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Abstract

We model a decision maker who can exert costly effort to regulate herself,
thereby reducing internal conflicts between her normative objectives and
mood-driven choices. We provide an axiomatic characterization of the model,
and show how costs of self-regulation can be elicited and compared across
individuals. In a consumption-saving problem we show that self-regulation
can generate unintended income effects, which have important implications
for public policies on saving behavior. We also provide several examples
to illustrate how self-regulation can rationalize many well-known choice
anomalies. These behavioral implications follow from a key feature of the

model that self-regulation decisions can respond to changes in incentives.
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1 Introduction

A standard economic agent considers all alternatives that are available to her,
and chooses the one that best satisfies her normative objectives. However, in
reality, there are many mood-driven factors—such as addiction, temptation, or
inattention—that can cause the agent to make inferior choices leading to a conflict
with long-term objectives.! As such, an agent who is concerned that moods might
jeopardize her objectives has an incentive to take precautionary actions. For
instance, temporary cravings for nicotine may lead an agent to smoke—especially
when she is feeling stressed, anxious, or irresolute—which conflicts with her long-
term goal to quit smoking.? As a result, the agent may want to regulate herself by
taking precautionary actions, so as to better resist cravings, lessen their frequency,

or reduce their intensity.

The objective of this paper is to understand how the possibility of self-regulation
can affect choice behavior, and how observed choice behavior can reveal the self-
regulation problem. To study these questions, we model a decision maker (DM)
who can exert costly effort to reduce conflicts between her normative preferences
and mood-driven choices, where these efforts could be physical (e.g., exercise, rest),
mental (e.g., meditation, self-motivation), or could take many other forms (e.g.,

medical, social, or monetary).

A key feature of our model is that the DM responds to incentives when choosing
her self-regulation effort. To illustrate, consider a two period consumption-saving
problem. In the first period, the DM receives some income m > 0, consumes x; < m,
and saves the rest for consumption x5 in the next period. The DM evaluates a
consumption bundle (zq, ) in terms of a normative utility w(z;) 4+ dw(xs), for
some function w(.) and discount factor ¢ € (0,1). However, at the moment of
deciding how much to consume in period 1, the DM becomes more impatient and

deviates from her normative objectives by discounting her period 2 utility at a rate

'Mood-driven factors that can impact choice behavior may also include choice overload, cold
feet, habits, present bias, selfishness, and status quo bias among many others (see Section 6).

2 Alternatively, temporary urges to consume sugar may cause the agent to eat sweets—especially
when she is feeling depressed or sad-which conflict with her goal to loose weight. Or temporary
lack of concentration may cause the agent to miss important details of an insurance plan—especially
when she is feeling tired or restless—which conflict with her goal to purchase the right policy.



55, where BA € (0,1) measures her impatience mood.?

In this context, self-regulation can be viewed as an effort the DM can exert to alter
her impatience by way of increasing 3 € [5 , 1] but at a cost ¢(/3). Anticipating that
she will choose some bundle (xf , azg ) when her future discount rate is 30, the DM

then faces the following self-regulation choice problem:

max [w(zf) +dw(zf) - ().
ESERY

By regulating her impatience, the DM is able to more closely align the consumption
bundle (27, 25) she actually chooses with the normatively ideal bundle (z,z1),
thereby increasing her realized normative utility. However, she must balance this
benefit against the self-regulation cost ¢(/3). In particular, the solution to this self-
regulation problem depends on the incentives in her consumption-saving problem.
For instance, we show in Section 2, that self-regulation can generate unintended
income effects, which impact the way the DM’s savings responds to changes in the
interest rate. For a wide range of model parameters, the DM decreases savings
relative to consumption in period 1 in response to an increase in the interest rate.
This negative income effect, which is driven by the ability of the DM to regulate
impatience, can impact the viability of policy instruments aimed at encouraging

savings behavior.

Some other economic settings where self-regulation can have interesting implications
for choice behavior include portfolio-choice or labor-supply problems. For instance,
in a portfolio-choice problem, a change in wealth may alter the DM’s incentives
to adjust her risk-preferences, thereby affecting the share of wealth she invests in
safe assets. Alternatively, in a labor-supply problem, a change in the compensation
scheme—such as a change in the share of flat-rate versus piece-rate payments—may
alter the DM’s incentives to adjust her leisure-preferences, thereby affecting her

labor-supply.

