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ABSTRACT. In estimation and calibration studies the concept of ergodicity plays

a fundamental role. At the same time, a significant number of economic models

do not satisfy the classical ergodicity conditions. Motivated by existing work on

economic dynamics, we develop a new set of results on ergodicity using an order-

theoretic approach. Our conditions are necessary and sufficient, and, by varying

the notion of order, can include the classical Markov ergodic theorem as a special

case. We discuss implications, sufficient conditions and economic applications.

JEL Classifications: C62, C63
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1. INTRODUCTION

One of the most fundamental ways to connect theory with data is to match sample
averages with population means. In static cross-sectional models this can usually
be justified by appealing to the law of large numbers for independent random
variables (with obvious exceptions—see, for example, Brock and Durlauf (2001) or
Nirei (2006)). In the case of dynamic models, convergence of sample averages may
or may not hold. The most general approach to this problem is via the concept
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of ergodicity, which represents the notion that, in the limit, time series and cross-
sectional averages coincide. This typically requires some form of asymptotic path
independence, which in turn depends on the primitives that define the economic
system, the kinds of shocks that affect it, and how agents react to these shocks.

The concept of ergodicity forms a foundation stone at the heart of quantitative eco-
nomics, supporting a huge variety of computations and theoretical results. Consis-
tency of estimators is an obvious example (see, e.g., Hansen (1982)), and simulation
of stationary equilibria is another (e.g., Santos and Peralta-Alva (2005)). Ergodicity
is likewise fundamental to calibration and most forms of simulation-based time se-
ries estimation (e.g., Duffie and Singleton (1993)). Even Bayesian results that make
no direct appeal to asymptotics often require Markov chain Monte Carlo for actual
computation, and this in turn requires ergodicity (see, e.g., Geweke (2005)).

The majority of dynamic models used in quantitative economic modeling are re-
cursive. In this setting, perhaps the best known ergodicity result is the classical
Markov ergodic theorem. For a Markov process {Xt} with stationary distribution
π, the theorem gives necessary and sufficient conditions under which

(1) lim
n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h(x)π(dx)

almost surely for any π-integrable function h and any initial condition X0.2

This is a powerful result, implying probability one convergence over an extremely
wide class of functions h. In fact the result is in some sense too strong, in that it
fails to hold for some well known economic models. For example, the convergence
result in (1) cannot be established under the stated assumptions for the capital
and income processes in the canonical stochastic optimal growth model of Brock

2See, for example, Meyn and Tweedie (2009), theorem 17.1.7. Note that some versions of the

ergodic theorem require that X0 is drawn from the stationary distribution π, and that π is extremal

in the set of stationary distributions of the model (see, e.g., Breiman (1992)). In the Markov ergodic

theorem considered here, the initial condition is irrelevant. This can be helpful in applications,

since it is not necessary to check whether a stationary distribution is extremal or otherwise, and

since it means that we can compute stationary outcomes by simulation, starting the process from

an arbitrary initial position and allowing for sufficient “burn in” (as in, e.g., Markov chain Monte

Carlo). For these reasons we focus our attention on the version of ergodicity considered in (1),

although similar ideas can be applied to other versions.
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and Mirman (1972). The same is true for various extensions, including the multi-
sector version in §10.3 of Stokey and Lucas (1989), the correlated shock version
in Hopenhayn and Prescott (1992) and the distorted version in Greenwood and
Huffman (1995). Similar issues arise with models from economic development,
monetary economics, industrial organization and so on. In fact the problem is
relatively general, and easy to illustrate. To this end, consider the simple dynamic
system given by

(2) Xt+1 = αXt + ξt+1.

Here the state space is R and {ξt} is IID. Assume α is a rational number in (0, 1),
and that ξt is rational with probability one, as is the case for many discrete distri-
butions. Now let h = 1Q, the indicator function of the rationals, so that h(x) = 1
if x is rational and zero otherwise. In this setting, it is clear that if X0 ∈ Q, then
Xt ∈ Q for all t, and hence limn→∞

1
n ∑n

t=1 h(Xt) = 1. On the other hand, if X0

is irrational, then so is Xt for all t, and hence limn→∞
1
n ∑n

t=1 h(Xt) = 0. Thus (1)
fails. The model is in some sense path dependent, in that the limit of the sample
average depends on the value of the initial draw.

While the nature of this counterexample is relatively specific, the discussion is in-
structive vis-à-vis the economic applications discussed above. Just like those eco-
nomic models, the system in (2) is essentially well behaved. It is mean reverting,
with a unique stationary distribution (see, e.g., Bhattacharya and Majumdar (2003),
theorem 3.2). In fact the instability in the sample mean we observe in this exam-
ple is mainly caused by the irregularity of the function h = 1Q we chose to test
convergence. This function is neither continuous nor monotone on any open in-
terval. For many regular functions the convergence in (1) will in fact hold. This
point is salient from the perspective of economic applications, since sample mean
convergence for highly irregular functions is typically irrelevant for the purpose of
economic modeling. What matters for quantitative work is convergence for more
regular functions, such as centered and uncentered moments, generalized moment
conditions from Euler equations and so forth.

These considerations motivate us to generalize the classical Markov ergodic theo-
rem along the following lines: We embed the dynamic model in an abstract par-
tially ordered space, and prove that a natural extension of the Markov ergodic
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theorem holds in this setting. By controlling the partial order on the space, it be-
comes possible to control the set of test functions h for which the convergence (1)
is required to hold. Under one particular choice of partial order, the set of test
functions expands to the extent that we recover the classical theorem as a special
case. Under other partial orders the set of test functions is restricted to more well
behaved functions, as might be considered in certain economic applications. This
allows us to treat a variety of models that fail to satisfy the classical conditions.

There are other possible approaches to the problem described above. Our decision
to add structure via a notion of order is motivated by earlier order-theoretic work
on the asymptotics of Markov models, as found, for example, in Razin and Yahav
(1979), Stokey and Lucas (1989), Hopenhayn and Prescott (1992), Bhattacharya and
Majumdar (2001) and Bhattacharya and Majumdar (2007). The usefulness of this
approach to modeling economic dynamics is described at length in Stokey and
Lucas (1989) and Bhattacharya and Majumdar (2007). By drawing connections
with this line of research, our results are seen to extend to a variety of well known
models.

In addition to the general results discussed above, this paper provides further re-
sults related to implications of the theory. We show that, under some additional
restrictions on the state space, the empirical distribution associated with any sam-
ple converges to the stationary distribution with probability one. We also discuss
sufficient conditions, providing conditions that can be used to check the conditions
of the theorem in new applications.

The remainder of this paper is structured as follows. Section 2 gives some pre-
liminary definitions and results. Section 3 presents our results on ergodicity and
discusses their implications. Section 5 provides sufficient conditions for the form
of ergodicity considered in the paper and treats a regime switching application.
Section 6 concludes. All proofs are deferred to section 7.

