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Abstract

We extend Cass and Stiglitz’s analysis of preference-based mutual fund sepa-
ration. We provide a complete characterization of the generalK-fund separation.
We show that some instances of high-degree separation can be constructed by
adding inverse marginal utility functions exhibiting lower degrees of separation.
We also show that there is money separation (in which we can choose the riskless
asset as one of the funds) if and only if there is a fund (which may or may not
be the riskless asset) with a constant allocation as wealth changes. In general,
we do not know how to write the separating utility functions in closed form, but
we can do so in the special case of SAHARA utility defined by Chen et al. and
for a new class of GOBI preferences introduced here.

1 Introduction

Mutual fund separation is an important concept in portfolio selection. It means that

all investors’optimal portfolio choices can be constructed as the linear combination

of a set of mutual funds regardless of the initial wealth level, where a mutual fund

can be any portfolio of tradable assets in the market. In other words, under mutual

fund separation investors should be able to achieve the same level of utility from

the individual assets as if they were only offered a set of mutual funds. The term

“separation” comes from the fact that every investor can “separate” his portfolio

choice into two steps. First, the investor chooses a small set of funds that spans

optimal portfolios of all wealth levels. Second, the investor determines the optimal

mixture of the separating funds based on his current wealth level.

The first results of mutual fund separation are developed under the mean-variance

framework. Tobin (1958) finds that when investors only care about the mean and

variance of the return distribution and in the presence of a riskless asset, optimal con-

sumptions can be spanned by a risky portfolio and the riskless asset. He also shows
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that the mean-variance assumption is consistent with von Neumann-Morgenstern

preferences with quadratic utility functions. Black (1972) proves that under mean-

variance preferences, even in the absence of the riskless asset, similar two-fund sepa-

ration results still hold with both separating funds being risky portfolios.

When agents do not have mean-variance preferences, some alternative assumption

is needed to support mutual fund separation. Such conditions can be roughly classi-

fied into two types: those in terms of investor preferences and those in terms of the

distributions of asset returns. Among research examining preference-based separa-

tion, Pye (1967) and Hakansson (1969) find that the hyperbolic absolute risk aversion

(HARA) class exhibits two-fund separation with one of the separating funds being

the riskless asset. Cass and Stiglitz (1970) further characterize the class of preferences

that permits mutual fund separation, regardless of the distributions of asset returns.

On the return distribution side, efforts have been made to delineate the class of sto-

chastic processes that supports separation for all utility functions. Samuelson (1967)

shows that if asset payoffs are independent and identically distributed, all risk-averse

agents will choose the equally-weighted portfolio, and more generally Ross (1978)

derives necessary and suffi cient conditions on the stochastic structure of asset re-

turns such that mutual fund separation can be sustained, independent of investor

preferences.

In this paper, we extend Cass and Stiglitz’s analysis of preference-based mu-

tual fund separation. While Cass and Stiglitz mostly focus on one- and two-fund

separation, we emphasize the general K-fund separation.1 We provide a complete

characterization of the general K-fund separation in terms of the inverse marginal

utility function. We show that high-degree separation can be constructed by adding

low-degree separating preferences in the inverse marginal utility function. However,

this method does not allow us to find all utility functions satisfying fund separation.

We also study money separation in which we can choose the riskless asset as one of

the separating funds. We show that money separation holds if and only if there is a

fund (the riskless asset or a risky portfolio) whose optimal allocation is constant and

does not depend on initial wealth. While it is generally hard, if not impossible, to
1Cass and Stiglitz (1970) do have a result on high-degree separation, their confusing Theorem 7.1,

which is presented without proof. Unfortunately, this is a weak point in a great paper, and seems
to be incorrect if only because the trigonometric terms are missing. Given the Remark after the
statement of the theorem and the discussion in footnote 1 in Appendix II, it seems to be assumed
that the trigonometric terms are ruled out in general by concavity, like they are for one- and two-fund
separation.
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write the utility function of a separating preference in closed form, we show that this

can be achieved for two special classes of preferences, both of which exhibit three-fund

separation. We also make a minor contribution to the theory of one- and two-fund

separation. Mirror CRRA preferences have a functional form like constant relative

risk aversion (CRRA) preferences, but are defined on negative wealth. We also con-

sider two-fund separating preferences constructed from mirror CRRA preferences,

perhaps in combination with CRRA preferences.

The study of mutual fund separation has important implications. If we have

reasons to believe thatK-fund separation holds, whereK is a relatively small number,

then a money manager could set up a relatively small set of commingled portfolios,

active or passive according to the manager’s style, to serve all clients at all levels

of wealth. The optimal combination of these commingled portfolios would deliver

the same payoff and therefore the same level of utility as individualized portfolios

constructed optimally from the individual assets for each client. In other words, we

could set up the K separating funds as index funds in a fund family, and these funds

are all that an investor would ever need to trade.

It is also useful to study mutual fund separation because it helps to motivate new

tractable functional forms of utility functions. In many important finance problems

such as portfolio selection and asset pricing, fund separation often simplifies the

analysis. While most existing work focuses on one- and two-fund separation, we

show that higher degrees of separation are rich and interesting but still tractable.

We consider a one-period setting: investors with von Neumann-Morgenstern pref-

erences invest at the beginning of the period and consume at the end. Given complete

markets with a unique stochastic discount factor, the optimal consumption portfolio

is determined by the first order condition, which says that the marginal utility at

optimum is proportional to the stochastic discount factor. Strict concavity then en-

ables us to invert the marginal utility function and express the optimal portfolio as

the inverse marginal utility evaluated at the stochastic discount factor multiplied by

the shadow price which depends on the initial wealth level. This approach allows us

to prove a general characterization of preference-based K-fund separation in terms

of the inverse marginal utility, which includes K-fund separating preferences that

can be generated by combining one-fund separating preferences, as well as some that

cannot. Various examples allow us to explore how this works.

Following Cass and Stiglitz (1970), we say there is money separation if there is
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separation and one of the funds can be chosen to be the riskless asset. We show that

money separation holds if and only if we can choose a separating fund whose optimal

investment weight is constant and independent of the initial wealth level. Interest-

ingly, the constant weight can be assigned to either the riskless asset (e.g., quadratic

utility) or a risky fund (e.g., constant absolute risk aversion (CARA) utility). In

addition, we also show that money separation is closely related to shifts in the utility

function. A non-money separating utility function can be converted into a money

separating utility function by adding a constant to the inverse marginal utility, or

equivalently through a translation of consumption, as when we go from CRRA utility

to HARA utility with the same exponent.

The characterization of separating utility functions gives the inverse marginal util-

ity in closed form. From this, we can derive the utility function itself by first inverting

the inverse marginal utility to obtain the marginal utility, and then integrating the

marginal utility to obtain the utility function. This is easy numerically, but unfor-

tunately does not yield a closed-form expression except in a few special cases. Aside

from the one- and two-fund separating cases already in the literature, we discuss two

cases with closed-form expressions for the utility function. One is the symmetric as-

ymptotic hyperbolic absolute risk aversion (SAHARA) preferences proposed by Chen,

Pelsser and Vellekoop (2011), and another is the GOBI preferences to be introduced

in this paper. Both classes exhibit three-fund separation, and they have not only a

simple form in the inverse marginal utility, but a closed-form expression in the utility

function itself.

Concavity imposes additional constraints on our characterization of separation.

A separating utility function is strictly concave if and only if the inverse marginal

utility is monotonically decreasing everywhere.2 It is hard to derive necessary and

suffi cient conditions for strict concavity in terms of the parameter values, something

similar to finding conditions for a polynomial to be positive everywhere. Nonetheless,

we analyze specific examples and we give suffi cient conditions to be inconsistent with

any strictly concave utility function.

Finally, we extend our analyses from the von Neumann-Morgenstern expected

utility to a broader set of Machina preferences. According to Machina (1982), when

the utility function is smooth enough, these preferences can be locally modeled as

2This is not true for all potential utility functions, for example one with a kink, but separating
utility functions are in a restricted class.
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expected utility. We show that if the local utility function satisfies fund separation

everywhere with the same set of separating funds, this is suffi cient but not necessary

for global fund separation. We illustrate this using examples.

In this paper, we follow Cass and Stiglitz (1970) and consider complete markets

only. In general, separation need not hold under conditions of the theorems when

markets are incomplete, with some known exceptions in the literature. Hakansson

(1969) shows that one-fund separation still holds for logarithm and power utility even

if markets are incomplete, and in the presence of a riskless asset, the HARA class

exhibits two-fund separation even if markets are incomplete. Black (1972) shows that

quadratic utility satisfies two-fund separation under incomplete markets even without

a riskless asset. Beyond this short list of known examples, the suffi cient conditions

provided in this paper are no longer suffi cient if markets are incomplete, and we

can construct numerical examples where two-fund separation fails when markets are

incomplete.3

The rest of the paper proceeds as follows. Section 2 defines mutual fund sepa-

ration and characterizes the class of separating preferences in terms of the inverse

marginal utility function. We also demonstrate how low-degree separation can be

used to construct high-degree separating preferences. Section 3 studies money sepa-

ration. Section 4 derives the utility functions for the SAHARA and GOBI preferences,

both of which exhibit three-fund separation. Section 5 examines conditions for strict

concavity and discusses how they can be used to refine the separating class. Section

6 discusses suffi cient conditions for fund separation for Machina preferences. Section

7 concludes the paper. Some intuitive proofs are included in the main text, while

other proofs are relegated to the Appendix.

