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Abstract. This paper studies a one-sector optimal growth model with i.i.d. produc-
tivity shocks that are allowed to be unbounded. The utility function is assumed to be
non-negative and unbounded from above. The novel feature in our framework is that the
agent has risk sensitive preferences in sense of Hansen and Sargent (1995). Under mild
assumptions imposed on the productivity and utility functions we prove that the maxi-
mal discounted non-expected utility in the infinite time horizon satisfies the optimality
equation and the agent possesses a stationary optimal policy. A new point used in our
analysis is an inequality for the so-called associated random variables. We also establish
the Euler equation that incorporates the solution to the optimality equation.
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1. Introduction

This paper deals with one-sector stochastic optimal growth model with possibly un-
bounded shocks and non-negative utilities that are allowed to be unbounded from above.
Unbounded returns are very common in economic models, see Alvarez and Stokey (1998);
Boyd (1990); Durán (2000); Le Van and Morhaim (2002) for the deterministic problems,
and Durán (2003); Jaśkiewicz and Nowak (2011b); Kamihigashi (2007) for stochastic
problems. Most of the aforementioned works apply the weighted supremum norm ap-
proach introduced by Wessels (1977). The other group of papers makes use of the
idea presented by Rincón-Zapatero and Rodriguez-Palmero (2003) within determinis-
tic framework. Their method rests upon a local contraction and utilises one-sided ma-
jorant functions. The extensions of these results to stochastic dynamic programming
are reported in Jaśkiewicz and Nowak (2011a); Martins-da-Rocha and Vailakis (2010);
Matkowski and Nowak (2011).

The novelty in our model relies on the fact that the agent has risk sensitive preferences
of the form

Vt = u(at) −
β

γ
lnEt[−γVt+1], (1)

where γ > 0 is a risk sensitive coefficient, β ∈ [0, 1) is a time discount factor, at is
consumption at time t, u is a felicity function and Vt is the lifetime utility from period t
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onward. Here, Et stands for the expectation operator with respect to period t information.
The parameter γ affects consumer’s attitude towards risk in future utility. The form of
preferences in (1) is due to Hansen and Sargent (1995), who used them to deal with
a linear quadratic Gaussian control model. The preferences defined in (1) has several
advantages. First of all, they are not time-additive in future utility. Time-additivity,
however, requires an agent to be risk neutral in future utility. Risk sensitive preferences,
on the other hand, allow the agent to be risk averse in future utility in addition to being
risk averse in future consumption. This fact results in partial separation between risk
aversion and elasticity of intertemporal substitution.1 Moreover, as argued by ? risk
sensitive preferences are also attractive, because they can be used to model preferences
for robustness. It is worth emphasising that risk sensitive preferences of form (1) have
found several applications, for instance, in the problems dealing with Pareto optimal
allocations (see Anderson (2005)) or small noise expansions (see Anderson et al. (2012)).

Our main results are two-fold. First we establish the optimality equation for the non-
expected utility in the infinite time horizon, when the agent has risk sensitive preferences
(1). The proof as in the standard expected utility case is based on the Banach con-
traction principle, see Stokey et al. (1989). However, in oder to show that the dynamic
programming operator maps a space of certain functions into itself, we have to confine our
consideration to concave, non-decreasing and non-negative functions that are bounded in
the weighted supremum norm. A novel feature in this analysis is an application of some
inequality for the so-called associated random variables. This inequality also plays a cru-
cial role in proving that the a fixed point of dynamic programming operator is indeed the
value function. Moreover, it naturally fits into our model, in which the production and
utility functions satisfy some mild conditions such as monotonicity and concavity. Here,
we would like to emphasise that similarly as in Kamihigashi (2007), we do not assume the
Inada conditions for the production function at zero and infinity. Secondly, we establish
the Euler equation assuming that the production and utility functions are continuously
differentiable. As an by-product, we obtain the existence of a distribution function for the
income process governed by the optimal policy. This result owes much previous works by
Nishimura and Stachurski (2005), Stachurski (2009) that link the Euler equation with
the Foster- Lyapunov functions.

The paper is organised as follows. Section 2 describes the model, risk sensitive prefer-
ences of the agent and provides essential assumptions. In Section 3, we use the dynamic
programming approach to show that the agent has an optimal stationary policy and the
lifetime utility is a solution to the optimality (Bellman) equation. Section 4 establishes
the Euler equation. Section 5 makes use of the Euler equation to define a Foster-Lyapunov
function, which is applied to the proof of stability of the optimal program. Finally, Section
6 gives two examples that illustrate our theory.

1Consult Epstein and Zin (1989), Tallarini (2000), Miao (2014) for more discussion on this topic.
The reader is also referred to Chapters 1 and 3 in Becker and Boyd (1997)that constitute a strong
motivation for the study of non-time-additive objective functions.
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2. The Model

This section contains a formulation of the stochastic optimal growth model with the
payoff criterion that in a particular case reduces to the one studied by Brock and Mirman
(1972). The symbols R+ and R++ denote the non-negative and positive real numbers,
respectively. Let N be the set of positive integers. The process evolves as follows. At time
t ∈ N the agent has an income xt, which is divided between consumption at and investment
(saving) yt. From consumption at the agent receives utility u(at) (which is independent of
xt). Investment is used for production with input yt yielding output xt+1 = f(yt, ξt), where
(ξt)t∈N is a sequence of i.i.d. shocks with distribution ν ∈ Pr(R+) and f : R+ ×R+ 7→ R+

is a production function. It is assumed that x1 ∈ R+ is non-random.
We make the following assumptions.

(U1) The function u : R+ 7→ R+ is continuous at zero, strictly concave, increasing and
u(0) = 0.

(U2) There exist a constant d > 0 and a continuous non-decreasing function w : R+ 7→
[1,∞) such that

u(x) ≤ dw(x), for all x ∈ R+

and (2) holds.