2. PRELIMINARIES

In this paper, as in Hansen and Sargent (2010), an economic model is a probabil-
ity distribution on a sequence space. Our main interest is in identifying suitable
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conditions under which these distributions pick out time series with sample av-
erages that converge to stationary expectations, in a sense to be made precise. In
what follows, the sequence space is S∞ = S× S× · · · , where S is called the state
space. Elements of S summarize the state of the economy at any point in time,
while elements of S∞ are called time series. A typical probability distribution on
S∞ is denoted by PQ

x . In this first section, we describe how this distribution is con-
structed from objects Q and x, where Q is a primitive representing the first order
transition probabilities induced by preferences, technology and other economic
considerations, and x is an initial condition.3

2.1. Model Primitives. To begin, let (S, B) be a measurable space, and let � be
a partial order on S (i.e., reflexive, transitive and antisymmetric). Let P be the
probability measures on (S, B). Let S∞ := S× S× · · · , and let B∞ be the product
σ-algebra. A function h : S→ R is called increasing if x � x′ implies h(x) ≤ h(x′),
and decreasing if−h is increasing. A subset of S is called increasing if its indicator
function is increasing, and decreasing if its indicator is decreasing.

Throughout the paper, we consider models that are time-homogeneous and Mar-
kovian. The dynamics of any such model can be summarized by a stochastic ker-
nel Q, which is a function Q : S×B → [0, 1] such that

1. Q(x, ·) ∈P for each x ∈ S, and
2. Q(·, B) is measurable for each B ∈ B.

In the applications treated below, Q(x, B) represents the probability that the state
of the economy transitions from point x ∈ S into set B ∈ B over one unit of time.
A distribution π ∈P is called stationary for Q if∫

Q(x, B)π(dx) = π(B), ∀ B ∈ B.

In essence this means that the current state Xt is drawn from π and then Xt+1

is drawn from Q(Xt, ·), the distribution of Xt+1 will again be π. As in many
other studies (e.g., Brock and Mirman (1972), Stokey and Lucas (1989), Duffie et al.

3Our assumptions and results are always stated in terms of first order models. This costs no

generality, since greater lag lengths can be reformulated into the first order framework by suitable

redefinition of state variables.
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(1994), etc.), a stationary probability is understood here as representing an equilib-
rium distribution for a stochastic economic model with dynamics given by Q.

A stochastic kernel Q is called increasing if (Qh)(x) :=
∫

h(y)Q(x, dy) is increas-
ing in x whenever h : S → R is measurable, bounded and increasing. This con-
dition is typically satisfied in models where, holding all shocks fixed, increases in
the current state shift up the future state (see, e.g., Stokey and Lucas (1989)).

2.2. Markov Processes. It is well known (see, e.g., Stokey and Lucas (1989), p. 222)
that to each stochastic kernel Q on S and distribution µ ∈ P , we can associate a
unique probability measurePQ

µ on the sequence space (S∞, B∞), which is uniquely
defined by the expression

(3) P
Q
µ (B0 × · · · × Bn × S× S× · · · ) =∫

B0

µ(dx0)
∫

B1

Q(x0, dx1) · · ·
∫

Bn−1

Q(xn−2, dxn−1)
∫

Bn
Q(xn−1, dxn)

for any finite collection {Bi}n
i=0 ⊂ B.4 In essence, PQ

µ is the joint distribution of the
Markov process {Xt} defined by drawing X0 from µ and then, recursively, Xt+1

from Q(Xt, ·). If µ = δx then we simply write PQ
x .

We are interested in the properties of time series generated by models of this form.
In studying these properties, it is helpful to have a canonical Markov process {Xt}
with which to state our results. To this end, recall that if (E, E ,P) is any probability
space and X is the identity map X(ω) = ω, then X is an E-valued random element
with distribution P. Following this construction, we take (S∞, B∞,PQ

µ ) as our
probability space unless otherwise stated, and {Xt} is just the identity map. This
gives a generic Markov process generated by Q and having initial condition µ.

3. ERGODICITY

In this section we first recall the classical Markov ergodic theorem and then present
an extension that depends on our partial order �.

4As is conventional, the integrals in (3) are computed from right to left, with the integrand writ-

ten to the right of the integrating measure.
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3.1. Classical Ergodicity. One way to understand ergodicity is via the behavior of
invariant functions. Recall that a bounded measurable function h : S→ R is called
invariant for Q if

(4)
∫

h(y)Q(x, dy) = h(x)

for all x ∈ S. In essence, invariant functions convert Markov processes into mar-
tingales, because if h is invariant then E [h(Xt+1) |Xt] =

∫
h(y)Q(Xt, dy) = h(Xt).

The converse is also true—a function h is invariant if {h(Xt)} is a martingale for
any choice of X0.

Any constant function is clearly invariant. This is a trivial way to create a mar-
tingale. A stochastic kernel Q on S is said to be ergodic if this trivial method is
the only way to create a martingale—more formally, if the only bounded invari-
ant functions are the constant functions. (Note that definitions of ergodicity vary
slightly, ranging over several equivalent and near-equivalent conditions. Our ter-
minology largely follows Ljungqvist and Sargent (2012).) The classical Markov
ergodic theorem runs as follows:

Theorem 3.1. For any stochastic kernel Q with stationary distribution π, the following
are equivalent:

(i) Q is ergodic.
(ii) For every x ∈ S and π-integrable function h,

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Here “π-integrable” means that h : S → R is measurable, and
∫
|h| dπ < ∞. We

maintain this definition throughout. The proof of theorem 3.1 can be found in
proposition 17.1.4 and theorem 17.1.7 of Meyn and Tweedie (2009), although we
prove a more general result below.

3.2. Monotone Ergodicity. We now provide a generalization of theorem 3.1. By
way of analogy with the standard definition, we will call a stochastic kernel Q
monotone ergodic if the only increasing bounded invariant functions are the con-
stant functions.
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Theorem 3.2. For any increasing stochastic kernel Q with stationary distribution π, the
following conditions are equivalent:

(i) Q is monotone ergodic.
(ii) For every x ∈ S and increasing π-integrable function h,

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

The proof of theorem 3.2 is given in section 7. To see that theorem 3.2 is in fact a
generalization of theorem 3.1, it suffices to set the partial order � on S to be equal-
ity, in the sense that x � y if and only if x = y. For this choice of �, it’s easily
verified that every function from S to R is increasing. As a consequence, the def-
initions of monotone ergodicity and ergodicity are identical, and every stochastic
kernel on S is increasing. In such a setting, the results of theorem 3.2 reduce to
those of theorem 3.1.

On the other hand, theorem 3.2 is more general than theorem 3.1. This is intuitively
clear, since we can choose any partial order. To give a concrete example, recall the
simple model (2) considered in the introduction. As shown in the introduction, this
model is not ergodic. At the same time, it is monotone ergodic under the natural
order ≤ whenever the shock ξt is non-degenerate. The proof will be easier once
we have developed some sufficient conditions, so we delay it to section 5.2.

