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1 Introduction

Allocation of resources to public goods is typically decided through budget negotiations.

In many democratic governments these negotiations occur annually and are constrained by

the budgetary institutions in place. In designing budgetary institutions one may have various

goals, such as efficiency, responsiveness to citizens’ preferences, or accountability. There has

been increasing interest among policy-makers in understanding how to achieve these goals

in both developed and developing countries (see, for example, Santiso, 2006; Shah, 2007).1

Economic research has also recognized the importance of budgetary institutions (see, for ex-

ample, Hallerberg, Strauch and von Hagen, 2009).2 These studies emphasize the importance

of various dimensions of budgetary institutions including transparency and centralization of

decision-making. We focus on a different dimension in this paper: the rules governing feasi-

ble allocations to mandatory and discretionary spending programs.3 Discretionary programs

require periodic appropriations, and no spending is allocated if no new agreement is reached.

By contrast, mandatory programs are enacted by law, and spending continues into the fu-

ture until changed. Thus under mandatory programs, spending decisions today determine

the status quo level of spending for tomorrow.

Naturally, there may be disagreement on the appropriate level of public spending, and the

final spending outcome is the result of negotiations between parties that represent different in-

terests. Negotiations are typically led by the party in power whose identity may change over

time, bringing about turnover in agenda-setting power. Bowen, Chen and Eraslan (2014)

show that in a stable economic environment, mandatory programs improve the efficiency

of public good provision over discretionary programs by mitigating the inefficiency due to

turnover. However, the economic environment may be changing over time, potentially re-

1The OECD has devoted resources to surveying budget practices and procedures across countries since
2003. See International Budget Practices and Procedures Database, OECD (2012).

2See also Alesina and Perotti (1995) for a survey of the early literature recognizing the importance of
budgetary institutions.

3This terminology is used in the United States budget. Related institutions exist in other budget ne-
gotiations, for example the budget of the European Union is categorized into commitment and payment
appropriations. The main distinction is that one has dynamic consequences because agreements are made
for future budgets, and the other does not.
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sulting in evolving preferences. Hence, the party in power today must consider how current

spending on the public good affects future spending when preferences and the agenda-setter

are possibly different from today. In this paper we investigate the role of budgetary in-

stitutions in the efficient provision of public goods in an environment with these features.

Specifically, we analyze an environment with disagreement over the value of the public good,

changing economic conditions, and turnover in political power.

In this environment it is natural to expect that mandatory programs may have some draw-

backs. Indeed, in settings different from ours, Riboni and Ruge-Murcia (2008), Zapal (2011)

and Dziuda and Loeper (2015) note that inefficiency can arise from mandatory programs

when preferences are evolving.4 In accord with these results, we first show that mandatory

programs in isolation lead to inefficiency in public good spending, but the main contribution

of our paper is to show that efficiency can be obtained when appropriate flexibility is added

to mandatory programs. We show this in increasingly complex environments.

We begin by analyzing a model in which two parties bargain over the spending on a

public good in each of two periods. The parties place different values on the public good,

and these values may deterministically change over time, reflecting changes in the underlying

economic environment. To capture turnover in political power, we assume the proposing

party is selected at random each period. Unanimity is required to implement the proposed

spending on the public good. We investigate the efficiency properties of the equilibrium

outcome of this bargaining game under different budgetary institutions.

We distinguish between static Pareto efficiency and dynamic Pareto efficiency. A stati-

cally Pareto efficient allocation in a given period is a spending level such that no alternative

would make both parties better off and at least one of them strictly better off in that pe-

riod. A dynamically Pareto efficient allocation is a sequence of spending levels, one for each

period, that needs to satisfy a similar requirement except that the utility possibility frontier

is constructed using the discounted sum of utilities. Dynamic efficiency puts intertemporal

restrictions on spending levels in addition to requiring static efficiency for each period, mak-

ing it a stronger requirement than static Pareto efficiency. We show that if parties disagree

4We further discuss how our results relate to these and other papers at the end of the Introduction.
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about the value of the public good in all periods, then any equilibrium in which spending

varies with the identity of the proposer cannot be dynamically Pareto efficient. That is,

dynamic Pareto efficiency requires that parties insure against political risk. We further show

that when preferences are evolving over time, dynamic Pareto efficiency typically requires

that spending levels change accordingly. This means that with evolving preferences dynamic

Pareto efficiency requires that parties avoid gridlock.

Comparing equilibrium public good allocations with the efficient ones, we show that dis-

cretionary only institutions lead to static efficiency but dynamic inefficiency, mandatory only

institutions can lead to static and dynamic inefficiency, whereas allowing an endogenous

combination of mandatory and discretionary programs results in both static and dynamic

efficiency if the value of the public good is decreasing over time. Furthermore, if temporary

cuts to mandatory programs are allowed, an endogenous choice of mandatory and discre-

tionary programs results in both static and dynamic efficiency for any deterministic change

in the value of the public good. Sequestration and furloughs are examples of temporary cuts

to mandatory programs seen in practice.

The primary reason for dynamic inefficiency of discretionary only budget institutions is

that they lead to political risk. Specifically, since the status quo of a discretionary spending

program is exogenously zero, the equilibrium level of spending varies with the party in power.

With mandatory only budgetary institutions, any equilibrium is dynamically inefficient

because the second period’s spending level either varies with the identity of the proposing

party, which leads to political risk, or is equal to the first period’s level, which results in

gridlock. Even static inefficiency may result with mandatory only budget institutions. This

is because the parties’ concerns about their future bargaining positions, which are determined

by the first period’s spending level, can lead the parties to reach an outcome that goes against

their first-period interests.

In contrast, budgetary institutions that allow flexibility with a combination of discre-

tionary and mandatory programs avoid both political risk and gridlock, resulting in dynamic

efficiency.5 To see why this is true, first consider the case when the value of the public good is

5Examples of budget functions in the United States with significant fractions of both mandatory and
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decreasing over time for both parties. The party in power in the first period finds it optimal

to set the size of the mandatory program to a level that is statically efficient in the second

period. Given this, the status quo is maintained in the second period regardless of which

party comes into power, thereby eliminating political risk. The party in power in the first

period can then use discretionary spending to increase the total spending to the desired level

in the first period, avoiding gridlock. Thus dynamic efficiency is achieved by a combination

of positive discretionary and mandatory spending. Now consider any time profile of public

good spending (either increasing or decreasing) that dynamic efficiency might require. If

discretionary spending can be negative, which we interpret as a temporary cut in mandatory

programs, then the party in power in the first period can tailor the spending to the desired

level and achieve dynamic efficiency. The main insight is that the flexibility afforded by

a combination of mandatory and discretionary programs delivers efficiency. However, this

efficiency result breaks down with a longer time horizon because to eliminate political risk

in all future periods, the first-period proposer must be able to set all future status quos

independently, which is not feasible with a simple combination of mandatory and discre-

tionary programs. In this case, we show that efficiency is achieved with sunset provisions

with appropriately chosen expiration dates.

To extend our result to an even richer environment, we consider a model with an arbitrary

time horizon and stochastic preferences that depend on the economic state. We analyze a

budgetary institution in which proposers choose a spending rule that gives spending levels

conditional on the realization of the state. We show that the first-period proposer chooses a

rule that is dynamically efficient and once chosen, this spending rule is retained because no

future proposer can make a different proposal that is better for itself and acceptable to the

other party. Thus state-contingent mandatory programs allow sufficient flexibility to achieve

dynamic efficiency, even though we consider spending rules that cannot condition on the

proposer identity.

discretionary spending include income security, commerce and housing credit, and transportation (see Budget
of the United States Government, 2015). Policymakers explicitly specify the budget enforcement act category,
that is, mandatory or discretionary, when proposing changes to spending on budget functions (see, for
example, House Budget Committee, 2014).

5



The use of state-contingent programs dates back to at least Ancient Egypt, where the rate

of taxation depended on the extent of Nile flooding in any given year (see Breasted, 1945,

page 191). Such state-contingency can also be found in practice in modern economies as

automatic adjustments embedded in mandatory programs. For example, in the United States

unemployment insurance may fluctuate with the unemployment rate through “extended” or

“emergency” benefits. These benefits have been a feature of the unemployment insurance law

since 1971, and are triggered by recession on the basis of certain unemployment indicators

(see Nicholson and Needels, 2006).6 Similarly, in Canada the maximum number of weeks one

can receive unemployment benefits depends on the local rate of unemployment (see Canadian

Minister of Justice, 2014, Schedule I, page 180). The efficiency of state-contingent spending

programs may explain why they are successfully implemented in practice.

Our work is related to several strands of literature. A large body of political economy

research studies efficiency implications of policies that arise in a political equilibrium.7 As

highlighted in Besley and Coate (1998) inefficiency can arise because policies either yield

benefits in the future when the current political representation might not enjoy them, or alter

the choices of future policy makers, or may change the probability of the current political

representation staying in power. Our paper shares with the rest of the literature the first

two sources of inefficiency, but unlike the rest of the literature, our main focus is on linking

these sources of inefficiency to budgetary institutions that specify the rules governing feasible

allocations to mandatory and discretionary spending programs.

Modeling mandatory spending programs as an endogenous status quo links our work to

a growing dynamic bargaining literature.8 With the exception of Bowen, Chen and Eraslan

6See also Federal-State Extended Unemployment Compensation Act of 1970, U.S. House of Representa-
tives, Office of the Legislative Counsel (2013).

7See, for example, Persson and Svensson (1984); Alesina and Tabellini (1990); Krusell and Ŕıos-Rull
(1996); Dixit, Grossman and Gul (2000); Lizzeri and Persico (2001); Battaglini and Coate (2007); Acemoglu,
Golosov and Tsyvinski (2008, 2011); Aguiar and Amador (2011); Azzimonti (2011); Bai and Lagunoff (2011);
Van Weelden (2013); Callander and Krehbiel (2014); Bierbrauer and Boyer (2014).

8This literature includes Baron (1996); Kalandrakis (2004, 2010); Riboni and Ruge-Murcia (2008); Dier-
meier and Fong (2011); Zapal (2011); Battaglini and Palfrey (2012); Duggan and Kalandrakis (2012); Pigu-
illem and Riboni (2012, 2015); Diermeier, Egorov and Sonin (2013); Levy and Razin (2013); Baron and Bowen
(2014); Bowen, Chen and Eraslan (2014); Chen and Eraslan (2014); Forand (2014); Kalandrakis (2014); Ma
(2014); Nunnari and Zapal (2014); Dziuda and Loeper (2015); Anesi and Seidmann (2015).
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(2014) and Zapal (2011) this literature has focused on studying models only with policies

that have the endogenous status quo property. In the language of our model, this literature

has focused on mandatory spending programs only. Bowen, Chen and Eraslan (2014) model

discretionary and mandatory spending programs, but do not allow for an endogenous choice

of these two types of programs. Moreover, unlike in their model, we allow the values parties

attach to the public good to vary over time, which plays an important role in our results.

Bowen, Chen and Eraslan (2014) show that mandatory programs ex-ante Pareto dominate

discretionary programs under certain conditions, whereas we show that with evolving pref-

erences mandatory programs with appropriate flexibility achieve dynamic efficiency. Zapal

(2011) demonstrates that a budgetary institution that allows for distinct current-period policy

and future-period status quo eliminates static inefficiency. This result parallels the efficiency

of an endogenous choice of mandatory and discretionary programs that we show, but we

do this in an environment with political turnover and more general variation in preferences.

Furthermore, we also demonstrate the efficiency of state-contingent mandatory programs in

this richer setting.

Our focus on budgetary institutions connects our work to papers studying fiscal rules and

fiscal constitutions.9 This literature has focused on other fiscal rules or constitutions, for

example, constraints on government spending and taxation, limits on public debt or deficits,

or decentralization of spending authority.

In the next section we describe our model. In Section 3 we discuss Pareto efficient allo-

cations and define Pareto efficient equilibria. We discuss institutions with only discretionary

spending in Section 4. In Section 5 we give properties of equilibria for institutions that allow

mandatory spending (with or without discretionary spending), and give efficiency properties

of mandatory only institutions. In Section 6 we discuss institutions that allow for an en-

dogenous choice of mandatory and discretionary spending, as well as sunset provisions. In

Section 7 we consider state-contingent mandatory spending. We conclude in Section 8. All

proofs omitted in the main text are in the Appendix.

9See, for example, Persson and Tabellini (1996a,b); Stockman (2001); Besley and Coate (2003); Besley
and Smart (2007); Caballero and Yared (2010); Yared (2010); Halac and Yared (2014); Azzimonti, Battaglini
and Coate (2015).
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2 Model

Consider a stylized economy and political system with two parties labeled A and B.

There are two time periods indexed by t ∈ {1, 2}.10 In each period t, the two parties decide

an allocation to a public good xt ∈ R+. The stage utility for party i ∈ {A,B} in period t

is uit(xt). Party i seeks to maximize its dynamic payoff from the sequence of public good

allocations ui1(x1) + δui2(x2), where δ ∈ (0, 1] is the parties’ common discount factor.

We assume uit is twice continuously differentiable, strictly concave, and attains a maxi-

mum at θit for all i ∈ {A,B} and t ∈ {1, 2}. This implies uit is single-peaked with θit denoting

party i’s ideal level of the public good in period t.11 We assume parties’ ideal levels of the

public good are positive and party A’s ideal is lower than party B’s. That is, 0 < θAt ≤ θBt for

all t. Parties’ ideal levels of the public good may vary across periods. In particular, they may

be increasing with θi1 < θi2 for all i ∈ {A,B}, decreasing with θi1 > θi2 for all i ∈ {A,B},

divergent with θA2 < θA1 < θB1 < θB2, or convergent with θA1 < θA2 < θB2 < θB1.

We consider a political system with unanimity rule.12 At the beginning of each period,

a party is randomly selected to make a proposal for the allocation to the public good. The

probability that party i proposes in a period is pi ∈ (0, 1).13 Spending on the public good may

be allocated by way of different programs - a discretionary program, which expires after one

period, or a mandatory program, for which spending will continue in the next period unless

the parties agree to change it. Denote the proposed amount allocated to a discretionary

program in period t as kt, and to a mandatory program as gt. If the responding party agrees

to the proposal, the implemented allocation to the public good for the period is the sum of

the discretionary and mandatory allocations proposed, so xt = kt + gt; otherwise, xt = gt−1.

10In Section 7 we consider a more general model with any number of periods and random preferences.
11Because of the opportunity cost of providing public goods, it is reasonable to model parties’ utility

functions as single-peaked as in, for example, Baron (1996).
12Most political systems are not formally characterized by unanimity rule, however, many have institutions

that limit a single party’s power, for example, the “checks and balances” included in the U.S. Constitution.
Under these institutions, if the majority party’s power is not sufficiently high, then it needs approval of the
other party to set new policies.