In well-known models of internal conflicts, such as the self-control model in Gul
and Pesendorfer [2001] and the dual-self model in Chatterjee and Krishna [2009],

3This is the two-period version of the beta-delta model introduced in Phelps and Pollak [1968],
and later used by Laibson [1997] and O’Donoughe and Rabin [2001] to study present bias.



there is no opportunity for the DM to exert effort to influence her internal conflicts,
in order to alter her mood-driven choices. As a result, these models do not generate
the type of responses to incentives (e.g., the unintended income effects in the
consumption-saving problem) that arise under the self-regulation model. Moreover,
our self-regulation model is consistent with many other choice anomalies that have
been widely documented in experiments (e.g., the attraction, common ratio and
magnitude effects), but that are not consistent with these other models (see Section

7).

Our general model formalizes self-regulation by identifying a novel parameter—the
cost of self-regulation—that determines how a DM is able to regulate herself. We
view these costs as subjective, and possibly encompassing many forms of self-
regulation effort. A challenge in identifying such costs is that self-regulation itself
may often be a hidden action, and therefore not observable (for instance, when
it represents a purely mental effort). To overcome this challenge, we study the
observable implications of self-regulation in a framework where the DM chooses a
choice set (or menu) today (when she is in a "cool" state), anticipating that she
will exercise self-regulation (in an interim period) before selecting an alternative

tomorrow (when she is in a "hot" state).?

ex-ante interim ex-post
Preferences ‘ Self-regulation \ Internal-conflict ‘ Choice of an
over menus alternative

Figure 1: Timeline

Our identifying assumption is that the DM anticipates the benefits and costs of
self-regulation when she chooses a menu, so that her preferences over menus—which
can be revealed by choice behavior—incorporates her self-regulation problem. In this
menu-choice framework, we give an axiomatic characterization of a general model
of costly self-regulation (Theorem 1), and show how self-regulation costs can be
elicited from choice-data (Theorem 2). We also show that a DM with higher costs

4In the literature, a cool state refers to a situation where the DM does not experience internal
conflicts, in contrast to a hot state where she faces conflicts (see, e.g., Noor [2007]).



of self-regulation values commitment more, establishing a comparative measure of

ability to self-regulate in terms of observable behavior (Theorem 3).

Our model of self-regulation is primarily related to the literature where internal
conflicts generate a desire for commitment; that is, the DM would prefer committing
to the normatively best alternative in a menu if she had the option to do so.
Axiomatic work on this literature was pioneered by the self-control model of
Gul and Pesendorfer [2001], while Dekel and Lipman [2012] study the random
Strotz model, which subsumes also many other models of internal conflict.> A
key implication of these models is that the DM, in terms menu choice, will be
indifferent between mixing commitment equivalents of menus and mixing the menus
themselves since her internal conflicts are fixed, and cannot be changed. We show
that these models constitute the special case of our model where the DM does
not have the opportunity to alter the conflicts by taking precautionary actions

(Proposition 1).

A novel feature of our model is that internal conflicts are not necessarily fixed,
and rather can be influenced by costly self-regulation. In terms of preferences for
commitment, this feature of the model induces a key axiom, Increasing Desire
for Commitment (IDC). This axiom reflects the idea that it is better to mix
commitment equivalents of menus than the menus themselves since when menus
are mixed (i) the utility gap between normatively better and worse alternatives
reduces, resulting in a decrease in the benefits of self-regulation, and (ii) there are
more inferior alternatives in the mixed menu than there are in each of the original
menus, resulting in a more complicated self-regulation problem. As such, relative
to the mixture of the commitment equivalents (where self-regulation is not needed),
the mixture of the menus both reduces the potential benefit of self-regulation and

makes it harder to effectively utilize self-regulation effort.