More generally, for partial orders other than equality, the family of increasing func-
tions is a strict subset of the family of all functions. When such a partial order
is chosen, monotone ergodicity is strictly weaker than ergodicity. This allows us
to capture the asymptotics of additional models that do not satisfy the classical
conditions—provided that their stochastic kernels satisfy the requisite monotonic-
ity. As discussed in the introduction, this is useful for a number of familiar eco-
nomic applications, where the relevant monotonicity conditions are satisfied, and
convergence of sample means only matters for relatively regular functions.

3.3. Uniqueness. As suggested by the statement of theorem 3.2, monotone ergod-
icity is not sufficient to yield existence of a stationary distribution π. A more subtle
question is uniqueness. Uniqueness requires some additional structure on the or-
der� and the measurable sets B. This is the purpose of the following assumption.
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Assumption 3.1. The space S is a separable and completely metrizable topological
space (also called a Polish space). The partial order � is closed, in the sense that
its graph is closed in the product space S × S when endowed with its product
topology.

In this topological setting we always take B to be the Borel sets. Assumption 3.1 is
very standard and relatively weak (cf., e.g., Hopenhayn and Prescott (1992)), but
still sufficient for uniqueness.

Proposition 3.1. Let Q be an increasing stochastic kernel. If Q is monotone ergodic and
assumption 3.1 is satisfied, then Q has at most one stationary distribution.

3.4. Convergence for Non-Monotone Functions. One apparent concern with the-
orem 3.2 is that if� is a standard partial order such as the usual order≤ onR, then
the set of increasing functions referred to in part (ii) of theorem 3.2 may be too
small to be useful. For example, we might care about convergence of the second
moment, which requires us to set h(x) = x2. This function is not monotone.

Fortunately, it turns out that the convergence in theorem 3.2 extends to a larger
set of functions, without additional assumptions. For example, let Q be a fixed
stochastic kernel with stationary distribution π. Let L denote the linear span of
the set of increasing π-integrable functions.5

Corollary 3.1. If the conditions of theorem 3.2 hold, then

(5) P
Q
µ

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1, ∀ µ ∈P , ∀ h ∈ L .

Note that corollary 3.1 considers PQ
µ rather than PQ

x , so the convergence also ap-
plies to random X0 with arbitrary distribution.

5In other words, L is the set of all h : S → R such that h = α1h1 + · · ·+ αkhk for some scalars

{αi}k
i=1 and increasing measurable {hi}k

i=1 with
∫
|hi|d π < ∞. Equivalently, L is all h such that

h = f − g for increasing π-integrable f and g.
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Example 3.1. Let S = R and let k be the number of finite moments possessed by
the stationary distribution π. All k moment functions h(x) = xk lie in L , as does
any polynomial of order k or less.6

Example 3.2. If S is a closed interval inR, then L contains all functions of bounded
variation (see, e.g., Shiryaev (1996), p. 207).

3.5. Continuous Functions and Empirical Distributions. It is in fact possible to
extend the convergence results beyond L in many situations. In this section we
show that if S is compact and � is suitably regular, then the convergence in corol-
lary 3.1 extends to all continuous functions too. Moreover, if S is not compact, then
the same is true for any continuous bounded function. In fact we prove a con-
siderably stronger result, related to convergence of the empirical distribution πn,
which is, as usual, defined by

∫
h dπn :=

1
n

n

∑
t=1

h(Xt) for measurable h : S→ R.

The empirical distribution is a natural candidate for estimating π, and forms a
standard tool for econometric analysis and calibration. We wish to know when
πn

w→ π with probability one, where w→ represents the usual probabilist’s notion
of weak convergence (i.e.,

∫
h dπn →

∫
h dπ for all continuous bounded h).7

To discuss continuous functions we need a notion of topology. We begin by adopt-
ing assumption 3.1, and let B be the Borel sets. We also need the following:

6If k is odd, then h(x) := xk is increasing. If k is even, then write h(x) = xk as −h1(x) + h2(x),

where h1(x) := −xk
1{x < 0} and hk(x) := xk

1{x ≥ 0}. Both h1 and h2 are increasing functions.

Hence h(x) ∈ L . Finally, if p(x) is a polynomial of the form p(x) = ∑k
i=1 aixi, then, since L is

closed under linear combinations, p ∈ L is also true.
7The statement

∫
h dπn →

∫
h dπ for all continuous bounded h with probability one is a much

stronger than
∫

h dπn →
∫

h dπ with probability one for all continuous bounded h. The reason is

that, even when the latter holds, the probability one set on which convergence obtains depends on

h, and the set of continuous bounded functions on S is uncountable.



11

Assumption 3.2. The space (S,�) is normally ordered,8 and has the property that
K ⊂ S is compact if and only if it is closed and order bounded (i.e., there exist
points a and b in S with a � x � b for all x ∈ K). Moreover, there exists a countable
subset A of S such that, given any x ∈ S and neighborhood U of x, there are
a, a′ ∈ A such that a, a′ ∈ U and a � x � a′.

Assumption 3.2 adds a significant amount of structure relative to assumption 3.1.
It is however satisfied for many common state spaces, such as when S = Rm with
its usual pointwise order ≤, or more generally, when S is a cone in Rm with the
usual pointwise order.

Theorem 3.3. If assumptions 3.1–3.2 are satisfied, and, in addition, Q is increasing and
monotone ergodic with stationary distribution π, then, for any x ∈ S,

P
Q
x

{
lim

n→∞

∫
h dπn =

∫
h dπ, ∀ continuous bounded h : S→ R

}
= 1.

In particular,

(i) πn
w→ π with probability one.

(ii) Given any continuous bounded function h, we have 1
n ∑n

t=1 h(Xt) →
∫

h dπ

with probability one.

4. CONNECTIONS TO THE LITERATURE

In sections 3.1–3.2 we described the connection between monotone ergodicity and
classical ergodic theory. As discussed in the introduction, there are also connec-
tions between monotone ergodicity and the order theoretic work on economic dy-
namics found in references such as Razin and Yahav (1979), Bhattacharya and Lee
(1988), Stokey and Lucas (1989), Hopenhayn and Prescott (1992), Bhattacharya and
Majumdar (2001), Szeidl (2013), and Kamihigashi and Stachurski (2014). These
papers introduce various order theoretic ”mixing conditions”. In this section we

8A topological space with partial order � is called normally ordered if, given any disjoint pair

of closed sets I, D ⊂ S such that I is increasing and D is decreasing, there exists an increasing

continuous bounded h : S→ R such that h(x) = 0 for all x ∈ D and h(x) = 1 for all x ∈ I. See, e.g.,

Whitt (1980).
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show that monotone ergodicity in the sense of theorem 3.2 is more general than all
of these conditions.

To begin the discussion, consider the ”splitting condition” approach found, for
example, in Bhattacharya and Majumdar (2001). Their environment consists of a
sequence of IID random maps {γt} from S to itself, where S is a subset of Rm. The
maps generate {Xt} via Xt+1 = γt+1(Xt), or, more explicitly,

Xt = γt ◦ · · · ◦ γ1(X0).