(F1) For every z ≥ 0 the function f(·, z) : R+ 7→ R+ is continuous, concave, non-
decreasing and for every y ≥ 0 the function f(y, ·) : R+ 7→ R+ is Borel measurable.

(F2) There exists a constant α ∈ (0, 1/β) such that

sup
y∈[0,x]

∫

R+

w(f(y, z))ν(dz) ≤ αw(x), for all x ∈ R+. (2)

Put
D := {(x, y) : x ∈ R+, y ∈ [0, x]}.

For any t ∈ N, by Ht we denote the set of all sequences

ht =

{
x1, for t = 1,
(x1, y1, x2, . . . , xt), for t ≥ 2,

where (xk, yk) ∈ D for all k ∈ R+. Hence, Ht is the set of all feasible histories of the
income-investment process up to date t. An investment policy π is a sequence (πt)t∈N,
where πt is a measurable mapping which associates any admissible history ht with an
action yt ∈ [0, xt]. By Π we denote the set of all investment policies. We restrict our
attention to non-randomised policies, which are enough to study the discounted optimal
growth models. A formal definition of a general policy can be found in Stokey et al.
(1989). Let Φ be the set of all Borel measurable functions such that φ(x) ∈ [0, x] for
every x ∈ R+. A stationary (investment) policy is a constant sequence π with πt = φ for
every t ∈ N. We shall identify a stationary policy with the member of the sequence, i.e.,
with the mapping φ. By Φ we also denote the set of all stationary investment policies.
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In this paper, we shall consider the non-expected utility of the agent in the infinite time
horizon derived with the aid of the so-called entropic risk measure. In order to define this
measure let us denote by (Ω,F , P ) a probability space and let X be a non-negative random
payoff defined on (Ω,F , P ). The entropic risk measure of X is

ρ(X) = −
1

γ
ln

∫

Ω

e−γX(ω)P (dω),

where γ > 0 is the risk sensitive coefficient. Let X, Y be non-negative random variables
on (Ω,F , P ). The following properties of ρ are important in the analysis (see p. 184 in
Föllmer and Schied (2004)):

(P1) monotonicity, i.e., if X ≤ Y ⇒ ρ(X) ≤ ρ(Y )

(P2) concavity, i.e., ρ(λX + (1 − λ)Y ) ≥ λρ(X) + (1 − λ)ρ(Y ) for any λ ∈ [0, 1].

However, this measure is not positive homogeneous, i.e., ρ(αX) 6= αρ(X) for α ∈ R++,
which does not make our analysis straightforward (see the proofs of Lemma 4 and Theorem
1). Here, we wish only to mention that making use of the Taylor expansions for the
exponential and logarithmic functions, we can approximate ρ(X) as follows

ρ(X) ≈ EX −
γ

2
V arX,

if γ > 0 is sufficiently close to 0. Therefore, if X is a random payoff, then the agent
who evaluates his expected payoff with the aid of the entropic risk measure, thinks not
only of the expected value EX of the random payoff X , but also of its variance. Fur-
ther comments on the entropic risk measure can be found in Bäuerle and Rieder (2011);
Föllmer and Schied (2004) and references cited therein.

Assume that k ∈ N. We say that a function vk ∈ Bw(Hk), if vk : Hk 7→ R+ is Borel
measurable and there exists a constant dvk ≥ 0 such that vk(hk) ≤ dvkw(xk) for every
hk ∈ Hk. Here, w is a function used in (U2) and (F2). Let π = (πk)k∈N ∈ Π be any policy.
For vk+1 ∈ Bw(Hk+1) and given hk ∈ Hk we put

ρπk,hk
(vk+1) := −

1

γ
ln

∫

R+

e−γvk+1(hk ,πk(hk),f(πk(hk),z))ν(dz). (3)

Observe that by Jensen’s inequality and (F2) we have

0 ≤ ρπk,hk
(vk+1) ≤

∫

R+

vk+1(hk, πk(hk), f(πk(hk), z))ν(dz) (4)

≤ dvk+1

∫

R+

w(f(πk(hk), z))ν(dz)

≤ dvk+1
sup

y∈[0,xk]

∫

R+

w(f(y, z))ν(dz) ≤ dvk+1
αw(xk)

for any hk ∈ Hk and k ∈ N. Furthermore, we define the operator Lπk
as follows

Lπk
vk+1(hk) := u(xk − πk(hk)) + βρπk,hk

(vk+1),
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where β ∈ (0, 1) is a subjective discount factor. By property (P1), it follows that Lπk
is

monotone, i.e., Lπk
vk+1(hk) ≤ Lπk

v̂k+1(hk) for hk ∈ Hk and vk+1 ≤ v̂k+1. Moreover, by
(4), (U2) and (F2) we get that

0 ≤ Lπk
vk+1(hk) ≤ (d + αβdvk+1

)w(xk) (5)

for every hk ∈ Hk with k ∈ N.
We follow the approach of Hansen and Sargent (1995) and model the preferences of

the consumer recursively. For any initial income x1 = x and T ∈ N we define T -stage
total discounted utility

JT (x, π) := (Lπ1 ◦ . . . ◦ LπT
)0(x), (6)

where 0 is a function such that 0(hk) ≡ 0 for every hk ∈ Hk and k ∈ N. For instance, if
T = 2 definition (6) is read as follows

J2(x, π) = (Lπ1 ◦ Lπ2)0(x) = Lπ1(Lπ20)(x)

= u(x− π1(x)) −
β

γ
ln

∫

R+

e−γLπ20(x,π1(x),f(π1(x),z))ν(dz)

= u(x− π1(x)) −
β

γ
ln

∫

R+

e−γu(f(π1(x),z)−π2(x,π1(x),f(π1(x),z)))ν(dz).