2 Mutual Fund Separation

In this section, we study necessary and suffi cient conditions for preference-based K-

fund separation.

2.1 Setup

Following Cass and Stiglitz (1970), we consider a one-period model, in which investors

invest at the beginning of the period and consume at the end. Assume that markets
3As in Dybvig and Ross (1982), the minimal example has three assets and four states, for similar

reasons.
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are complete and there exists a unique stochastic discount factor ρ > 0 that takes

all positive values with E (ρ) < ∞. We also use ρ to represent realizations of the
random stochastic discount factor. Assume that each investor has a von Neumann-

Morgenstern utility function u (·) defined on any open interval D ⊂ R, which is
twice differentiable with u′ > 0 and u′′ < 0. We allow for both positive and negative

consumption levels.4 We denote the set of utility functions of all investors by U .
Then, an investor with utility function u ∈ U and initial wealth w0 ∈ R solves the
following utility maximization problem.

Problem 1 Choose consumption x to

max
x
E [u (x)]

subject to the budget constraint

E (xρ) ≤ w0.

We denote the set of solutions to Problem 1 by S (u,w0) . By strict concavity of

u, S (u,w0) is either an empty set or a singleton. Assume that for all utility functions

under consideration, there exists an open interval for the initial wealth such that an

optimum to Problem 1 exists, i.e., S (u,w0) 6= ∅. Now we define K-fund separation
if there are no fewer than K mutual funds whose random payoffs span the optimal

consumptions of all investors whenever an optimum exists, regardless of the initial

wealth level.

Definition 1 We have K-fund separation if K is the smallest positive integer such

that there exist K mutual funds {fk (ρ)}k=1,...,K , which satisfy that for all u ∈ U
and w0 ∈ R, if S (u,w0) 6= ∅, then we can find {αk (u,w0)}k=1,...,K such that
K∑
k=1

αk (u,w0) fk (ρ) ∈ S (u,w0).

Several comments are worth pointing out. First, the optimal consumptions and

the separating funds are both identified in terms of payoff, whereas the associated

portfolio compositions may not be uniquely determined in the presence of redundant

assets. Second, whenever K-fund separation holds for K ≥ 2, the set of separat-

ing funds is not unique. Indeed, having one set of separating funds, we can easily
4While negative consumption may seem absurd on its face, what we call consumption might be

the net trade or it can be justified by a promise to do work to cover any negative amount. Also,
even if consumption is not literally negative, it can be a useful modelling device.

6



construct another by taking linear combinations of the original set of funds, and the

resulting investment weights are also linear combinations of the original weights. Fi-

nally, while K-fund separation is defined for a set of utility functions, we are often

interested in K-fund separation for a single utility function as a special case, which

is obtained when U contains one utility function only.
One special form of mutual fund separation obtains when we can choose the

riskless asset as one of the separating funds. We follow Cass and Stiglitz (1970) and

refer to this special case as money separation. In other words, money separation holds

as long as the riskless asset is in the linear span of the separating funds. Formally,

we have the following definition.

Definition 2 We have K-fund money separation if K-fund separation holds and we

can choose f1 (ρ) = 1.5

To characterize utility functions exhibiting mutual fund separation, we solve Prob-

lem 1. Suppose a solution exists, then the first order condition implies that the

optimal consumption portfolio is given by

x∗ = I (λρ) , (1)

where I = (u′)−1 is the inverse marginal utility function, and λ > 0 is the shadow price

whose value depends on the initial wealth level w0. Since u′′ < 0, it is apparent that I

exists and is unique. Preferences are unchanged by an increasing affi ne transformation

of the utility function u or equivalently by the rescaling of the argument of the inverse

marginal utility function I.We will not distinguish different utility functions or inverse

marginal utility functions that represent the same preferences.

If the utility function u satisfiesK-fund separation, then the optimal consumption

(1) can be written as the weighted sum ofK mutual funds, with the associated weights

depending on the initial wealth w0 and thus on the shadow price λ, i.e.,

I (λρ) =

K∑
k=1

αk (λ) fk (ρ) . (2)

Notice that to ensure non-degeneracy, we must have that the separating funds fk (ρ)

are linearly independent, and that the associated investment weights αk (λ) are also

5The payoff to the riskless asset can take any constant value. Without loss of generality, we
normalize it to be equal to 1.
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linearly independent. Otherwise, the degree of separation can always be reduced

by combining two or more funds to form a larger separating fund. In addition, for

tractability, we only consider cases in which αk (λ) are analytic functions.6

2.2 Some Examples

Before we formally characterize the set of separating preferences, let us first look at

a few examples. Some of the following examples involve very well-known preferences,

while others are less so. One might wonder how we come up with the more obscure

examples. In fact, these examples are motivated by the general characterization of

separating preferences to be introduced in the next section.

Example 1 (CRRA utility) Consider the CRRA utility function

u (x) =

{
x1−R

1−R , R > 0 and R 6= 1

log x, R = 1

defined on all x ∈ (0,+∞) , where R is the coeffi cient of relative risk aversion. The

inverse marginal utility function is given by

I (ξ) = ξ−
1
R .

Since

I (λρ) = (λρ)−
1
R = λ−

1
R ρ−

1
R ,

we know from (2) that the CRRA utility function exhibits one-fund separation with

separating fund

f (ρ) = ρ−
1
R ,

and corresponding investment weight

α (λ) = λ−
1
R .

Hence, an investor with CRRA utility would always find it optimal to invest his entire

wealth into a single mutual fund ρ−
1
R , regardless of the initial wealth level.

Example 2 (Quadratic utility) Consider the quadratic utility function

u (x) = −x2 + 2bx,

6A function f (·) is said to be analytic if for any x0 in the interior of its domain, the Taylor series
of f around x0 converges to f (x0) on an interval of positive radius centered at x0.
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where x < b. The inverse marginal utility function is given by

I (ξ) = b− 1

2
ξ.

Since

I (λρ) = b− 1

2
λρ,

the quadratic utility function exhibits two-fund money separation with separating

funds

f1 (ρ) = 1,

f2 (ρ) = ρ,

and corresponding investment weights

α1 (λ) = b,

α2 (λ) = −1

2
λ.

Hence, an investor with quadratic utility would optimally invest a fixed amount b into

the riskless asset and take a wealth-dependent short position in the risky portfolio ρ.

Example 3 (SAHARA utility) The SAHARA preferences are introduced in Chen,

Pelsser and Vellekoop (2011). They show that for a SAHARA utility function with

scale parameter b > 0 and risk aversion parameter a > 0, the inverse marginal utility

is given by

I (ξ) =
1

2

(
ξ−

1
a − b2ξ

1
a

)
.

Since

I (λρ) =
1

2

(
(λρ)−

1
a − b2 (λρ)

1
a

)
=

1

2
λ−

1
a ρ−

1
a − 1

2
b2λ

1
a ρ

1
a ,

the SAHARA utility function exhibits two-fund separation with separating funds

f1 (ρ) = ρ−
1
a ,

f2 (ρ) = ρ
1
a ,

and corresponding investment weights

α1 (λ) =
1

2
λ−

1
a ,

α2 (λ) = −1

2
b2λ

1
a .

Hence, an investor with SAHARA utility would always find it optimal to take a long

position in fund ρ−
1
a and a short position in fund ρ

1
a .
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A common feature of the above three examples is that their inverse marginal

utility functions can all be viewed as linear combinations of power terms ξγ . In the

CRRA case, there is only one power term ξ−
1
R ; in the quadratic case, there are two

power terms 1 and ξ corresponding to γ = 0, 1; in the SAHARA case, there are again

two power terms ξ
1
a and ξ−

1
a . While one may suspect that the power terms are the

only functional form permitted by separability, the following example demonstrates

that the logarithm term log ξ can also show up.

Example 4 (CARA utility) Consider the CARA utility function

u (x) = −e−Ax,

with the coeffi cient of absolute risk aversion A > 0. The inverse marginal utility

function is given by

I (ξ) =
1

A
(logA− log ξ) .

Since

I (λρ) =
1

A
(logA− log (λρ)) =

1

A
(logA− log λ)− 1

A
log ρ,

the CARA utility function exhibits two-fund money separation with separating funds

f1 (ρ) = 1,

f2 (ρ) = log ρ,

and corresponding investment weights

α1 (λ) =
1

A
(logA− log λ) ,

α2 (λ) = − 1

A
.

Hence, an investor with CARA utility would always find it optimal to invest a wealth-

dependent amount into the riskless asset and take a constant short position in the risky

portfolio log ρ.

In all four examples above, whenever a power term ξγ shows up in the inverse

marginal utility function, γ always takes real values. However, this does not have to

be the case. When we have a pair of complex power values γ± bi, ξγ±bi can be trans-
formed into cos (b log ξ) ξγ and sin (b log ξ) ξγ . The following example demonstrates

that these terms can also appear in a separating preference.
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Example 5 Consider a utility function u, whose inverse marginal utility is given by

I (ξ) = [cos (log ξ) + sin (log ξ) + 2] ξ−2.