13More generally, the probability that party i proposes in period t is pit. In the two-period model, pi1
does not play a role, and for notational simplicity we write pi as the probability that party i proposes in
period 2. In Section 7 we extend our model to an arbitrary time horizon and we use the general notation.
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Denote a proposal by zt = (kt, gt). We require gt ≥ 0 to ensure a positive status quo each

period. Let Z ⊆ R × R+ be the set of feasible proposals. The set Z is determined by the

rules governing mandatory and discretionary programs, and hence we call Z the budgetary

institution. We consider the following institutions: only discretionary programs, in which case

Z = R+×{0} and gt−1 = 0 for all t; only mandatory programs, in which case Z = {0}×R+;

both mandatory and positive discretionary, in which case Z = R+×R+; and both mandatory

and discretionary where discretionary spending may be positive or negative, in which case

Z = {(kt, gt) ∈ R × R+|kt + gt ≥ 0}. It is natural to think of spending as positive, but it

is also possible to have temporary cuts to spending on mandatory programs, for example

government furloughs that temporarily reduce salaries of public employees. This temporary

reduction in mandatory spending can be thought of as negative discretionary spending as it

reduces total spending in the current period, but does not affect the status quo for the next

period.

A pure strategy for party i in period t is a pair of functions σit = (πit, αit), where

πit : R+ → Z is a proposal strategy for party i in period t and αit : R+ × Z → {0, 1} is

an acceptance strategy for party i in period t.14 Party i’s proposal strategy πit = (κit, γit)

associates with each status quo gt−1 an amount of public good spending in discretionary

programs, denoted by κit(gt−1), and an amount in mandatory programs, denoted by γit(gt−1).

Party i’s acceptance strategy αit(gt−1, zt) takes the value 1 if party i accepts the proposal zt

offered by the other party when the status quo is gt−1, and 0 otherwise.15

We consider subgame perfect equilibria and restrict attention to equilibria in which (i)

αit(gt−1, zt) = 1 when party i is indifferent between gt−1 and zt; and (ii) αit(gt−1, πjt(gt−1)) = 1

for all t, gt−1 ∈ R+, i, j ∈ {A,B} with j 6= i. That is, the responder accepts any proposal that

it is indifferent between accepting and rejecting, and the equilibrium proposals are always

14In this two-period model, we show that equilibrium strategies in the second period are unique. Thus,
in equilibrium, the second-period strategy does not depend on the history except through the status quo,
so writing strategies as depending on history only through the status quo is without loss of generality. This
result extends to the finite-horizon case of state-contingent mandatory spending considered in Section 7. For
the infinite-horizon case, the restriction on strategies implies a Markov restriction on the equilibrium.

15We are interested in efficiency properties of budgetary institutions. Because the utility functions are
strictly concave, Pareto efficient allocations do not involve randomization. Hence, if any pure strategy
equilibrium is inefficient, allowing mixed strategies does not improve efficiency.
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accepted.16 We henceforth refer to a subgame perfect equilibrium that satisfies (i) and (ii)

simply as an equilibrium.

Denote an equilibrium by σ∗. Let party i ∈ {A,B} be the proposer and party j ∈ {A,B}

be the responder in period 2. (When we use i to denote the proposer and j to denote the

responder without any qualifier, it is understood that i 6= j.) Given conditions (i) and (ii),

for any g1 admissible under Z, the equilibrium proposal strategy (κ∗i2(g1), γ
∗
i2(g1)) of party i

in period 2 solves

max
(k2,g2)∈Z

ui2(k2 + g2)

s.t. uj2(k2 + g2) ≥ uj2(g1).
(P2)

Let Vi(g;σ2) be the expected second-period payoff for party i given first-period mandatory

spending g and second-period strategies σ2 = (σA2, σB2). That is

Vi(g;σ2) = pAui2(κA2(g) + γA2(g)) + pBui2(κB2(g) + γB2(g)).

If party i is the proposer and party j is the responder in period 1, then for any g0 admissible

under Z the equilibrium proposal strategy (κ∗i1(g0), γ
∗
i1(g0)) of party i in period 1 solves

max
(k1,g1)∈Z

ui1(k1 + g1) + δVi(g1;σ
∗
2)

s.t. uj1(k1 + g1) + δVj(g1;σ
∗
2) ≥ uj1(g0) + δVj(g0;σ

∗
2).

(P1)

3 Pareto efficiency

In this section we characterize Pareto efficient allocations and define Pareto efficient equi-

libria, both in the static and the dynamic sense.

3.1 Pareto efficient allocations

We distinguish between the social planner’s static problem (SSP), which determines static

Pareto efficient allocations, and the social planner’s dynamic problem (DSP), which deter-

mines dynamic Pareto efficient allocations.

We define a statically Pareto efficient allocation in period t as the solution to the following

16Any equilibrium is payoff equivalent to some equilibrium (possibly itself) that satisfies (i) and (ii).
Similar restrictions are made in Bowen, Chen and Eraslan (2014) and the proof follows the same arguments
as in that paper. We omit the arguments here for space considerations.
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maximization problem

maxxt∈R+ uit(xt)

s.t. ujt(xt) ≥ u
(SSP)

for some u ∈ R, i, j ∈ {A,B} and i 6= j.17 By Proposition 1, statically Pareto efficient

allocations are all those between the ideal points of the parties.

Proposition 1. An allocation xt is statically Pareto efficient in period t if and only if xt ∈

[θAt, θBt].

Denote a sequence of allocations by x = (x1, x2) and party i’s discounted dynamic payoff

from x by Ui(x) =
∑2

t=1 δ
t−1uit(xt). We define a dynamically Pareto efficient allocation as

the solution to the following maximization problem

maxx∈R2
+

Ui(x)

s.t. Uj(x) ≥ U
(DSP)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. Denote the sequence of party i’s static ideals

by θi = (θi1, θi2) for all i ∈ {A,B}, and denote the solution to (DSP) as x∗ = (x∗1, x
∗
2).

18

Proposition 2 characterizes the dynamically Pareto efficient allocations.19

Proposition 2. A dynamically Pareto efficient allocation x∗ satisfies the following properties:

1. For all t, x∗t is statically Pareto efficient. That is, x∗t ∈ [θAt, θBt] for all t.

2. Either x∗ = θA, or x∗ = θB, or u′At(x
∗
t ) + λ∗u′Bt(x

∗
t ) = 0 for some λ∗ > 0, for all t.

Proposition 2 part 2 implies that if x∗ 6= θi for all i ∈ {A,B}, and θAt 6= θBt in period t

then we must have

−u
′
At(x

∗
t )

u′Bt(x
∗
t )

= λ∗ (1)

17The social planner’s static problem (SSP) is a standard concave programming problem so the solution
is unique for a given u if it exists.

18Note the solution to (DSP) depends on U , but for notational simplicity we suppress this dependency
and denote the solution to (DSP) as x∗. The solution to (DSP) is unique for a given U if it exists.

19In the proof of Proposition 2 in the Appendix, we generalize (DSP) to any number of periods and prove
Proposition 2 for this more general problem.
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for some λ∗ > 0.20 By (1) if parties A and B do not have the same ideal level of the public

good in periods 1 and 2, then in a dynamically Pareto efficient allocation, either the allocation

is equal to party A’s or party B’s ideal in both periods, or the ratio of their marginal utilities

is equal across these two periods, i.e.,
u′A1(x

∗
1)

u′B1(x
∗
1)

=
u′A2(x

∗
2)

u′B2(x
∗
2)

. The intuition for the latter is that if

the ratio of marginal utilities is not constant across periods, then there is an intertemporal

reallocation such that at least one party is strictly better off and the other party is no worse

off. In both cases there is a dynamic link across periods.

3.2 Pareto efficient equilibrium

We define a dynamically Pareto efficient equilibrium given an initial status quo g0 as

an equilibrium that results in a dynamically Pareto efficient allocation for any realiza-

tion of the sequence of proposers. More precisely, denote an equilibrium strategy profile

as σ∗ = ((σ∗A1, σ
∗
A2), (σ

∗
B1, σ

∗
B2)) with σ∗it = ((κ∗it, γ

∗
it), α

∗
it). An equilibrium allocation for

σ∗ given initial status quo g0 is a possible realization of total public good spending for

each period xσ
∗
(g0) = (xσ

∗
1 (g0), x

σ∗
2 (g0)), where xσ

∗
1 (g0) = κ∗i1(g0) + γ∗i1(g0), and xσ

∗
2 (g0) =

κ∗j2(γ
∗
i1(g0)) + γ∗j2(γ

∗
i1(g0)) for some i, j ∈ {A,B}. The random determination of proposers

induces a probability distribution over allocations given an equilibrium σ∗. Thus any ele-

ment in the support of this distribution is an equilibrium allocation for σ∗.21 We require

every allocation in the support of this distribution to be dynamically Pareto efficient for the

equilibrium to be dynamically Pareto efficient.

Definition 1. An equilibrium σ∗ is a dynamically Pareto efficient equilibrium given initial

status quo g0 if and only if every equilibrium allocation xσ
∗
(g0) for σ∗ given initial status quo

g0 is dynamically Pareto efficient.

A statically Pareto efficient equilibrium given initial status quo g0 is analogously defined

as an equilibrium in which the realized allocation to the public good is statically Pareto

efficient in all periods t given initial status quo g0. Thus a necessary condition for σ∗ to be a

20This is because if u′Bt(x
∗
t ) = 0, then part 2 of Proposition 2 implies that we must also have u′At(x

∗
t ) = 0

which is not possible when θAt 6= θBt.
21For example, if A is the proposer in period 1 and B is the proposer in period 2, then the equilibrium

allocation is xσ
∗

1 (g0) = κ∗A1(g0) + γ∗A1(g0), and xσ
∗

2 (g0) = κ∗B2(γ∗A1(g0)) + γ∗B2(γ∗A1(g0)).

12



dynamically Pareto efficient equilibrium is that σ∗ is a statically Pareto efficient equilibrium.

The analysis of efficiency properties of equilibria under different budgetary institutions

is aided by the following results. We first show that if parties’ ideal levels of the public

good are different in both periods, then given a spending level in the first period, a unique

spending level in the second period is required for the allocation to be dynamically Pareto

efficient. Given strict concavity of the utility functions, the solution to equation (1) for a

fixed λ∗ is unique, and thus given some allocation in period t′, the allocations in all other

periods are uniquely pinned down. This means that if the equilibrium level of spending in

period 2 varies with the identity of the period-2 proposer, then the equilibrium cannot be

dynamically Pareto efficient. Thus dynamically Pareto efficient equilibria avoid political risk.

We formalize this in Lemma 1.22

Lemma 1. Suppose θAt 6= θBt for all t. If allocations x and x̃ are both dynamically Pareto

efficient and xt′ = x̃t′ for some t′, then x = x̃.

We next show that dynamic Pareto efficiency typically requires variation across periods

when parties’ ideals are evolving. We say that the parties are in gridlock if the spending in

period 2 does not change when preferences are different from period 1. Thus dynamically

Pareto efficient allocations typically avoid gridlock. We formalize this result in Lemma 2. If

θi1 6= θi2, we can write uit(xt) = ui(xt, θit), and we say that utilities have increasing marginal

returns if ∂ui
∂xt

is strictly increasing in θit for all t, xt and i ∈ {A,B}.23 The increasing

marginal returns property ensures that if both parties’ ideals increase (or decrease) over time,

then the spending level in any dynamically Pareto efficient allocation must also increase (or

decrease) over time.24 This property is satisfied by commonly used utility functions such as

22Note that our definition of a dynamically Pareto efficient equilibrium requires ex-post dynamic Pareto
efficiency, that is, allocations must be dynamically Pareto efficient for each realized path of proposers. Two
other notions of a dynamically Pareto efficient equilibrium might be considered: Ex-ante dynamic Pareto
efficiency, before the realization of the first-period proposer, and interim dynamic Pareto efficiency, after the
realization of the first-period proposer but before the realization of the second-period proposer. By Lemma
1, if θAt 6= θBt for any t, then ex-post efficiency implies interim efficiency. We can interpret our results as
showing which budgetary institutions result in dynamically Pareto efficient allocations conditional on the
initial party in power. Ex-ante Pareto efficiency would require the first-period allocation to be invariant to
the party in power, a stronger requirement than ex-post or interim Pareto efficiency.

23Increasing marginal returns is stronger than strict supermodularity (e.g., Edlin and Shannon, 1998).
24This is stated formally in Lemma A1 in the Appendix.
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uit(xt) = −(xt − θit)2.

Lemma 2. Under any of the following conditions, we have x∗1 6= x∗2:

1. Parties’ ideals are increasing or decreasing and not overlapping, that is, θA1 < θB1 <

θA2 < θB2 or θA2 < θB2 < θA1 < θB1.

2. Parties’ ideals are increasing or decreasing, and utilities have increasing marginal re-

turns.

3. Parties’ ideals are divergent or convergent, uit(xt) = −(|xt − θit|)r with r > 1 for all t

and i ∈ {A,B} and x∗1 6= θA1θB2−θB1θA2

θB2−θB1+θA1−θA2
.

4 Discretionary spending

Suppose spending is allocated through discretionary programs only, implying that the

status quo in each period is exogenous and equal to zero. In this case there is no dynamic link

between the previous period’s policy and the current period’s status quo, and Z = R+×{0}.

Without the dynamic link between periods, the bargaining between the two parties is a

static problem, similar to the monopoly agenda-setting model in Romer and Rosenthal (1978,

1979).25 For this section we denote a proposal in period t by kt since gt is zero. Consider

any period t. Since uBt is single-peaked at θBt and 0 < θAt ≤ θBt, we have uBt(0) < uBt(θAt).

Hence, if party A is the proposer in period t, it proposes its ideal policy kt = θAt, which

is accepted by party B. If party B is the proposer in period t, however, whether it can

implement its ideal policy depends on the locations of the parties’ ideal points relative to the

status quo. Specifically, let φoAt be the highest policy that makes party A as well off as the

status quo in period t. That is,

φoAt = max{x ∈ R+|uAt(x) ≥ uAt(0)}.

Note that φoAt > θAt. We next characterize the equilibrium and its efficiency properties.

25Note that when only discretionary spending is allowed, g0 = g1 = 0, and hence the proposer’s first-period
problem (P1) becomes a static problem identical to (P2).
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Proposition 3. Under a budgetary institution that allows only discretionary spending pro-

grams, given the initial status quo of zero:

1. The equilibrium is statically Pareto efficient.

2. The equilibrium is dynamically Pareto inefficient if and only if θAt 6= θBt for all t.

Specifically, the equilibrium level of spending in period t is xt = θAt if party A is the proposer

and is xt = min{θBt, φoAt} ∈ [θAt, θBt] if party B is the proposer.