Observe that from (U1) and (P1), it follows that the sequence (JT (x, π))T∈N is non-
decreasing and bounded from below by 0 for every x ∈ R+ and π ∈ Π. Moreover,

JT (x, π) ≤
dw(x)

1 − αβ
for x ∈ R+, π ∈ Π, T ∈ N.

Indeed, note first that by (U2) we have

LπT
0(hT ) = u(xT − πT (hT )) ≤ u(xT ) ≤ dw(xT ) ≤

dw(xT )

1 − αβ
, hT ∈ HT . (7)

Now making use of (5) with k := T −1, vT (hT ) := dw(xT )/(1−αβ), (7) and monotonicity
of the operator LπT−1

we obtain

LπT−1
(LπT

0)(hT−1) ≤ LπT−1

(
dw

1 − αβ

)
(hT−1) ≤ dw(xT−1) + αβ

dw(xT−1)

1 − αβ
=

dw(xT−1)

1 − αβ
.

Continuing this procedure, we finally infer that

JT (x, π) = (Lπ1 ◦ . . . ◦ LπT
)0(x) ≤ (Lπ1 ◦ . . . ◦ LπT−2

)

(
dw

1 − αβ

)
(x) ≤ . . .

≤ dw(x) +
αβdw(x)

1 − αβ
=

dw(x)

1 − αβ
.

By the above discussion limT→∞ JT (x, π) exists for every x ∈ R+ and π ∈ Π.

5



The problem statement. For an initial income x ∈ R+ and policy π ∈ Π we define the
non-expected discounted utility in the infinite time horizon as follows

J(x, π) := lim
T→∞

JT (x, π). (8)

The aim of the agent is to find an optimal value (the so-called value function) of the
non-expected discounted utility in the infinite time horizon and a policy π∗ ∈ Π for which

J(x, π∗) = sup
π∈Π

J(x, π), for all x ∈ R+.

Remark 1. When the risk sensitive coefficient γ → 0+, then the non-expected utility
in (8) tends to the von Neumann-Morgenstern expected utility that was first studied by
Brock and Mirman (1972) for a stochastic optimal growth model. The greater γ > 0 the
more risk averse is the agent.

The entropic risk measure, which we used in our framework (see (3) is also known
as the exponential certainty equivalent. It can be used to study the models with robust
preferences. This is because, this measure has a robust representation with the relative
entropy as a penalty function, see Föllmer and Schied (2004) or Jaśkiewicz and Nowak
(2011b). Moreover, as noted by Hansen and Sargent (1995) the specification of such
recursion provides a bridge between risk sensitive control theory (see Whittle (1990))
and a more general recursive utility specification used by Epstein and Zin (1989).2

3. The Bellman Equation

In order to solve the aforementioned problem we shall use the dynamic programming
approach. We start from the definition of a class of functions among which we look for a
solution to the optimality equation.

For a Borel measurable function v : R+ 7→ R define its w-norm as follows

‖v‖w := sup
x∈R+

|v(x)|

w(x)
.

Let Bw be the set of all Borel measurable functions v : R+ 7→ R with the finite w-norm.
Then, (Bw, ‖·‖w) is a Banach space (see Proposition 7.2.1 in Hernández-Lerma and Lasserre
(1999)). Define

B := {v ∈ Bw : v is continous, concave, non-decreasing, non-negative} .

Note that (B, ‖ · ‖w) is a complete metric space as a closed subset of the Banach space
(Bw, ‖ · ‖w).

Now we are ready to state our first result.

2The reader is referred to Chapter 20 in Miao (2014), where a detailed discussion, further references
on this topic are provided.
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Theorem 1. Assume (U1)-(U2) and (F1)-(F2). Then, the following holds.

(a) There exist unique functions V ∈ B and i∗ ∈ Φ such that

V (x) = sup
y∈[0,x]

(
u(x− y) −

β

γ
ln

∫

R+

e−γV (f(y,z))ν(dz)

)
(9)

= u(x− i∗(x)) −
β

γ
ln

∫

R+

e−γV (f(i∗(x),z))ν(dz) (10)

for all x ∈ R+. Moreover, V is strictly concave.

(b) The functions x 7→ i∗(x) and x 7→ c∗(x) := x − i∗(x) are continuous and non-
decreasing.

(c) V (x) = supπ∈Π J(x, π) = J(x, i∗) for all x ∈ R+, i.e. there exists an optimal sta-
tionary policy i∗.

Throughout this section we assume that (U1)-(U2) and (F1)-(F2) are satisfied. We
start with a result that we shall use in many places.

Lemma 1. Let v ∈ B. Then, the function

y 7→ v̂(y) := −
1

γ
ln

∫

R+

e−γv(f(y,z))ν(dz)

is continuous, concave, non-decreasing and non-negative.

Proof. By (F1) we have 0 ≤ f(0, z) and 0 ≤ v(0) ≤ v(f(0, z)) for any z ∈ R+. Hence,
(P1) yields that 0 ≤ v̂. Furthermore, by (F1) the function v(f(·, z)) is non-decreasing for
every z ∈ R+. Thus, by (P1) the function v̂ is also non-decreasing. Similarly, making use
again of (F1) we find that v(f(·, z)) is continuous for every z ∈ R+. Hence, the dominated
convergence theorem implies that v̂ is continuous. Finally, we show the concavity of v̂.
Let y = λy′ + (1 − λ)y′′, where λ ∈ (0, 1). By (F1) it follows that

f(y, z) ≥ λf(y′, z) + (1 − λ)f(y′′, z), z ∈ R+,

and by the fact that v is non-decreasing and concave we obtain

v(f(y, z)) ≥ v(λf(y′, z) + (1 − λ)f(y′′, z)) ≥ λv(f(y′, z) + (1 − λ)v(f(y′′, z)), z ∈ R+.