It can be verified that I ′ (ξ) < 0 (corresponding to concavity of utility) and

I (λρ) = [cos (log (λρ)) + sin (log (λρ)) + 2] (λρ)−2

= [cos (log λ) + sin (log λ)]λ−2 cos (log ρ) ρ−2

+ [cos (log λ)− sin (log λ)]λ−2 sin (log ρ) ρ−2 + 2λ−2ρ−2.

Hence, we have three-fund separation with separating funds

f1 (ρ) = cos (log ρ) ρ−2,

f2 (ρ) = sin (log ρ) ρ−2,

f3 (ρ) = ρ−2,

and corresponding investment weights

α1 (λ) = [cos (log λ) + sin (log λ)]λ−2,

α2 (λ) = [cos (log λ)− sin (log λ)]λ−2,

α3 (λ) = 2λ−2.

2.3 General Characterization of K-Fund Separation

In this section, we provide a general characterization of preference-basedK-fund sepa-

ration. Our characterization is stated in terms of the inverse marginal utility function

I.We show that the inverse marginal utility of a separating preference can only have

the following terms: C (constant), ξγ , (log ξ)l, ξγ (log ξ)l, cos (b log ξ), sin (b log ξ),

ξγ cos (b log ξ), ξγ sin (b log ξ), (log ξ)l cos (b log ξ), (log ξ)l sin (b log ξ), ξγ (log ξ)l cos (b log ξ),

and ξγ (log ξ)l sin (b log ξ) . Indeed, we have already seen many of these terms in the

examples above.

The following theorem provides the necessary and suffi cient conditions for K-fund

separation, where K ≥ 1 can be any positive integer. This characterization is similar

to Theorem 7.1 in Cass and Stiglitz (1970), although their result is stated without

proof and seems to be incorrect if only because the trigonometric terms are missing.

Their result also seems to contain terms that should not be there. However, the

remark to the theorem describes an additional restriction which rules out at least

some of the extra terms.

11



Theorem 1 A utility function u (with u′ > 0 and u′′ < 0) exhibits K-fund separation

if and only if the inverse marginal utility function I = (u′)−1 can be expressed as

I (ξ) =
J∑
k=1

ξγkPk,1 (log ξ) cos (bk log ξ) +
J∑
k=1

ξγkPk,2 (log ξ) sin (bk log ξ) , (3)

where

(1) The ordered pairs (γk, bk) are distinct for each k with bk ≥ 0;

(2) For i = 1, 2, Pk,i (log ξ) is a polynomial function of log ξ of degree dk,i ≥ 0,

i.e. Pk,i (log ξ) =
∑dk,i

j=0Ck,i,j (log ξ)j , where the leading coeffi cient Ck,i,dk,i 6= 0;

(3) If bk = 0 (the sin terms disappear, but the cos terms do not), then dk,2 = 0;

and

(4)
J∑
k=1

(dk + 1) (1 + 1bk 6=0) = K, where dk = maxi=1,2 (dk,i) , and 1bk 6=0 is an

indicator function that takes a value of 1 when bk 6= 0 and 0 otherwise.

The separating funds can be chosen as follows: ∀k = 1, 2, · · · , J and ∀l = 0, 1, · · · , dk,

fk,l (ρ) = ργk (log ρ)l , (4)

when bk = 0, and

f
k,1,l

(ρ) = ργk cos (bk log ρ) (log ρ)l , (5)

f
k,2,l

(ρ) = ργk sin (bk log ρ) (log ρ)l , (6)

when bk 6= 0.

The associated investment weights are given by

αk,l (λ) = λγk
dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l , (7)

when bk = 0, and

α
k,1,l

(λ) = 1l≤dk,1λ
γk cos (bk log λ)

dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l (8)

+1l≤dk,2λ
γk sin (bk log λ)

dk,2∑
j=l

Ck,2,j

(
j
l

)
(log λ)j−l ,

α
k,2,l

(λ) = 1l≤dk,2λ
γk cos (bk log λ)

dk,2∑
j=l

Ck,2,j

(
j
l

)
(log λ)j−l (9)

−1l≤dk,1λγk sin (bk log λ)

dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l ,
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when bk 6= 0.

Proof of Theorem 1 (sketch): Here is a sketch of the proof, which focuses on the

necessity of (3). The complete formal proof is relegated to the Appendix.

Since the utility function u exhibits K-fund separation, we must have that (2)

holds whenever a solution to Problem 1 exists. Taking derivatives of (2) with respect

to λ yields  ρI(1) (λρ)
...

ρKI(K) (λρ)

 = M0 (λ)

 f1 (ρ)
...

fK (ρ)

 ,

where I(k) (·) denotes the kth derivative of I (·) , and M0 (λ) is defined as

M0 (λ) =

 α
(1)
1 (λ) · · · α

(1)
K (λ)

...
. . .

...

α
(K)
1 (λ) · · · α

(K)
K (λ)

 . (10)

Assume for now thatM0 (λ) is non-singular for some λ, i.e., ∃λ such that (M0 (λ))−1

exists. We show in the appendix that a simple trick allows us to tackle the singularity

case for which similar results obtain. When M0 (λ) is not singular, we have f1 (ρ)
...

fK (ρ)

 = (M0 (λ))−1

 ρI(1) (λρ)
...

ρKI(K) (λρ)

 . (11)

Plugging (11) back into (2) gives

I (λρ) =

 α1 (λ)
...

αK (λ)


T

(M0 (λ))−1

 ρI(1) (λρ)
...

ρKI(K) (λρ)

 . (12)

Without loss of generality, assume that (M0 (λ))−1 exists when λ = 1. Evaluating

(12) at λ = 1 and rearranging yield a differential equation of the form

AKI
(K) (ξ) ξK + · · ·+A1I

(1) (ξ) ξ + I (ξ) = 0, (13)

where A1, A2, · · · , AK are constants. To ensure non-degenerate K-fund separation,

we must have AK 6= 0. Then, (13) is a Kth-order homogeneous Euler differential

equation.
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To solve this differential equation, we conjecture I (ξ) = ξδ and plug this into

(13). This gives us the following Kth-order polynomial equation

AKδ (δ − 1) · · · (δ −K + 1) + · · ·+A2δ (δ − 1) +A1δ + 1 = 0, (14)

with K roots. Some of these K roots may be repeated, thus reducing to J ≤ K

distinct roots {γk + bki}Jk=1, each of which can be either real (bk = 0) or complex

(bk 6= 0). If a real root γk is repeated for dk + 1 times (dk = 0 means that the root

is not repeated), it gives rise to dk + 1 terms
{
ξγk (log ξ)l

}dk
l=0

in I (ξ) , which can be

combined as ξγkPk,1 (log ξ) . If a pair of complex roots γk ± bki is repeated for dk + 1

times, it then generates ξγkPk,1 (log ξ) cos (bk log ξ) and ξγkPk,2 (log ξ) sin (bk log ξ) in

I (ξ) . To ensure that the total number of roots is equal to K, we must have

K =
J∑
k=1

(dk + 1) (1 + 1bk 6=0) .

Combining all the above terms, we have that I (ξ) takes the form of (3).

While (3) seems complicated, it is indeed a concise way to incorporate all possible

terms in I listed at the beginning of the section. The following table summarizes

different possible terms in I and the corresponding parameter values.

Possible terms in I γk bk l

C (constant) 0 0 0
ξγ γ 0 0

(log ξ)l 0 0 ≥ 0

ξγ (log ξ)l γ 0 ≥ 0
cos (b log ξ) , sin (b log ξ) 0 b 0
ξγ cos (b log ξ) , ξγ sin (b log ξ) γ b 0

(log ξ)l cos (b log ξ) , (log ξ)l sin (b log ξ) 0 b ≥ 0

ξγ (log ξ)l cos (b log ξ) , ξγ (log ξ)l sin (b log ξ) γ b ≥ 0

The characterization of K-fund separation for a class of preferences U follows
almost immediately from Theorem 1. The inverse marginal utility of each u ∈ U
must be the sum of terms as in (3), and the leading coeffi cient on each of these terms

must be non-zero for some utility function û ∈ U to ensure non-degeneracy. Formally,
we have the following corollary.

Corollary 1 A class of preferences U exhibits K-fund separation if and only if there
exist J distinct ordered pairs {(γk, bk)}Jk=1 with bk ≥ 0 and non-negative integers

14



{Dk}Jk=1 that satisfy
J∑
k=1

(Dk + 1) (1 + 1bk 6=0) = K such that ∀u ∈ U , the inverse

marginal utility function I = (u′)−1 can be expressed as (3), where

(1) For i = 1, 2, Pk,i (log (ξ)) is a polynomial function of log (ξ) of degree dk,i ≥
−1. When dk,i = −1, Pk,i (log (ξ)) is an empty sum, which we take to be uniformly

equal to zero;

(2) If bk = 0 (the sin terms disappear, but the cos terms do not), then dk,2 = −1;

(3) ∀k = 1, 2, · · · , J, maxi=1,2 dk,i ≤ Dk;

(4) ∀k = 1, 2, · · · , J, ∃û ∈ U such that maxi=1,2 d̂k,i = Dk.

Mutual fund separation for a class of preferences is very similar to that for a single

utility function. Hence, we focus on fund separation for a single utility function in

the analyses below.

