townsend, R. (1994), “Risk and Insurance in Village India,”Econometrica, 62: 539-592.

[29] Wang, X. (2013a), “Endogenous Insurance and Informal Relationships,”working paper.

[30] Wang, X. (2013b), “Risk, Incentives, and Contracting Relationships,”working paper.

[31] Weber, E. U. and Milliman, R. A. (1997), “Perceived Risk Attitudes: Relating Risk Perception to

Risky Choice,”Management Science, 43, 2, 123-144.

8 Appendix

8.1 Proof of Lemma 2

Proof. First, recall that πij being supermodular is equivalent to Cij being submodular. Then we prove
the lemma by contradiction. Suppose Cij is submodular and NAM does not arise. This means that

there exist i < i′ and j < j′, such that, in equilibrium, male i is matched with j and male i′ is matched

with female j′. Denote the equilibrium certainty equivalent of the four agents by Ci, Cj , Ci′ and Cj′

respectively. We have Ci + Cj = Cij and Ci′ + Cj′ = Ci′j′ . Because Cij is submodular, we must have

Ci′j +Cij′ > Cij +Ci′j′ , which implies that either Ci′j > Ci′ +Cj or Cij′ > Ci+Cj′ holds but not both

(which contradicts the fact that Ci′j + Cij′ > Cij + Ci′j′). If Ci′j > Ci′ + Cj , then i and j′ are both

better off if they deviate and are matched together; if Cij′ > Ci +Cj′ , then i′ and j are both better off

if they deviate and are matched together. This contradicts our assumption that the matching is stable.

Similarly, one can prove that PAM arises if πij is submodular.

8.2 Proof of Proposition 3

Proof. The following definition is useful for the proof of this proposition:

Definition 8 (Gollier and Pratt, 1996) The generalized risk premium Πε̃(x̃, w) of risk x̃ in the

presence of initial wealth w and background risk ε̃, is the price that the representative agent would be

willing to pay to avoid the risk x̃ at an uncertain position w+ ε̃: Ev(w+ ε̃+ x̃) = Ev(w+ ε̃−Πε(x̃, w)),

where x̃ and ε̃ are independent.
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Gollier (2001)15 proved that risk aversion in the sense of Ross is a suffi cient condition for the

comparative risk aversion to be preserved in the presence of a background risk. That is, if agent u1 is

more risk-averse than agent u2 in the sense of Ross, then agent u1 behaves in a more risk-averse way

than agent u2 in the presence of background risk. In technical terms, this means that if u1 = λu2 + g,

then Π1ε̃(x̃, w) ≥ Π2ε̃(x̃, w) ∀x̃, ε̃, where Πiε̃(x̃, w) is the generalized risk premium of agent ui. We derive

a useful equivalence for the generalized risk premium. For risks x̃, ỹ and z̃, by the above definition, we

have
Ev(w −Πx̃(ỹ + z̃, w) + x̃) = Ev(w + x̃+ ỹ + z̃)

= Ev(w −Πx̃+ỹ(z̃, w) + x̃+ ỹ)

= Ev(w −Πx̃+ỹ(z̃, w)−Πx̃(ỹ, w −Πx̃+ỹ(z̃, w)) + x̃)

from which it follows that

Πx̃(ỹ + z̃, w) = Πx̃+ỹ(z̃, w) + Πx̃(ỹ, w −Πx̃+ỹ(z̃, w)) (21)

In particular, when x̃ = 0, the above equation is written as

π(ỹ + z̃, w) = Πỹ(z̃, w) + π(ỹ, w −Πỹ(z̃, w)) (22)

That is, the costs of multiple risks can be decomposed into the cost of the first risk evaluated in the

presence of the second risk and the cost of the second risk evaluated with a sure reduction in wealth

due to the existence of the first risk.