There are also models in the literature that, in contrast to the self-regulation
model, can imply a decrease in desire for commitment with mixtures (e.g., Noor
and Takeoka [2010] and Masatlioglu, Nakajima, and Ozdenoren [2017]). More
broadly, the self-regulation model is also related to a literature on cognitive control
of preferences (e.g., Nehring [2006] and Koida [2017]), and to the literature on

5See also the survey article of Lipman and Pesendorfer [2013] on temptations.



variational menu choice preferences (e.g., Ergin and Sarver [2010]). We discuss
the formal connection with these other models after presenting our axiomatic

characterization of the self-regulation model (see Section 6).

The paper is organized as follows. Section 2 presents the two period consumption-
saving problem in more detail, and shows how self-regulation can generate un-
intended income effects. In Section 3, we introduce the framework and define
preferences over menus induced by a general model of self-regulation. Section 4
presents the axioms. Section 5 contains our representation, identification, and com-
parative statics results. We also characterize two special cases of the model where
self-regulation effort is fixed or constrained. In Section 6, we discuss the related
literature. Section 7 provides several examples to illustrate some implications of the
self-regulation model for ex-post choice from menus. Section 8 concludes. Proofs

are given in an Appendix.

2 A consumption-saving problem

To illustrate our general model, we consider a consumption-saving problem with
an agent who can exercise self-regulation to adjust her impatience. We show that
the ability to regulate impatience can lead to unintended income effects in savings
behavior that have important implications for public policies aimed at encouraging

saving behavior.

Agent’s problem

Consider a two period consumption-saving problem similar to the one described
in the Introduction. Specifically, the agent receives income m > 0 and consumes
21 < m in period 1. The amount not consumed, m — x1, is saved, and earns interest
at a gross rate of return R > 1, which is then taxed (at a rate ¢) in period 2 leading
to a net rate of return R; > 1. There are no other sources of income. Hence, the
agent consumes 5 = (m — x1)R; in period 2.

The agent obtains utility from consumption in each period according to the iso-

clastic utility function wy(z) = {52177 for some 6 > 0 (with wy(z) = In(z) when
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0 = 1), and discounts period 2 utility at some rate ¢ € (0, 1) to aggregate her period
utilities. However, at the point of deciding how much to consume today and how
much to save for tomorrow, the agent becomes more impatient. As a result, she
deviates from her normative objective of discounting with §, and instead discounts

her period 2 utility at a rate 35 where B € (0,1) measures her impatience mood.

On the other hand, by regulating herself in advance, the agent can adjust her
impatience to 3 € [B , 1] at some cost given by a function ¢(f) which is increasing in
3. Anticipating that she will consume the bundle (27, z3), which is optimal when
her future discount rate is 34, the agent faces the following self-regulation choice

problem, max [w(xf) + dw(xh) — c(ﬁ)], as discussed in the Introduction.®
1

)

Policy-maker’s problem

Now consider the problem of a policy-maker who wants to encourage savings. The
policy-maker aims to decrease first period consumption relative to second period
consumption, or simply decrease the ratio xf’Q = xf / xg One way of implementing
this policy goal is adjusting the net interest rate R;; for instance, by changing the
tax rate t or the interest rate R. Indeed, when the net interest rate increases, the

ratio of first period consumption to second period consumption, regardless of 3,

3:1?172
7 OR:

might want to forgo some tax/interest revenue by raising interest rate R;.

decreases; that is < 0. Thus, in order to encourage savings, the policy-maker

This policy, however, may cause—contrary to its objective-less savings when the
agent can adjust her impatience 5. The reason is that when R; increases the agent
becomes relatively richer. Thus, the marginal benefit of self-regulation diminishes,
and the agent therefore wants to choose a lower level of 5 which can, in turn, induce

her to save relatively less, and consume more in period 1.

In fact, when the optimal impatience 5* is elastic enough, the indirect effect of

raising Ry, through §*, can overcome its direct effect on the relative share of first

*

. . * . o . .
period consumption xf’g, and can overall lead to an increase, Wf > 0, in the ratio

m (B5R.)*/?

m when the

In particular, the optimal bundle is x’f = and xg =

m
1+(B6R,~)1/0
discount rate is 39.



of first period consumption relative to second period consumption. In particular,
dB* /OR:

R < 1.

this holds whenever

Discussion

To set a viable policy goal, it is therefore important to identify whether the agent
can adjust her impatience, and how elastic her adjustments are to policy changes.
A main factor which affects the elasticity of impatience adjustment is the agent’s
cost of self-regulation. Our identification result, Theorem 2, provides a method for

eliciting such costs under a general self-regulation model (see Section 5.2).