Now, properties (P1) and (P2) imply that

v̂(y) ≥ −
1

γ
ln

∫

R+

e−γ(λv(f(y′ ,z)+(1−λ)v(f(y′′ ,z)))ν(dz) ≥ λv̂(y′) + (1 − λ)v̂(y′′), (11)

which finishes the proof. �
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Lemma 2. Assume that i ∈ Φ is a non-decreasing function such that x 7→ x − i(x) is
also non-decreasing. Then, for any T ∈ N the function x 7→ JT (x, i) is non-decreasing
and continuous.

Proof. Note that i is Lipschitz continuous with constant less than or equal to 1. We
proceed by induction. For T = 1 the assertion is true by (U1). Assume that it holds for
some T ∈ N. Then,

JT+1(x, i) = u(x− i(x)) −
β

γ
ln

∫

R+

e−γJT (f(i(x),z),i)ν(dz). (12)

Now the conclusion follows as in Lemma 1 with assumption (U1). �

Lemma 3. Assume that gi are non-decreasing and non-negative for i = 1, 2. Then, it
follows that

−
1

γ
ln

∫

R+

e−γ(g1(f(y,z))+g2(f(y,z)))ν(dz) ≤

−
1

γ
ln

∫

R+

e−γg1(f(y,z))ν(dz) −
1

γ
ln

∫

R+

e−γg2(f(y,z))ν(dz).

Proof. The inequality follows from Proposition 1 in the Appendix. It suffices to define
X := f(y, ξ), where ξ is a random variable of the distribution ν and put h := e−γg1,
g := e−γg2. �

For any v ∈ B, we define the operator L as follows

Lv(x) := sup
y∈[0,x]

(
u(x− y) −

β

γ
ln

∫

R+

e−γv(f(y,z))ν(dz)

)
(13)

for all x ∈ R+.

Lemma 4. The operator L maps B into itself and is contractive.

Proof. Let v ∈ B. First note that by (U2) and (F2), we obtain

‖Lv‖w ≤ d + αβ‖v‖w,

and by (U1) and Lemma 1 we have that Lv ≥ 0 (see also (5)). Moreover, by (U1) and
Lemma 1 the function (x, y) 7→ u(x− y) +βv̂(y) is continuous on D. Thus, the maximum
theorem (see Berge (1963)) implies that Lv is continuous. Next, we observe that for
x′ < x′′, we have

Lv(x′) ≤ sup
y∈[0,x′]

(u(x′′ − y) + βv̂(y)) ≤ Lv(x′′).

We now show that Lv is concave (see also Sec. 2.4.4 in Bäuerle and Rieder (2011)).
Let λ ∈ (0, 1), x′, x′′ ∈ R+ and x := λx′ + (1 − λ)x′′. By y′ ∈ [0, x′] and y′′ ∈ [0, x′′]
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we denote the points that attain the maximum in (13) at x′ and x′′, respectively. Then,
y := λy′ + (1 − λ)y′′ ∈ [0, x]. Hence, we get

Lv(x) ≥ u(x− y) −
β

γ
ln

∫

R+

e−γv(f(y,z))ν(dz). (14)

Moreover, by (U1) we obtain

u(x− y) > λu(x′ − y′) + (1 − λ)u(x′ − y′). (15)

Now combining (14) with (15) and (11) we finally obtain

Lv(x) > λLv(x′) + (1 − λ)Lv(x′′).

It only remains to prove that L is contractive. Assume that v1, v2 ∈ B. Then,

Lv1(x) − Lv2(x) ≤ sup
y∈[0,x]

(
−
β

γ
ln

∫

R+

e−γv1(f(y,z))ν(dz) +
β

γ
ln

∫

R+

e−γv2(f(y,z))ν(dz)

)

≤ β sup
y∈[0,x]

(
−

1

γ
ln

∫

R+

e−γ‖v1−v2‖ww(f(y,z))−γv2(f(y,z))ν(dz) +
1

γ
ln

∫

R+

e−γv2(f(y,z))ν(dz)

)

≤ β sup
y∈[0,x]

(
−

1

γ
ln

∫

R+

e−γ‖v1−v2‖ww(f(y,z))ν(dz)

∫

R+

e−γv2(f(y,z))ν(dz)

+
1

γ
ln

∫

R+

e−γv2(f(y,z))ν(dz)

)

= β sup
y∈[0,x]

−
1

γ
ln

∫

R+

e−γ‖v1−v2‖ww(f(y,z))ν(dz)

≤ β sup
y∈[0,x]

∫

R+

‖v1 − v2‖ww(f(y, z))ν(dz) (by Jensen’s inequality)

≤ αβ‖v1 − v2‖ww(x) (by (F2)).

The second inequality follows from property (P1) and the third one from Lemma 3 (g1 =
‖v1 − v2‖ww, g2 = v2) and the fact that w and v2 are non-decreasing. By changing the
roles of v1 with v2 we obtain

‖Lv1 − Lv2‖w ≤ αβ‖v1 − v2‖w,

where αβ < 1. �

Proof of Theorem 1. Part (a) follows from Lemma 4 and the Banach fixed point
theorem applied to the operator L. Hence, (9) holds. In addition, note that V is strictly
concave, because of strict inequality in (15).

Since, by Lemma 1 and (U1) the function

y 7→ u(x− y) −
β

γ
ln

∫

R+

e−γV (f(y,z))ν(dz)
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is continuous and strictly concave on [0, x] for x ∈ R+, it follows that there exists a
unique point y∗ ∈ [0, x] that realises the maximum on the right-hand side of (9). Hence,
by the maximum theorem (see Berge (1963)) there exists a unique continuous function
i∗ ∈ Φ attaining the maximum in (9). In addition, strict concavity of u and Lemma 3.2
in Balbus et al. (2015) (see also Theorem 6.3 in Topkis (1978)) imply that the function
i∗ is non-decreasing. Furthermore, observe that (9) can be re-formulated as follows

V (x) = sup
a∈[0,x]

(
u(a) −

β

γ
ln

∫

R+

e−γV (f(x−a,z))ν(dz)

)
, x ∈ R+.