A stable match is negative assortative if

π(ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 + ε̃m + ε̃f , w0)

≥ π(ε̃m1 + ε̃f1 + ε̃m, w0) + π(ε̃m1 + ε̃f1 + ε̃f , w0)

which under (22) is equivalent to

π(ε̃m1 + ε̃f1 , w0) + Πε̃m1 +ε̃
f
1
(ε̃m + ε̃f , w0)

+ π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃
f
1
(ε̃m + ε̃f , w0))

≥ Πε̃m1 +ε̃
f
1
(ε̃m, w0) + π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃

f
1
(ε̃m, w0))

+ Πε̃m1 +ε̃
f
1
(ε̃f , w0) + π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃

f
1
(ε̃f , w0))

(23)

By applying (21), we have

Πε̃m1 +ε̃
f
1
(ε̃m + ε̃f , w0)

= Πε̃m1 +ε̃
f
1+ε̃

f (ε̃m, w0) + Πε̃m1 +ε̃
f
1
(ε̃f , w0 −Πε̃m1 +ε̃

f
1+ε̃

f (ε̃m, w0))
(24)

Under risk vulnerability we have

Πε̃m1 +ε̃
f
1+ε̃

f (ε̃m, w0) ≥ Πε̃m1 +ε̃
f
1
(ε̃m, w0) (25)

15See Chapter 8, proposition 25, page 118.
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Since DARA is preserved under the generalized risk premium, we have

Πε̃m1 +ε̃
f
1
(ε̃f , w0 −Πε̃m1 +ε̃

f
1+ε̃

f (ε̃m, w0)) ≥ Πε̃m1 +ε̃
f
1
(ε̃f , w0) (26)

Combining (24), (25), and (26), we have

Πε̃m1 +ε̃
f
1
(ε̃m + ε̃f , w0) ≥ Πε̃m1 +ε̃

f
1
(ε̃m, w0) + Πε̃m1 +ε̃

f
1
(ε̃f , w0). (27)

Under DARA, π(ε̃m1 + ε̃f1 , w0) is decreasing in w0, which gives

π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃
f
1
(ε̃m + ε̃f , w0))

≥ π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃
f
1
(ε̃m, w0)−Πε̃m1 +ε̃

f
1
(ε̃f , w0))

(28)

Combining (23) and (27), the stable match satisfies NAM if

π(ε̃m1 + ε̃f1 , w0) + π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃
f
1
(ε̃m + ε̃f , w0))

≥ π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃
f
1
(ε̃m, w0)) + π(ε̃m1 + ε̃f1 , w0 −Πε̃m1 +ε̃

f
1
(ε̃f , w0))

Under (27) and (28), a suffi cient condition is π(ε̃m1 + ε̃f1 , w0) being convex in w0, which is indeed the

case according to Lemma 3.

8.3 Proof of Lemma 4

Proof. The proof of ∂
2π(w,k)
∂k2 ≥ 0 has already been given in the proof of Proposition 1. The proof of

∂2π(w,k)
∂w2 ≥ 0 is similar to the proof of ∂

2π(w,k)
∂k2 ≥ 0. The proof of ∂

2π(w,k)
∂w∂k ≤ 0 is more complicated.

Using the expression of π(w, k), after careful calculation, we have ∂2π(kε,w0)
∂k∂w0

≤ 0 being equivalent to

E(Tv (w + kx̃)
−γ

x̃)E(Tv (w + kx̃)
−γ

) ≥ E(Tv (w + kx̃)
−(1+γ)

x̃)ETv (w + kx̃)
1−γ (29)

For γ = 1, the above inequality is equivalent to

Cov
(
Tv (w + kx̃)

−1
, Tv (w + kx̃)

−1
x̃
)
≤ 0

However, we know that Tv (w + kx)
−1 is decreasing and Tv (w + kx)

−1
x is increasing when γ = 1.

Hence, the above inequality holds.