The efficiency properties can be seen from the equilibrium strategies. Static efficiency ob-

tains since the equilibrium spending is in the interval [θAt, θBt] for all t. Dynamic inefficiency

arises if θAt 6= θBt for all t because the equilibrium spending level depends on the identity of

the proposer, hence there is dynamic inefficiency due to political risk by Lemma 1.26 When

θAt 6= θBt for at most one period, dynamic efficiency is equivalent to static efficiency. This

is because the restriction in (1) does not apply when θAt = θBt, hence it does not place a

dynamic restriction on spending levels.27

5 Mandatory spending

When mandatory programs are allowed, the proposing party in the first period takes

into account the effect of the amount allocated to the mandatory program on the second-

period spending because it becomes the status quo in the second period. This creates a

dynamic link between periods. We show that this dynamic game admits an equilibrium and

give properties of the equilibrium proposal strategies in period 2.28 The result applies to

any budgetary institution that allows mandatory spending programs, in combination with

discretionary spending or in isolation. We formalize this result in the next subsection.

26Political risk is the only source of inefficiency in part because the status quo spending in the discretionary
only institution is exogenously zero, and hence always lower than both parties’ ideal points. If the exogenous
status quo is between the ideal points in both periods, then the source of dynamic inefficiency is gridlock
because in equilibrium the spending is stuck at the status quo. We find it natural that in our model of public
spending the exogenous status quo is fixed at zero.

27The result is stated for the two-period model, but a straightforward generalization of the argument
shows that in a model with an arbitrary number of periods, Proposition 3 holds if the condition in part 2 is
replaced by θAt 6= θBt for at least two periods.

28Equilibrium existence is not immediate because lower hemicontinuity of the second-period acceptance
correspondence requires a non-trivial proof. The proof is given in the Appendix.
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5.1 Preliminaries

Define the functions φAt and φBt which are analogous to φoAt. The value φAt(gt−1) is the

highest acceptable spending level to party A and φBt(gt−1) is the lowest acceptable spending

level to party B when the status quo is gt−1. That is,

φAt(gt−1) = max{x ∈ R+|uAt(x) ≥ uAt(gt−1)},

φBt(gt−1) = min{x ∈ R+|uBt(x) ≥ uBt(gt−1)}.

These are illustrated below in Figure 1. If gt−1 < θAt, then φAt(gt−1) > gt−1 and if gt−1 ≥

θAt, then φAt(gt−1) = gt−1. If gt−1 ≤ θBt, then φBt(gt−1) = gt−1 and if gt−1 > θBt, then

φBt(gt−1) < gt−1.

uAt

gt−1
θAtg φAt(g)g′=φAt(g

′)

uBt

gt−1
θBtg=φBt(g) g′φBt(g

′)

Figure 1: φAt and φBt

Proposition 4. Under any budgetary institution that allows mandatory spending programs,

an equilibrium exists. For any g1 ∈ R+, the equilibrium spending in period 2 is unique and

satisfies

κ∗A2(g1) + γ∗A2(g1) = max{θA2, φB2(g1)},

κ∗B2(g1) + γ∗B2(g1) = min{θB2, φA2(g1)}.
Furthermore:

1. κ∗i2(g1) + γ∗i2(g1) ∈ [θA2, θB2] for all i ∈ {A,B} and all g1 ∈ R+.
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2. If θA2 6= θB2, then

κ∗A2(g1) + γ∗A2(g1) = κ∗B2(g1) + γ∗B2(g1) = g1 if g1 ∈ [θA2, θB2],

κ∗A2(g1) + γ∗A2(g1) < κ∗B2(g1) + γ∗B2(g1) if g1 /∈ [θA2, θB2].

Proposition 4 gives the equilibrium level of total spending in the second period, which is

unique for any status quo. Part 1 implies that the equilibrium level of spending in period 2 is

statically Pareto efficient. Part 2 gives properties of the equilibrium spending if the parties’

ideals are different. If the status quo is statically Pareto efficient, then it is maintained. If the

status quo is not statically Pareto efficient, then the equilibrium proposal is different from

the status quo and depends on the identity of the proposer - specifically, it is lower when A

is the proposer than when B is the proposer.

Figure 2 is an example of equilibrium spending in period 2 for quadratic loss utility.

While the exact form depends on the specific utility function, any second-period strategy

has similar properties. Consider party A as the proposer in period 2. If g1 < θA2, then

party A proposes its ideal policy x2 = θA2, which is accepted since uB2(g1) < uB2(θA2). If

g1 ∈ [θA2, θB2], then party A proposes x2 = g1 since any x2 < g1 would be rejected by party

B and party A prefers g1 to any x2 > g1. If g1 > θB2, then party B accepts all proposals in

the interval [φB2(g1), g1] since these are closer to θB2 than g1 is. Since θA2 < θB2 < g1, either

θA2 ∈ [φB2(g1), g1] or θA2 < φB2(g1). If θA2 ∈ [φB2(g1), g1], then party A proposes x2 = θA2.

If θA2 < φB2(g1), then party A proposes the policy closest to θA2 that is acceptable to B,

which is φB2(g1). For quadratic loss utility function, if g1 ≥ θB2 and φB2(g1) ≥ θA2, we have

φB2(g1) = 2θB2 − g1, which is linear and decreasing in g1. For general strictly concave uB2,

if g1 ≥ θB2 and φB2(g1) ≥ θA2, then φB2(g1) is decreasing in g1, but may not be linear.

Figure 2 indicates the potential sources of dynamic inefficiency with mandatory programs.

If the status quo is in [θA2, θB2], then the period-2 spending is equal to the status quo, so there

is potential for gridlock. If the status quo is outside [θA2, θB2], then the period-2 spending

depends on the identity of the proposer and political risk is a source of dynamic inefficiency.

We show in the next section that with only mandatory spending programs at least one of

these sources of dynamic inefficiency arises, except in special cases.
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x2

g1
θA2 θB2

θA2

θB2

κ∗A2(g1) + γ∗A2(g1)

κ∗B2(g1) + γ∗B2(g1)

political risk

gridlock

Figure 2: Period-2 equilibrium strategies with mandatory spending for uit(xt) = −(xt− θit)2

5.2 Inefficiency with mandatory spending only

Suppose now that spending is allocated through mandatory programs only, that is, Z =

{0} × R+. Since kt is zero for any t, the equilibrium discretionary proposal κ∗it(gt−1) is zero

for all i ∈ {A,B}, all t and all gt−1 ∈ R+. For the rest of the section we thus denote a

proposal in period t by gt.

We begin by noting that equilibrium allocations can be dynamically Pareto efficient in

the absence of a conflict in period 2 or in the absence of variation in ideal levels of public

good spending, but these are special cases.29 We show that equilibrium allocations are in

general dynamically Pareto inefficient and can even be statically Pareto inefficient. Others

have shown inefficiency with an endogenous status quo and evolving preferences in settings

different from ours.30 By demonstrating inefficiency with mandatory spending only in our

setting, we highlight its sources: political risk and gridlock. This helps to understand how

appropriate flexibility in mandatory spending avoids inefficiency, which we show in the next

section. Proposition 5 gives conditions under which equilibria are dynamically Pareto ineffi-

cient with mandatory spending only.

29We show this in Section A3.4 in the Appendix.
30For example, Riboni and Ruge-Murcia (2008) show dynamic inefficiency in the context of central bank

decision-making, and Zapal (2011) and Dziuda and Loeper (2015) show static inefficiency in other settings.
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Proposition 5. Under a budgetary institution that allows only mandatory spending pro-

grams, any equilibrium σ∗ is dynamically Pareto inefficient for any initial status quo g0 ∈ R+,

if either of the following conditions holds:

1. Parties’ ideals are increasing or decreasing and not overlapping, that is θA1 < θB1 <

θA2 < θB2 or θA2 < θB2 < θA1 < θB1.

2. Parties’ ideals are increasing or decreasing, θAt 6= θBt for all t and utilities have in-

creasing marginal returns.

Furthermore, if parties’ ideals are divergent or convergent and uit(xt) = −(|xt − θit|)r with

r > 1, then for any equilibrium σ∗, there exists a unique g0 such that σ∗ is dynamically Pareto

efficient if the initial status quo is g0.

Proposition 5 parts 1 and 2 give conditions under which equilibria are dynamically Pareto

inefficient for all initial status quos, when parties’ ideals are increasing or decreasing. The

final part states that when preferences are divergent or convergent, for a certain class of

utility functions, dynamic efficiency is obtained only for a unique initial status quo.31

To gain some intuition for Proposition 5, note that because of the second-period conflict

between the two parties, either the level of public good spending in period 2 varies with the

identity of the proposing party, which results in political risk, or neither party changes the

status quo, which results in gridlock.32

The next result shows that equilibrium allocations under mandatory spending programs

can violate not only dynamic, but also static Pareto efficiency.

31Dynamic inefficiency also obtains in a finite-horizon model with more than two periods under the con-
ditions in Proposition 5, when the fluctuations in preferences apply to the last two periods.

32The only source of dynamic inefficiency with discretionary only institutions is political risk while either
political risk or gridlock is a potential source of dynamic inefficiency with mandatory only institutions. With
political turnover but stable preferences, gridlock is not a source of inefficiency. In this environment political
risk does not arise with mandatory only institutions as shown in Proposition A1, and hence these achieve
dynamic Pareto efficiency. In the same environment, discretionary only institutions do not eliminate political
risk and are inefficient by Proposition 3. Conversely, in an environment without political turnover but
evolving preferences, discretionary only institutions can be dynamically Pareto efficient, whereas mandatory
only institutions are generically inefficient.
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Proposition 6. Suppose uit(xt) = −(xt−θit)2 for all i ∈ {A,B} and all t. Under a budgetary

institution that allows only mandatory spending programs, if either θA2 < θA1 < θB2 or

θA2 < θB1 < θB2, then there exists a nonempty open interval I such that any equilibrium σ∗

is statically Pareto inefficient for any initial status quo g0 ∈ I.

The key condition of Proposition 6 is θA2 < θi1 < θB2 for some i ∈ {A,B}. This has a

natural interpretation, indicating that future polarization between the two parties must be

greater than intertemporal preference variation for at least one party. Note that this occurs

when party A’s ideal is decreasing, or party B’s ideal is increasing, implying that static

Pareto inefficiency can arise when the ideal levels are increasing, decreasing or divergent.

Since the proposition does not rule out θA1 = θB1, static Pareto inefficiency can arise even in

the absence of first-period conflict between the two parties.

Figure 3 provides an example of static inefficiency. The parameters used satisfy the

conditions in Proposition 6. Specifically, the ideal levels of the two parties diverge, that

is, θA2 < θA1 < θB1 < θB2. The figure plots equilibrium public good spending in period

1 proposed by each party for initial status quo g0 ∈ [0, 2]. What the figure shows is that

unless g0 ∈ [θA1, θB1], we have γ∗i1(g0) /∈ [θA1, θB1] for at least one of the parties, that is, the

equilibrium is statically Pareto inefficient.

x1

g0
θA1 θB1

θA1

θB1

θA2

θB2

0 1 2
0

1

γ∗A1(g0)

γ∗B1(g0)

Figure 3: Period-1 equilibrium strategies when all spending is mandatory
θA = (0.4, 0.2), θB = (0.6, 0.8), pA = pB = 1

2
, δ = 1, uit(xt) = −(xt − θit)2

The reason for static inefficiency is the dual role of g1: it is the spending in period 1 but it

also determines the status quo in period 2. As an example, consider the case when party A’s
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ideal is decreasing as in Figure 3. If party A is the proposer in the first period, then it has an

incentive to propose spending close to its period-1 ideal, but since period-1 spending is the

status quo for period 2, it also has an incentive to propose spending lower than its period-1

ideal. When party B’s acceptance constraint is not binding, party A proposes spending that

is a weighted average of θA1 and θA2, giving rise to static inefficiency.

6 Mandatory and discretionary combined

We have seen that discretionary or mandatory programs in isolation typically lead to

dynamic inefficiency. A natural question is whether the flexibility afforded by a combination

of the two achieves dynamic efficiency. We now address this question by considering the case

in which parties can endogenously choose the amount allocated to each of these programs. We

begin by showing that when discretionary spending can only be positive, that is, Z = R+×R+,

we obtain dynamic efficiency under certain conditions.

Proposition 7. Under a budgetary institution that allows positive discretionary and manda-

tory spending, if utilities have increasing marginal returns and parties’ ideals are decreasing,

then every equilibrium is dynamically Pareto efficient for any initial status quo g0 ∈ R+.

We present the proof of Proposition 7 in the main text since it is instructive. First,

consider the following alternative way of writing the social planner’s dynamic problem:

max
(x1, xA2, xB2)∈R3

+

ui1(x1) + δ[pAui2(xA2) + pBui2(xB2)]

s.t. uj1(x1) + δ[pAuj2(xA2) + pBuj2(xB2)] ≥ U,

(DSP’)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. The difference between the original social planner’s

problem (DSP) and the modified social planner’s problem (DSP’) is that in the modified

problem, the social planner is allowed to choose a distribution of allocations in period 2.

Since the utility functions are concave, it is not optimal for the social planner to randomize

and therefore the solution to (DSP) is also the solution to (DSP’). To state this result

formally, we denote the solution to (DSP) given U ∈ R by x∗(U) = (x∗1(U), x∗2(U)).

Lemma 3. The solution to the modified social planner’s problem (DSP’) is x1 = x∗1(U) and

xA2 = xB2 = x∗2(U).
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Now fix the initial status quo g0. Denote fj(g0) as responder j’s status quo payoff. That

is fj(g0) = uj1(g0) + δVj(g0;σ
∗
2) with σ∗2 given in Proposition 4. The next result says that

the equilibrium mandatory spending in period 1 is the dynamically Pareto efficient level

of spending for period 2 corresponding to U , and the sum of the equilibrium mandatory

and discretionary spending is the dynamically Pareto efficient level of spending for period 1

corresponding to U , where U is responder j’s status quo payoff.

Lemma 4. Under a budgetary institution that allows positive discretionary and mandatory

spending, if utilities have increasing marginal returns and parties’ ideals are decreasing, then

for any equilibrium σ∗, given initial status quo g0, the equilibrium proposal strategy for party

i in period 1 satisfies γ∗i1(g0) = x∗2(U) and κ∗i1(g0) = x∗1(U)− x∗2(U), where U = fj(g0).

Proof. If party i is the proposer in period 1, then party i’s equilibrium proposal strategy

(κ∗i1(g0), γ
∗
i1(g0)) is a solution to

max
(k1,g1)∈R2

+

ui1(k1 + g1) + δVi(g1;σ
∗
2)

s.t. uj1(k1 + g1) + δVj(g1;σ
∗
2) ≥ uj1(g0) + δVj(g0;σ

∗
2),

(P1)

where

Vi(g;σ∗2) = pAui2(κ
∗
A2(g) + γ∗A2(g)) + pBui2(κ

∗
B2(g) + γ∗B2(g)).