Assumption (U1) and strict concavity of V and Lemma 3.2 in Balbus et al. (2015) yield
that the consumption strategy c∗ ∈ Φ is also non-decreasing. Clearly, c∗(x) + i∗(x) = x
for every x ∈ R+. Hence, part (b) holds true.

Part (c). From (9) it follows that

V (x) ≥ u(x− y) −
β

γ
ln

∫

R+

e−γV (f(y,z))ν(dz), y ∈ [0, x]

and x ∈ R+. Let π = (πk)k∈N ∈ Π be any investment policy. Then, for any history
hk ∈ Hk, k ∈ N, the above display implies that

V (xk) ≥ Lπk
V (hk). (16)

Fix any T ∈ N. Starting from (16) for k := T and applying (16) consecutively for k =
T − 1, . . . , 1 we infer that

V (x) ≥ (Lπ1 ◦ . . . ◦ LπT
)V (x).

Since V ≥ 0 and Lπk
is monotone for every πk, k ∈ N, we obtain

V (x) ≥ (Lπ1 ◦ . . . ◦ LπT
)V (x) ≥ (Lπ1 ◦ . . . ◦ LπT

)0(x) = JT (x, π), (17)

for any π ∈ Π and x ∈ R+. Letting T → ∞ in (17), we finally have V (x) ≥ J(x, π) for
any π ∈ Π and x ∈ R+. Hence,

V (x) ≥ sup
π∈Π

J(x, π) x ∈ R+. (18)

Let i∗ ∈ Φ be as in (10). For convenience of notation we set ui∗(x) := u(x − i∗(x)) and
for any non-negative function ϕ ∈ Bw

ρi∗,x(ϕ) := −
1

γ
ln

∫

R+

e−γϕ(f(i∗(x),z))ν(dz), Li∗ϕ(x) := ui∗(x) + βρi∗,x(ϕ), x ∈ R+.

Thus, the right hand-side of (10) equals

Li∗V (x) = ui∗(x) + βρi∗,x(V ), x ∈ R+.

10



By iterating the latter equality T − 1 times we get that

V (x) = L
(T )
i∗ V (x), x ∈ R+, (19)

where L
(T )
i∗ denotes the T -th composition of the operator Li∗ with itself. Thus, (19),

property (P1) and Jensen’s inequality together with (F2) (see also (4)) yield that

V (x) = L
(T−1)
i∗ (ui∗ + βρi∗,·(V ))(x) ≤ L

(T−1)
i∗ (ui∗ + βρi∗,·(‖V ‖ww))(x) (20)

≤ L
(T−1)
i∗ (ui∗ + αβ‖V ‖ww)(x)

= L
(T−2)
i∗ (ui∗ + βρi∗,·(ui∗ + αβ‖V ‖ww))(x)

for x ∈ R+. Now by putting g1 := ui∗ = J1(·, i
∗), g2 := αβ‖V ‖ww in Lemma 3, we have

that

βρi∗,x′(ui∗ + αβ‖V ‖ww) ≤ βρi∗,x′(ui∗) + βρi∗,x′(αβ‖V ‖ww) (21)

≤ βρi∗,x′(ui∗) + (αβ)2‖V ‖ww(x′), x′ ∈ R+,

where the second inequality is due to Jensen’s inequality and assumption (F2) (see also
(4)). Hence, inequalities (20) and (21) combined together get

V (x) ≤ L
(T−2)
i∗ (ui∗ + βρi∗,·(ui∗) + (αβ)2‖V ‖ww)(x) (22)

= L
(T−3)
i∗ (ui∗ + βρi∗,·(ui∗ + βρi∗,·(ui∗) + (αβ)2‖V ‖ww))(x).

We repeat the procedure. From Lemma 2 the function

x 7→ J2(x, i
∗) = ui∗(x) + βρi∗,x(ui∗)

is non-decreasing. Hence, making use again of Lemma 3 (g1 := J2(·, i
∗), g2 := (αβ)2‖V ‖ww),

Jensen’s inequality and (F2) we get

βρi∗,x′(ui∗ + βρi∗,·(ui∗) + (αβ)2‖V ‖ww) (23)

= βρi∗,x′(J2(·, i
∗) + (αβ)2‖V ‖ww) ≤ βρi∗,x′(J2(·, i

∗)) + βρi∗,x′((αβ)2‖V ‖ww)

≤ βρi∗,x′(J2(·, i
∗)) + (αβ)3‖V ‖ww(x′), x′ ∈ R+.

By combining (22) and (23) we obtain that

V (x) ≤ L
(T−3)
i∗ (ui∗ + βρi∗,·(J2(·, i

∗)) + (αβ)3‖V ‖ww)(x)

= L
(T−3)
i∗ (J3(·, i

∗) + (αβ)3‖V ‖ww)(x)

= L
(T−4)
i∗ (ui∗ + βρi∗,·(J3(·, i

∗) + (αβ)3‖V ‖ww))(x).

Repeating this procedure, i.e., making use of Lemma 3 for the functions g1 = Jk(·, i∗)
(by Lemma 2 it is non-decreasing) and g2 := (αβ)k‖V ‖ww for k = 3, . . . , T − 1 we finally
deduce

V (x) ≤ JT (x, i∗) + (αβ)T‖V ‖ww(x), x ∈ R+. (24)

Thus, letting T → ∞ in (24) it follows that

V (x) ≤ J(x, i∗) x ∈ R+. (25)

Now, (18) and (25) combined together yield part (c). �
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4. The Euler Equation

This section is devoted to establish the Euler equation. Therefore, we shall need
additional conditions that guarantee differentiability of functions describing the model.

(U3) The function u : R+ 7→ R+ is continuously differentiable on R++.

(U4) u′
+(0) = ∞.

(F3) The function f(·, z) : R+ 7→ R+ is continuously differentiable on R++.