Let us first examine a case with discrete income distribution, in which continuous income distribution

is a limiting case. Consider the probability distribution characterized by p (x = xk) = pk with x1 <

x2 < ... < x∞. Denote tk = Tv (w + kxk). The necessary and suffi cient condition for (29) is written as∑
k

pkt
−γ
k xk

∑
k

pkt
−γ
k ≥

∑
k

pkt
−(γ+1)
k xk

∑
k

pkkt
1−γ
k

which after rearranging is equivalent to∑
k>l

∑
l

pkpl

(
t−γk xkt

−γ
l + t−γl xlt

−γ
k − t

−(γ+1)
k xkt

1−γ
l − t−(γ+1)l xlt

1−γ
k

)
≥ 0
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The above holds for any discrete income distribution iff for all xk, xl,

t−γk xkt
−γ
l + t−γl xlt

−γ
k − t

−(γ+1)
k xkt

−γ
l − t

−(γ+1)
l xlt

−γ
k ≥ 0

which, dividing both sides by t−γk t−γl , is equivalent to

xk + xl − t−1k xktl − t−1l xltk ≥ 0

which is independent from γ. We already know that (29) holds for γ = 1; hence, the above inequality

must hold. Consequently, (29) holds for all γ.

8.4 Proof of Lemma 5

Proof. Without the loss of generality, we assume that 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 (otherwise, one can

always change the subscripts of x2 and x3).

Suppose y2 < y3. Because f12 ≤ 0 and x2 ≤ x3, we have

f(x2, y3)− f(x2, y2) ≥ f(x3, y3)− f(x3, y2)

or

f(x2, y3) + f(x3, y2) ≥ f(x2, y2) + f(x3, y3)

Thus, to prove the lemma, it suffi ces to show that

f(x1, y1) + f(x4, y4) ≥ f(x2, y3) + f(x3, y2)

which means that we only need to prove (20) for the case in which y2 ≥ y3. That is, without a loss of

generality, we can suppose that y1 ≥ y2 ≥ y3 ≥ y4.

Because f12 ≤ 0 and y4 ≤ y1, we have

f(x2, y4)− f(x1, y4) ≥ f(x2, y1)− f(x1, y1)

or

f(x1, y1) + f(x2, y4) ≥ f(x1, y4) + f(x2, y1) (30)

Because f11 ≥ 0, f is convex with respect to x, for any given y. According to (18), we must have

f(x1, y4) + f(x4, y4) ≥ f(x2, y4) + f(x3, y4) (31)

Similarly, because f12 ≤ 0 and x2 ≤ x3, we have

f(x2, y1)− f(x2, y2) ≥ f(x3, y1)− f(x3, y2)

or

f(x2, y1) + f(x3, y2) ≥ f(x2, y2) + f(x3, y1) (32)

Also, because f22 ≥ 0, f is convex with respect to y, for any given x. According to (19)

f(x3, y1) + f(x3, y4) ≥ f(x3, y2) + f(x3, y3) (33)

Our result (20) immediately follows from summing (30), (31), (32), and (33).
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8.5 Proposition 1 with General Preference

Consider the 2×2 case in which there are two malesm1,m2 and two females f1, f2. Define (mi, fj)’s joint

risk exposure as kij , ki+kj . We normalize k11 = 1, and thus k12 > 1, k21 > 1 and k22 = k12+k21−1.

Thus, (mi, fj)’s joint income is z̃ij = 2w0 + kij x̃. Using V (kij , ū), we can define the indirect utility

function of the maximization problem as follows:

V (kij , ū) = max
c
E[u(zij − c)] s.t. E[u(c)] ≥ ū

and we have

V (kij , ū) = max
c,λ

E[u (zij − c) + λ (u (c)− u)] (34)

where λ = λ(kij , ū) > 0 is a function of the joint size of risk, kij , and the minimum expected utility

level guaranteed for female ū. V (kij , ū) represents the maximum payoff mi can get given fj’s payoff

being no less than ū. The first-order conditions require perfectly correlated marginal utilities for the

matched agents:

u′ (zij − c) = λu′ (c) , ∀zij (35)

under the following constraint:

Eu (c) = u. (36)