To avoid incurring self-regulation costs, the agent in the consumption-saving
problem would be willing to pay a premium for the option to commit ex-ante to
the normatively best two-period allocation of her income. Intuitively, the premium
the agent would be willing to pay should depend on her costs of self-regulation,
where higher costs should reflect in a willingness to pay a higher premium. In
this regard, our comparative statics result, Theorem 3, provides a comparative
measure of ability to self-regulate in terms of desire for commitment under a general

self-regulation model (see Section 5.3).

Most models of internal conflict, such as the self-control model in Gul and Pesendor-
fer [2001] and the dual-self model in Chatterjee and Krishna [2009], cannot generate
the type of income effects that arise under the self-regulation model.” In these
models, a change in the net interest rate can only scale up or down the value of
the agent’s problem without altering her behavior. Unintended income effects arise
in our model because the DM exhibits an increasing desire for commitment, and
our characterization result, Theorem 1, provides a way of testing such behavioral

responses under a general self-regulation model (see Section 5.1).

"The convex self-control model in Noor and Takeoka [2010] can also generate income effects in
the consumption-saving example. However, in general, the self-regulation model and the convex
self-control model induce different ex-ante and ex-post choice behavior. For instance, we show
that these models can have different asset choice implications for the consumption-saving problem
(see Section 6). We also give an example of ex-post choice patterns, which are compatible with
the self-regulation model, but which cannot be generated by the convex self-control model (see
Section 7).



3 A general model of self-regulation

In this section, we describe the menu-choice framework and define the preferences

induced by a general model of self-regulation.

3.1 Framework

In the following, X is a finite set of n prizes, with typical elements z,y,z € X
called outcomes; P is the set of all probability distributions on X, with typical
elements p, q,r € P called lotteries; and A is the set of non-empty closed subsets
of P, with typical elements A, B,C € A called menus.®

For any a € [0,1], let «A + (1 — o) B denote a mized-menu, which is the mixture

of menus A and B, where
aA+(1—a)B={ap+(1—a)qe P :pe A, q€ B}.

Our primitive is a binary relation 77 on the set of menus A, with asymmetric part
denoted > and symmetric part denoted ~. We interpret the binary relation 7~ as
the preference relation of a DM who chooses a menu in period 1, anticipating that
she will choose a lottery from the menu in period 2. We call the restriction of =~
to the set of singleton menus the commitment ranking. A functional U : A — R
represents 2~ when, for all menus A and B, A 77 B if and only if U(A) > U(B).

3.2 Conflicts and moods

For any two vectors v,w € R", let v - w denote the dot product of v and w. An
expected utility function on P can be identified with an element of R™; hence, if

v € R"and p € P, we use v - p and v(p) interchangeably.

8 Although our menus-of-lotteries framework focuses on choice under risk, our analysis could be
adapted for choice over time (respectively, choice under uncertainty), for instance, by replacing the
set of lotteries P with a convex subset of R™ as the set of finite consumption streams (respectively,
the set of acts over a finite state space).

9Tt is customary to interpret the commitment ranking as the DM’s normative preference. Noor
[2011] provides a critical discussion of this interpretation.



Let V = {veR": " ,v;,=0,v-v=1} be the set of utilities, with typical
elements u,v,w € V. For any non-constant w € R", there exists a unique v,, € V
such that, for all p,q € P, w(p) > w(q) if and only if v,(p) > v,(q). Hence, any

non-trivial expected utility function can be represented by a unique utility in V.

We say two utilities u, v € V conflict on the ranking of p, ¢ € P whenever u(p) > u(q)
and v(p) < v(q), or vice versa. More generally, u and v conflict in menu A when
M,(A) N M,(A) = 0, where for any w € V, M, (A) = arg max,ec4 w(p) denotes the

lotteries in menu A that maximize w.'°

We think of moods as temporary states of mind that give rise to compositions of
conflicts, which can be represented by distributions over utilities. This reflects the
idea that, while normative objectives may be stable and representable in terms of

a single utility, mood-driven behaviors can be temporary and random.