2.4 From Low-Degree to High-Degree Separation

Theorem 1 provides a simple way of constructing higher-degree separating preferences

from those with lower degrees. We now state it below.

Theorem 2 Consider N utility functions {un}Nn=1 with corresponding inverse mar-
ginal utility given by {In}Nn=1 . Suppose that each un exhibits Kn-fund separation.

Define another utility function u, whose inverse marginal utility is given by

I (ξ) =

N∑
n=1

tnIn (ξ) , (15)

for some non-zero constants t1, t2, · · · , tN . Then, u satisfies K-fund separation with

K ≤
N∑
n=1

Kn,

where the equality holds if the separating funds of all un are linearly independent.

Proof of Theorem 2: For each n, since un exhibits Kn-fund separation, there must

exist {fn,k (·)}k and {αn,k (·)}k such that

In (λρ) =

Kn∑
k=1

αn,k (λ) fn,k (ρ) .
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By (15), we thus have

I (λρ) =
N∑
n=1

tnIn (λρ) =
N∑
n=1

Kn∑
k=1

tnαn,k (λ) fn,k (ρ) .

This implies that u satisfies fund separation.

If all {fn,k (ρ)}n,k are linearly independent, then Theorem 1 implies that all

{αn,k (λ)}n,k are also linearly independent. Hence, {fn,k (ρ)}n,k serve as a set of sep-
arating funds for u with the associated investment weights given by {tnαn,k (λ)}n,k ,
and the degree of separation is K =

∑N
n=1Kn. If {fn,k (ρ)}n,k are linearly dependent,

then multiple funds can be combined, which reduces the degree of separation, i.e.,

K <
∑N

n=1Kn.

Theorem 2 implies that one can generate high-degree separating preferences by

taking linear combinations of lower-degree ones in the inverse marginal utility func-

tion. One would wonder if this allows us to find the entire set of separating utility

based on one-fund separation only. Unfortunately, this is not true, due to the ex-

istence of repeated and complex roots of (14), which correspond to logarithm and

trigonometric terms in the characterization (3). To illustrate this, it is useful to

review one- and two-fund separation here.

2.4.1 One-Fund Separation

It is immediate from Theorem (1) that a utility function u exhibits one-fund sepa-

ration if and only (14) has a single real root γ, in which case the inverse marginal

utility can be written as

I (ξ) = Cξ−1/R, (16)

for some constant C and R = −1/γ. Note that changing the sign of C changes

preferences, while changing the magnitude without changing the sign only changes

the scaling of the utility function and does not change preferences. Conditions for

strict concavity are at least implicit in the literature (except perhaps for the mirror

CRRA case discussed below), but we repeat them for completeness. Strict concavity

requires I ′ (ξ) = −C
Rξ
−1−1/R < 0, i.e.,

C

R
> 0.
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One can verify that the utility function for the one-fund separating preferences is

u (x) =

{
C
1−R

(
x
C

)1−R
, R 6= 0 or 1

C log
(
x
C

)
, R = 1

, (17)

where the domain of consumption is x ∈ (0,+∞) when R > 0 and the domain is

x ∈ (−∞, 0) when R < 0. Notice that when R > 0 and C > 0, this corresponds

to the CRRA utility function, which is defined on positive consumption levels, as in

Example 1. When R < 0 and C < 0, we refer to this utility function as mirror CRRA

preferences, since it has the same form as CRRA but is defined on negative wealth.

2.4.2 Two-Fund Separation

If a utility function u exhibits two-fund separation, then Theorem (1) implies that

there are potentially four different types of cases, only three of which are consistent

with concavity, and only one of which can be constructed by combining one-fund

separating preferences.

Case 1: When (14) has two non-zero distinct real roots, γ1 and γ2, (3) is equivalent

to

I (ξ) = C1ξ
−1/R1 + C2ξ

−1/R2 , (18)

where R1 = −1/γ1 6= R2 = −1/γ2, and C1 and C2 are arbitrary constants such that

C1/R1 > 0 and C2/R2 > 0 for concavity. An example of this case is the SAHARA

utility function obtained when R1 = a and R2 = −a (Example 3). For all preferences
characterized by (18), the two-fund separating utility function can be obtained as in

Theorem 2 from the one-fund separating utility functions with relative risk aversion

R1 and R2.

Case 2: When (14) has two distinct real roots, 0 and γ, (3) is equivalent to

I (ξ) = C1 + C2ξ
−1/R, (19)

where R = −1/γ, and C1 and C2 are arbitrary constants such that C1 6= 0 and

C2/R > 0. This can be viewed as the limit of Case 1 when one of the risk aversion

levels goes to infinity. An example of this is quadratic utility (Example 2), obtained

by adding a constant to a mirror CRRA preference in the inverse marginal utility.

All utility functions of this form are in the HARA class and have money separation
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(see Section 3). These preferences cannot be derived by combining preferences with

one-fund separation, except as a limiting case.

Case 3: When (14) has two repeated real roots, (3) is equivalent to

I (ξ) = C1ξ
γ + C2ξ

γ log ξ,

for some constants C1 and C2. Strict concavity implies γ = 0 (see Proposition 2 of

Section 5), so we must have

I (ξ) = C1 + C2 log ξ,

which is CARA utility u (x) = −e−Ax with A = −1/C2 > 0 (see Example 4). This

case cannot be derived by combining preferences with one-fund separation, because

the logarithm term never shows up in one-fund separation.

Case 4: When (14) has a pair of complex roots, (3) is equivalent to

I (ξ) = C1ξ
γ cos (b log ξ) + C2ξ

γ sin (b log ξ) ,

with constants b 6= 0, C1 and C2.We will show in Proposition 2 of Section 5 that this

form cannot exist under strict concavity.

While the trigonometric terms cannot appear in one- or two-fund separation, they

can appear in higher-degree separation, as in Example 5.

3 Money Separation

Money separation is a special case of mutual fund separation, which obtains when

we can choose the riskless asset as one of the separating funds. Examples of money

separation we have encountered so far include quadratic (Example 2) and CARA (Ex-

ample 4) preferences. In this section, we discuss money separation and its properties

in greater depth.

3.1 Money Separation and Constant Investment Weight

An interesting observation is that for the quadratic and CARA preferences, both

of which exhibit money separation, the optimal investment strategy always involves

assigning a constant weight (dollar amount) to one of the separating funds, regardless

of the initial wealth level. In particular, for the quadratic case, the constant weight is
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assigned to the riskless asset, whereas a CARA investor optimally assigns a constant

weight to a risky fund. A natural question is whether this is merely a coincidence or

it actually reveals a property of money separation. The following theorem answers

this question.

Theorem 3 A separating utility function exhibits money separation if and only if

the optimal investment portfolio can be constructed by assigning a constant amount

to one separating fund, regardless of the initial wealth.

Proof of Theorem 3: It is our task to show that having the riskless asset in the

span of the separating funds is equivalent to being able to choose a separating fund

with a constant investment. We will show that both are equivalent to having a root

of equation (14) with (γk, bk) = (0, 0) .

By Theorem 1, if a utility function u exhibits mutual fund separation, then the

separating funds can be chosen as

fk,l (ρ) = ργk (log ρ)l (20)

when bk = 0, or

f
k,1,l

(ρ) = ργk cos (bk log ρ) (log ρ)l , (21)

f
k,2,l

(ρ) = ργk sin (bk log ρ) (log ρ)l . (22)

when bk 6= 0 for all (k, l) . Therefore, u satisfies money separation if and only if (20),

(21), (22), or any of their linear combinations equals a constant. Since any finite

set of terms for different (k, l) is linearly independent, money separation holds if and

only if (20) is a constant for some (k, l), which happens if and only if (γk, bk) = (0, 0)

with l = 0.

For a separating preference, the investment weights associated with separating

funds (20), (21) and (22) are given by

αk,l (λ) = λγk
dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l (23)
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when bk = 0, and

α
k,1,l

(λ) = 1l≤dk,1λ
γk cos (bk log λ)

dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l (24)

+1l≤dk,2λ
γk sin (bk log λ)

dk,2∑
j=l

Ck,2,j

(
j
l

)
(log λ)j−l ,

α
k,2,l

(λ) = 1l≤dk,2λ
γk cos (bk log λ)

dk,2∑
j=l

Ck,2,j

(
j
l

)
(log λ)j−l (25)

−1l≤dk,1λγk sin (bk log λ)

dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l

when bk 6= 0. Therefore, one separating fund receives a constant weight if and only if

(23), (24), (25) or any of their linear combinations equals a constant. Since any finite

set of terms for different (k, l) is linearly independent, a constant weight obtains if and

only if (23) is a constant for some (k, l), which happens if and only if (γk, bk) = (0, 0)

with l = dk,1.

Hence, the theorem is proven.

According to Theorem 3, for a money separating preference, the optimal invest-

ment strategy can be constructed by assigning a constant amount to one of the

separating funds. Interestingly, the fund with the constant weight can be either the

riskless asset or a risky fund. As shown in the above proof, the riskless asset cor-

responds to (γk, bk) = (0, 0) and l = 0, whereas the constant investment weight is

assigned to the separating fund with (γk, bk) = (0, 0) and l = dk,1. Therefore, the

riskless asset receives a constant weight if and only if (γk, bk) = (0, 0) and dk,1 = 0,

i.e., (14) has a non-repeated zero root, as in the case of quadratic utility. When the

zero root is repeated, as for CARA utility, then the riskless asset receives a wealth-

dependent investment weight, and the constant weight is assigned to a risky fund.