Denote the solution to (35) and (36) as cij = c (zij , u) = c(x; kij , ū)16 and λij = λ(kij , ū). For the NTU

matching game, Legros and Newman (2007) have established the “generalized difference condition”for

monotone sorting. Applying their condition, we have the following lemma:

Lemma A1 For the arbitrary distribution of risk sizes, the stable match of the risk-sharing matching
game is negative assortative on agents’levels of systematic risk exposure if for ∀k12, k21 > 1 and

∀u,

V (k12, V (1, u)) ≥ V (k12 + k21 − 1, V (k21, u)) (37)

The proof can be found in Legros and Newman (2007). The term V (1, u) represents the maximum

expected utility for m1 given that f1 receives u. Keeping m1’s payoff at the same level but matching

him with f2 would generate expected utility V (k12, V (1, u)) for f2. Thus, the LHS of (37) represents

m1’s willingness to pay (in expected utility terms) to be matched with f2 instead of f1 given that f1
receives u, and the RHS is the counterpart for m2. Hence, in competing for f2 rather than f1, m1 can

always outbid male m2 and still leave more (compared to being matched with f1) for himself. Before

proceeding, the following lemma provides a condition equivalent to (37).

16The last equality is due to the fact that zij is a function of kij and x: zij = 2w0 + kijx.
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Lemma A2 For the arbitrary distribution of risk sizes, the stable match of the risk-sharing matching
game is negative assortative on agents’sizes of systematic risk exposure if for ∀k12, k21 > 1 and

∀u,

E[u′ (ci1) x̃] ≥ E[u′ (ci2) x̃] (38)

where ci1 = c(x; ki1, ū) and ci2 = c(x; ki2, ū) are solutions to (35) and (36).

Proof. We first prove that
E[u′ (c21) x̃] ≥ E[u′ (c22) x̃] (39)

Define φ (k21) , V (k12 + k21 − 1, V (k21, u)). From Lemma A1, a suffi cient condition for NAM is that:

for ∀k12, k21 > 1 and ∀u,

φ′ (k21) = V1 (k22, V (k21, u)) + V2 (k22, V (k21, u))V1 (k21, u) ≤ 0 (40)

where Vl() denotes the partial derivative of V w.r.t. the l-th argument, and k22 = k12 + k21 − 1. Note

that (40) is the Legros and Newman General Differential Condition (2007: Proposition 3).

Because V1 (kij , u) = E[u′ (zij − cij) x̃] and V2 (kij , u) = −λij , a standard implication of the envelope
theorem, (40) is equivalent to

E[u′ (z22 − ĉ22) x̃]− λ22E[u′ (z21 − c21) x̃] ≤ 0

for ∀k12, k21 > 1 and ∀u, where ĉ22 is the solution to (35) and (36) found by replacing ū with û =

V (k21, u). Taking the expectation of (35)×x̃ yields

E[u′ (z22 − c22) x̃] = λ22E[u′ (c22) x̃]

Also, recall that V (k21, u) = û, via which we obtain z21 − c21 = ĉ21, where ĉ21 is the solution to (35)

and (36) by replacing ū with û = V (k21, u). Hence, (40) is equivalent to:

E[u′ (ĉ22) x̃]− E[u′ (ĉ21) x̃] ≤ 0

for ∀k12, k21 > 1 and ∀u. Because the choice of u is arbitrary, so is û. The above inequality is equivalent
to (39). Also, because (39) holds for any k21 < k22, (38) holds via the same logic.

The intuition behind (38) is clear. A female who receives an expected utility level of ū valuates

the market stock x̃ by employing her marginal utility as a shadow price, which reflects the maximum

price (in expected utility terms) she is willing to pay for an extra unit of joint risk exposure. Thus, the

benefit of a less risky agent being matched to a highly risky partner must exceed the benefits conferred

on a riskier agent for NAM to arise. In other words, (39) states that in competing for m2, which will

result in higher joint risk exposure as compared to with m1, f1 can always outbid f2 as a consequence

of the higher valuation of extra risk exposure.
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Alternatively, the condition of (38) is equivalent to: for ∀k12, k21 > 1 and ∀u,17

E[u′′ (cij)
∂cij
∂kij

x̃] ≤ 0 (41)

Lemma A3 Inequality (41) holds for ∀k12, k21 > 1, u and x̃, if and only if the following inequality

holds: for ∀k12, k21 > 1, u and x̃,

E(TiTj)E(x̃2) ≥ E(Tix̃)E(Tj x̃) (42)

where Ti , T (z − c) and Tj , T (c).