For notational simplicity we write x∗1 and x∗2 instead of x∗1(U) and x∗2(U). We first show

that (x∗1 − x∗2, x∗2) is in the feasible set for (P1). As shown in Lemma A1 in the Appendix, if

the parties’ ideals are decreasing and utilities have increasing marginal returns, any Pareto

efficient allocation is decreasing. This implies x∗1 > x∗2, and thus (x∗1−x∗2, x∗2) ∈ R2
+ is feasible.

We next show that if γ∗i1(g0) = x∗2 and κ∗i1(g0) = x∗1 − x∗2, then the induced equilibrium

allocation is x∗1 in period 1 and x∗2 in period 2. It is straightforward to see xσ
∗

1 (g0) = γ∗i1(g0)+

κ∗i1(g0) = x∗1. To see that xσ
∗

2 (g0) = x∗2, first note that by Proposition 2 part 1, x∗2 ∈ [θA2, θB2].

Proposition 4 part 2 then implies that κ∗A2(x
∗
2) + γ∗A2(x

∗
2) = κ∗B2(x

∗
2) + γ∗B2(x

∗
2) = x∗2.

Finally, we show that (x∗1−x∗2, x∗2) is the maximizer of (P1). Suppose not. Then proposing

(κ∗i1(g0), γ
∗
i1(g0)) is better than proposing (x∗1 − x∗2, x∗2). That is, proposing (κ∗i1(g0), γ

∗
i1(g0))

gives proposer i a higher dynamic payoff while giving the responder j a dynamic payoff at
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least as high as fj(g0). Hence, if (κ∗i1(g0), γ
∗
i1(g0)) 6= (x∗1 − x∗2, x∗2), then the allocation with

x1 = γ∗i1(g0) + κ∗i1(g0), xA2 = κ∗A2(γ
∗
i1(g0)) + γ∗A2(γ

∗
i1(g0)), xB2 = κ∗B2(γ

∗
i1(g0)) + γ∗B2(γ

∗
i1(g0))

does better than x1 = x∗1 and xA2 = xB2 = x∗2 in (DSP’), which contradicts Lemma 3. �

By Lemma 4, for status quo g0 and period-1 proposer i ∈ {A,B}, the equilibrium outcome

is dynamically Pareto efficient since xσ
∗

1 (g0) = γ∗i1(g0) + κ∗i1(g0) = x∗1(U) and xσ
∗

2 (g0) =

γ∗i1(g0) = x∗2(U) where U = fj(g
0). Hence σ∗ is a dynamically Pareto efficient equilibrium for

any g0 ∈ R+. This completes the proof of Proposition 7.

If the parties’ ideals are increasing, and only positive discretionary spending is allowed

together with mandatory spending, in general we do not obtain dynamic efficiency. This is

because with increasing ideals we need discretionary spending in period 1 to be x∗1 − x∗2 < 0

to achieve efficiency, which is not feasible. This suggests however that allowing negative

discretionary spending restores dynamic Pareto efficiency, and indeed we have this result.

Proposition 8. Under a budgetary institution that allows positive and negative discretionary

spending and positive mandatory spending, that is, Z = {(kt, gt) ∈ R×R+|kt+gt ≥ 0}, every

equilibrium σ∗ is dynamically Pareto efficient for any initial status quo g0 ∈ R+.

We omit the proof of Proposition 8 since it is a slight modification of the proof of Proposi-

tion 7. Negative discretionary spending implies that the total spending in the current period

is lower than the status quo spending in the next period. As such, we can regard temporary

cuts in mandatory spending as negative discretionary spending. Figure 4 below provides

an example of equilibrium allocations for budgetary institutions that allow for mandatory

spending programs, either in isolation or in combination with discretionary spending. The

parameters used are the same as in Figure 3.

In Figure 4 the dashed blue line illustrates the set of dynamically Pareto efficient alloca-

tions, and the solid red line illustrates the set of equilibrium allocations - an initial status

quo and a sequence of proposers induces an equilibrium allocation in the set. As shown in

panels 4a and 4b, when mandatory spending and only positive discretionary spending are al-

lowed, for some status quos and some realization of proposers, equilibrium allocations do not

coincide with any dynamically Pareto efficient allocation. By contrast, when both positive
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(c) Mandatory and positive or
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Figure 4: Equilibrium allocations under different budgetary institutions
θA = (0.4, 0.2), θB = (0.6, 0.8), pA = pB = 1

2
, δ = 1, uit(xt) = −(xt − θit)2

and negative discretionary spending are allowed, for any status quo and any realization of

proposers, the equilibrium allocation coincides with a dynamically Pareto efficient allocation.

The reason the combination of mandatory and discretionary spending achieves dynamic

Pareto efficiency is that the proposer in the first period can perfectly tailor the spending in

that period to first-period preferences, and independently choose the next period’s status quo.

Although the first-period proposer cannot specify the whole sequence of allocations, neither

gridlock nor political risk arises in equilibrium because spending fluctuates with preferences

and the chosen second-period status quo is maintained regardless of who the proposer is.

Allowing positive and negative discretionary spending together with mandatory spending

provides sufficient flexibility to achieve this.

When there are more than two periods or preferences evolve stochastically, however,

simply combining mandatory and discretionary spending no longer allows the proposer to

perfectly tailor the spending in the current period to the preferences in that period and

independently choose the status quos for all future periods. Therefore efficiency can no

longer be achieved. In order to achieve efficiency, more flexibility is needed. We illustrate

next that if preferences evolve deterministically, then sunset provisions with appropriately

chosen expiration dates achieve efficiency with more than two periods.

24



Sunset provisions Consider the following three-period extension with sunset provisions.

A proposal in period t is zt = (kt, st, gt). As before, kt is discretionary spending for period t

and gt is mandatory spending. The new component is sunset provision st, which is spending

that applies in periods t and t+ 1 and expires thereafter. If zt is accepted, then the spending

in period t is xt = kt + st + gt and the status quo in period t + 1 is (st, gt). If zt is rejected,

then the spending in period t is xt = st−1 +gt−1 and the status quo in period t+1 is (0, gt−1).

Note that an accepted proposal z1 = (k1, s1, g1) determines spending in the first period

x1 = k1 + s1 + g1, the status quo spending in the second period x2 = s1 + g1 and the

status quo spending in the third period x3 = g1. Therefore, sunset provisions in combination

with mandatory and discretionary spending allow the proposer to choose today’s spending

independently of future status quos, and choose future status quos independently of each

other (this is not possible with only mandatory and discretionary spending). In the first

period the proposer can tailor the status quo spending for each future period such that

the future proposer in that period has no incentive to change it. Following the intuition

of Lemma 4, the equilibrium first-period proposal z1 = (k1, s1, g1) induces an allocation

x = (k1 + s1 + g1, s1 + g1, g1), which is dynamically Pareto efficient and remains unchanged

in later periods. This avoids gridlock by allowing spending to fluctuate with the evolving

preferences, and eliminates political risk by ensuring that the spending levels do not depend

on the identity of future proposers. This result holds more generally. Specifically, beyond

three periods, multiple sunset provisions with different expiration dates allow the proposer

to choose status quo spending for each future period independently and therefore provide

sufficient flexibility required for dynamic efficiency.33

Stochastically evolving preferences require further flexibility for efficiency to be achieved.

In the next section we consider a model with arbitrary time horizon and stochastic preferences

and show that state-contingent mandatory spending provides such flexibility.

33Note that with sunset provisions, flexibility is introduced by adding dimensions to the policy space. It
is possible that these additional policy instruments are not available, in which case one might ask if reducing
flexibility by placing bounds on mandatory and discretionary programs might improve efficiency. That is, we
might restrict the set of policies to Z = [a, b]× [c, d] ⊆ R×R+ and ask what values of (a, b, c, d) are optimal.
We leave this inquiry to future work.
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7 State-contingent mandatory spending

Consider a richer environment in which parties bargain in T ≥ 2 periods and preferences

are stochastic in each period reflecting uncertainties in the economy.34 The economic state

(henceforth we refer to the economic state as simply the state) in each period t is st ∈ S

where S is a finite set of n = |S| possible states. We assume the distribution of states

has full support in every period, but do not require the distribution to be the same across

periods.35 The utility of party i in period t when the spending is x and the state is s is ui(x, s).

As before, we assume ui(x, s) is twice continuously differentiable and strictly concave in x.

Further, ui(x, s) attains a maximum at θis and we assume 0 < θAs < θBs for all s ∈ S. The

state is drawn at the beginning of each period before a proposal is made. We denote the

probability that party i proposes in period t by pit ∈ (0, 1), which can depend on t arbitrarily.

In this setting, we consider a budgetary institution that allows state-contingent mandatory

spending. As discussed in the Introduction, these state-contingent programs have been used

historically, and are still in use.

A proposal in period t is a spending rule gt : S → R+ where gt(s) is the level of public good

spending proposed to be allocated to the mandatory program in state s. If the responding

party agrees to the proposal, the allocation implemented in period t is gt(st); otherwise the

allocation in period t is given by the status quo spending rule gt−1(st). In this environment,

a strategy for party i in period t is σit = (γit, αit). Let M be the space of all functions

from S to R+. Then γit : M× S → M is a proposal strategy for party i in period t and

αit :M× S ×M → {0, 1} is an acceptance strategy for party i in period t. A strategy for

party i is σi = (σi1, . . . , σiT ) and a profile of strategies is σ = (σ1, σ2).

With stochastic preferences the social planner chooses an allocation rule xt : S → R+ for

all t ∈ {1, . . . , T} to maximize the expected payoff of one of the parties subject to providing

the other party with a minimum expected dynamic payoff. Formally, a dynamically Pareto

34Note that T can be finite or infinite. In the case of infinite horizon we assume δ ∈ (0, 1) so that dynamic
utilities are well-defined.

35We assume full support in this section for expositional simplicity, but Proposition 10 below still holds
in an extension in which the distribution of states has different supports in different periods.
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efficient allocation rule solves the following maximization problem:

max
{xt:S→R+}Tt=1

∑T
t=1 δ

t−1Est [ui(xt(st), st)]

s.t.
∑T

t=1 δ
t−1Est [uj(xt(st), st)] ≥ U,

(DSP-S)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. We denote the solution to (DSP-S) by the sequence

of functions x∗ = {x∗t}Tt=1. The next proposition characterizes dynamically Pareto efficient

allocation rules, analogous to Proposition 2.

Proposition 9. Any dynamically Pareto efficient allocation rule satisfies:

1. For any t and t′, x∗t = x∗t′.

2. For all s ∈ S and all t, either

− u′i(x
∗
t (s), s)

u′j(x
∗
t (s), s)

= λ∗

for some λ∗ > 0, or x∗t (s) = θAs, or x∗t (s) = θBs.

Proposition 9 first says that the dynamically Pareto efficient allocation rule is independent

of time, i.e., the same allocation rule is used each period. The second part of the proposition

says that the dynamically Pareto efficient allocation rule either satisfies the condition that

the ratio of the parties’ marginal utilities is constant across states, or is one party’s ideal in

each state.

We next define a dynamically Pareto efficient equilibrium and show that dynamic ef-

ficiency is obtained by state-contingent mandatory spending. Define recursively xσ
∗
t (g0)

for t ∈ {1, . . . , T} by xσ
∗

1 (g0) = γ∗i1(g0, s1) for some i ∈ {A,B} and some s1 ∈ S, and

xσ
∗
t (g0) = γ∗it(x

σ∗
t−1(g0), st) for some i ∈ {A,B} and some st ∈ S and t ∈ {2, . . . , T}. An equi-

librium allocation rule for σ∗ given initial status quo g0 is a possible realization of a spending

rule for each period, xσ
∗
(g0) = {xσ∗t (g0)}Tt=1. The random determination of proposers and

states in each period induces a probability distribution over allocation rules given an equi-

librium σ∗. Thus any element in the support of this distribution is an equilibrium allocation

rule for σ∗.
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Definition 2. An equilibrium σ∗ is a dynamically Pareto efficient equilibrium given initial

status quo g0 ∈M if and only if every equilibrium allocation rule xσ
∗
(g0) for σ∗ given initial

status quo g0 is dynamically Pareto efficient.

Proposition 10. Under state-contingent mandatory spending, an equilibrium is either dy-

namically Pareto efficient for any initial status quo g0 ∈ M or is outcome-equivalent to a

dynamically Pareto efficient equilibrium.

The result in Proposition 10 is in stark contrast to the inefficiency results for mandatory

spending given in Propositions 5 and 6. Recall that dynamic efficiency fails in the model with

evolving (deterministic) preferences and fixed mandatory spending because the proposer in

period 1 cannot specify spending in the current period separately from the status quo for the

next period. Proposition 10 can be understood in an analogous way to the efficiency result

with discretionary and mandatory spending combined. In the first period the proposer can

tailor the status quo for each state such that any acceptable proposal other than the status

quo makes the future proposer worse off, giving the future proposer no incentive to change

it. This avoids gridlock by allowing spending to fluctuate with the economic state, and

eliminates political risk by ensuring that the spending levels do not depend on the identity

of future proposers.36 Thus, even though the identity of the proposer is not contractible, in

equilibrium inefficiency arising from proposer uncertainty is eliminated through the status

quo. State-contingent mandatory spending therefore overcomes inefficiency due to two kinds

of uncertainty - uncertainty about states, which is contractible, and uncertainty about the

proposer identity, which is not contractible.

8 Conclusion

In this paper we demonstrate that discretionary only and mandatory only budgetary

institutions typically result in dynamic inefficiency, and may result in static inefficiency in the

36We can regard the two-period model analyzed in the previous sections as a special case of an extension
of this section’s model in which the distribution of states has different supports in different periods with a
degenerate distribution in each period. The state-contingent mandatory programs achieve dynamic efficiency
by allowing the total spending in period 1 to be different from the status quo spending in period 2, which
can also be achieved by a combination of mandatory and discretionary programs in the two-period setting.
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case of mandatory only budgetary institutions. However, we show that bargaining achieves

dynamic Pareto efficiency in increasingly complex environments when flexibility is introduced

either through the endogenous combination of mandatory and discretionary programs, or

through sunset provisions, or through a state-contingent mandatory program. We show that

these budgetary institutions eliminate political risk and gridlock by allowing the proposer to

choose status quos that are not changed by future proposers because they fully account for

fluctuations in preferences.

We have considered mandatory spending programs that are fully state-contingent, but it

is possible that factors influencing parties’ preferences, such as the mood of the electorate,

cannot be contracted on. In this case it seems there is room for inefficiency even with manda-

tory spending that depends on a contractible state. It is possible that further flexibility with

discretionary spending may be helpful. Such combinations are observed in practice; for exam-

ple, in the United States, unemployment insurance is provided through both state-contingent

mandatory programs and discretionary programs.37 However, including discretionary spend-

ing may leave more room for political risk. We leave for future work exploring efficiency

implications of discretionary and mandatory spending when a part of the state may not be

contracted on.
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Appendix

A1 Pareto efficiency

A1.1 Proof of Proposition 1

First, we show that if xt is statically Pareto efficient, then xt ∈ [θAt, θBt]. Consider

xt /∈ [θAt, θBt]. Then we can find x′t in either (xt, θAt) or (θBt, xt) such that uAt(x
′
t) > uAt(xt)

and uBt(x
′
t) > uBt(xt), and therefore xt is not a solution to (SSP).