3.2 Money Separation and Shifts in Utility

In this section, we show that money separation is closely related to shifts in the utility

function. Indeed, we can construct money separating preferences from non-money

separation by introducing a shift in the utility function. This is formalized in the

following theorem.
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Theorem 4 Suppose that a utility function u exhibits K-fund non-money separation.

Define û (x) = u (x− C0) for an arbitrary constant C0 6= 0. Then, û satisfies (K + 1)-

fund money separation.

Proof of Theorem 4: Since

û (x) = u (x− C0) ,

one can verify that the associated inverse marginal utility satisfies

Î (ξ) = I (ξ) + C0. (26)

Thus, introducing a shift to the utility function is equivalent to adding a constant

term in the inverse marginal utility.

If u exhibits K-fund non-money separation, then there exist αk (λ) and fk (ρ) for

k = 1, 2, · · · ,K such that

I (λρ) =
K∑
k=1

αk (λ) fk (ρ) , (27)

where none of fk (ρ) or any of their linear combination equals a constant, and none

of αk (λ) or any of their linear combination equals a constant.

From (26) and (27), we have

Î (λρ) = I (λρ) + C0 =
K∑
k=1

αk (λ) fk (ρ) + C0.

Hence, û exhibits (K + 1)-fund money separation with the K + 1 separating funds

given by {fk (ρ)}k and 1, and the associated investment weights given by {αk (λ)}k
and C0.

To demonstrate how Theorem 4 works, it is useful to consider the one-fund sep-

arating preferences

u (x) =

{
C
1−R

(
x
C

)1−R
, R 6= 0 or 1

C log
(
x
C

)
, R = 1

,

whose inverse marginal utility function is given by

I (ξ) = Cξ−1/R.

21



By introducing a shift to the utility function, we obtain the HARA class

û (x) =

{
C
1−R

(
x−C0
C

)1−R
, R 6= 0 or 1

C log
(
x−C0
C

)
, R = 1

,

with inverse marginal utility function

Î (ξ) = Cξ−1/R + C0.

We have seen in Section 2.4.2 that these preferences satisfy two-fund money sepa-

ration when C0 6= 0. Hence, we obtain two-fund money separating preferences by

introducing a non-zero shift to the one-fund separating utility function.

It is worth mentioning that money separation obtained this way always assigns

a constant weight to the riskless asset. As discussed in Section 3.1, this is only one

of the two possible cases of money separation. The other case in which the constant

weight is assigned to a risky fund cannot be obtained using this approach.

4 Closed-Form Utility Functions

We have characterized the set of separating preferences in terms of the inverse mar-

ginal utility function. We then ask whether we are able to derive the associated

utility function. A natural way to do this is by first inverting I to obtain u′, and then

integrating u′ to obtain u. Unfortunately, however, this does not yield a closed-form

expression except in a few special cases, with those already in the literature limited

to one- and two-fund separation (e.g., CRRA, CARA and quadratic utility, etc.).

In this section, we discuss two classes of three-fund money separating preferences,

SAHARA and GOBI utility, for which closed-form expressions of the utility function

exist.

4.1 SAHARA Utility

The SAHARA preferences are proposed by Chen, Pelsser and Vellekoop (2011). The

standard SAHARA utility is defined on the entire real line R and has an inverse

marginal utility function of the form

I (ξ) =
1

2

(
ξ−

1
a − b2ξ

1
a

)
, (28)

with a, b > 0. As shown in Example 3, these preferences exhibit two-fund non-money

separation.
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More generally, we allow for a shift in the SAHARA utility function, which is

equivalent to adding a constant term to the inverse marginal utility, i.e.,

I (ξ) =
1

2

(
ξ−

1
a − b2ξ

1
a

)
+ C0. (29)

The constant C0 is referred to as the default point in Chen, Pelsser and Vellekoop

(2011), and the standard form obtains by setting C0 = 0. We know from Theorem 4

that when C0 6= 0, the shifted SAHARA utility exhibits three-fund money separation.

The separating funds can be chosen as

f1 (ρ) = ρ−
1
a ,

f2 (ρ) = ρ
1
a ,

f3 (ρ) = 1,

with the corresponding investment weights given by

α1 (λ) =
1

2
λ−

1
a ,

α2 (λ) = −1

2
b2λ

1
a ,

α3 (λ) = C0.

One nice property of the SAHARA utility is that the two power terms in the

inverse marginal utility, ξ−
1
a and ξ

1
a , are reciprocals of each other. We can thus

rewrite (29) as a quadratic equation of ξ
1
a , which further allows us to invert I to

recover the underlying utility function. Specifically, multiplying ξ
1
a on both sides of

(29) and setting I (ξ) = x and ξ = u′ (x) yield

b2
(
u′ (x)

) 2
a + 2 (x− C0)

(
u′ (x)

) 1
a − 1 = 0, (30)

which can be viewed as a quadratic equation of (u′ (x))
1
a . Since u′ (x) > 0, we focus

on positive solutions to (30). Using the properties of quadratic equations, we can

verify that (30) has a unique positive solution given by

u′ (x) =


√

(G (x))2 + b2 −G (x)

b2

a

,

where G (x) = x− C0. Integrating u′ (x) then gives us the utility function

u (x) =


1

1−a2

(√
(G (x))2 + b2 +G (x)

)−a(
a
√

(G (x))2 + b2 +G (x)

)
, a 6= 1

1
2 log

(√
(G (x))2 + b2 +G (x)

)
+ G(x)

2b2

(√
(G (x))2 + b2 −G (x)

)
, a = 1

.
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4.2 GOBI Utility

Define the class of GOBI preferences, whose inverse marginal utility function takes

the form

I (ξ) = C1ξ
γ + C2ξ

2γ + C0, (31)

where γ,C1 and C2 are non-zero constants such that C1γ < 0 and C2γ < 0 for

concavity. As for the SAHARA class, we include a constant C0 in the inverse marginal

utility to capture potential shifts in the utility function. As opposed to the SAHARA

utility, which is defined on the entire real line, the GOBI utility is defined on a half

real line. In particular, the domain is x ∈ (C0,+∞) when γ < 0, and the domain is

x ∈ (−∞, C0) when γ > 0.

It is easy to verify that when C0 6= 0, the GOBI preferences have three-fund

money separation. The separating funds can be chosen as

f1 (ρ) = ργ ,

f2 (ρ) = ρ2γ ,

f3 (ρ) = 1,

with the corresponding investment weights given by

α1 (λ) = C1λ
γ ,

α2 (λ) = C2λ
2γ ,

α3 (λ) = C0.

When C0 = 0, this reduces to two-fund non-money separation.

As for the SAHARA class, (31) can be viewed as a quadratic equation of ξγ .

Setting I (ξ) = x and ξ = u′ (x) , we can rewrite (31) as

C2
(
u′ (x)

)2γ
+ C1

(
u′ (x)

)γ − (x− C0) = 0. (32)

Since u′ (x) > 0, we focus on positive solutions to (32). Using the properties of

quadratic equations, we can verify that (32) has a unique positive solution given by

u′ (x) =

(
G (x)− C1

2C2

) 1
γ

,
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where G (x) =
√
C21 + 4C2 (x− C0). Integrating u′ (x) then gives us the utility func-

tion

u (x) =


γ

(2γ+1)(2C2)
1+1/γ (G (x)− C1)1+1/γ

(
G (x) + γ

γ+1C1

)
, γ 6= −12 ,−1 or 0

1
3

(
2
C2

)1/2
(G (x)− C1)1/2 (G (x) + 2C1) , γ = −12

G (x) + C1 log (G (x)− C1) , γ = −1

.

5 Strict Concavity

We have so far assumed that all utility functions under consideration are strictly

concave, i.e., u′′ < 0. This condition allows us to characterize the set of separating

preferences by (3) in terms of the inverse marginal utility. However, not all functions

satisfying (3) are strictly concave for all parameter values. In this section, we study

strict concavity of separating preferences and how it can be used to narrow down our

separating class.

Strict concavity is equivalent to I ′ (ξ) ≤ 0 on the relevant range. Given the

functional form of our separating class (3), the zeros of I ′ (ξ) can only be isolated.

While the necessary and suffi cient condition for strict concavity turns out to be

straightforward for one- and two-fund separation, it can become very complicated,

if not impossible, when higher-degree separation is taken into account. To see this,

consider as an example a K-fund separating preference whose inverse marginal utility

takes the form

I (ξ) =

K∑
k=1

Ckξ
γk , (33)

with non-zero Ck. A suffi cient condition for concavity is that Ckγk < 0 for all k,

but this condition is not necessary. In (33), I (ξ) is like a polynomial (and is a

polynomial if all γk are integer multiples of the same number). For a polynomial,

the utility function is concave if I ′ (ξ) is negative somewhere and all positive roots of

I ′ (ξ) have even order. Even finding the roots is a hard problem for which there is

no simple characterization. Other cases combining power terms with trigonometric

functions and/or logarithms are even harder. Therefore, it seems impossible to come

close to a complete characterization of concavity.