The corresponding stochastic kernel is Q(x, B) = P{γ1(x) ∈ B}. The splitting
condition runs as follows:

Assumption 4.1. There exists a c ∈ S and k ∈ N such that

P{γk ◦ · · · ◦ γ1(y) ≤ c, ∀y ∈ S} > 0 and P{γk ◦ · · · ◦ γ1(y) ≥ c, ∀y ∈ S} > 0.

Here ≤ is the usual pointwise order onRm. In Bhattacharya and Majumdar (2001)
and Bhattacharya and Majumdar (2007) it is shown that the splitting condition ap-
plies to many economic applications. The authors then establish many significant
results, including a central limit theorem for models that satisfy the splitting condi-
tion when all the maps γt are monotone. This implies a weak law of large numbers
with 1/

√
n consistency. We now add the following:

Proposition 4.1. If assumption 4.1 is satisfied, then Q is monotone ergodic on (S,≤).

As a result, when the maps γn are increasing, proposition 4.1 combined with the-
orem 3.2 strengthen the results of Bhattacharya and Majumdar (2001) by adding a
strong law of large numbers (theorem 3.2 and corollary 3.1) and convergence for
continuous functions (theorem 3.3).

Note that monotone ergodicity is significantly more general than assumption 4.1.
For example, the AR(1) process in (2) satisfies monotone ergodicity on (R,≤) but
not assumption 4.1 whenever the shock ξt is unbounded. The same is true for
various other autoregressive time series models, the optimal accumulation models
studied in Nishimura and Stachurski (2005) and Zhang (2007), the wealth distri-
bution model in Benhabib et al. (2011), the buffer stock model in Szeidl (2013), and
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the price coefficient process in Benhabib and Dave (2013). Section 5.2 of this paper
gives a detailed example that illustrates these ideas.

Closely related to splitting are the conditions of Razin and Yahav (1979), Stokey
and Lucas (1989) and Hopenhayn and Prescott (1992). In particular, Hopenhayn
and Prescott (1992) adopt the following restrictions:

Assumption 4.2. S is a compact metric space with closed partial order �. S has a
least element a and greatest element b. Q is an increasing kernel on S satisfying the
following restriction:

(6) ∃ x̄ ∈ S and k ∈ N such that PQ
a {Xk ≥ x̄} > 0 and PQ

b {Xk ≤ x̄} > 0.

Hopenhayn and Prescott (1992) show that assumption 4.2 is sufficient for the exis-
tence of a unique, stable stationary distribution. We add the following result:

Proposition 4.2. If assumption 4.2 is satisfied, then Q is monotone ergodic.

Proposition 4.2 is significant because many well known models have been shown
to satisfy assumption 4.2. These include most versions of the standard neoclassi-
cal optimal growth model with bounded shocks, as studied by Brock and Mirman
(1972), Mirman and Zilcha (1975) and Hopenhayn and Prescott (1992), as well as by
the infinite horizon incomplete market models typified by Huggett (1993), stochas-
tic endogenous growth models such as that found in De Hek (1999), a wide variety
of OLG models, such as those as found in Aghion and Bolton (1997), Piketty (1997),
Owen and Weil (1998) and Morand and Reffett (2007), and industry models such
as Cabrales and Hopenhayn (1997) and Cooley and Quadrini (2001).

Szeidl (2013) generalizes a number of the ideas in Hopenhayn and Prescott (1992).
He takes S to be an order interval in Rm and � is the usual pointwise order ≤.
He defines a stochastic kernel Q to be weakly mixing if there exists a point c ∈ S
such that given any x ∈ S we can find integers j and k with PQ

x {Xj > c} > 0 and
P

Q
x {Xk < c} > 0. As usual, Q is called uniformly asymptotically tight if, for all

δ > 0, there exists a compact C ⊂ S such that lim infPQ
x {Xn ∈ C} > 1− δ for

all x ∈ S. Szeidl (2013) shows existence, uniqueness and stability of the station-
ary distribution when Q is increasing, weakly mixing, uniformly asymptotically
tight, and an additional regularity condition holds. He goes on to show how the
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conditions can be applied to a number of useful models, including the buffer stock
saving model of Carroll (1997). Here we show that the following is also true:

Proposition 4.3. Let (S,≤) be an order interval inRm with the usual pointwise order. If
Q is increasing, weakly mixing and uniformly asymptotically tight, then Q is monotone
ergodic.

As a consequence, the strong law of large numbers from theorem 3.2 is valid in this
setting, as are the conclusions of corollary 3.1 and theorem 3.3.

Finally, recall that a stochastic kernel Q on S is defined to be order mixing if, given
any pair of independent Markov processes {Xt} and {X′t} generated by Q, the
event {Xt � X′t} occurs with probability one (see, e.g., Kamihigashi and Stachurski
(2014)). For example, if Xt and X′t represent the wealth of two households, whose
inhabitants face labor income following idiosyncratic shock processes, then order
mixing requires that, over an infinite horizon, the first household will have lower
wealth than the second at some point in time, regardless of their initial ranking.

Proposition 4.4. Let assumption 3.1 be satisfied, and let Q be a stochastic kernel on S. If
Q is order mixing, then Q is monotone ergodic.9

The conditions of theorem 3.1 and 3.2 of Kamihigashi and Stachurski (2014) both
imply that Q is increasing, order mixing (see lemma 6.5 of that reference) and pos-
sesses a stationary distribution π. Hence all the conditions of theorem 3.2 of the
present paper hold. It follows that the ergodicity results of the present paper ex-
tend to the applications treated in section 4 of Kamihigashi and Stachurski (2014).

5. SUFFICIENT CONDITIONS AND APPLICATIONS

In this section we provide additional conditions for checking monotone ergodicity,
and show how our results apply to certain economic applications. In the process
we highlight models that cannot be treated with existing results from the literature.

9Here assumption 3.1 is only imposed to ensure that sets of the form {Xt � X′t} are measur-

able. In the proofs for this section, we show that the conditions of proposition 4.4 imply monotone

ergodicity, and that the conditions of propositions 4.1–4.3 imply the conditions of proposition 4.4.
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5.1. Sufficient Conditions. As discussed above, there are existing conditions in
the literature that imply order mixing, and these suffice for many economic prob-
lems. However, for classes of economic models that possess certain monotonicity
and continuity conditions, it is possible to develop another approach that is par-
ticularly straightforward and intuitive. Before starting we need the following def-
inition. A stochastic kernel Q is called bounded in probability if, for all x ∈ S and
ε > 0 there exists a compact set K ⊂ S such that suptP

Q
x {Xt /∈ K} ≤ ε. This is

automatically true if S is compact.10

Consider now a generic model of the form

(7) Xt+1 = F(Xt, ξt+1), {ξt}
IID∼ φ, X0 given,

where F : S× Z → S is continuous, S and Z are Borel subsets of Rn and Rm, and
φ is a Borel probability measure on Z. In this section S is always endowed with its
usual pointwise order ≤. The stochastic kernel corresponding to (7) is

(8) QF(x, A) := φ{z ∈ Z : F(x, z) ∈ A},

Assumption 5.1. Subsets of S are compact if and only if they are closed and order
bounded. The shock distribution φ is supported on all of the shock space Z.11

Assumption 5.2. F(x, z) is increasing in x for each z ∈ Z, and QF is bounded in
probability.