(F4) f(0, z) = 0 for all z ≥ 0.

(F5) There is an investment y > 0 such that

∫

R+

f ′(y, z)ν(dz) > 0,

where f ′(y, z) := ∂f(y,z)
∂y

. 3

Assumption (F5) together with (F1) rules out the trivial case that f(y, z) = 0 ν-a.s.
for every y ∈ R+.

Theorem 2. Assume (U1)-(U4) and (F1)-(F5). Then, we have the following.

(a) For any x ∈ R++ the Euler equation holds

u′(c∗(x)) = β

∫
R+

e−γV (f(i∗(x),z))u′(c∗(f(i∗(x), z)))f ′(i∗(x), z)ν(dz)
∫
R+

e−γV (f(i∗(x),z))ν(dz)
, (26)

where V is the function obtained in Theorem 1.

(b) The functions x 7→ i∗(x) and x 7→ c∗(x) are increasing.

Remark 2. The Euler equation for the agent with risk sensitive preferences incorporates,
in contrast to the standard expected utility case, the value function V. When γ = 0, then
equation (26) becomes the well-known Euler equation for the model with the expected
utility, see Brock and Mirman (1972) or Kamihigashi (2007).

Let us define

V̂ (y) := −
1

γ
ln

∫

R+

e−γV (f(y,z))ν(dz). (27)

In the subsequent lemmas we shall assume that conditions (U1)-(U4) and (F1)-(F5) hold
true.

3Note that by Theorem 7.4 in Stokey et al. (1989) it follows that the function z 7→ f ′(y, z) is Borel
measurable.
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Lemma 5. The function V̂ defined in (27) is concave, continuous and non-decreasing.
Moreover,

V̂ ′
+(0) = ∞. (28)

Proof. The first part follows from Lemma 1. Take any sequence yn → 0+ as n → ∞.
By (F4) and the fact that u(0) = 0 we get that V (0) = 0 and V̂ (0) = 0. Hence,

V̂ (yn) − V̂ (0)

yn
= −

1

γyn
ln

∫

R+

e−γV (f(yn,z))ν(dz) ≥ −
1

γ
ln

∫

R+

e−γ
u(f(yn,z))

yn ν(dz). (29)

From the chain rule, we have for any z ∈ R+ that

u(f(yn, z))

yn
=

u(f(yn, z)) − u(0)

f(yn, z) − f(0, z)

f(yn, z) − f(0, z)

yn
. (30)

Letting n → ∞ in (30), we obtain that

lim
n→∞

u(f(yn, z))

yn
= u′

+(f(0, z))f ′
+(0, z). (31)

Note that the convergence in (31) is monotonic, since u and f(·, z) are concave and f(·, z)
is non-decreasing for z ∈ R+. By the monotone convergence theorem, (29) and (31) we
finally get

V̂ ′
+(0) ≥ −

1

γ
ln

∫

R+

e−γu′

+(0)f ′

+(0,z)ν(dz).

Assumption (F5) together with (F1) yield that f ′
+(0, z) > 0. Thus, by (U4) the assertion

follows. �

Lemma 6. Let i∗ be defined in (10). Then, i∗(x) ∈ (0, x) for any x ∈ R++.

Proof. The assertion that i∗(x) > 0 follows from assumption (U4), whereas (28) yields
i∗(x) < x. The reader is referred to Lemma 5 in Kamihigashi (2007). �

Lemma 7. The function V is continuously differentiable on R++ and V ′(x) = u′(c∗(x)),
for x ∈ R++.

Proof. The way of showing the equality proceeds along the same lines as the proofs of
Proposition 12.1.18 and Corollary 12.1.19 in Stachurski (2009). �

Proof of Theorem 2. First we show part (a). In view of Lemma 7 and (9), it suffices

to show that V̂ is differentiable on R++ and βV̂ ′(y) at y = i∗(x) equals to the right-hand

side of (26). Since V̂ is concave by Lemma 5, we know that the right-hand side and the
left-hand side derivatives exist. Let y ∈ R++ be arbitrary and h > 0. Set

F (y, z) :=
e−γV (f(y,z))

∫
R+

e−γV (f(y,z))ν(dz)
> 0

13



and note that ∫

R+

F (y, z)ν(dz) = 1 for any y ∈ R++.

Then, by Lemma 7 and (F4)

V̂ (y + h) − V̂ (y)

h
= −

1

γh
ln

∫
R+

e−γV (f(y+h,z))ν(dz)
∫
R+

e−γV (f(y,z))

= −
1

γh
ln

∫

R+

e−γ(V (f(y+h,z))−V (f(y,z)))F (y, z)ν(dz)

≤

∫

R+

V (f(y + h, z)) − V (f(y, z))

h
F (y, z)ν(dz)

=

∫

R+

V (f(y + h, z)) − V (f(y, z))

f(y + h, z) − f(y, z)

f(y + h, z) − f(y, z)

h
F (y, z)ν(dz)

≤

∫

R+

V ′(f(y, z))f ′(y, z)F (y, z)ν(dz) =: G(y),

where the first inequality is due to Jensen’s inequality and the second one follows from
the fact that V and f(·, z) for z ∈ R+ are concave and non-decreasing. Thus, for y ∈ R++

V̂ ′
+(y) ≤ G(y). (32)

Let us now consider the left-hand side derivative of V̂ , i.e.,

V̂ (y − h) − V̂ (y)

−h
=

1

γh
ln

∫
R+

e−γV (f(y−h,z))ν(dz)
∫
R+

e−γV (f(y,z))

≥

∫

R+

V (f(y − h, z)) − V (f(y, z))

−h
F (y, z)ν(dz)

=

∫

R+

V (f(y − h, z)) − V (f(y, z))

f(y − h, z) − f(y, z)

f(y − h, z) − f(y, z)

−h
F (y, z)ν(dz)

≥

∫

R+

V ′(f(y, z))f ′(y, z)F (y, z)ν(dz) = G(y).