Despite the intrinsic challenge in providing a necessary and suffi cient characteri-

zation, below we seek to identify some necessary conditions on the parameter values

that are needed to induce strict concavity. While these conditions are not suffi cient,
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they allow us to narrow down the class of separating preferences by ruling out para-

meter values and forms of the inverse marginal utility that are not permitted.

The next proposition deals with the special case of fund separation, in which the

inverse marginal utility is given by the sum of power terms only.

Proposition 1 Consider a separating preference, whose inverse marginal utility is

given by

I (ξ) =

K∑
k=1

Ckξ
γk + C0, (34)

with non-zero C1, C2, · · · , CK and non-zero γ1, γ2, · · · , γK such that γ1 < γ2 < · · · <
γK . Then, strict concavity implies C1γ1 < 0 and CKγK < 0.

The following proposition further rules out forms of the inverse marginal utility

that violate strict concavity.

Proposition 2 If a separating utility function is strictly concave, then its inverse

marginal utility I cannot take the following forms.

1. I (ξ) = P (log ξ) , where the polynomial function P (·) is of an even degree;

2. I (ξ) = ξγP (log ξ) , where γ 6= 0 and the polynomial function P (·) is of an odd
degree;

3. I (ξ) =

J∑
k=1

ξγkPk,1 (log ξ) cos (bk log ξ) +

J∑
k=1

ξγkPk,2 (log ξ) sin (bk log ξ) , where

bk 6= 0 for all k.

While preferences with an inverse marginal utility function of the forms listed in

Proposition 2 violate strict concavity, more complex I (ξ) including these terms can

be concave. In fact, we have seen in Example 5 that the trigonometric terms can

be consistent with strict concavity when additional terms are present. We further

illustrate how to construct functional forms and choose parameter values to meet

strict concavity using the following examples.

Example 6 Consider a three-fund separating preference, whose inverse marginal

utility function is given by

I (ξ) = ξγ
(
C1 + C2 log ξ + C3 (log ξ)2

)
,
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with non-zero γ and C3. Differentiating I yields

I ′ (ξ) = ξγ−1
(

(γC1 + C2) + (γC2 + 2C3) log ξ + γC3 (log ξ)2
)
.

Since ξγ−1 > 0, in order to have I ′ (ξ) ≤ 0 we only need ∀ξ > 0,

(γC1 + C2) + (γC2 + 2C3) log ξ + γC3 (log ξ)2 ≤ 0.

Notice that the left-hand side can be viewed as a quadratic function of log ξ. As a

result, this inequality holds if and only if

γC3 < 0,

and

(γC2 + 2C3)
2 − 4γC3 (γC1 + C2) ≤ 0.

Therefore, any set of parameter values satisfying the above two conditions (e.g., γ =

−1, C1 = 3, C2 = 2, C3 = 1) would give rise to a strictly concave separating utility

function.

Example 7 Consider a three-fund separating preference, whose inverse marginal

utility function is given by

I (ξ) = ξγ1 (C1 + C2 log ξ) + C3ξ
γ2 ,

with non-zero γ1, γ2, C2, C3 and γ1 6= γ2. Differentiating I yields

I ′ (ξ) = ξγ1−1 ((γ1C1 + C2) + γ1C2 log ξ) + C3γ2ξ
γ2−1

= ξγ2−1
[
(γ1C1 + C2) ξ

γ1−γ2 + γ1C2ξ
γ1−γ2 log ξ + C3γ2

]
.

Since ξγ2−1 > 0, the sign of I ′ (ξ) depends on that of (γ1C1 + C2) ξ
γ1−γ2 +

γ1C2ξ
γ1−γ2 log ξ + C3γ2. We will show that (i) when γ1 < γ2, γ1C1 + C2 < 0,

and γ1C2 > 0 (e.g., γ1 = −1, γ2 = 1, C1 = 1, C2 = −1), or (ii) when γ1 > γ2,

γ1C1 + C2 < 0, and γ1C2 < 0 (e.g., γ1 = 1, γ2 = −1, C1 = −1, C2 = −1), we can

always set C3γ2 low enough such that I
′ (ξ) < 0 holds for all ξ > 0. We will show

part (i) in detail only. The analysis for part (ii) is parallel.

Under (i), since γ1C1 + C2 < 0, we have (γ1C1 + C2) ξ
γ1−γ2 < 0 for all ξ > 0.

Since γ1C2 > 0, we have γ1C2ξ
γ1−γ2 log ξ < 0 for all ξ < 1 and γ1C2ξ

γ1−γ2 log ξ ≥ 0

for all ξ ≥ 1. Given γ1 < γ2, we know

lim
ξ→+∞

γ1C2ξ
γ1−γ2 log ξ = 0. (35)
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Since γ1C2ξ
γ1−γ2 log ξ is continuous, (35) implies that γ1C2ξ

γ1−γ2 log ξ must be bounded

above. Then, setting C3γ2 equal to or lower than the negative value of this upper bound

is enough to guarantee I ′ (ξ) < 0 for all ξ > 0, giving rise to a strictly concave utility

function.

6 Machina Preferences

Our analyses so far have focused on von Neumann-Morgenstern preferences, i.e., in-

vestors have expected utility. Machina (1982) shows that the von Neumann-Morgenstern

preferences can actually be viewed as a special case of a larger class of preferences,

which we call “Machina preferences”. Assume that investors’utility is a function of

consumption distribution only and is smooth in the sense of Fréchet differentiability.7

Machina proves that such utility functions are locally consistent with expected util-

ity. In this section, we ask whether our fund separation results derived for expected

utility can be extended to the Machina preferences.

Consider a Fréchet differentiable utility function V (·) defined over the distribution
of consumption. Let x and x∗ denote two random consumption portfolios with the

corresponding cumulative distribution functions given by F and F ∗. Suppose that F

and F ∗ lie very close to each other. Machina (1982) shows

V (F )− V (F ∗) ≈
∫
U (z;F ∗) (dF − dF ∗) = E [U (x;F ∗)]−E [U (x∗;F ∗)] ,

or equivalently,

V (F ) ≈ V (F ∗) +E [U (x;F ∗)]−E [U (x∗;F ∗)] , (36)

where U (z;F ) is the local utility function over consumption level z evaluated at

distribution F. Assume that U (·;F ) is strictly concave for all F. It can be learned

from (36) that the Machina preferences can be modeled locally as expected utility.

With Machina preferences, investors face the following utility maximization prob-

lem.
7Fréchet differentiability is an infinite-dimensional version of differentiability. The idea is that

the utility function changes smoothly with the distribution of consumption. We are being informal
about the topology used to define the Fréchet derivative if consumption is not bounded. In Machina’s
original work (as in many derivations of von Neumann-Morgenstern preferences), it is assumed that
consumption is bounded. To formalized what we are doing for unbounded consumptions, we would
have to specify the topology over distribution functions to define the sense of approximation.
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Problem 2 Choose consumption x to

max
x

V (F )

subject to the budget constraint

E (xρ) ≤ w0.

Suppose that x∗ solves Problem 2. Then, it must maximize (36) with local utility

function U (·;F ∗) evaluated at F ∗. Fixing F ∗, both V (F ∗) and E [U (x∗;F ∗)] are

constants. Therefore, x∗ maximizes E [U (x;F ∗)] . Given strict concavity of U (·;F ) ,

x∗ must be unique, and it also solves the following problem.

Problem 3 Choose consumption x to

max
x
E [U (x;F ∗)]

subject to the budget constraint

E (xρ) ≤ w0.

It seems that we are faced with a similar problem as in the case of von Neumann-

Morgenstern preferences. Apparently, if all local utility functions U (·;F ) at all F

satisfy fund separation with the same separation funds, then V (·) exhibits fund sepa-
ration globally. In fact, this condition is stronger than needed. The only thing we need

is for all optimal consumption portfolios corresponding to all possible initial wealth

levels to be spanned by the same set of separating funds. Since each optimal con-

sumption portfolio corresponds to a different local utility function, we only need fund

separation for each local utility function U (·;F ) at the particular wealth level sup-

porting F as the optimal consumption portfolio. Formally, let UF ≡ {U (·;F ) , ∀F}
denote the set of local utility functions U (·;F ) evaluated at all possible F. Then,

we have the following suffi cient but not necessary condition for fund separation for

Machina preferences.

Theorem 5 Consider a Machina utility function V (·) , with the associated set of
local utility functions at all consumption distributions given by UF . If UF satisfies

mutual fund separation (characterized by Corollary 1), then V (·) satisfies mutual
fund separation.
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To illustrate fund separation for Machina preferences, we now provide two exam-

ples, one of which meets the suffi cient condition of Theorem 5 and the other of which

does not. However, we will see that both examples satisfy two-fund separation. The

first example is the mean-variance preferences, which have originally been shown to

satisfy two-fund money separation in Tobin (1958).

Example 8 Consider the mean-variance preferences

V (F ) = E (x)− a

2
E
[
(x−E (x))2

]
= E (x)− a

2

[
E
(
x2
)
− (E (x))2

]
,

with a > 0. This can equivalently be rewritten as

V (F ) =

∫ +∞

x=−∞

(
x− a

2
x2
)
dF +

a

2

(∫ +∞

x=−∞
xdF

)2
.