Observe that each finite path of shock realizations {zt}k
t=1 ⊂ Z and initial condition

X0 = x ∈ S determines a path {xt}k
t=0 for the state variable up until time t via

xt+1 = F(xt, zt+1). Let Fk(x, z1, . . . , zk) denote the value of xk determined in this
way.12 Given vectors x and y in S, we write x < y if xi < yi for all i.

Proposition 5.1. If assumptions 5.1 and 5.2 are satisfied, then QF is increasing and at
least one stationary distribution exists. If, in addition, one of the following three conditions
holds

10If not, boundedness in probability can often be established using drift conditions, as found in

Meyn and Tweedie (2009).
11That is, φ(Z) = 1, and φ(G) > 0 whenever G ⊂ Z is nonempty and open. This entails no loss

of generality, since Z can always be re-defined appropriately.
12Formally, F1 := F and Ft+1(x, z1, . . . , zt+1) := F(Ft(x, z1, . . . , zt), zt+1) for all t ∈ N.
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(i) for any x, c ∈ S, there exists {z1, . . . , zk} ⊂ Z such that Fk(x, z1, . . . , zk) < c
(ii) for any x, c ∈ S, there exists {z1, . . . , zk} ⊂ Z such that Fk(x, z1, . . . , zk) > c
(iii) for any x, x′ ∈ S, there exists {z1, . . . , zk} ⊂ Z and {z′1, . . . , z′k} ⊂ Z such that

Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k)

then QF is order mixing, and hence monotone ergodic.

Conditions (i)–(iii) are mixing conditions, and are related to the notions of up-
ward reaching, downward reaching and order reversing processes introduced in
Kamihigashi and Stachurski (2014). Unlike the latter, conditions (i)–(iii) exploit
continuity to provide statements that are easier to check in applications.

To see how proposition 5.1 can be useful, compare condition (iii) to the notion of
order mixing, which requires that separate time series driven by their own set of
idiosyncratic shocks become ordered eventually with probability one (see, the dis-
cussion at the top of section 4). Condition (iii) simply states that such an occurrence
is possible. This kind of condition is typically much easier to verify.

5.2. Applications. A number of recent papers study ”regime switching” type lin-
ear random coefficient systems of the form

wt+1 = α(st+1)wt + β(st+1)

st+1 = g(st, ξt+1)

where {ξt} is an IID shock sequence and α, β and g are given functions. Examples
of this system can be found in the wealth distribution model of Benhabib et al.
(2011), the price coefficient process in Benhabib and Dave (2013) and the inflation
process in Farmer et al. (2009). In Benhabib et al. (2011), wt is household wealth
and st is discrete, with α(s) > 1 for high values of s and α(s) < 1 for low values of
s. Hence wealth goes through periods of expansion and contraction. In fact, since
it changes little of what follows, we assume that st ∈ {0, 1}, with 0 < α(0) < 1 <

α(1). We suppose that wealth is nonnegative, that {st} is irreducible, that g(s, ξ)

is increasing in s for each ξ, and that 0 < β(0) ≤ β(1). To prevent wealth from
growing without limit, we assume that ln α(0)π0 + ln α(1)π1 < 0, where π is the
stationary distribution of st. See theorem 1 of Brandt (1986).
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The endogenous state wt is naturally unbounded and its state space cannot be
compactified. Indeed, if st remains in the high state for sufficiently long, then wt

will exceed any given bound. As a result we take the state space for wt to be
all of [0, ∞), and the state space S for the pair Xt := (wt, st) as [0, ∞) × {0, 1}.
Because of this unboundedness, the existing law of large number results based
around assumption 4.1 do not hold. Nor do the classical ergodic results hold here
in general, since the counterexample in equation (2) is a special case of the current
model.

On the other hand, the conditions of proposition 5.1 are easy to verify. Bound-
edness in probability is already known (Brandt, 1986, theorem 1). Continuity is
obvious, as is monotonicity. Condition (ii) of the proposition clearly holds too,
since a sufficiently long sequence of high states for st will drive (wt, st) above any
given vector in S. Hence the system has a unique stationary distribution and is
monotone ergodic. (This also verifies a claim from section 3.2 that the model in (2)
is monotone ergodic under the standard order ≤.)

6. CONCLUSION

A significant number of economic models do not satisfy the classical ergodicity
conditions. Motivated by earlier work on economic dynamics using an order-
theoretic approach, this paper develops a new condition called monotone ergodic-
ity that is shown to be necessary and sufficient for probability one convergence of
sample averages to population means over a certain class of functions. By varying
the notion of order, we show that our result can recover the classical Markov er-
godic theorem as a special case. At the same time, we show that monotone ergod-
icity is implied by a number of different conditions from the existing economics
literature. Hence our results also extend to a variety of well known models that
fail to satisfy the classical conditions.

A number of additional results related to implications of the theory are also pro-
vided. For example, we show that, under some additional restrictions on the state
space, the empirical distribution associated with any sample converges to the sta-
tionary distribution with probability one. We also discuss sufficient conditions,
providing a bridge from the abstract results in the paper to new applications. To
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illustrate, we analyze a regime switching model that has been used to study vari-
ables such as wealth, prices and inflation. We use the sufficient conditions to prove
monotone ergodicity and hence a strong law of large numbers. To the best of our
knowledge, this cannot be established using any results from the existing litera-
ture.

7. PROOFS

7.1. Preliminaries. For the proofs we adopt some additional notation. Let

• bS denote the set of bounded measurable functions from (S, B) to R
• ibS denote the set of increasing functions in bS.
• cbS denote the set of continuous functions in bS.
• icbS := ibS ∩ cbS.

We sometimes use inner product notation to represent integration, so that

〈µ, h〉 :=
∫

h(x)µ(dx)

for all h : S→ R and measures µ on (S, B) such that the integral is defined.

7.2. Proofs from Section 3. As alluded to in section 3, some authors define ergod-
icity in terms of shift-invariant events, and hence, for the sake of completeness,
we prove a slightly more general form of theorem 3.2, encompassing monotone
equivalents of these ideas.

To begin, let the shift operator θ : S∞ → S∞ be defined as usual by θ(x0, x1, . . .) =
(x1, x2, . . .). Let θt denote the t-th composition of θ with itself, and let θ0 be the
identity. Let X be the first coordinate projection, sending (x0, x1, . . . , xt, . . .) into x0.
IfP is any probability measure on the sequence space (S∞, B∞), then the S-valued
stochastic process {Xt} on (S∞, B∞,P) defined by Xt := X ◦ θt has joint distribu-
tion P. Specializing to P = P

Q
µ yields the canonical Markov process discussed in

section 2.2. Here and below, {Xt} is understood as being defined in this way and
(S∞, B∞,PQ

µ ) is the probability space, unless otherwise stated. A random variable
is always a B∞ measurable map from S∞ to R. We endow S∞ with the pointwise
order inherited from (S,�). In particular, we say that {xt} � {x′t} if xt � x′t in S
for all t.