Proof. Fixing ū and solving from (35) yields c as a function of λ, kij and x, i.e., cij = c (λ, kij , x).

Substituting into (36) yields

Eu(c(λ(kij)), kij , x) = ū (43)

from which we can solve for λ as a function of kij , i.e., λij = λ (kij). Hence,
∂cij
∂kij

= c1λ
′ + c2, where

cl denotes the partial derivative of function c w.r.t. the l-th argument. Taking the log of both sides of

(35) and taking the total differentiation yields c1 = T (c)T (z−c)
λ(T (c)+T (z−c)) , c2 = T (c)x

T (c)+T (z−c) , c3 =
T (c)kij

T (c)+T (z−c) .

Taking the total derivative of (43) w.r.t. kij yields λ
′ = −Eu′(c)c2

Eu′(c)c1
. After substituting, we find that for

∀k12, k21 > 1 and ∀u, E[u′′ (cij)
∂cij
∂kij

x̃] ≤ 0 holds iff for ∀λ, ∀kij and any distribution of x̃,

E
u′ (c)TiTj
Ti + Tj

E
u′ (c) x̃2

Ti + Tj
≥ Eu

′ (c)Tj x̃

Ti + Tj
E
u′ (c)Tix̃

Ti + Tj

As the above inequality is expected to hold for the arbitrary distribution of x̃, we normalize kij = 1.

For any distribution x̃ with p.d.f. µ (x), we can define a new distribution x̃ν with p.d.f. ν (x) =

µ (x) u′(c)
Ti+Tj

/
∫
µ (x) u′(c)

Ti+Tj
dx, under which the above inequality with distribution x̃ can be rewritten as

follows: for ∀λ, ∀kij and any distribution of x̃ν ,

ETiTjEx̃
2
ν ≥ ETix̃νETj x̃v

Because the distribution of x̃ν is arbitrary, this inequality is equivalent to (42).

Note that if partners’absolute risk tolerance is linearly dependent, i.e., there exists a constant B,

such that for ∀x, we have Ti = BTj , then (42) can be rewritten as ET 2i Ex̃
2 ≥ (ETix̃)

2, which holds as

a direct implication of the Cauchy-Schwarz inequality. This leads to the following proposition:

Proposition A1 T ′′ = 0 is suffi cient for NAM to arise.

Proof. We want to prove that T ′′ = 0 ⇒ Ti = BTj . If T ′′ = 0, we can express tolerance as a linear

function of consumption: T (c) = 1
γ c + 1

α . Solving for u
′(c) = D1T (c)

−γ , where D1 is a constant,

17Note that Ci1 and Ci2 only differ in regard to the term k, with ki1 < ki2.
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combining with the F.O.C. of the Pareto optimization (35) yields

c∗ij(λ) =

γ
α

(
1− λ

−1
γ

)
+ zij

1 + λ
−1
γ

Substituting the above into the expression of risk tolerance yields

T
(
c∗ij
)

=
γ
α + zij

γ
(

1 + λ
−1
γ

) ; T
(
zij − c∗ij

)
=
λ
−1
γ
(
zij + γ

α

)
γ
(

1 + λ
−1
γ

) (44)

Let B = λ
−1
γ , and we immediately have Ti = BTj .