Differentiating V with respect to F gives the local utility function

U (x;F ) =
(
x− a

2
x2
)

+ ax

(∫ +∞

x=−∞
xdF

)
= −a

2
x2 + [1 + aE (x)]x. (37)

Fixing any F, E (x) is a constant, and thus (37) is a quadratic function. This implies

that the local utility functions at all F are quadratic. We already know from Exam-

ple 2 that all quadratic utility funtions satisfy two-fund money separation with the

same separating funds. It is then immediate from Theorem 5 that the mean-variance

preferences exhibit two-fund money separation.

The mean-variance preferences assume that the only risk that investors are averse

to is the variance of consumptions. As a second example, we incorporate an additional

dimension of risk into the utility function, which is the downside risk defined as

E
[(

[x−E (x)]−
)2]
, where [·]− = min (0, ·) . Downside risk is originally introduced

in Bawa and Lindenberg (1977). Kadan, Liu and Liu (2016) show that when the

risk measure is the sum of variance and downside risk, then the resulting mean-risk

preferences satisfy two-fund money separation.

Example 9 Consider the mean-risk preferences

V (F ) = E (x)− a

2
E
[
(x−E (x))2

]
− b

2
E
[(

[x−E (x)]−
)2]

, (38)

where risk has a variance component and a downside risk component with a, b > 0.

This can equivalently be rewritten as

V (F ) =

∫ +∞

x=−∞

(
x− a

2
x2
)
dF +

a

2

(∫ +∞

x=−∞
xdF

)2
− b

2

∫ µ(F )

x=−∞
[x− µ (F )]2 dF,
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where µ (F ) =
∫ +∞
x=−∞ xdF is the expected consumption given distribution function F.

Differentiating V with respect to F gives the local utility function

U (x;F ) = −a
2
x2 + [1 + aE (x)]x− b

2
[x− µ (F )]2 1x<µ(F ) + bx

∫ µ(F )

x=−∞
[x− µ (F )] dF,

(39)

where 1x<µ(F ) is an indicator function that takes a value of 1 if x < µ (F ) and 0

otherwise. Apparently, (37) does not belong to the class of separating utility functions

characterized by (3). Hence, in this case the local utility function does not satisfy fund

separation.

While the suffi cient condition in Theorem (5) fails, fund separation still holds in

this case. To see this, taking the first order condition of (38) with respect to x subject

to the budget constraint yields

1− a [x∗ −E (x∗)]− b [x∗ −E (x∗)]− = λρ. (40)

Solving for the optimal consumption gives

x∗ = E (x∗) + max

(
1− λρ
a

,
1− λρ
a+ b

)
.

It can be verified that fixing the distribution of ρ, λ is a constant, whereas E (x∗)

depends on the initial wealth w0. Therefore, V (F ) satisfies two-fund money separation

with separating funds

f1 (ρ) = 1,

f2 (ρ) = max

(
1− λρ
a

,
1− λρ
a+ b

)
.

The corresponding investment weights are given by

α1 (w0) = E (x∗) ,

α2 (w0) = 1.

7 Conclusion

This paper extends Cass and Stiglitz (1970) and studies the general preference-based

K-fund separation. We provide a complete characterization of separating preferences

in terms of the inverse marginal utility function and demonstrate our results using

various examples. We show how a subset of high-degree separating preferences can
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be constructed by adding low-degree separation in the inverse marginal utility. We

use one- and two-fund separation to illustrate cases that can be constucted this way

and cases that cannot.

We also study money separation, for which we can choose the riskless asset as one

of the separating funds. We show that money separation holds if and only if we can

choose a separating fund whose optimal investment amount is constant and does not

depend on the initial wealth. Somewhat surprisingly, the constant investment can be

assigned to either the riskless asset or a risky fund. We show that money separation is

closely related to shifts in the utility function. Starting with a non-money separating

preference, one can construct money separation by introducing a non-zero shift in

the utility function.

Our characterization provides us with a rich set of preferences satisfying fund sep-

aration and helps motivate new functional forms of utility functions that are tractable

and have interesting properties. In particular, we provide two classes of three-fund

separating preferences, SAHARA and GOBI, for which closed-form expressions of the

utility function can be derived. These preference can be very useful for theoretical

modeling and empirical tests in future research.

Appendix

As preparation for the formal proof of Theorem 1, we now review the concept of

Wronkian, which is first introduced by Józef Hoene-Wronski (1812) and named by

Thomas Muir (1882).

Let Φ (λ) = (φ1 (λ) , φ2 (λ) , · · · , φK (λ)) denote a vector of functions with all

φk (λ) defined over a real interval Λ ⊂ R with at least K − 1 finite continuous

derivatives. Then the Wronskian of Φ at λ is defined as

W [Φ] (λ) =

∣∣∣∣∣∣∣∣∣∣
φ1 (λ) · · · φK (λ)

φ
(1)
1 (λ) · · · φ

(1)
K (λ)

...
. . .

...

φ
(K−1)
1 (λ) · · · φ

(K−1)
K (λ)

∣∣∣∣∣∣∣∣∣∣
.

It is apparent that if Φ (λ) is linearly dependent on Λ, we have W [Φ] (λ) = 0 for

all λ ∈ Λ. Somewhat surprisingly, however, the reverse does not hold true generally.

That is, the identical vanishing of the Wronskian does not necessarily imply linear

dependence of Φ (λ). Nevertheless, Bôcher (1900) shows that this is indeed true when
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all φk (λ) are analytic functions.

Proposition 3 If all φk (λ) are analytic functions on Λ, then W [Φ] (λ) = 0 for all

λ ∈ Λ if and only if Φ (λ) is linearly dependent on Λ.

Proof of Theorem 1: (K-fund separation implies (3)) The sketch of the proof in the

text shows that when M0 (λ) given by (10) is invertible at some λ, a utility function

exhibiting K-fund separation must satisfy (3). To prove that (3) is necessary, we only

need to show that (3) is obtained even when M0 (λ) is not invertible at any λ.

Suppose M0 (λ) is not invertible at any λ. Consider multiplying (2) by λj for

j = 0, 1, · · · ,K, i.e.,

λjI (λρ) =

K∑
k=1

λjαk (λ) fk (ρ) ,

where j = 0 corresponds to the baseline case explored in the sketch of the proof.

Taking derivatives with respect to λ yields
∂[λjI(λρ)]

∂λ
...

∂K [λjI(λρ)]
∂λK

 = Mj (λ)

 f1 (ρ)
...

fK (ρ)

 ,

where

Mj (λ) =


∂[λjα1(λ)]

∂λ · · · ∂[λjαK(λ)]
∂λ

...
. . .

...
∂K [λjα1(λ)]

∂λK
· · · ∂K [λjαK(λ)]

∂λK

 .

If Mj (λ) is invertible at some λ for some j, we can follow the same procedure

as in the sketch of the proof. Specifically, we solve for fk (ρ) as functions of I (λρ)

and its derivatives, and plug them back into (2). Rearranging terms and evaluating

at λ = 1 (or at any positive value of λ where (Mj (λ))−1 exists) give us a differential

equation of the form (13). Then, solving (13) for I (ξ) again leads to (3).

Now suppose Mj (λ) is not invertible at any λ for any j = 0, 1, · · · ,K, i.e.,

|Mj (λ)| = 0 for all λ and j. Notice that |Mj (λ)| is the Wronskian of
(
∂[λjα1(λ)]

∂λ , · · · , ∂[λ
jαK(λ)]
∂λ

)
.

Since αk (λ) are analytic functions, so are
∂[λjαk(λ)]

∂λ . By Proposition 3,
(
∂[λjα1(λ)]

∂λ , · · · , ∂[λ
jαK(λ)]
∂λ

)
is linearly dependent for each j. In other words, for each j there exist tj1, t

j
2, · · · , t

j
K

33



not all equal to zero such that

K∑
k=1

tjk
∂
[
λjαk (λ)

]
∂λ

= 0.

Integrating with respect to λ and dividing by λj yield

K∑
k=1

tjkαk (λ) =
tj0
λj
, (41)

for some constant tj0. This gives us K+ 1 equations corresponding to j = 0, 1, · · · ,K.
Since for each of these K + 1 equations, we have the same set of {αk (λ)}Kk=1 on the
left-hand side, there must exist p0, p1, · · · , pK not all equal to zero such that

K∑
j=0

pj
K∑
k=1

tjkαk (λ) = 0.

By (41), this implies
K∑
j=0

pj
tj0
λj

= 0.

Since 1, 1λ , · · · ,
1
λK

are linearly independent, their linear combination vanishes only if

all coeffi cients are equal to zero, i.e., pjtj0 = 0 for all j. Since pj are not all equal to

zero, there must be some j′ so that tj
′

0 = 0. We will show that this cannot happen.

If tj
′

0 = 0, by (41) we have

K∑
k=1

tj
′

k αk (λ) = 0. (42)

Since tj
′

1 , t
j′

2 , · · · , t
j′

K are not all equal to zero, take any k′ ∈ {1, 2, · · · ,K} such that
tj
′

k′ 6= 0, and we can rewrite (42) as

αk′ (λ) = −
∑
k 6=k′

tj
′

k

tj
′

k′

αk (λ) .