Second, we show that if x̃t ∈ [θAt, θBt], then x̃t is statically Pareto efficient. Let u =

ujt(x̃t). Denote the solution to (SSP) as x̂t(u). Since u′At(xt) < 0 and u′Bt(xt) > 0 for all

xt ∈ (θAt, θBt), the solution to (SSP) is x̂t(u) = x̃t for any x̃t ∈ [θAt, θBt]. �

A1.2 Proof of Proposition 2

We prove the result for a more general model with T ≥ 2. Denote a sequence of allocations

by x = {xt}Tt=1 and party i’s discounted dynamic payoff from x = {xt}Tt=1 by Ui(x) =∑T
t=1 δ

t−1uit(xt). We define a dynamically Pareto efficient allocation in the T -period problem

as the solution to the following maximization problem

maxx∈RT
+

Ui(x)

s.t. Uj(x) ≥ U
(DSP)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. Denote the sequence of party i’s static ideals by

θi = {θit}Tt=1 for all i ∈ {A,B}, and denote the solution to (DSP) as x∗ = {x∗t}Tt=1.

To prove part 1, by way of contradiction, suppose x∗t′ /∈ [θAt′ , θBt′ ]. By Proposition 1 there

exists x̂t′ such that uit′(x̂t′) ≥ uit′(x
∗
t′) for all i ∈ {A,B}, and uit′(x̂t′) > uit′(x

∗
t′) for at least

one i ∈ {A,B}. Now consider x̂ = {x̂t}Tt=1, with x̂t = x∗t for all t 6= t′. Then Ui(x̂) ≥ Ui(x
∗)

for all i ∈ {A,B}, and Ui(x̂) > Ui(x
∗) for at least one i ∈ {A,B}. Thus x∗ is not dynamically

Pareto efficient.

Next we prove part 2 by considering possible values of U . Fix i, j ∈ {A,B} with i 6= j.

Since for any U > Uj(θj) the solution does not exist, we only need to consider U ≤ Uj(θj).

For U = Uj(θj), the solution to (DSP) is x∗ = θj and for any U ≤ Uj(θi), the solution to
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(DSP) is x∗ = θi. What remains is to consider the case when U ∈ (Uj(θi), Uj(θj)). Suppose

θA = θB, then Uj(θi) = Uj(θj), which implies x∗ = θi. So consider θA 6= θB.

For the rest of the proof, suppose U ∈ (Uj(θi), Uj(θj)). Consider a relaxed version of

(DSP) with the constraint x ∈ RT
+ dropped. Denote the solution to the relaxed problem

as x̂ = {x̂t}Tt=1. Similar to the proof of part 1, if x̂t /∈ [θAt, θBt], then both parties can be

made strictly better off in period t. Thus if x̂ is a solution to the relaxed problem, then

x̂t ∈ [θAt, θBt] for all t. It follows that the solution to the relaxed problem is the same as the

solution to (DSP). The Lagrangian of the relaxed problem is

L (x, λ) = Ui(x)− λ
[
−Uj(x) + U

]
. (A1)

By Takayama (1974, Theorem 1.D.4), if the Jacobian of the constraint has rank 1 then the

solution to (DSP) satisfies

∂L
(
x̂, λ̂

)
∂xt

= δt−1u′it(x̂t) + λ̂δt−1u′jt(x̂t) = 0 (A2)

with λ̂ ≥ 0. The Jacobian is [(
δt−1

∂ujt(x̂t)

∂xt

)T
t=1

]
, (A3)

and it has rank 1 if there exists t′ such that x̂t′ 6= θjt′ , which we show next. Suppose x̂ = θj.

This implies Uj(x̂) > U . Because there exists t′ such that θit′ 6= θjt′ , we can find α ∈ (0, 1)

such that x = {xt}Tt=1 with xt′ = αθit′ + (1 − α)θjt′ and xt = x̂t for all t 6= t′ satisfies the

constraints in (DSP) and strictly increases the value of the objective function relative to x̂.

If λ̂ = 0, we obtain x̂ = θi, violating the Uj(x) ≥ U constraint, and hence λ̂ > 0. �

A1.3 Proof of Lemma 1

Since x and x̃ are dynamically Pareto efficient, by Proposition 2 part 1, xt ∈ [θAt, θBt]

and x̃t ∈ [θAt, θBt] for all t. There are three possible cases.

Case (i): xt′ = x̃t′ = θAt′ . By Proposition 2, part 2 either x = θA, or x = θB, or

u′At′(xt′)+λ
∗u′Bt′(xt′) = 0 for some λ∗ > 0. Since θAt 6= θBt for any t, xt′ = θAt′ implies x 6= θB.

Next note that u′At(θAt) = 0 for all t and u′Bt(θAt) 6= 0 for any t, hence u′At′(xt′)+λ∗u′Bt′(xt′) 6=

0 for any λ∗ > 0. Thus, it must be that x = θA. A similar argument shows that x̃ = θA,

35



proving that x = x̃.

Case (ii): xt′ = x̃t′ = θBt′ . Analogous to case (i), if xt′ = x̃t′ = θBt′ , then x = x̃ = θB.

Case (iii): xt′ = x̃t′ ∈ (θAt′ , θBt′). Note that x 6= θi for any i. By Proposition 2, part

2 it must be that u′At′(xt′) + λ∗u′Bt′(xt′) = 0 for some λ∗ > 0. This implies −u′
At′ (xt′ )

u′
Bt′ (xt′ )

= λ∗.

Similarly, u′At′(x̃t′)+ λ̃∗u′Bt′(x̃t′) = 0 for some λ̃∗ > 0, implying −u′
At′ (x̃t′ )

u′
Bt′ (x̃t′ )

= λ̃∗. Since xt′ = x̃t′

it follows that λ∗ = λ̃∗. Then by Proposition 2 part 2, −u′At(xt)

u′Bt(xt)
= −u′At(x̃t)

u′Bt(x̃t)
= λ∗ for all

t. To prove xt = x̃t for all t, it remains to show that −u′At(x)

u′Bt(x)
= λ∗ has a unique solution

for any λ∗ > 0. To see this, first note that x 6= θi for any i implies xt ∈ (θAt, θBt) for

all t because otherwise, xt = θit for some i and some t, and by previous arguments this

implies x = θi, which is a contradiction. From properties of uAt and uBt, we know that

−u′At(x)

u′Bt(x)
is continuous on (θAt, θBt), −

u′At(x)

u′Bt(x)
> 0 for all x ∈ (θAt, θBt), limx→θ+At

−u′At(x)

u′Bt(x)
= 0,

limx→θ−Bt
−u′At(x)

u′Bt(x)
= ∞ and ∂

∂x

[
−u′At(x)

u′Bt(x)

]
= −u′′At(x)u

′
Bt(x)−u

′
A(x)u′′B(x)

(u′Bt(x))
2 > 0 for all x ∈ (θAt, θBt).

Hence, by the Intermediate Value Theorem, a solution to −u′At(x)

u′Bt(x)
= λ∗ exists and by the

strict monotonicity of −u′At(x)

u′Bt(x)
, it is unique. �

A1.4 Proof of Lemma 2

To show part 1, note that by Proposition 2 part 1, any dynamically Pareto efficient

allocation x∗ satisfies x∗1 ∈ [θA1, θB1] and x∗2 ∈ [θA2, θB2]. If θB1 < θA2 or θB2 < θA1, then

x∗1 6= x∗2.

Part 2 follows from Lemma A1 below and part 3 follows from Lemma A2 below.

Lemma A1. Suppose utilities have increasing marginal returns. If θit′ > θit′′ for all i ∈

{A,B}, then any dynamically Pareto efficient allocation x∗ satisfies x∗t′ > x∗t′′.

Proof. Since x∗ is dynamically Pareto efficient, it follows that for some α ∈ [0, 1], x∗ is a

solution to the following maximization problem

max
x∈RT

+

αUA(x) + (1− α)UB(x),

which implies that x∗t is a solution to the following maximization problem

max
xt∈R+

αuA(xt, θAt) + (1− α)uB(xt, θBt)

for all t.
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Let f(xt, θAt, θBt) = αuA(xt, θAt) + (1 − α)uB(xt, θBt). Since ∂ui
∂xt

is strictly increasing in

θit for all i, we have that ∂f
∂xt

is strictly increasing in θit for all i. It follows from standard

monotone comparative statics results (for example, Edlin and Shannon, 1998, Theorem 3)

that if θit′ > θit′′ for all i ∈ {A,B}, then x∗t′ > x∗t′′ . �

Lemma A2. Suppose uit(xt) = −(|xt − θit|)r where r > 1. Then an allocation x is dynami-

cally Pareto efficient if and only if x = αθi + (1− α)θj for some α ∈ [0, 1].

Proof. Fix i, j ∈ {A,B} with i 6= j in (DSP). For any U > Uj(θj) the solution to (DSP)

does not exist, so assume U ≤ Uj(θj).

Suppose θi = θj. Then for any U ≤ Uj(θj) there exists a unique solution to (DSP),

x∗ = θi. In this case x∗ = αθi + (1− α)θj for any α ∈ [0, 1].

Suppose θi 6= θj. For U = Uj(θj), the solution is x∗ = θj = αθi + (1−α)θj where α = 0.

For any U ≤ Uj(θi), the solution is x∗ = θi = αθi + (1− α)θj where α = 1.

For the rest of the proof, suppose U ∈ (Uj(θi), Uj(θj)) and θi 6= θj. Consider a relaxed

version of (DSP) with the constraint x ∈ RT
+ dropped. Denote the solution to the relaxed

problem as x̂ = {x̂t}Tt=1. Similar to the proof of Proposition 2 part 1, if x̂t /∈ [θAt, θBt],

then both parties can be made strictly better off in period t. Thus if x̂ is a solution to the

relaxed problem, then x̂t ∈ [θAt, θBt] for all t. It follows that the solution to the relaxed

problem is the same as the solution to (DSP). The Lagrangian of the relaxed problem is

L(x, λ) = Ui(x) − λ[−Uj(x) + U ]. Since Uj(x) > U when x = θj, by Takayama (1974,

Theorem 1.D.2), ∂L(x̂,λ̂)
∂xt

= 0 with λ̂ ≥ 0 for all t is both sufficient and necessary for x̂.

Assume i = A. If i = B, the argument is similar and omitted. Since x̂t ∈ [θAt, θBt] for

all t, we have ∂L(x̂,λ̂)
∂xt

1
r

= −(x̂t − θAt)r−1 + λ̂(θBt − x̂t)r−1. Hence ∂L(x̂,λ̂)
∂xt

= 0 is equivalent to

−(x̂t − θAt)r−1 + λ̂(θBt − x̂t)r−1 = 0. If λ̂ = 0, we obtain x̂ = θA, violating the UB(x) ≥ U

constraint, and hence λ̂ > 0. If θAt 6= θBt, then ∂L(x̂,λ̂)
∂xt

= 0 cannot be satisfied if x̂t = θAt

or x̂t = θBt. Hence for all t such that θAt 6= θBt, we have x̂t ∈ (θAt, θBt) and therefore

x̂t−θAt

θBt−x̂t
= λ̂

1
r−1 with λ̂ > 0.

Fix t′ such that θBt′ 6= θAt′ . If θAt 6= θBt, then θBt− x̂t = (θBt′− x̂t′) θBt−θAt

θBt′−θAt′
since x̂t−θAt

θBt−x̂t
=

λ̂
1

r−1 and
x̂t′−θAt′
θBt′−x̂t′

= λ̂
1

r−1 . If θAt = θBt, then x̂t = θBt, and so again we have θBt− x̂t = (θBt′ −
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x̂t′)
θBt−θAt

θBt′−θAt′
. Thus UB(x̂) =

(
θBt′−x̂t′
θBt′−θAt′

)r∑T
t=1 δ

t−1(−(θBt − θAt)
r) =

(
θBt′−x̂t′
θBt′−θAt′

)r
UB(θA).

Since λ̂ > 0, we have UB(x̂) = U . Hence,
(
θBt′−x̂t′
θBt′−θAt′

)r
UB(θA) = U is necessary and sufficient

for x̂ to solve (DSP) with U . Rearranging, we get x̂t′ = αθAt′ + (1 − α)θBt′ where α =(
U

UB(θA)

) 1
r
. To conclude the proof, note that if UB(θA) < U < UB(θB) = 0, then α ∈ (0, 1),

and conversely, for any α ∈ (0, 1), the allocation x = αθA + (1 − α)θB solves (DSP) with

U = αrUB(θA). �

A2 Discretionary spending

The following lemma is useful in the proof of Proposition 3.

Lemma A3. Suppose there exists at most one t′ such that θAt′ 6= θBt′. Then an allocation

x is dynamically Pareto efficient if and only if xt is statically Pareto efficient in period t for

all t.

Proof. The “only if” part follows from Proposition 2 part 1 which states that if x = {xt}Tt=1

is dynamically Pareto efficient, then xt satisfies static Pareto efficiency for all t.

To show the “if” part, suppose x = {xt}Tt=1 is an allocation such that xt is statically

Pareto efficient in period t for all t. The proof is trivial if θA = θB, so we consider the case

when there is a unique t′ such that θAt′ 6= θBt′ . We will show that x solves (DSP). Since

θAt = θBt for t 6= t′, by Proposition 1, xt = θAt for all t 6= t′ and xt′ solves

maxx∈R+ uit′(x)

s.t. ujt′(x) ≥ u

for some ū. Since xt′ solves the problem above, it also solves

maxx∈R+ δt
′−1uit′(x) +

∑
t6=t′ δ

t−1uit(θAt)

s.t. δt
′−1ujt′(x) +

∑
t6=1 δ

t−1ujt(θAt) ≥ δt
′−1u+

∑
t6=t′ δ

t−1ujt(θAt).

Since {θAt}t6=t′ maximizes
∑

t6=t′ δ
t−1uit(xt) and

∑
t6=t′ δ

t−1ujt(xt), it follows that x solves

(DSP) with U = δt
′−1u+

∑
t6=t′ δ

t−1ujt(θAt). �
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A2.1 Proof of Proposition 3

We first characterize the equilibrium. Since the status quo spending is zero, party A

accepts any proposal kt such that 0 ≤ kt ≤ φoAt. To find party B’s optimal proposal, there

are two cases to consider. (i) Suppose θBt ≤ φoAt. Then, since uAt is single-peaked at

θAt ≤ θBt, we have uAt(θBt) ≥ uAt(φ
o
At) = uAt(0) and therefore party A accepts kt = θBt in

period t. In this case, party B’s optimal proposal in period t is equal to its ideal point θBt.