The above proposition suggests that when utility belongs to the HARA class, i.e., risk tolerance is

linear, T (c) = 1
γ c+ 1

α , the matching pattern is negative assortative. It also suggests that (42) is more

likely to hold when the relationships between potential partners’risk tolerances are suffi ciently linear

over the relevant range of wealth. Thus, we naturally require support of the relevant risky incomes being

somewhat small and/or T ′′ being suffi ciently close to zero. For instance, when x̃ is small risk w.r.t. w0,

partners’absolute risk tolerances can be approximated by a linear relationship, which is exact in the

case of TU.

Before looking further for the necessary or suffi cient conditions for (42) to hold, let us examine

a case with discrete income distribution, in which continuous income distribution is a limiting case.

Consider the probability distribution characterized by p (x = xk) = pk with x1 < x2 < ... < x∞.

Denote Tik = T (z (xk)− c (xk)), Tjk = T (c (xk)). We can establish the following lemma:

Lemma A4 An equivalent condition of (42) is that: for ∀xk, xl,(
Tik
xk
− Til
xl

)(
Tjk
xk
− Tjl

xl

)
≥ 0 (45)

Proof. The necessary and suffi cient condition for NAM (42) is written as∑
k

pkTikTjk
∑
k

pkx
2
k ≥

∑
k

pkTikxk
∑
k

pkTjkxk

which after rearranging, is equivalent to∑
k>l

∑
l

pkpl
(
TikTjkx

2
l + TilTjlx

2
k − (TikTjl + TilTjk)xkxl

)
≥ 0

The above holds for any discrete income distribution iff for all xk, xl, we have

(Tikxl − Tilxk) (Tjkxl − Tjlxk) ≥ 0 (46)
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Suppose that the above conditions are not met. Then, there must exist an xk and an xl such that

(Tikxl − Tilxk) (Tjkxl − Tjlxk) < 0. Let the distribution be such that p (x = xk) = p (x = xl) = 1
2 . We

then have ET 2j Ex̃
2 = 1

4 (TikTjl + TilTjk)xkxl, and hence ET 2j Ex̃
2 < (ETj x̃)

2, which contradicts (42).

Dividing both sides by (xlxk)2, (46) can be written as (45).

Obviously, (45) holds if xk > 0 and xl < 0. Hence, for NAM to arise, we only need conditions to

guarantee that (45) holds for xk > 0, xl > 0 and xk < 0, xl < 0, where xk, xl belong to the support of

relevant risks. A suffi cient condition is that both the function T (c(x))
x and the function T (z(x)−c(x))

x are

monotonely increasing or decreasing in x for x > 0 and for x < 0, where x belongs to the support of

relevant risks. The following proposition states the fundamental results’disentangling effect from risk

preference and from risk sizes for the equilibrium sorting pattern of the NTU risk-sharing matching

game.

Proposition A2 There exists an interval [x, x], with −2w0 ≤ x < 0 and x > 0, such that NAM arises

if all the supports of the risks are subsets of [x, x]. Moreover, 1) if utility exhibits DARA, then

the interval is [−2w0, x], and 2) if utility exhibits IARA, then the interval is [x,+∞].

Proof.
∂

∂x

T (c (x))

x
=

Tj
x2 (Ti + Tj)

(T ′ (c)x− (Ti + Tj)) (47)

∂

∂x

T (z (x)− c (x))

x
=

Ti
x2 (Ti + Tj)

(T ′ (z − c)x− (Ti + Tj)) (48)

When x→ 0, we have ∂∂x
T (c(x))

x → −∞ and ∂
∂x

T (z(x)−c(x))
x → −∞. By continuity, there exist x < 0

and x > 0 such that T (c(x))
x and T (z(x)−c(x))

x are decreasing on the interval [x, 0) and on the interval

(0, x], respectively.

If utility exhibits DARA, i.e., T ′ ≥ 0, combining this with (47) and (48), we find that both T (c(x))
x

and T (z(x)−c(x))
x are negative for x < 0. Hence, the only restriction on the lower bounds of the risks is

to ensure that consumption is non negative, i.e. x = −2w0.

If utility exhibits IARA, i.e., T ′ ≤ 0, combining this with (47) and (48) we have that both T (c(x))
x

and T (z(x)−c(x))
x are negative for x > 0. Hence, there is no restriction on the upper bound: x = +∞.