Plugging this into (2) produces

I (λρ) =
∑
k 6=k′

αk (λ) fk (ρ)−
∑
k 6=k′

tj
′

k

tj
′

k′

αk (λ) fk′ (ρ)

=
∑
k 6=k′

αk (λ)

[
fk (ρ)−

tj
′

k

tj
′

k′

fk′ (ρ)

]
.
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Thus, we have (no more than) (K − 1)-fund separation, with the separating funds

being fk (ρ)− tj
′
k

tj
′
k′
fk′ (ρ) for k 6= k′. This contradicts K-fund separation.

Hence, we must have tj0 6= 0 for all j = 0, 1, · · · ,K. This in turn implies that
there exists some j such that Mj (λ) is invertible at some λ > 0. Consequently (3)

can be obtained as the necessary condition for K-fund separation.

((3) implies K-fund separation) To establish suffi ciency, we need to show that

any utility function satisfying (3) indeed exhibits K-fund separation. To this end,

the optimal consumption porfolio can be written as

I (λρ)

=

J∑
k=1

(λρ)γk Pk,1 (log (λρ)) cos (bk log (λρ)) +

J∑
k=1

(λρ)γk Pk,2 (log (λρ)) sin (bk log (λρ))

=
J∑
k=1

(λρ)γk cos (bk log (λρ))

dk,1∑
j=0

Ck,1,j (log (λρ))j +
J∑
k=1

(λρ)γk sin (bk log (λρ))

dk,2∑
j=0

Ck,2,j (log (λρ))j

=

J∑
k=1

(λρ)γk
[

cos (bk log λ) cos (bk log ρ)
− sin (bk log λ) sin (bk log ρ)

] dk,1∑
l=0

(log ρ)l
dk,1∑
j=l

Ck,1,j

(
j
l

)
(log λ)j−l

+
J∑
k=1

(λρ)γk
[

sin (bk log λ) cos (bk log ρ)
+ cos (bk log λ) sin (bk log ρ)

] dk,2∑
l=0

(log ρ)l
dk,2∑
j=l

Ck,2,j

(
j
l

)
(log λ)j−l

=
∑

{k:bk=0}

dk∑
l=0

αk,l (λ) fk,l (ρ) +
∑

{k:bk 6=0}

dk∑
l=0

[
α
k,1,l

(λ) f
k,1,l

(ρ) + α
k,2,l

(λ) f
k,2,l

(ρ)
]
,

where fk,l (ρ) , fk,1,l (ρ) , f
k,2,l

(ρ) and αk,l (λ) , α
k,1,l

(λ) , α
k,2,l

(λ) are given by (4)—

(6) and (7)—(9). Since fk,l (ρ) , fk,1,l (ρ) and f
k,2,l

(ρ) are linearly independent, and

αk,l (λ) , α
k,1,l

(λ) , α
k,2,l

(λ) are also linearly independent, K-fund separation holds

with K =

J∑
k=1

(dk + 1) (1 + 1bk 6=0) .

Proof of Proposition 1: Differentiating (34) yields

I ′ (ξ) =
K∑
k=1

γkCkξ
γk−1. (43)

Strict concavity implies I ′ (ξ) ≤ 0 for all ξ > 0.

To show γ1C1 < 0, it is useful to rewrite (43) as

I ′ (ξ) = ξγ1−1
K∑
k=1

γkCkξ
γk−γ1 .
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Since ξγ1−1 > 0, strict concavity requires ∀ξ > 0,

K∑
k=1

γkCkξ
γk−γ1 ≤ 0.

Given γ1 < γ2 < · · · < γK , we have that for all k = 2, 3, · · · ,K,

lim
ξ→0

ξγk−γ1 = 0.

This implies

lim
ξ→0

K∑
k=1

γkCkξ
γk−γ1 = γ1C1.

Hence, to ensure I ′ (ξ) ≤ 0 when ξ approaches zero, we must have γ1C1 < 0.

To show γKCK < 0, it is useful to rewrite (43) as

I ′ (ξ) = ξγK−1
K∑
k=1

γkCkξ
γk−γK .

Since ξγK−1 > 0, strict concavity requires ∀ξ > 0,

K∑
k=1

γkCkξ
γk−γK ≤ 0.

Given γ1 < γ2 < · · · < γK , we have that for all k = 1, 2, · · · ,K − 1,

lim
ξ→+∞

ξγk−γK = 0.

This implies

lim
ξ→+∞

K∑
k=1

γkCkξ
γk−γK = γKCK .

Hence, to ensure I ′ (ξ) ≤ 0 when ξ approaches infinity, we must have γKCK < 0.

Proof of Proposition 2: Our goal is to show that in each case we can find ξ > 0

such that I ′ (ξ) > 0.

Case 1: When P (·) is of degree 0, then I (ξ) is a constant, which clearly cannot

happen.

When P (·) is of an even degree d ≥ 2, we can rewrite I (ξ) as

I (ξ) =

d∑
k=0

Ck (log ξ)k ,
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with Cd 6= 0. Differentiating I yields

I ′ (ξ) =

d∑
k=1

kCk
(log ξ)k−1

ξ

=
(log ξ)d−2

ξ

d∑
k=1

kCk (log ξ)k−d+1 .

Since d ≥ 2 is even, we have (log ξ)d−2

ξ > 0 for all ξ 6= 1. Thus, the sign of I ′ (ξ)

depends on that of
d∑

k=1

kCk (log ξ)k−d+1 . It can be verified that

lim
ξ→0

d∑
k=1

kCk (log ξ)k−d+1 = +∞,

when Cd < 0, and

lim
ξ→+∞

d∑
k=1

kCk (log ξ)k−d+1 = +∞,

when Cd > 0. This implies that we can always find ξ small or large enough such that
d∑

k=1

kCk (log ξ)k−d+1 > 0 and hence I ′ (ξ) > 0, violating concavity.

Case 2: When P (·) is of an odd degree d ≥ 1, we can rewrite I (ξ) as

I (ξ) =

d∑
k=0

Ckξ
γ (log ξ)k ,

with γ 6= 0 and Cd 6= 0. Differentiating I yields

I ′ (ξ) = ξγ−1

(
d−1∑
k=0

(Ckγ + Ck+1 (k + 1)) (log ξ)k + Cdγ (log ξ)d
)

= ξγ−1 (log ξ)d−1
(
d−1∑
k=0

(Ckγ + Ck+1 (k + 1)) (log ξ)k−d+1 + Cdγ log ξ

)
.

Since d ≥ 1 is odd, we have ξγ−1 (log ξ)d−1 > 0 for all ξ 6= 1. Thus, the sign of

I ′ (ξ) depends on that of
d−1∑
k=0

(Ckγ + Ck+1 (k + 1)) (log ξ)k−d+1 + Cdγ log ξ. It can be

verified that

lim
ξ→0

d−1∑
k=0

(Ckγ + Ck+1 (k + 1)) (log ξ)k−d+1 + Cdγ log ξ = +∞,

37



when Cdγ < 0, and

lim
ξ→+∞

d−1∑
k=0

(Ckγ + Ck+1 (k + 1)) (log ξ)k−d+1 + Cdγ log ξ = +∞,

when Cdγ > 0. This implies that we can always find ξ small or large enough such that
d−1∑
k=0

(Ckγ + Ck+1 (k + 1)) (log ξ)k−d+1 + Cdγ log ξ > 0 and hence I ′ (ξ) > 0, violating

concavity.

Case 3: In this case, we can rewrite I (ξ) as

I (ξ) =
J∑
k=1

dk∑
j=0

[Ck,1,j cos (bk log ξ) + Ck,2,j sin (bk log ξ)] ξγk (log ξ)j ,

where bk 6= 0, and at least one of Ck,1,dk and Ck,2,dk is non-zero for each k. Without

loss of generality, assume γ1 < γ2 < · · · < γJ . Differentiating I yields

I ′ (ξ) =

J∑
k=1

ξγk−1


dk−1∑
j=0

[
(Ck,1,jγk + Ck,2,jbk + Ck,1,j+1 (j + 1)) cos (bk log ξ)
− (Ck,1,jbk − Ck,2,jγk − Ck,2,j+1 (j + 1)) sin (bk log ξ)

]
(log ξ)j

+

[
(Ck,1,dkγk + Ck,2,dkbk) cos (bk log ξ)
− (Ck,1,dkbk − Ck,2,dkγk) sin (bk log ξ)

]
(log ξ)dk


= ξγJ−1

J∑
k=1

ξγk−γJ (log ξ)dk


dk−1∑
j=0

[
(Ck,1,jγk + Ck,2,jbk + Ck,1,j+1 (j + 1)) cos (bk log ξ)
− (Ck,1,jbk − Ck,2,jγk − Ck,2,j+1 (j + 1)) sin (bk log ξ)

]
(log ξ)j−dk

+

[
(Ck,1,dkγk + Ck,2,dkbk) cos (bk log ξ)
− (Ck,1,dkbk − Ck,2,dkγk) sin (bk log ξ)

]
 .

It can be verified that

lim
ξ→+∞

I ′ (ξ) = lim
ξ→+∞

ξγJ−1 (log ξ)dJ
[

(CJ,1,dJγJ + CJ,2,dJ bJ) cos (bJ log ξ)
− (CJ,1,dJ bJ − CJ,2,dJγJ) sin (bJ log ξ)

]
,

which does not converge but instead switches between positive and negative values

due to the cyclicality of the trigonometric terms. This implies that we can always

find ξ such that I ′ (ξ) > 0, violating concavity.
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