(ii) Suppose θBt > φoAt. Then, given the single-peakedness of uBt, the optimal policy for B

that is acceptable to A is equal to φoAt. In this case, party B proposes kt = φoAt < θBt. Hence,

party B’s optimal proposal is min{θBt, φoAt}.

Note that the policy implemented in period t is equal to θAt when party A is the proposer

and is equal to min {θBt, φoAt} ≥ θAt when party B is the proposer. It follows that the

policy implemented in period t is in [θAt, θBt] and therefore is statically Pareto efficient by

Proposition 1.

For the equilibrium’s dynamic efficiency properties, consider the following two cases. (i)

Suppose θAt 6= θBt for all t. In this case, min{θBt, φoAt} > θAt, which implies that the policy

implemented in period t varies with the identity of the proposer. By Lemma 1, this implies

dynamic Pareto inefficiency. (ii) Suppose there is at most one t′ such that θAt′ 6= θBt′ . In this

case, by Lemma A3, an allocation x is dynamically Pareto efficient if and only if xt is statically

Pareto efficient in all periods. Thus, the equilibrium is dynamically Pareto efficient. �

A3 Mandatory spending

A3.1 Proof of Proposition 4

We first prove equilibrium existence by showing that a solution exists for the proposer’s

problem in period 2 given any status quo g1, and given this solution, a solution exists for the

proposer’s problem in period 1.

Consider the problem of the proposing party i ∈ {A,B} in the second period under status

quo g1 ∈ R+ and budgetary institution Z that allows for mandatory spending. The proposing
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party’s maximization problem is:

max(k2,g2)∈Z ui2(k2 + g2)

s.t. uj2(k2 + g2) ≥ uj2(g1).
(P2)

Consider the related problem

max
x2∈Aj2(g1)

ui2(x2) (P ′2)

where Aj2(g1) = {x ∈ R+|uj2(x) ≥ uj2(g1)} is the responder’s acceptance set under status

quo g1. If x̂2 is a solution to (P ′2), then any (k̂2, ĝ2) ∈ Z such that k̂2 + ĝ2 = x̂2 is a solution

to (P2). We use the following properties of Aj2.

Lemma A4. Aj2(g1) is non-empty, convex and compact for any g1 ∈ R+ and Aj2 is contin-

uous.

Proof. Non-emptiness follows from g1 ∈ Aj2(g1) for all g1 ∈ R+. Convexity follows from

strict concavity of uj2. To show compactness, we show that Aj2(g1) is closed and bounded

for all g1 ∈ R+. Closedness follows from continuity of uj2. For boundedness, note that uj2

is differentiable and strictly concave, which implies that uj2(x) < uj2(y) + u′j2(y)(x − y) for

any x, y ∈ R+. Selecting y > θj2 gives u′j2(y) < 0 and taking the limit as x → ∞, we

have limx→∞ uj2(x) = −∞. We next establish upper and lower hemicontinuity of Aj2 using

Lemma A5.

Lemma A5. Let X ⊆ R be closed and convex, let Y ⊆ R and let f : X → Y be a continuous

function. Define ϕ : X � X by

ϕ(x) = {y ∈ X|f(y) ≥ f(x)}. (A4)

1. If ϕ(x) is compact ∀x ∈ X, then ϕ is upper hemicontinuous.

2. If f is strictly concave, then ϕ is lower hemicontinuous.

Proof. To show part 1, since ϕ(x) is compact for all x ∈ X, it suffices to prove that if xn → x

and yn → y with yn ∈ ϕ(xn) for all n ∈ N, then y ∈ ϕ(x). Since yn ∈ ϕ(xn), we have

f(yn) ≥ f(xn). Since f is continuous, xn → x and yn → y, it follows that f(y) ≥ f(x), hence

y ∈ ϕ(x).
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To show part 2, fix x ∈ X, let y ∈ ϕ(x) and consider any xn → x. We show that

there exists a sequence yn → y and n′ such that yn ∈ ϕ(xn) for all n ≥ n′. First suppose

f(y) > f(x). Set yn = y. Clearly, yn → y. By continuity of f , there exists n′ such that

f(yn) ≥ f(xn) for all n ≥ n′, that is, yn ∈ ϕ(xn). Next suppose f(y) = f(x). There

are two cases to consider. First, if y = x, set yn = xn. Clearly yn → y and yn ∈ ϕ(xn)

for all n. Second, suppose y 6= x. By strict concavity of f , there exist at most one such

y ∈ X. Set yn = y whenever f(xn) ≤ f(x). When f(xn) > f(x), by strict concavity of

f and the Intermediate Value Theorem, because xn → x, there exists n′ such that for all

n ≥ n′, there is a unique yn 6= xn such that f(yn) = f(xn) > f(x). Because yn = y whenever

f(xn) ≤ f(x) = f(y) and f(yn) = f(xn) whenever f(xn) > f(x), yn ∈ ϕ(xn) for all n ≥ n′

and yn → y follows from continuity of f . �

To see that Aj2 is upper and lower hemicontinuous, note that it can be written as ϕ in

(A4) with X = R+ closed and convex, Y = R and f = u continuous and strictly concave,

and we showed before that Aj2 is compact-valued. �

By Lemma A4, for any g1 ∈ R+, the acceptance set Aj2(g1) is non-empty and compact.

Applying the Weierstrass’s Theorem, a solution exists for (P ′2).

We next show that a solution exists to the proposer’s problem in period 1. Recall the

continuation value Vi is given by

Vi(g1;σ
∗
2) = pAui2(κ

∗
A2(g1) + γ∗A2(g1)) + pBui2(κ

∗
B2(g1) + γ∗B2(g1)), (A5)

where κ∗i2(g1) + γ∗i2(g1) is a solution to (P ′2) for all i ∈ {A,B}. For any g1 ∈ R+, and

i ∈ {A,B}, let Vi(g1) = Vi(g1;σ
∗
2) and

Fi(k1, g1) = ui1(k1 + g1) + δVi(g1),

fi(g1) = ui1(g1) + δVi(g1).
(A6)

Lemma A6 establishes some properties of Vi, Fi and fi.

Lemma A6. Vi, Fi and fi are continuous. Vi is bounded.

Proof. To show continuity of Vi, first note that given ui2 is strictly concave, the solution

to (P ′2) is unique for any g1 ∈ R+. Since Aj2 is non-empty, compact valued and is contin-
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uous by Lemma A4, applying the Maximum Theorem we have that the correspondence of

maximizers in (P ′2) is upper hemicontinuous. Since a singleton-valued upper hemicontinuous

correspondence is continuous as a function, κ∗i2 +γ∗i2 is continuous. Thus Vi(g1) is continuous.

Continuity of Fi and fi follow from their definitions and continuity of Vi.

To show boundedness of Vi, first note that ui2(κ
∗
k2(g1) + γ∗k2(g1)) ≤ ui2(θi2) for all k ∈

{A,B} and g1 ∈ R+ because θi2 is the unique maximizer of ui2. Moreover, for i 6= j, if

ui2(κ
∗
k2(g1) + γ∗k2(g1)) < ui2(θj2) for some k ∈ {A,B} and some g1 ∈ R+, then k could

make an alternative proposal that the responder would accept and k would strictly prefer. It

follows that ui2(κ
∗
k2(g1) + γ∗k2(g1)) ≥ ui2(θj2). Thus Vi(g1) ∈ [ui2(θj2), ui2(θi2)] for any g1. �

Fix the initial status quo g0 ∈ R+. When only mandatory spending programs are allowed,

Z = {0} × R+, and party i’s equilibrium proposal satisfies κ∗i1(g0) = 0 and

γ∗i1(g0) ∈ arg max
g1∈R+

fi(g1) s.t. fj(g1) ≥ fj(g0). (A7)

When both types of spending are allowed, we have Z = R+ × R+ or Z = {(kt, gt) ∈ R ×

R+|kt+gt ≥ 0}, depending on whether discretionary spending can be negative. In equilibrium

party i’s proposal satisfies

(κ∗i1(g0), γ
∗
i1(g0)) ∈ arg max

(k1,g1)∈Z
Fi(k1, g1) s.t. Fj(k1, g1) ≥ Fj(0, g0). (A8)

We show that in each of these problems, the objective function is continuous and the con-

straint set is compact for any g0 ∈ R+. Lemma A6 establishes continuity of Fi and fi and

boundedness of Vi. Compactness follows from an argument analogous to the one made for

the second period. Hence for any g0 ∈ R+, a solution to each of the optimization problems

exists, and therefore an equilibrium exists.

We now show that for any g1 ∈ R+

κ∗A2(g1) + γ∗A2(g1) = max{θA2, φB2(g1)}, (A9)

κ∗B2(g1) + γ∗B2(g1) = min{θB2, φA2(g1)}. (A10)

Consider (A9). The proof of (A10) is similar and omitted. Note that φB2(g1) = min{x ∈

R+|uB2(x) ≥ uB2(g1)} = minAB2(g1). There are two possible cases.
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Case (i): φB2(g1) ≤ θA2. Since θB2 ∈ AB2(g1), φB2(g1) ∈ AB2(g1) and θA2 ∈ [φB2(g1), θB2],

by convexity of AB2(g1), we have θA2 ∈ AB2(g1). Since θA2 maximizes uA2, it follows that

x̂2 = θA2 = max {θA2, φB2(g1)}.

Case (ii): φB2(g1) > θA2. Since φB2(g1) = minAB2(g1), for any x < φB2(g1) we have

x /∈ AB2(g1). Since uA2(x) is strictly decreasing for x > θA2, we have x̂2 = φB2(g1) =

max {θA2, φB2(g1)}.

We now prove parts 1 and 2. For part 1, let Z be a budgetary institution that allows

mandatory spending. If κ∗i2(g1) + γ∗i2(g1) /∈ [θA2, θB2], there exists (k′2, g
′
2) ∈ Z with k′2 + g′2 ∈

[θA2, θB2] such that uA2(κ
∗
i2(g1)+γ∗i2(g1)) < uA2(k

′
2+g′2) and uB2(κ

∗
i2(g1)+γ∗i2(g1)) < uB2(k

′
2+

g′2). Hence κ∗i2(g1) + γ∗i2(g1) ∈ [θA2, θB2].

For part 2, assume θA2 6= θB2. There are three possible cases.

Case (i): g1 ∈ [θA2, θB2]. Because uA2(k2 + g2) < uA2(g1) for any k2 + g2 > g1 and

uB2(k2 + g2) < uB2(g1) for any k2 + g2 < g1, party A does not propose or accept any proposal

such that k2 + g2 > g1 and party B does not propose or accept any proposal such that

k2 + g2 < g1. Hence κ∗A2(g1) + γ∗A2(g1) = κ∗B2(g1) + γ∗B2(g1) = g1.

Case (ii): g1 < θA2. In this case κ∗A2(g1)+γ∗A2(g1) = θA2 since θA2 is the unique maximizer

of uA2 and uB2(θA2) > uB2(g1). By the definition of φA2 we have φA2(g1) > θA2 when g1 < θA2.

Hence from (A10) we have κ∗B2(g1) + γ∗B2(g1) > θA2.

Case (iii): g1 > θB2. Using an argument analogous to case (ii), we have κ∗B2(g1) +

γ∗B2(g1) = θB2 and κ∗A2(g1) + γ∗A2(g1) < θB2. �

A3.2 Proof of Proposition 5

Note that the proposition applies only when θAt 6= θBt for all t. We first prove parts 1

and 2. Assume, towards a contradiction, that σ∗ is a dynamically Pareto efficient equilibrium

given g0 ∈ R+. The following lemma is useful.

Lemma A7. Let Z = {0} × R+. Suppose θAt 6= θBt for all t. For any g0 ∈ R+, if σ∗ is

a dynamically Pareto efficient equilibrium given g0, then any equilibrium allocation xσ
∗
(g0)

satisfies xσ
∗

1 (g0) = xσ
∗

2 (g0).

Proof. Fix a dynamically Pareto efficient equilibrium σ∗ given g0. The equilibrium spending
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in period 2 is either γ∗A2(x
σ∗
1 (g0)) or γ∗B2(x

σ∗
1 (g0)). Since σ∗ is an equilibrium and θAt 6= θBt for

all t, we have either γ∗A2(x
σ∗
1 (g0)) 6= γ∗B2(x

σ∗
1 (g0)) or xσ

∗
2 (g0) = γ∗A2(x

σ∗
1 (g0)) = γ∗B2(x

σ∗
1 (g0)) =

xσ
∗

1 (g0) by Proposition 4 part 2. In the former case, the level of spending in period 2 depends

on the identity of the period-2 proposer, contradicting that σ∗ is a dynamically Pareto efficient

equilibrium given g0 by Lemma 1. Thus, we must have xσ
∗

1 (g0) = xσ
∗

2 (g0). �

By Lemma A7, we have xσ
∗

1 (g0) = xσ
∗

2 (g0). To see part 1, note that Proposition 2 part 1

implies that xσ
∗

1 (g0) ∈ [θA1, θB1] and xσ
∗

2 (g0) ∈ [θA2, θB2], which is impossible if θA1 < θB1 <

θA2 < θB2 or if θA2 < θB2 < θA1 < θB1. To see part 2, (xσ
∗

1 (g0), x
σ∗
2 (g0)) is not a dynamically

Pareto efficient allocation since any dynamically Pareto efficient allocation satisfies x∗1 6= x∗2

when parties’ ideals are increasing or decreasing and θAt 6= θBt for all t by Lemma A1.

We next prove the remaining result. We first show that for any equilibrium σ∗, there

exists g0 such that σ∗ is dynamically Pareto efficient given g0. To show that, we make use of

the following lemma.

Lemma A8. Let Z = {0}×R+. Suppose (x̃, x̃) is a dynamically Pareto efficient allocation.

If gt−1 = x̃, then γ∗it(gt−1) = x̃ for all i ∈ {A,B} and all t in any equilibrium.

Proof. Consider the second period. Since (x̃, x̃) is dynamically Pareto efficient, x̃ ∈ [θA2, θB2]

by Proposition 2 part 1. Thus γ∗i2(x̃) = x̃ for all i ∈ {A,B} by Proposition 4.

Consider the first period. Suppose, towards a contradiction, γ∗i1(x̃) = x̂ 6= x̃ for some

i ∈ {A,B}. Note that party i can achieve a dynamic payoff of at least ui1(x̃) + δui2(x̃) for

all i ∈ {A,B} by following the strategy of always proposing x̃ when proposing and rejecting

any proposal when responding. Hence, uj1(x̂) + δVj(x̂) ≥ uj1(x̃) + δuj2(x̃) for all j ∈ {A,B}

since x̂ is an equilibrium proposal.