As long as the relevant risks are not too large with respect to w0, NAM will arise in equilibrium. In

the case of DARA, NAM arises when the largest realizations of the risks are not too high. In particular,

the sorting pattern will be unambiguously negative assortative for all downside-only risks such as bad

weather, recession, war, etc. In the case of IARA, NAM arises as long as the lowest realizations of the

risks are not too low. In particular, NAM is always the case for upside-only risks such as economic

boom, technological progress, etc.
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One can go even further. For example, for IARA utility function, the concavity of the risk tolerance

is suffi cient to guarantee NAM without imposing any restrictions on the support of the risks.18 Also,

for DARA and concave risk tolerance, which is commonly assumed in the literature when explaining

the risk premium puzzle (see Gollier, 2001), one can derive a suffi cient condition that provides the exact

restriction on the upper bound as follows:

Proposition A3 If preference exhibits DARA and the risk tolerance is concave, then NAM arises if

x ≤ T (0) + T (2w0 + x)

T ′ (0)
(49)

Proof. We must prove that both T (c(x))
x and T (z(x)−c(x))

x are decreasing on the interval (0, x), where

x is given by (49). Define g (c, x) , T ′ (c)x − (T (c) + T (x+ 2w0 − c)) and we have T (c(x))
x ≤ 0 iff

g (c, x) ≤ 0. Taking the derivative of g w.r.t. c and x yields

∂g

∂c
= T ′′ (c)x− (T ′ (c)− T ′ (x+ 2w0 − c)) (50)

∂g

∂x
= T ′ (c)− T ′ (x+ 2w0 − c) (51)

Suppose x > 0 and c > z − c. Combining (51) with T ′′ ≤ 0, we have ∂g
∂x < 0. Hence g (c, x) ≤ g (c, 0) =

− (T (c) + T (2w0 − c)) < 0. If c < z − c, combining with T ′′ ≤ 0 and substituting into (50) and (51)

yields g (c, x) ≤ g (0, x) = T ′ (0)x − (T (0) + T (2w0 + x)) ≤ 0, where the last inequality holds if (49)

holds. The proof of T (z(x)−c(x))x being decreasing is similar.

To see the role of the linearity of risk tolerance, let us consider |T ′′| ≡ ε. Then, (49) holds as

long as x ≤
√

4(T (0)+T ′(0)w0)
ε − 2w0

19 . Notice that
√

4(T (0)+T ′(0)w0)
ε − 2w0 is decreasing in ε and thus

approaches infinity as ε goes to zero. This suggests that the more linear risk tolerance is, the fewer

restrictions we need to impose on the risk supports for NAM to arise.

18For x < 0, T ′ (c)x − (Ti + Tj) ≤ T ′ (z)x − (T (c) + T (z − c)) ≤ T ′ (z)x − (T (0) + T (z)) ≤ − (T (0) + T (2w0)) <

0 where the first two inequalities are due to the fact that T ′′ ≤ 0, and the last inequality is due to the fact that

T ′ (z)x− (T (0) + T (z)) is a non-decreasing function of x for x < 0. Similarly T ′ (c)x− (Ti + Tj) ≤ 0 for x < 0. Hence

both T (c(x))
x

and T (z(x)−c(x))
x

are decreasing for x < 0. This, combined with the fact that T (c(x))
x

and T (z(x)−c(x))
x

are

decreasing for x > 0 if the utility belongs to IARA, ensures that the sorting pattern will be negative assortative.
19T (0) + T (2w0 + x)

= 2T (0) + T ′ (0) (2w0 + x) +
∫ 2w0+x
0

∫ s
0
T ′′ (t) dtds

= T ′ (0)x+
[
2T (0) + 2T ′ (0)w0 − ε

2 (2w0 + x)
2
]

≥ T ′ (0)x if x ≤
√

4(T (0)+T ′(0)w0)
ε − 2w0.
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