Formally, let A(V) be the set of all finitely-additive Borel probability distributions on
V), with typical elements 7, p, 0 € A(V) called distributions. With this formalization
of a mood in mind, we denote by b%(7) the benefit the DM obtains from menu A
when her normative utility is « and her mood induces a composition of conflicts

given by the distribution w, where

Va(m) = |, [ max u(p)]n(dv).

Benefit b%(.) provides a general way to model how moods can lead to internal
conflicts in menu A, and what normative utility the DM anticipates obtaining

under these conflicts.!!

For a fixed & € A(V), Dekel and Lipman [2012] call % (#) the random Strotz model
and show that it generalizes many well-known models of internal conflicts that

have been studied in the literature:

e Self-Control: When # € A(V) is the uniform distribution over the set

0Since A is non-empty and closed, and w is a continuous function on P, M,,(A) is also a menu
by the Maximum theorem.
HSince u is continuous on P and M, (A) is a menu for all v € V, b is well-defined.

10



{woraw €V :a€0,1],veEV, k> 0}, then,

ba() = max (u(p) + kv(p)) — max kv(q). (1)
This is the self-control model, where the DM reconciles with a conflicting utility
kv, while experiencing a psychological cost of its maximal forgone utility (Gul and
Pesendorfer [2001]). In this model, & measures the DM’s capacity of self-control,
where a lower k corresponds to a greater ability to resist temptations. When k&
tends to oo, temptations become overwhelming, and the model converges to the

Strotz model.

Let 6, € A(V) be the distribution that assigns probability 1 to v for any utility
veV.

e Dual-Self: When # € A(V) is such that 7 = (1—6) 6, +6 9, for some 6 € [0, 1]
and some v € V, then,

by () =(1—46 0 . 2

a(7) = (1—0) maxu(p) + 0 max u(p) (2)

This is the dual-self model, where with probability 1 — 0 choice is made by the
normative self u, and with probability 0 choice is made by an alter ego v (Chatterjee
and Krishna [2009]).'? The case § = 0 is the standard model, while the case § = 1
is the Strotz model. The case v = —u is the Hurwicz criterion where 6 € [0, 1] is

interpreted as a decision weight (measuring pessimism/optimism) rather than as a
probability (Arrow and Hurwicz [1972], Olszewski [2007]).'3

3.3 Self-regulation

We view self-regulation as an effort the DM can exert to alter her mood-driven

behavior so as to make normatively better choices. By regulating herself, the DM

12Eliaz and Spiegler [2006] apply the dual-self model to study the effects of sophistication and
naivety in optimal contracting problems.
13In particular, b% (%) = 6 maxpe 4 u(p) + (1 — 0) minye 4 u(p) for # = 65, + (1 — 0)5_,,.

11



can (i) improve the way she resolves internal conflicts, (ii) reduce the chances of

conflicts, or (iii) weaken the intensity of conflicts.

For instance, self-regulation may allow the DM to decrease k in the self-control
model, thereby increasing her capacity to resist the internal conflict. Or self-
regulation may decrease ¢ in the dual-self-model, thereby lowering the chances
that the alter-ego realizes leading to a conflict. Or, in general, self-regulation may
allow the DM to weaken the intensity of conflicts, for instance, by altering her
mood-driven behavior from the utility v to an alternative utility w, that is “less

conflicting” with u (see Section 3.4 for a definition of less conflicting utility).

However, self-regulation requires effort, and so the DM must incur the costs in order
to exploit the benefits of self-regulation. These costs are represented by a function
¢ : A(V) — [0,00], where ¢(r) is a behavioral measure of the effort required to
induce . A cost function ¢ is proper whenever ¢(r) < oo for some © € A(V), and
lower semi-continuous whenever liﬁnj%lf c(m) > ¢(7) for every 7 € A(V), where

convergence is defined with respect to the weak*-topology.

A self-regulation preference reflects the behavior of a DM who acts as if she
anticipates exerting an optimal level of self-regulation before making a choice from

a menu.