19

An event A ∈ B∞ is called shift-invariant if θ−1(A) = A. It is called trivial if
the function h(x) := P

Q
x (A) is constant on S and takes values in {0, 1}. A family

of sets in B∞ is called trivial if every element of the family is trivial. A random
variable Y is called shift-invariant if it is measurable with respect to the family of
shift-invariant sets (which form a σ-algebra). We will make use of the following
lemma, which is proved in section 7.5.

Lemma 7.1. Let G ⊂ B∞ be a σ-algebra, let iG be the increasing sets in G , and let Y be
an increasing, G -measurable random variable. If iG is trivial, then there exists a γ ∈ R
such that PQ

x {Y = γ} = 1 for all x ∈ S.

Here is the generalization of theorem 3.2:

Theorem 7.1. For any increasing stochastic kernel Q with stationary distribution π, the
following conditions are equivalent:

(i) Every increasing shift-invariant set is trivial.
(ii) Q is monotone ergodic.
(iii) For every x ∈ S and increasing π-integrable function h, we have

P
Q
x

{
lim

n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h dπ

}
= 1.

Proof of theorem 3.2. (i) =⇒ (ii). Let h be bounded, increasing and invariant. De-
fine Y := lim supt h(Xt). We then have h(x) = E

Q
x Y for all x ∈ S, as shown in

theorem 17.1.3 of Meyn and Tweedie (2009). Notice that Y is shift invariant, since,
for each a ∈ R, the set A := {Y ≤ a} satisfies θ−1(A) = A. Notice also that
Y is increasing on the sample space S∞. It now follows from our hypothesis and
lemma 7.1 that there exists a γ ∈ R such that PQ

x {Y = γ} = 1 for all x ∈ S. Hence
h(x) = E

Q
x (Y) = γ for all x ∈ S. Thus h is constant, as was to be shown.

(ii) =⇒ (iii). Let h be any increasing function in L1(π). Without loss of generality,
we assume that

∫
h dπ = 0. Define

Eh :=

{
lim inf

n

1
n

n

∑
t=1

h(Xt) ≥ 0

}
and H(x) := P

Q
x (Eh). It is clear that Eh is shift-invariant, and hence, by theo-

rem 17.1.3 of Meyn and Tweedie (2009), the function H is invariant in the sense



20

of (4). From the fact that h is increasing, the set Eh is increasing on S∞. Using the
hypothesis that Q is increasing and applying proposition 2 of Kamae et al. (1977),
we see that H is increasing. Evidently H is bounded. It now follows from (ii) that
H is constant, with H(x) ≡ α for some α ∈ [0, 1].

Seeking a contradiction, suppose that α < 1. In view of theorem 17.1.2 of Meyn
and Tweedie (2009), there exists a measurable function f : S→ R and a set Fh ∈ B

such that

(a)
∫

f (x)π(dx) = 0
(b) π(Fh) = 1
(c) PQ

x

{
lim infn

1
n ∑n

t=1 h(Xt) = f (x)
}
= 1 for all x ∈ Fh.

Fix x ∈ Fh. Since α < 1, we have

P
Q
x

{
lim inf

n

1
n

n

∑
t=1

h(Xt) < 0

}
= 1− H(x) = 1− α > 0.

In conjunction with (c), this implies that{
lim inf

n

1
n

n

∑
t=1

h(Xt) < 0

}
∩
{

lim inf
n

1
n

n

∑
t=1

h(Xt) = f (x)

}
6= ∅.

Hence f (x) < 0. Since x ∈ Fh was arbitrary, we have f < 0 on Fh. From (b) we
have π(Fh) = 1, so ∫

f (x)π(dx) =
∫

Fh

f (x)π(dx) < 0.

This inequality is impossible by (a).

We have now contradicted α < 1, which implies that H is everywhere equal to 1.
In other words,

P
Q
x

{
lim inf

n

1
n

n

∑
t=1

h(Xt) ≥ 0

}
= 1, ∀x ∈ S.

A symmetric argument shows that PQ
x
{

lim supn n−1 ∑n
t=1 h(Xt) ≤ 0

}
= 1 for all

x ∈ S.13 The claim in (iii) now follows.

13In this case, the analogous function H is bounded and invariant, but decreasing rather than

increasing. Under (ii), such a function is also constant, because −H is bounded, invariant and

increasing. The rest of the argument is essentially the same.
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(iii) =⇒ (i). Let A be increasing and shift-invariant. Let h(x) := P
Q
x (A). Our

aim is to show that h is constant and equal to either zero or one. Fixing x ∈ S
and applying theorem 17.1.3 of Meyn and Tweedie (2009), we can write 1A =

limt h(Xt), where equality holds PQ
x -a.s. As a consequence,

1A = lim
n→∞

1
n

n

∑
t=1

h(Xt).

Since A and Q are both increasing, proposition 2 of Kamae et al. (1977) tells us that
h is increasing. Clearly it is π-integrable. Applying (iii), we see that 1A =

∫
h dπ

holds PQ
x -a.s. In particular, the indicator of A is constant PQ

x -a.s., and the value of
the constant does not depend on x. Being an indicator, the constant value is either
zero or one. Hence either h = 0 or h = 1. �

Proof of proposition 3.1. Suppose that Q is increasing and monotone ergodic on (S,�
), and that π1 and π2 are both stationary for Q. Since a sequence cannot converge
almost surely to two different limits, theorem 3.2 implies that

∫
hdπ1 =

∫
hdπ2 for

every bounded measurable increasing function h from S to R. Moreover, assump-
tion 3.1 implies that if π1 and π2 are two probability measures on B satisfying this
condition, then π1 = π2. See, for example, theorem 2 of Kamae et al. (1978). �

Proof of corollary 3.1. . Fix x ∈ S and h ∈ L . As per footnote 5, we can write h as
h = h1− h2, where h1 and h2 are increasing and π-integrable. By theorem 3.2, for h1

and h2 there exist events F1 and F2 withPQ
x (Fi) = 1 and n−1 ∑n

t hi(Xt)→
∫

hid π on
Fi. Setting F := F1 ∩ F2 and applying linearity, we obtain n−1 ∑n

t h(Xt) →
∫

hd π

on F. Evidently PQ
x (F) = 1. Hence (5) holds with µ = δx for any x ∈ S. This

extends to general µ via the identity

P
Q
µ (B) =

∫
P

Q
x (B)µ(dx) for all B ∈ B∞ and µ ∈P .

(The last equality can be obtained via a generating class argument applied to (3).)
�

Now we turn to the proof of theorem 3.3. In the proof, we let ic(S, [0, 1]) be the
functions in icbS taking values in [0, 1]. As usual, µn

w→ µ means that 〈µn, f 〉 →
〈µ, f 〉 for all f ∈ cbS. Also, we require the following definition: Letting G and
H be sets of bounded measurable functions, we say that H is monotonically
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approximated by G if, for all h ∈ H , there exist sequences {g1
n} and {g2

n} in G

with g1
n ↑ h and g2

n ↓ h pointwise. The proofs of the next two lemmas are given at
the end of this section.