Hence, for y ∈ R++

V̂ ′
−(y) ≥ G(y). (33)

Observe that G is continuous. This is due to Lemma 7, (F1), (F4) and the dominated

convergence theorem. Since V̂ is concave and (32) and (33) hold, then for h > 0 we obtain
that

G(y + h) ≤ V̂ ′
−(y + h) ≤ V̂ ′

+(y) ≤ G(y) ≤ V̂ ′
−(y) ≤ V̂ ′

+(y − h) ≤ G(y − h). (34)

Now letting h → 0+ in (34), it follows that V̂ is continuously differentiable on R++.
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In order to prove (b) suppose that x′ < x′′. If x′ = 0, then by Lemma 6 we have
i∗(x′) = 0 < i∗(x′′) and c∗(x′) = 0 < c∗(x′′) = x′′ − i∗(x′′). Hence, let x′ > 0 and
i∗(x′) = i∗(x′′). Then, by Euler equation (26), we obtain u′(x′ − i∗(x′)) = u′(x′′ − i∗(x′)).
But the equality cannot hold, since u is strictly concave. Similarly, if c∗(x′) = c∗(x′′),
then by Lemma 7 we must have V ′(x′) = u′(c∗(x′)) = u′(c∗(x′′)) = V ′(x′′). However, this
equality contradicts the strict concavity of V. �

5. Stationary Distributions

In this section, we shall consider dynamics of the growth model when the agent follows
the optimal policy i∗ ∈ Φ. Our aim is to provide a set of assumptions under which
the system is globally stable and the resulting stationary distribution is non-trivial in
the sense that it is not concentrated on zero. We wish to follow the approach studied
in Nishimura and Stachurski (2005) and further developed by Kamihigashi (2007) and
Stachurski (2009). It combines the Euler equation (see (26)) with the Foster-Lyapunov
theory of Markov chains.

More precisely, we deal with the process

xt+1 = f(i∗(xt), ξt), (ξt)t∈N is i.i.d. sequence, where ξt ∼ ν ∈ Pr(R+) (35)

and f : R+×R+ 7→ R+ is continuous. Clearly, (xt)t∈N is a Markov process. Assuming that
f(y, z) > 0 for every y ∈ R++ and utilising the fact that i∗(x) ∈ (0, x) for x > 0, we may
confine ourselves to the study of the income process on R++ (see p. 303 in Stachurski
(2009)). We show the existence of at least one stationary non-trivial distribution. Ac-
cording to Proposition 2 in the Appendix, we have to find a function W : R++ 7→ R+

satisfying properties (a) and (b). Since we wish to avoid repeating all the details contained
in the aforementioned papers, we focus only on an element in the proof that makes use
of the Euler equation. This is because, the Euler equation in our framework is different
than the one obtained for the expected utility case. Therefore, we formulate only crucial
conditions in the most simple way. The reader is referred to Kamihigashi (2007) and
Stachurski (2009), where a detailed discussion and more general conditions are provided
implying the ones given below.

(D1) It is satisfied that

lim
y→0+

∫

R+

1

βf ′(y, z)
ν(dz) < 1.

(D2) There exist λ2 ∈ (0, 1) and κ2 > 0 such that

∫

R+

f(y, z)ν(dz) ≤ λ2y + κ2, y ∈ R+.

Here, we would like to mention that Assumption (D1) prevents probability mass from
escaping to infinity, whereas the role of (D2) is to prevent probability mass from escaping
to zero.
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Lemma 8. Assume (D1). Then, for W1(x) :=
√

u′(c∗(x))e−γV (x), x ∈ R++, there exist
λ1 ∈ (0, 1) and κ1 > 0 such that

∫

R+

W1(f(i∗(x), z))ν(dz) ≤ λ1W1(x) + κ1, x ∈ R++.

Proof. First note that by the Cauchy-Schwarz inequality, it follows that

∫

R+

W1(f(i∗(x), z))ν(dz) =

∫

R+

[
u′(c∗(f(i∗(x), z)))e−γV (f(i∗(x),z))βf

′(i∗(x), z)

βf ′(i∗(x), z)

∫
R+

e−γV (f(i∗(x),z))ν(dz)
∫
R+

e−γV (f(i∗(x),z))ν(dz)

] 1
2

ν(dz)

≤

[∫

R+

u′(c∗(f(i∗(x), z)))e−γV (f(i∗(x),z)) βf ′(i∗(x), z)∫
R+

e−γV (f(i∗(x),z))ν(dz)
ν(dz)

] 1
2

×

×

[∫

R+

∫
R+

e−γV (f(i∗(x),z))ν(dz)

βf ′(i∗(x), z)
ν(dz)

] 1
2

, x ∈ R++. (36)

Furthermore, applying (26) to (36) we obtain that

∫

R+

W1(f(i∗(x), z))ν(dz) ≤
√

u′(c∗(x))

[∫

R+

ν(dz)

βf ′(i∗(x), z)

∫

R+

e−γV (f(i∗(x),z))ν(dz)

] 1
2

≤
√

u′(c∗(x))

[∫

R+

ν(dz)

βf ′(x, z)

] 1
2

, (37)

where the second inequality is due to the fact that V ≥ 0 and (F1) (f ′(·, z) is non-
increasing for z ∈ R+). From assumption (D1), it follows that there exists δ > 0 such
that

λ1 := eγ/2V (δ)

[∫

R+

ν(dz)

βf ′(δ, z)

] 1
2

< 1.

Then, for x ∈ (0, δ) we have that e−γ/2V (x)eγ/2V (δ) ≥ 1, and consequently, by (37)

∫

R+

W1(f(i∗(x), z))ν(dz) ≤
√

u′(c∗(x))e−γV (x)eγ/2V (δ)

[∫

R+

ν(dz)

βf ′(δ, z)

] 1
2

≤ λ1W1(x).