Note that Vj(x̂) = pAuj2(γ
∗
A2(x̂))+pBuj2(γ

∗
B2(x̂)) ≤ uj2(x̂

′) by strict concavity of uj2 where

x̂′ = pAγ
∗
A2(x̂) + pBγ

∗
B2(x̂). Hence uj1(x̂) + δuj2(x̂

′) ≥ uj1(x̃) + δuj2(x̃) for all j ∈ {A,B}.

Since the solution to (DSP) is unique for any given Ū (see footnote 18), this contradicts the

dynamic efficiency of (x̃, x̃). �

By Lemma A2, x is a dynamically Pareto efficient allocation if and only if x = αθA +

(1 − α)θB for some α ∈ [0, 1]. This implies any dynamically Pareto efficient allocation
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(x∗1, x
∗
2) can be written as x∗1(α) = αθA1 + (1 − α)θB1 and x∗2(α) = αθA2 + (1 − α)θB2. Let

α∗ = θB1−θB2

θB1−θB2+θA2−θA1
. Note that α∗ ∈ (0, 1) since sgn [θB1 − θB2] = sgn [θA2 − θA1] and

θi1 6= θi2 for all i ∈ {A,B}. Note also that x∗1(α) = x∗2(α) if and only if α = α∗. By Lemma

A8, any equilibrium σ∗ is dynamically Pareto efficient given g0 if g0 = x∗1(α
∗).

In the remainder of the proof, we let σ∗ be a dynamically Pareto efficient equilibrium

given g0 and show that we must have g0 = x∗1(α
∗). We do this in three steps.

Step 1: We show that γ∗A1(g0) ∈ (θA1, θB1)∩(θA2, θB2). By Lemma A7, we have xσ
∗

1 (g0) =

xσ
∗

2 (g0). Recall that x∗1(α) = x∗2(α) if and only if α = α∗. Thus xσ
∗

1 (g0) = xσ
∗

2 (g0) =

x∗1(α
∗) = x∗2(α

∗). Note that x∗1(α
∗) ∈ (θA1, θB1) and x∗2(α

∗) ∈ (θA2, θB2) since α∗ ∈ (0, 1).

Since xσ
∗

1 (g0) = x∗1(α
∗) = x∗2(α

∗) and α∗ is unique, it follows that γ∗A1(g0) = xσ
∗

1 (g0) ∈

(θA1, θB1) ∩ (θA2, θB2).

Step 2: We now show that fA(γ∗A1(g0)) = fA(g0) and fB(γ∗A1(g0)) = fB(g0). To see this,

note that fA(γ∗A1(g0)) ≥ fA(g0) and fB(γ∗A1(g0)) ≥ fB(g0) since γ∗A1(g0) is proposed by A and

accepted by B under status quo g0. Suppose, towards a contradiction, that fA(γ∗A1(g0)) ≥

fA(g0) and fB(γ∗A1(g0)) > fB(g0). Since fi(g1) = ui1(g1) + δVi(g1), where Vi(g1) = ui2(g1) for

all g1 ∈ [θA2, θB2] by Proposition 4 part 2, fA(g1) is strictly decreasing and fB(g1) is strictly

increasing in g1 on [θA1, θB1] ∩ [θA2, θB2]. Since γ∗A1(g0) ∈ (θA1, θB1) ∩ (θA2, θB2) and fi is

continuous, there exists ε > 0 such that fi(γ
∗
A1(g0) − ε) > fi(γ

∗
A1(g0)) for all i ∈ {A,B},

so that proposing γ∗A1(g0) cannot be optimal for A, which is a contradiction. By a similar

argument, it is impossible to have fA(γ∗A1(g0)) > fA(g0) and fB(γ∗A1(g0)) ≥ fB(g0).

Step 3: Finally, we show that if fA(γ∗A1(g0)) = fA(g0) and fB(γ∗A1(g0)) = fB(g0), then g0

must be equal to x∗1(α
∗). As shown earlier, γ∗A1(g0) = x∗1(α

∗). We show that the system of

equations

fA(x∗1(α
∗)) = fA(g0) fB(x∗1(α

∗)) = fB(g0) (A11)

has a unique solution in g0. Clearly, g0 = x∗1(α
∗) solves (A11). To see that no other solution

exists, suppose g′ 6= x∗1(α
∗) solves (A11). Since x∗1(α

∗) ∈ [θA1, θB1] ∩ [θA2, θB2] solves (A11)

and fA is strictly monotone on [θA1, θB1]∩ [θA2, θB2], we must have g′ /∈ [θA1, θB1]∩ [θA2, θB2].

Next we show that it is not possible to have g′ ∈ R+\ [θA2, θB2] using the following lemma.
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Lemma A9. Let Z = {0} × R+. Suppose θA2 < θB2. For any g1 ∈ R+ \ [θA2, θB2], g̃(g1) =

pAγ
∗
A2(g1) + pBγ

∗
B2(g1) satisfies g̃(g1) ∈ (θA2, γ

∗
B2(g1)) ⊆ [θA2, θB2], VA(g1) < VA(g̃(g1)) and

VB(g1) < VB(g̃(g1)).

Proof. Fix g1 < θA2. Note that κ∗i2(g1) = 0 for all i ∈ {A,B} and all g1 ∈ R+ since Z =

{0}×R+. From the proof of Proposition 4, if g1 < θA2, then γ∗A2(g1) = θA2 and γ∗B2(g1) > θA2.

We also have γ∗B2(g1) ≤ θB2 by Proposition 4 part 1. Hence g̃(g1) ∈ (θA2, γ
∗
B2(g1)) ⊆ [θA2, θB2].

Note that Vi(g1) = pAui2(θA2) + pBui2(γ
∗
B2(g1)). Moreover, since g̃(g1) ∈ [θA2, θB2], we

have Vi(g̃(g1)) = ui2(g̃(g1)) = ui2(pAθA2 + pBγ
∗
B2(g1)) by Proposition 4 part 2. By strict

concavity of ui2, it follows that Vi(g1) < Vi(g̃(g1)) for i ∈ {A,B}. When g1 > θB2, the

argument is similar and omitted. �

If g′ ∈ R+ \ [θA2, θB2] solves (A11) we have fi(g
′) = ui1(g

′) + δVi(g
′) = fi(x

∗
1(α
∗)) for all

i ∈ {A,B}. From Lemma A9, there exists g̃′ ∈ [θA2, θB2] such that Vi(g
′) < Vi(g̃

′) for all

i ∈ {A,B}. Since g̃′ ∈ [θA2, θB2], Vi(g̃
′) = ui2(g̃

′) by Proposition 4 part 2. Hence ui1(g
′) +

δui2(g̃
′) > fi(x

∗
1(α
∗)) for all i ∈ {A,B}. Furthermore, fi(x

∗
1(α
∗)) = ui1(x

∗
1(α
∗))+δui2(x

∗
2(α
∗))

for all i ∈ {A,B} since x∗1(α
∗) = x∗2(α

∗) ∈ [θA2, θB2]. Thus ui1(g
′) + δui2(g̃

′) > ui1(x
∗
1(α
∗)) +

δui2(x
∗
2(α
∗)) for all i ∈ {A,B}, which violates dynamic Pareto efficiency of (x∗1(α

∗), x∗2(α
∗))

as it is Pareto dominated by (g′, g̃′). Hence, it is not possible to have g′ ∈ R+ \ [θA2, θB2].

Since g′ /∈ [θA1, θB1] ∩ [θA2, θB2] and g′ /∈ R+ \ [θA2, θB2], it follows that if [θA2, θB2] ⊆

[θA1, θB1], then g0 = x∗1(α
∗) is the unique solution to (A11). If instead [θA1, θB1] ⊆ [θA2, θB2],

then we need to rule out g′ ∈ [θA2, θA1]∪ [θB1, θB2]. Note that fB(g0) = uB1(g0) + δuB2(g0) if

g0 ∈ [θA2, θB1] by Proposition 4 part 2, which implies that fB(g0) is strictly increasing in g0

on [θA2, θB1]. Since x∗1(α
∗) solves (A11), it is not possible to have g′ ∈ [θA2, θA1]. By a similar

argument, it is not possible to have g′ ∈ [θB1, θB2]. Thus, there is a unique solution to (A11)

if [θA1, θB1] ⊆ [θA2, θB2]. �

A3.3 Proof of Proposition 6

Denote g∗i ∈ arg maxg1∈R+
fi(g1) for i ∈ {A,B} where fi is defined as in (A6). We first

show that g∗A is unique and g∗A /∈ [θA1, θB1] when θA2 < θA1 < θB2. The proof that g∗B is

unique and g∗B /∈ [θA1, θB1] when θA2 < θB1 < θB2 is analogous and omitted.
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Define Qk ⊂ R+ for k = 1, . . . , 5 as

Q1 = (0,max {0, 2θA2 − θB2}),
Q2 = (max {0, 2θA2 − θB2}, θA2),
Q3 = (θA2, θB2),

Q4 = (θB2, 2θB2 − θA2),
Q5 = (2θB2 − θA2,∞).

Note that Qk may be empty for some k. Recall Vi(g1) is player i’s continuation payoff when

mandatory spending in period 1 is g1. We use the following result.

Lemma A10. Let Z = {0} × R+. If uit(xt) = −(|xt − θit|)r for all i ∈ {A,B} and for all

t where r > 1, then V ′′i (g1) exists and V ′′i (g1) ≤ 0 for all i ∈ {A,B} whenever g1 ∈ Qk for

some k = 1, . . . , 5.

Proof. First, by Proposition 4, the second period equilibrium strategies are

γ∗A2(g1) = max {θA2,min {g1, 2θB2 − g1}},

γ∗B2(g1) = min {θB2,max {g1, 2θA2 − g1}}.

Second, note that γ∗A2(g1) is constant in g1 on Q1 ∪Q2 ∪Q5, equal to g1 on Q3 and equal to

2θB2 − g1 on Q4. Similarly, γ∗B2(g1) is constant in g1 on Q1 ∪Q4 ∪Q5, equal to 2θA2 − g1 on

Q2 and equal to g1 on Q3. This implies

V ′i (g1) =


−pBu′i2(2θA2 − g1) if g1 ∈ Q2

u′i2(g1) if g1 ∈ Q3

−pAu′i2(2θB2 − g1) if g1 ∈ Q4

0 if g1 ∈ Q1 ∪Q5.

(A12)

Thus V ′′i (g1) exists and, by strict concavity of ui2, we have V ′′i (g1) ≤ 0 for all i ∈ {A,B} and

for all g1 ∈ Qk for k ∈ {1, . . . , 5}. �

By Lemma A10, if Z = {0} × R+ and uit(xt) = −(xt − θit)2 for all i ∈ {A,B} and all t,

then VA is continuously differentiable on R+ \ {2θA2 − θB2, θA2, θB2, 2θB2 − θA2}. Inspection

of (A12) shows that VA(g1) is increasing on [0, θA2]. Since fA(g1) = uA1(g1) + δVA(g1) and

θA1 > θA2, we have g∗A > θA2. Similarly, since fA is strictly decreasing on Q5, it is not possible
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to have g∗A ∈ Q5. From (A12) and θA2 < θB2, we have

lim
g1→θ−B2

V ′A(g1) = u′A2(θB2) < 0 < lim
g1→θ+B2

V ′A(g1) = −pAu′A2(θB2),

lim
g1→(2θB2−θA2)−

V ′A(g1) = 0 = lim
g1→(2θB2−θA2)+

V ′A(g1).

(A13)

This implies g∗A /∈ {θB2, 2θB2 − θA2}. Thus g∗A ∈ Q3 ∪Q4 and f ′A(g∗A) = 0.

Suppose g∗A,k satisfies f ′A(g∗A,k) = 0 and g∗A,k ∈ Qk for k ∈ {3, 4}, then g∗A,3 = θA1+δθA2

1+δ
and

g∗A,4 = θA1+δpA(2θB2−θA2)
1+δpA

.

Since θA2 < θA1, we have g∗A,3 ∈ (θA2, θA1) and hence g∗A,3 ∈ [θA2, θB2]. We need to show

that g∗A,4 does not maximize fA when θA2 < θA1 < θB2. By Proposition 4 part 2 we can

evaluate fA at g∗A,3 and g∗A,4 and compare these values. We have

fA(g∗A,3) = − δ
1+δ

(θA1 − θA2)2,

fA(g∗A,4) = − δpA
1+δpA

(2θB2 − θA1 − θA2)2 − δ(1− pA)(θB2 − θA2)2.
(A14)

Using (A14), fA(g∗A,4) < fA(g∗A,3) is equivalent to

1
1+δ

(θA1 − θA2)2 < pA

(
1

1+δpA

)
(2θB2 − θA1 − θA2)2 + (1− pA)(θB2 − θA2)2. (A15)

Note that for pA ∈ (0, 1) and δ ∈ (0, 1] we have 1
1+δ

< 1
1+δpA

< 1. In addition by

θA2 < θA1 < θB2 we have (θA1− θA2)2 < (2θB2− θA1− θA2)2 and (θA1− θA2)2 < (θB2− θA2)2.

Thus the right side of (A15) is a weighted average of two values, each of which is strictly

larger than the value on the left side. Hence g∗A,3 is the unique global maximum and is

statically Pareto inefficient.

The following lemma completes the proof.

Lemma A11. Let Z = {0} × R+. If fi has a unique global maximum at g∗i for some

i ∈ {A,B}, then there exists an open interval I containing g∗i such that if g0 ∈ I, then

γ∗j1(g0) ∈ I for all j ∈ {A,B}.

Proof. Fix i ∈ {A,B}. Note that in any equilibrium σ∗, we have fi(γ
∗
j1(g0)) ≥ fi(g0) for any

j ∈ {A,B} and any initial status quo g0 ∈ R+ since party i can always propose g0 when it is

the proposer and can always reject a proposal not equal to g0 when it is the responder.

Since g∗i is the unique global maximum of fi and fi is continuous, there exists an open
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interval I containing g∗i such that if g0 ∈ I and ĝ0 /∈ I, then fi(g0) > fi(ĝ0). It follows that

if fi(g̃0) ≥ fi(g0) where g0 ∈ I, then g̃0 ∈ I.

Consider g0 ∈ I. Suppose party i is the proposer in period 1. Since fi(γ
∗
i1(g0)) ≥ fi(g0), it

follows that γ∗i1(g0) ∈ I. Suppose party j 6= i is the proposer in period 1. Since fi(γ
∗
j1(g0)) ≥

fi(g0), it follows that γ∗j1(g0) ∈ I. �

A3.4 Efficiency with mandatory spending only

Proposition A1. Under a budgetary institution that allows only mandatory spending pro-

grams, any equilibrium σ∗ is dynamically Pareto efficient for any initial status quo g0 ∈ R+,

if either of the following conditions holds:

1. θA2 = θB2.

2. ui1 = ui2 for all i ∈ {A,B}.