Lemma 7.2. If H is monotonically approximated by G , then G is convergence determin-
ing for H , in the sense that if {νn} and ν are elements of P , and 〈νn, g〉 → 〈ν, g〉 for all
g ∈ G , then 〈νn, h〉 → 〈ν, h〉 for all h ∈H .

Lemma 7.3. If the conditions of theorem 3.3 hold, then there exists a countable class
G such that PQ

x {n−1 ∑n
t=1 g(Xt) →

∫
g dπ} = 1 for every g ∈ G , and, moreover,

ic(S, [0, 1]) is monotonically approximated by G .

Proof of theorem 3.3. Fix x ∈ S. Let πn be the empirical distribution. As a first step
of the proof, we claim that {πn} is tight with probability one.14 To see this, fix
ε > 0, and let K be a compact subset of S with π(K) ≥ 1 − ε. By assumption,
compact subsets of S are order bounded, and so we have a, b ∈ S with K ⊂ [a, b].
Let I := {y ∈ S : a � y} and J := {y ∈ S : y � b}. Evidently

(9) πn([a, b]) = πn(I ∩ J) ≥ πn(I) + πn(J)− 1.

Note that both I and J are increasing. By corollary 3.1, we can take Fa to be a subset
of S∞ with PQ

x (Fa) = 1 and πn(I) → π(I) on Fa; and Fb ⊂ S∞ with PQ
x (Fb) = 1

and πn(J)→ π(J) on Fb. It follows from (9) that on F := Fa ∩ Fb we have

lim inf
n→∞

πn([a, b]) ≥ π(I) + π(J)− 1 ≥ 2π(K)− 1 ≥ 1− ε.

Since closed and bounded order intervals are compact by assumption, it follows
that {πn} is tight on the probability one set F.

As the second step of the proof, we claim there exists a probability one set F′ such
that, for any given ω ∈ F′, we have 〈πω

n , f 〉 → 〈π, f 〉 for all f ∈ icbS. To see
that this is so, let G be as in lemma 7.3. Since G is countable and the law of large
numbers holds for every element of G , there exists a probability one set F′ ⊂ Ω
such that, for each ω ∈ F′, we have 〈πω

n , g〉 → 〈π, g〉 for all g ∈ G . Fix ω ∈ F′. Since
ic(S, [0, 1]) is monotonically approximated by G , lemma 7.2 implies that 〈πω

n , f 〉 →

14Recall that {µn} ⊂ P is called tight if, for all ε > 0, there exists a compact K ⊂ S such that

µn(K) ≥ 1− ε for all n.
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〈π, f 〉 for all f ∈ ic(S, [0, 1]). It immediately follows that 〈πω
n , f 〉 → 〈π, f 〉 for all

f ∈ icbS.15

Now let F′′ be the probability one set F ∩ F′. For any ω ∈ F′′, the sequence of
distributions {πω

n } is tight, and satisfies 〈πω
n , f 〉 → 〈π, f 〉 for all f ∈ icbS. In view

of lemma 6.6 of Kamihigashi and Stachurski (2014), we then have 〈πω
n , f 〉 → 〈π, f 〉

for all f ∈ cbS. This concludes the proof of theorem 3.3. �

7.3. Proofs from Section 4. It is convenient to start with the proof of proposi-
tion 4.4, and then return to the proofs of propositions 4.1–4.3.

Proof of proposition 4.4. Let h ∈ ibS be invariant, and let x and x′ be any two points
in S. We aim to show that h(x) = h(x′), and hence that h is constant. To this
end, let {Xt} and {X′t} be independent Q-Markov processes defined on the same
probability space (Ω, F ,P), with X0 = x and X′0 = x′. Since h is bounded and
invariant, both {h(Xt)} and {h(X′t)} are bounded martingales. By the martingale
convergence theorem, there exist random variables Y and Y′ such that h(Xt) → Y
and h(X′t)→ Y′ P-almost surely.

Let {Xt � X′t i.o. } be the event that Xt � X′t occurs infinitely often.16 Since Q is
order mixing, Xt � X′t at least once with probability one. As shown in proposi-
tion 9.1.1 of Meyn and Tweedie (2009), this in turn implies the seemingly stronger
result P{Xt � X′t i.o. } = 1. Since h is increasing, this implies that

P{h(Xt) ≤ h(X′t) i.o. } = 1.

It now follows that Y ≤ Y′ holds P-a.s., and hence EY ≤ EY′.

By the dominated convergence theorem and the martingale property, we have
EY = E h(Xt) = E h(X0) = h(x). Similarly, EY′ = h(x′). We have now shown
that h(x) ≤ h(x′). A symmetric argument gives h(x′) ≤ h(x), as can be seen by
swapping the roles of Xt and X′t in the proof above. We conclude that h(x) = h(x′),
as was to be shown. �

15If f ∈ icbS, then there exists a g ∈ ic(S, [0, 1]) and constants a, b such that f = a + bg.
16That is, {Xt � X′t i.o } :=

⋂∞
m=0

⋃
t≥m{Xt � X′t}.



24

Proof of proposition 4.1. In view of proposition 4.4, it is enough to show that Q is
order mixing under assumption 4.1. This was established in section 4.1 of Kamihi-
gashi and Stachurski (2012). �

Proof of proposition 4.2. The result is immediate from remark 2.4 and lemma 6.5 of
Kamihigashi and Stachurski (2014), plus proposition 4.4 of the present paper. �

Proof of proposition 4.3. As in Kamihigashi and Stachurski (2014), we will say that a
stochastic kernel Q on partially ordered space (S,�) is order reversing if, given a
pair x′ � x and any independent Markov processes {Xt} and {X′t} generated by
Q and starting at x and x′ respectively, there exists a t ∈ N with P{Xt � X′t} > 0.
In view of proposition 4.4 and lemma 6.5 of Kamihigashi and Stachurski (2014), to
verify proposition 4.3, it is enough to show that Q is order reversing and bounded
in probability under the conditions of proposition 4.3.

To establish boundedness in probability (see section 5.1 for the definition), we use
the assumption that Q is uniformly asymptotically tight. Fix x ∈ S and δ > 0.
We claim the existence of a compact K ⊂ S such that PQ

x {Xn ∈ K} ≥ 1− δ for
all n. To see this, let C be as in the definition of uniform asymptotic tightness. By
uniform asymptotic tightness, there exists an N such that PQ

x {Xn ∈ C} > 1− δ

for all n ≥ N. In addition, for n < N, choose Kn to be a compact subset of S such
that PQ

x {Xn ∈ Kn} > 1− δ. Clearly K := (∪N−1
n=1 Kn) ∪ C is compact and satisfies

P
Q
x {Xn ∈ K} ≥ 1− δ for all n.