Definition 1. [Self-regulation preference] A binary relation 2Z on menus is a self-
requlation preference if there exists u € V and a proper lower semi-continuous
function ¢ : A(V) — [0, o] such that the functional U : A — R, defined by

U(A) = mgeg [B5(m) = e(m)]

represents 7~. In this case, we say that 2 is represented by (u, c).

The self-regulation model admits a natural multi-system interpretation, in which
the utility u represents the cognitive process (i.e., the planner) responsible for
setting normative objectives and regulating at a cost ¢ other cognitive processes
(i.e., the doers) responsible for cravings, urges, attentiveness, biases and selfish

desires.!#

4 Related multi-system models have also been applied in the literature; see, for instance, Thaler

12



The self-regulation model also allows for many possible interpretations for the way
a DM’s internal conflicts realize and how she reconciles with them ex-post. As
illustrated above, the benefit b% (7) might correspond to the value of menu A under
self-control, or dual-self, or any combination of such models. In particular, for
each menu A, the optimal level of self-regulation is determined by weighing the
benefit against the cost. As such, self-regulation effort can vary across different
menus leading to a potentially different ex-post realization and resolution of internal

conflicts for each menu.

In general, the DM may consider all distributions in A()) as part of her optimization
problem. However, the DM could also consider only a subset II € A(V). Such
constraints can always be incorporated by setting c¢(m) = oo for any 7 ¢ II, which
is observationally equivalent to excluding 7 in Definition 1. For instance, the DM
might consider only a fixed &, which corresponds to the model in Eq. 1 or the
model in Eq. 2. In that case, one can set ¢(m) = oo for all 7 # @, and obtain,
respectively, the self-control model in Gul and Pesendorfer [2001] or the dual-self
model in Chatterjee and Krishna [2009].

3.4 Canonical cost functions

Properness and lower semi-continuity are minimal properties of a cost function to
ensure that the self-regulation problem is well-defined. We impose no other a priori
restrictions on the cost function. On the other hand, there are a number of intuitive
properties that, without loss of generality, can be imposed on a self-regulation cost
function (see Corollary 1 in Section 5.2). To state the properties, we require some

additional notation.

For u € V, define a partial order over V by v >* w (read “v is less conflicting
with u than w is”) if, whenever u(p) > u(q), then v(p) < v(q) implies w(p) < w(q).
Hence, the utility v is less conflicting with u than w is if, whenever v conflicts with
u, w also conflicts with u; that is, v is more closely aligned with u than w is. This

notion of comparative conflict can be generalized with distributions over utilities by

and Shefrin [1981], Bénabou and Tirole [2004], Benhabib and Bisin [2005], Fudenberg and Levine
[2006], and Ali [2011], among many others.

13



understanding that each distribution represents a possible composition of conflict.

Dekel and Lipman [2012] extend > from V to A(V) as follows: let m >% p (read
“r is stochastically less conflicting with u than p is”) if 7(V) > p(V) for every
V C V that is (i) closed in V, and (ii) closed under >*.'* Hence, the distribution
7 is stochastically less conflicting with u than p is if © puts more weight on less
conflicting utilities than p does; that is, if 7 is more closely aligned (in a stochastic

sense) with u than p is.

Definition 2. [Canonical cost functions] We say a cost function ¢ is canonical
if it satisfies (i) groundedness: c(w) = 0 for some © € A(V), (ii) convexity:
clar+ (1 —a)p) < ac(r) + (1 — a)c(p) for all m,p € A(V) and o € (0, 1), and (iii)
monotonicity: c¢(m) > ¢(p) for all m,p € A(V) with 7 > p.

Groundedness implies that the DM has the option not to exercise self-regulation,
thereby incurring no cost. When ¢ is grounded, U({p}) = u(p) for every lottery p,
and so the ex-ante utility over singleton menus coincides with the normative utility

over lotteries.'®

Convexity means that the cost of a “less focused” composition of conflicts should
not exceed the average cost of “more focused” compositions. For example, a
distribution 0 = ar + (1 — a)p, where m, p € A(V) and « € (0,1), can be seen as

less focused since its support is larger than either distribution 7 or p.

Monotonicity captures the idea that having a distribution less conflicting with
normative utility requires more self-regulation effort, and should therefore be
costlier. In particular, monotonicity implies that the cost of self-regulation is

maximal for J,, since u is the least conflicting utility.