(38)
For x ≥ δ we have
∫

R+

W1(f(i∗(x), z))ν(dz) ≤

∫

R+

[
u′(c∗(f(i∗(δ), z)))e−γV (f(i∗(δ),z))

] 1
2 ν(dz) =: κ1. (39)

Inequalities (38) and (39) combined together yield the conclusion. �
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From Lemma 8 and (D2) we deduce that the function

W (x) = W1(x) + x, x ∈ R++

satisfies point (b) in Proposition 2 with λ := max{λ1, λ2} and κ := κ1 + κ2. Clearly,
from (U4) it follows that condition (a) is also satisfied. Hence, there exists a non-trivial
distribution for the Markov process in (35).

The problem of the uniqueness of a stationary distribution, i.e., global stability,
has been recently studied in Kamihigashi (2007), Nishimura and Stachurski (2005) and
Stachurski (2009). Therefore, we do not give here all these assumptions and refer the
reader to the above-mentioned works. Further results on invariant distributions are also
widely reported in Meyn and Tweedie (2009), Bhattacharya and Majumdar (2007) and
in the recent papers of Kamihigashi and Stachurski (2014), Zhang (2007).

Remark 3. If the income process evolves on the compact space [0, s̄], then the assump-
tions (U2) and (F2) are satisfied with w ≡ 1. Consequently, the results in Sections 3 and 4
are satisfied, in particular, the optimal investment policy is non-deacreasing. In this case,
the existence of a non-trivial invariant distribution follows from the Krylov-Bogolubov
theorem, see for instance, Theorem 11.2.5 in Stachurski (2009).

6. Examples

Below we provide two examples of utility and production functions that meet our
assumptions used in Sections 3-4.

Example 1. A model with multiplicative shocks. Assume that the process evolves ac-
cording to difference equation

xt+1 = yθt ξt, t ∈ N,

where θ ∈ (0, 1). Suppose that z̄ :=
∫
R+

zν(dz) is finite and let u(a) = aσ with σ ∈ (0, 1).

Clearly, (U1) and (F1) are satisfied. Assumption (U2) holds for w(x) = (r + x)σ, where
r ≥ 1 is a constant sufficiently large so that

(
1 +

z̄
1

1−θ

r

)σ

β < 1.

Then, calculations on p. 263 in Jaśkiewicz and Nowak (2011b) show that (F2) is also

satisfied with α :=
(

1 + z̄1/1−θ

r

)σ
. We also note that (U3)-(U4) and (F3)-(F5) hold true.

For this model, conditions (D1) and (D2) are met as well. Clearly, the finiteness of∫
R+

1/zν(dz) implies (D1). Define now

κ1 := max{z̄, z̄
1

1−θ (1 − θ)}, λ1 := θ.
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Then, for y ≤ 1 we have

∫

R+

yθzν(dz) = yθz̄ ≤ z̄ ≤ θy + κ1.

Set l(y) := θy − z̄yθ + κ1 for y > 0. This function attains minimum at

ymin = z̄y
1

1−θ and l(ymin) ≥ 0.

Hence, ∫

R+

f(y, z)ν(dz) = z̄yθ ≤ λ1y + κ1

for all y ∈ R+.

Example 2. A model with additive shocks. Let the evolution of the process be described
by the equation

xt+1 =

{
ηyt + ξt, if yt > 0,
0, if yt = 0,

t ∈ N,

where η > 0 denotes a constant rate of growth. Obviously, (F1), (F3)-(F5) holds. Let
the utility u be defined as in Example 1. Then, (U2) holds for w(x) = (x + r)σ with any
r ≥ 1. Now, we prove assumption (F2). Namely, by the Jensen inequality it follows that

sup
y∈[0,x]

∫

R+

(ηy + z)ν(dz) ≤ (ηx + z̄ + r)σ.

Thus,

sup
x∈R+

(ηx + z̄ + r)σ

w(x)
= (s(x))σ, where s(x) :=

ηx + z̄ + r

x + r
, x ∈ R+.

We have

lim
x→0+

s(x) = 1 +
z̄

r
, lim

x→+∞
s(x) = η.

If η > 1, then from the calculations in Jaśkiewicz and Nowak (2011b) on p. 264, it
follows that for r > max{1, z̄

η−1
} condition (F2) holds for all β ∈ (0, 1) for which βησ < 1

(here α := ησ). If, on the other hand, η ≤ 1, then (F2) is satisfied for each β ∈ (0, 1).
Namely, for the given discount factor it is enough to take sufficiently large r ≥ 1 such
that (1 + z̄

r
)σβ < 1. Obviously, α := (1 + z̄

r
)σ.

In this case, assumption (D1) is not met. However, the existence of an invariant dis-
tribution can be proved under some extra requirements with the help of other techniques,
see for instance, p. 207 and p. 259 in Stachurski (2009) or Meyn and Tweedie (2009).
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7. Appendix

The following result can be found in Devroye et al. (1996) (Theorem A.19).

Proposition 1. Let X be a real-valued random variable defined on (Ω,F , P ) and let h
and g be non-increasing real-valued functions. Then,

E{h(X)g(X)} ≥ E{h(X)}E{g(X)},

provided that all expectations exist and are finite.

For the proof of the next result the reader is referred to Kamihigashi (2007) (Lemma
3.1) or to Stachurski (2009) ( Corollary 11.2.10).

Proposition 2. Consider the Markov process defined in (35). Suppose that there exists
a function W : R++ 7→ R+ such that

(a) lim
x→∞

W (x) = ∞ and lim
x→0+

W (x) = ∞

(b) ∃κ > 0, ∃λ ∈ [0, 1), ∀x ∈ R++

∫

R+

W (f(i∗(x), z))ν(dz) ≤ λW (x) + κ.

Then, there exists at least one non-trivial stationary distribution on R+.
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