Proof. Suppose first θA2 = θB2. By Proposition 4 part 1, γ∗i2(g1) = θA2 for all i ∈ {A,B} and

all g1 ∈ R+. Thus, the equilibrium level of spending in period 2 is statically Pareto efficient

for any g0. The continuation value of each party i ∈ {A,B} is thus Vi(g1) = ui2(θA2) for all

g1 ∈ R+. Given the initial status quo g0, the problem of the proposing party i ∈ {A,B} in the

first period is max(0,g1)∈Z ui1(g1)+δui2(θA2) subject to uj1(g1)+δuj2(θA2) ≥ uj1(g0)+δuj2(θA2).

Since ui2(θA2) and uj2(θA2) are constants, this problem is equivalent to (SSP) with u =

uj1(g0). Thus, the equilibrium level of spending in period 1 is also statically Pareto efficient

for any g0. Therefore the equilibrium is dynamically Pareto efficient by Lemma A3.

Suppose now ui1 = ui2 for all i ∈ {A,B}. The following lemmas are useful.

Lemma A12. Suppose uit = uit′ for all i ∈ {A,B} and all t and t′. An allocation x = {xt}Tt=1

is dynamically Pareto efficient if and only if xt′ = xt ∈ [θAt, θBt] for all t and t′.

Proof. Note that uit = uit′ for all i ∈ {A,B} and all t and t′ implies θit = θit′ for all i ∈ {A,B}

and all t and t′.

We first prove the “only if” part. If x∗ = θA, or x∗ = θB, then the result follows

immediately. Suppose x∗ 6= θA and x∗ 6= θB. There are two cases to consider: (i) Suppose
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θAt = θBt for some t. This implies θAt = θBt for all t. By Proposition 2 part 1, x∗t = θit for

all t, and hence x∗t = x∗t′ for all t and t′. (ii) Suppose θAt 6= θBt for some t. This implies

θAt 6= θBt for all t. By Proposition 2 part 2, we have, for any t and t′,

u′At(x
∗
t )

u′Bt(x
∗
t )

=
u′At′(x

∗
t′)

u′Bt′(x
∗
t′)
.

Since uit = uit′ for all i ∈ {A,B} and all t and t′, and the solution to −u′At(x)

u′Bt(x)
= λ∗ is

unique for any λ∗ > 0 and t as shown in the proof of Lemma 1, it follows that x∗t′ = x∗t . By

Proposition 2 part 1, we have x∗t ∈ [θAt, θBt].

We now prove the “if” part. As shown in the previous paragraph, any dynamically Pareto

efficient allocation x∗ satisfies x∗ = {x̃}Tt=1 for some x̃. Note that we can let ui = uit for any

i ∈ {A,B} and rewrite (DSP) as maxx∈R+ ui(x)
∑T

t=1 δ
t−1 subject to uj(x)

∑T
t=1 δ

t−1 ≥ U ,

which is equivalent to (SSP). By Proposition 1, if x̃ ∈ [θA1, θB1], then x̃ solves (SSP) for

ū = uj(x̃). It follows that {x̃}Tt=1 solves (DSP) for U = uj(x̃)
∑T

t=1 δ
t−1. �

Lemma A13. Let Z = {0} × R+. If ui1 = ui2 for all i ∈ {A,B}, then for any equilibrium

σ∗ and initial status quo g0, we have γ∗i1(g0) = x∗2(U) where U = fj(g0).

Proof. When both positive and negative discretionary and mandatory spending are allowed,

by the argument in the proof of Lemma 4, the period-1 proposal satisfies γ∗i1(g0) = x∗2(U)

and κ∗i1(g0) = x∗1(U) − x∗2(U) where U = fj(g0). Since ui1 = ui2, by Lemma A12, any

(x∗1(U), x∗2(U)) satisfies x∗1(U) = x∗2(U), which implies x∗1(U)− x∗2(U) = 0. Hence, when only

mandatory spending is allowed, which requires that κ∗i1(g0) = 0, the equilibrium period-1

proposal still satisfies γ∗i1(g0) = x∗2(U). �

For notational convenience we omit U below. By Lemma A12, x∗1 = x∗2 ∈ [θA2, θB2]. By

Lemma A13, γ∗i1(g0) = x∗2 for all i ∈ {A,B} and any initial status quo g0 ∈ R+. It follows that

γ∗i1(g0) ∈ [θA2, θB2]. By Proposition 4 part 2, we have γ∗A2(γ
∗
i1(g0)) = γ∗B2(γ

∗
i1(g0)) = γ∗i1(g0).

Hence, for any σ∗, we have xσ
∗
(g0) = (x∗1, x

∗
2) with x∗1 = x∗2 ∈ [θA2, θB2] for any g0 ∈ R+. By

Lemma A12, any σ∗ is dynamically Pareto efficient given g0 ∈ R+. �
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A4 State-contingent mandatory spending

A4.1 Proof of Proposition 9

We prove part 1 by contradiction. Suppose x∗t 6= x∗t′ for some t 6= t′. Then there exists

s ∈ S such that x∗t (s) 6= x∗t′(s). Without loss of generality, assume x∗t (s) < x∗t′(s).

From strict concavity of ui for all i ∈ {A,B}, we have αui(x
∗
t (s), s)+(1−α)ui(x

∗
t′(s), s) <

ui(αx
∗
t (s) + (1− α)x∗t′(s), s) for any α ∈ (0, 1). Let α = δt−1

δt−1+δt′−1 ∈ (0, 1) and x′ = αx∗t (s) +

(1− α)x∗t′(s), we have

δt−1ui(x
∗
t (s), s) + δt

′−1ui(x
∗
t′(s), s) < (δt−1 + δt

′−1)ui(x
′, s) (A16)

for all i ∈ {A,B}, which contradicts that x∗ is a solution to (DSP-S).

Next we prove part 2. Fix i, j ∈ {A,B} with i 6= j. For any U >
∑T

t=1 δ
t−1Es[uj(θjs, s)],

(DSP-S) has no solution, so assume U ≤
∑T

t=1 δ
t−1Es[uj(θjs, s)].

For U =
∑T

t=1 δ
t−1Es[uj(θjs, s)], the solution to (DSP-S) is x∗t (s) = θjs for all t and s ∈ S

and for any U ≤
∑T

t=1 δ
t−1Es[uj(θis, s)], the solution to (DSP-S) is x∗t (s) = θis for all t and

s ∈ S. What remains is the case when U ∈ (
∑T

t=1 δ
t−1Es[uj(θis, s)],

∑T
t=1 δ

t−1Es[uj(θjs, s)]).

From the Lagrangian for (DSP-S), the first order necessary condition with respect to xt(s)

for any t and s ∈ S is δt−1u′i(x
∗
t (s), s) + λ∗δt−1u′j(x

∗
t (s), s) = 0 for some λ∗ ∈ (0,∞), which

simplifies to − u′i(x
∗
t (s),s)

u′j(x
∗
t (s),s)

= λ∗. �

A4.2 Proof of Proposition 10

Suppose the state in period 1 is s1. Consider the following problem:

max
{xt:S→R+}Tt=1

ui(x1(s1), s1) +
∑T

t=2 δ
t−1Es[ui(xt(s), s)]

s.t. uj(x1(s1), s1) +
∑T

t=2 δ
t−1Es[uj(xt(s), s)] ≥ U

′
,

(DSP-S’)

for some U
′ ∈ R, i, j ∈ {A,B} and i 6= j.

The difference between (DSP-S’) and (DSP-S) is that x1(s) for s ∈ S \{s1} does not enter

(DSP-S’), so the solution to (DSP-S’) does not pin down x1(s) for s ∈ S \ {s1}.

Analogous to the proof of Proposition 7, consider the following alternative way of writing
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the social planner’s problem:

max
{xAt ,xBt :S→R+}Tt=1

ui(x
i
1(s1), s1) +

T∑
t=2

δt−1Es[pAui(xAt (s), s) + pBui(x
B
t (s), s)] (DSP-S”)

s.t. uj(x
i
1(s1), s1) +

T∑
t=2

δt−1Es[pAuj(xAt (s), s) + pBuj(x
B
t (s), s)] ≥ U

′
.

for some U
′ ∈ R, i, j ∈ {A,B} and i 6= j.

Since uA and uB are strictly concave in x for all s, clearly any solution to (DSP-S”)

satisfies xAt (s) = xBt (s) for all t and s. So we can just consider (DSP-S’).

Lemma A14. If x is a solution to (DSP-S’), then for any t, t′ ≥ 2, xt = xt′. Moreover,

x1(s1) = xt(s1) for t ≥ 2.

The proof of Lemma A14 is immediate from the proof of Proposition 9. We then have

the following result.

Lemma A15. If x is a solution to (DSP-S) for some U , then it is a solution to (DSP-S’)

for some U
′
. If x is a solution to (DSP-S’) for some U

′
and it satisfies that x1(s) = xt(s)

for t ≥ 2 and for all s, then x is a solution to (DSP-S) for some U .

Proof. Fix i, j ∈ {A,B} with i 6= j and s1 ∈ S and let p1 be the probability distribution of s in

period 1. First, note that x1(s) for any s ∈ S\{s1} does not enter either the objective function

or the constraint in (DSP-S’). Hence if x is a solution to (DSP-S) with U , then x is a solution

to (DSP-S’) with U
′
= U+(1−p1(s1))uj(x1(s1), s1)−

∑
s∈S\{s1} p1(s)uj(x1(s), s). Second, note

that by Proposition 9, if x = {xt}Tt=1 is a solution to (DSP-S), then xt = xt′ for any t and t′.

Hence, if x with x1(s) = xt(s) for t ≥ 2 and for all s ∈ S solves (DSP-S’) with U
′
, then x is a

solution to (DSP-S) with U = U
′−(1−p1(s1))uj(x1(s1), s1)+

∑
s∈S\{s1} p1(s)uj(x1(s), s). �

We prove Proposition 10 by establishing Lemmas A16 and A17 below. With slight abuse

of terminology, we call a spending rule g ∈ M dynamically Pareto efficient if {gt}Tt=1 with

gt = g for all t is a dynamically Pareto efficient allocation rule.

Lemma A16. For any t, if the status quo gt−1 is dynamically Pareto efficient, then γit(gt−1, st) =

gt−1 for all st ∈ S and all i ∈ {A,B}.
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Proof. Suppose the state in period t is st. For any status quo gt−1 in period t, the proposer i’s

equilibrium continuation payoff is weakly higher than ui(gt−1(st), st)+
∑T

t′=t+1 δ
t′−tEs[ui(gt−1(s), s)]

and the responder j’s equilibrium continuation payoff is weakly higher than uj(gt−1(st), st) +∑T
t′=t+1 δ

t′−tEs[uj(gt−1(s), s)]. To see this, note that for any status quo in any period, a re-

sponder accepts a proposal if it is the same as the status quo, implying that a proposer can

maintain the status quo by proposing it. Hence, proposer i can achieve the payoff above by

proposing to maintain the status quo in period t and in future periods continue to propose to

maintain the status quo if it is the proposer and rejects any proposal other than the status

quo if it is the responder. Similarly, responder j can achieve the payoff above by rejecting

any proposal other than the status quo in period t and in future periods continue to reject

any proposal other than the status quo if it is the responder and propose to maintain the

status quo if it is the proposer.

Consider proposer i’s problem in period t

max
gt∈M

ui(gt(st), st) + δVit(gt;σ
∗)

s.t. uj(gt(st), st) + δVjt(gt;σ
∗) ≥ uj(gt−1(st), st) + δVjt(gt−1;σ

∗),

where Vit(g;σ∗) is the expected discounted utility of party i ∈ {A,B} in period t generated by

strategies σ∗ when the status quo is g. As shown in the previous paragraph, uj(gt−1(st), st)+

δVjt(gt−1, σ
∗) ≥ uj(gt−1(st), st) +

∑T
t′=t+1 δ

t′−tEs[uj(gt−1(s), s))].

Suppose the solution to the proposer’s problem in period t is g∗t 6= gt−1. Then there exists

an allocation with xt = g∗t and future allocations induced by status quo g∗t and σ∗ such that

party i’s dynamic payoff is higher than ui(gt−1(st), st) +
∑T

t′=t+1 δ
t′−tEs[ui(gt−1(s), s)] and

party j’s dynamic payoff is higher than uj(gt−1(st), st) +
∑T

t′=t+1 δ
t′−tEs[uj(gt−1(s), s))]. But

if gt−1 is dynamically Pareto efficient, then having allocation in all periods t′ ≥ t equal to

gt−1 is a solution to (DSP-S’) with U = uj(gt−1(st), st) +
∑T

t′=t+1 δ
t′−tEs[uj(gt−1(s), s))], a

contradiction. �

Lemma A17. For any initial status quo g0 and any s1 ∈ S, the proposer makes a proposal in

period 1 that is dynamically Pareto efficient, that is, γi1(g0, s1) is dynamically Pareto efficient

for all i ∈ {A,B}.
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Proof. Fix g0 and s1. Let fj(g0, s1) be the responder j’s status quo payoff. That is,

fj(g0, s1) = uj(g0(s1), s1) + δVj1(g0;σ
∗).

Let U
′
= fj(g0, s1) and denote the solution to (DSP-S’) by x(U

′
) = (x1(U

′
), . . . , xT (U

′
)).

By Lemma A14, xt(U
′
) = xt′(U

′
) for any t, t′ ≥ 2. Without loss of generality, suppose

x(U
′
) satisfies x1(U

′
) = xt(U

′
) for t ≥ 2. Note that x1(U

′
) is a dynamically Pareto efficient

allocation.

We next show that γ∗i1(g0, s1) = x1(U
′
). First note that if γ∗i1(g0, s1) = x1(U

′
), then, since

x1(U
′
) is dynamically Pareto efficient, the induced equilibrium allocation is x(U

′
) by Lemma

A16. We show by contradiction that γ∗i1(g0, s1) = x1(U
′
) is the solution to the proposer’s

problem. Suppose not. Then proposing γ∗i1(g0, s1) is strictly better than proposing x1(U
′
),

that is, proposing γ∗i1(g0, s1) gives i a strictly higher dynamic payoff while giving j a dynamic

payoff at least as high as fj(g0, s1). But since x(U
′
) is a solution to (DSP-S’) and hence a

solution to (DSP-S”), this is a contradiction. �

54


	Introduction
	Model
	Pareto efficiency
	Pareto efficient allocations
	Pareto efficient equilibrium

	Discretionary spending
	Mandatory spending
	Preliminaries
	Inefficiency with mandatory spending only

	Mandatory and discretionary combined
	State-contingent mandatory spending
	Conclusion
	Pareto efficiency
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Lemma 2

	Discretionary spending
	Proof of Proposition 3

	Mandatory spending
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Efficiency with mandatory spending only

	State-contingent mandatory spending
	Proof of Proposition 9
	Proof of Proposition 10