15A subset ¥V C V) is said to be closed under > ifw e P and v >» w implies v € V.

16Since cost function ¢ is lower semi-continuous and its domain A(V) is compact, there is always
a m € A(V) that minimizes ¢, and so in general U({p}) = u(p) — ¢() for every lottery p € P. As
a result, while the ex-ante utility over singletons in general may differ from the normative utility

over lotteries, they both imply the same ordinal ranking over lotteries (see also Corollary 1).
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4 Axioms

In this section, we discuss behavioral implications of the self-regulation model for
menu-choice. We start by presenting four standard axioms from the literature, and

then focus on two further axioms which reflect key features of self-regulation.

Axiom 1. [Non-trivial Weak Order| For all menus A,B,C € A, (i) A7 B or
B = A, and (i) Az B and B 77 C implies A 7, C. Moreover, there exist menus
A, B € A such that A = B.

Axiom 2. [Mixture Continuity] For all menus A, B,C € A, the following sets are
closed: {a € [0,1] : aA+ (1 —a)B C} and {a € [0,1] : C Z A+ (1 — «a)B}.

Axiom 3. [Weak Set Independence] For all menus A,B € A and o € (0,1), if
aA+ (1 —a){p} 7 aB+ (1 —a){p}, then A+ (1 —=a){q} = aB+ (1 —a){q}
for all lotteries p,q € P.

Let co(A) denote the convex hull of menu A. Since it is closed, co(A) is also a

menu.

Axiom 4. [Indifference to Convezification] For all menus A € A, A ~ co(A).

Axiom 1 requires that the preference relation is complete, transitive, and non-trivial.
Axiom 2 imposes continuity for preferences over mixtures of menus. Axiom 3 reflects
the idea that normative preferences and conflicting utilities satisfy the standard
von Neumann-Morgenstern (vNM) independence axiom, and as a result they are
linear over lotteries.!” Axiom 4 reflects the idea that in a conflict situation only
maximal alternatives matter. Since A and co(A) have the same extreme points,
and for linear utilities only the extreme points in a menu can be maximal, the DM
is indifferent between A and co(A).

17 Axiom 3 is introduced in Ergin and Sarver [2010] in the context of their costly contemplation
model, which is similar in spirit to the Weak Certainty Independence axiom in Maccheroni,
Marinacci, and Rustichini [2006] used in their analysis of ambiguity aversion. In our analysis,
Axiom 3 reveals that the DM focuses on consequentialist motivations for self-regulation and
excludes any psychological motivations to affect her mood-driven choices. In particular, since
self-regulation is only relevant for menus A and B, replacing the common commitment menu {p}
with menu {q} does not alter the incentives to self-regulate, and so does not alter ranking of the
mixed-menus.
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4.1 Dominance and monotonicity

Our next axiom is a monotonicity condition which allows the DM to rank some
menus independent of any specific mood she may experience in the future. In
this regard, the monotonicity axiom reflects the idea that the DM deems possible
only conflicts that generate choices consistent with the following independence

condition.

Condition (IND). Forp € A and q € B, p is chosen in A and q is chosen in B
if and only if $p+ 3q is chosen in A+ LB.

In our setting, IND implies the weak axiom of revealed preference (WARP) condition,

which can be stated as follows.'8

Condition (WARP). Forp,q € AN B, p is chosen in A and q is chosen in B if

and only if p is chosen in B and q is chosen in A.

A conflict induces choices that satisfy WARP if and only if the choices can be ratio-
nalized by a weak order over lotteries. Moreover, the conflict leads to choices that
satisfy IND if and only if this weak order satisfies the standard vNM independence
condition. The following definition expresses when menu A offers a better ex-post

choice situation than menu B for every conflict consistent with IND.

For menu A and lottery p, let A(p) = {r € A: {r} ~ {p}} denote the set of lotteries

in A that are indifferent to p in terms of the DM’s commitment rankings.