Next we turn to order reversing. For the rest of this proof let Qn(x, B) := P
Q
x {Xn ∈

B} for all x ∈ S, n ∈ N and B ∈ B. Fix x and x′ in S with x ≤ x′, let {Xt} and
{X′t} be independent Markov processes generated by Q and starting and x and x′

respectively. Let c be as in the definition of weak mixing. As a first step, we claim
that

(10) ∃ j ∈ N s.t. Qnj(x, (c, ∞)) > 0, ∀ n ∈ N.
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To see that this is so, define a := min{x, c}. By weak mixing there is a j ∈ N with
Qj(a, (c, ∞)) > 0. Now note that, by the Chapman-Kolmogorov equations,

Q2j(a, (c, ∞)) =
∫

Qj(a, dy)Qj(y, (c, ∞))

≥
∫
1{y > c}Qj(a, dy)Qj(y, (c, ∞)).

Since y > c implies that y > a, Q is increasing and Qj(a, (c, ∞)) > 0, it follows
that Qj(y, (c, ∞)) is strictly positive on {y > c}. Moreover, Qj(a, dy) puts positive
measure on {y > c}. Hence the integral is strictly positive, and Q2j(a, (c, ∞)) > 0
is established. An induction argument generalizes this result to all n, and (10) is
established.

A symmetric argument now shows that

(11) ∃ k ∈ N s.t. Qnk(x′, (−∞, c)) > 0, ∀ n ∈ N.

Combining (10) and (11), we see that for t = jk we have

Qt(x′, (−∞, c)) ·Qt(x, (c, ∞)) > 0.

Finally, since {Xt} and {X′t} are independent, we obtain

P{X′t ≤ Xt} ≥ P{X′t < c < Xt}

= P{X′t < c}P{c < Xt}

= Qt(x′, (−∞, c))Qt(x, (c, ∞)) > 0.

Hence Q is order reversing as claimed. �

7.4. Proofs from Section 5.

Proof of proposition 5.1. Let {ξt} and {ξ ′t} be IID draws from φ and independent of
each other. Consider first condition (iii). We claim that QF is order reversing (recall
the proof of proposition 4.3. To see this, fix x′ � x. Let {zt}k

t=1 and {z′t}k
t=1 be as in

the statement of the proposition. Define the constant

γ := P{Fk(x, ξ1, . . . , ξk) < Fk(x′, ξ ′1, . . . , ξ ′k)}.
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We aim to show that γ > 0. By hypothesis, Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k). By
continuity of F, there exist open neighborhoods Nt of zt and N′t of z′t such that

z̃t ∈ Nt and z̃′t ∈ N′t for t ∈ {1, . . . , k} =⇒ Fk(x, z̃1, . . . , z̃k) < Fk(x′, z̃′1, . . . , z̃′k).

This leads to the estimate

γ ≥ P∩n
t=1 {ξt ∈ Nt and ξ ′t ∈ N′t} =

n

∏
t=1

φ(Nt)φ(N′t).

Since Z is the support of φ, this last term is positive, and γ > 0.

The inequality γ > 0 tells us directly that QF is order reversing. Since QF is also
increasing and bounded in probability, lemma 6.5 of Kamihigashi and Stachurski
(2014) implies that QF is order mixing. Existence of a stationary distribution fol-
lows from theorem 3.2 of the same reference.

The proof of the proposition under conditions (i)–(ii) is similar. For example, an
argument similar to the one just given shows that condition (i) implies that QF

is downward reaching in the sense of Kamihigashi and Stachurski (2014). The
order reversing property then follows from Kamihigashi and Stachurski (2014),
proposition 3.2, and the rest of the arguments are unchanged. �

7.5. Remaining Proofs. Finally, we complete the proofs of lemmas 7.1–7.3.

Proof of lemma 7.1. Assume the conditions of the lemma. In particular, let iG be
trivial, and let Y be increasing and G -measurable. Fixing c ∈ R, let Fx(c) :=
P

Q
x {Y ≤ c}. Given the assumptions on Y, the set {Y ≤ c} is decreasing and in

G . Sinc iG is trivial, the decreasing sets in G must also be trivial.17 Hence the dis-
tribution function Fx(c) is either zero or one. Letting γ := inf{c ∈ R : Fx(c) = 1}
and applying right-continuity, we have Fx(γ) = 1 and Fx(c) = 0 for any c < γ.
Hence PQ

x {Y = γ} = 1. By the definition of triviality, γ does not depend on x. �

Proof of lemma 7.2. Let {νn} and ν be probability measures on S, and suppose that
〈νn, g〉 → 〈ν, g〉 for all g ∈ G ⊂ bS. We claim that 〈νn, h〉 → 〈ν, h〉 for all h ∈ H ⊂

17Just observe that if D ∈ G is decreasing, then Dc is increasing, and hence h(x) = P
Q
x (Dc) =

1−PQ
x (D) is constant in {0, 1}. The claim follows.
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bS. To see this, pick any h ∈ H , and choose sequences {g1
n} and {g2

n} in G with
g1

n ↑ h and g2
n ↓ h. Clearly

lim inf
n
〈νn, h〉 ≥ lim inf

n
〈νn, g1

k〉 = 〈ν, g1
k〉 for all k.

∴ lim inf
n
〈νn, h〉 ≥ sup

k
〈ν, g1

k〉 = lim
k
〈ν, g1

k〉 = 〈ν, h〉.

A symmetric argument applied to {g2
n} yields lim supn〈νn, h〉 ≤ 〈ν, h〉. �

Proof of lemma 7.3. Let A be the countable subset of S in assumption 3.2. For a ∈ A,
let Ia := 1{y ∈ S : a � y}. Let K be the set of functions ` = rIa for some
r ∈ Q ∩ [0, 1] and a ∈ A. Let G1 be all functions g = max`∈F ` where F ⊂ K

is finite. Clearly G1 is countable, and, by theorem 3.2, every g ∈ G1 satisfies
P

Q
x {n−1 ∑n

t=1 g(Xt) →
∫

g dπ} = 1. We claim that for each f ∈ ic(S, [0, 1]) there
exists a sequence {gn} in G1 converging up to f . To verify this claim it suffices to
show that

(12) sup{`(x) : ` ∈ K and ` ≤ f } = f (x) for any x ∈ S.

Indeed, if (12) is valid, then take {`k} to be an enumeration of all ` ∈ K with ` ≤ f
and choose gn = max1≤k≤n `k.

To establish (12), fix x ∈ S and ε > 0. By continuity of f and assumption 3.2,
we can find an a ∈ A with a � x and f (x) − ε < f (a). Let r ∈ Q be such that
f (x)− ε < r < f (a) and let `(x) := rIa. Since ` ≤ f (a)Ia and f is increasing we
have ` ≤ f . On the other hand, f (x)− ε < r = `(a) ≤ `(x). Since ε was arbitrary
we conclude that (12) is valid.

To complete the proof of lemma 7.3, we show existence of a class of functions G2

such that G2 is countable, every g ∈ G2 satisfiesPQ
x {n−1 ∑n

t=1 g(Xt)→
∫

g dπ} = 1,
and, for each f ∈ ic(S, [0, 1]), there exists a sequence {gn} in G2 converging down
to f . The claim in lemma 7.3 is then satisfied with G := G1 ∪ G2. We omit the
details, since the construction of G2 is entirely symmetric to the construction of
G1. �
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