Definition 3. [Dominance] Menu A dominates menu B (denoted A > B) if, for
all p,q € P, {p} = {q} implies 3A(p) + 3B(q) > 3B(p) + 54(q)-

To illustrate the idea behind Definition 3, let A > B and suppose the DM considers
a conflict that induces choices consistent with IND. In that case, for each lottery
p chosen in B, there must be a lottery p’ chosen in A such that {p'} = {p}. To
see this, assume that a lottery ¢ is chosen in menu A and a lottery p is chosen in

menu B . If {¢} == {p}, then we are done; otherwise, we have {p} > {¢} and so

8To see the implication, let p,q € AN B and assume p is chosen in A and ¢ is chosen in B. By
IND, %p + %q is chosen in %A + %B. Hence, IND implies p is chosen in B and ¢ is chosen in A.
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sB(p) + 5A(q) C 5A(p) + 5B(q). As aresult, 3¢+ 5p € $A(p) + 3B(q); that is,
there are lotteries p’ € A(p) and ¢’ € B(q) such that $p’ + 3¢’ = ¢+ sp. Moreover,
by IND, %q + %p is chosen in %A + %B; that is, %p’ + %q’ is chosen in %A + %B. As
such, by IND, p’ is chosen in A where {p'} ~ {p}.

As a result, when A dominates B, any conflict consistent with IND always leads to
a better choice in menu A. Therefore, self-regulation efforts induce better outcomes

with menu A than with menu B, which motivates the following axiom.

Axiom 5. [Monotonicity] For all menus A, B € A, if A> B, then A - B.

4.2 Mixtures and desire for commitment

Most models of internal conflict satisfy Axioms 1-5. The DM’s ability to self-

regulate, which is the key feature of our model, is revealed by the following axiom.

Axiom 6. [Increasing Desire for Commitment] For all menus A, B € A, lotteries
p,q € P, if A~ {p} and B ~ {q}, then a{p} + (1 — a){q} Z aA+ (1 — a)B for
all a € (0,1).

Increasing Desire for Commitment (IDC) reflects the idea that it is better to mix
commitment equivalent of menus rather than the menus themselves. The reason is

that, when a menu is mixed, incentives for self-regulation change for two reasons:

(i) the utility gap between normatively better and worse alternatives in a mixed

menu reduces, resulting in a decrease in the benefits of self-regulation, and

(ii) there are more inferior alternatives in a mixed menu resulting in a more

complicated self-regulation problem.

As such, relative to the mixture of commitment equivalents (where self-regulation
is redundant), the mixture of menus A and B both (i) reduces the potential benefit
of self-regulation and (ii) makes it harder to effectively utilize the self-regulation

effort. As a result, mixing menus increases the desire for commitment.?

9Tn an extension of our framework, Increasing Desire for Commitment can be also interpreted
as a desire for early resolution of uncertainty (see Section 6).
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5 Analysis of self-regulation

In this section, we provide our main findings: a representation theorem, as well as
identification and comparative statics results. We also characterize two special cases

of the self-regulation model, where self-regulation efforts are fixed or constrained.

5.1 Characterization

The following theorem shows that Axioms 1-6 characterize the behavior of a
DM who chooses among menus “as if” she anticipates a self-regulation choice
problem. As such, Axioms 1-6 are not only necessary, but also sufficient to test

the self-regulation model using menu-choice data.

Theorem 1. A binary relation on menus 7 is a self-requlation preference if and

only if it satisfies Axzioms 1-6.

Proof sketch: 1t is straightforward to show that self-regulation preferences sat-
isfy Axioms 1-6. For the converse, Lemma 2 (Appendix A.2) shows that if
a binary relation - satisfies Axioms 1-6, then there exist a normative utility
u € V, representing the commitment ranking, and a self-regulation cost function
¢ : A(V) — [0,00] such that (u,c) represents 7. In particular, Axioms 1-6 im-
ply that every menu A € A has a commitment equivalent lottery ps € P such
that {pa} ~ A. Using commitment equivalents, then a functional I over the set
O = {¢%:V = R|¢4%(v) = maxpep,a)ulp), v eV, Ac A} can be defined such
that, for all menus A and B, A 77 B if and only if I(¢%) > I(¢%). The key step
is to show that I is monotone, i.e., % > ¢% implies I(¢%) > I(¢%). To establish
this, Lemma 1 (Appendix A.2) shows that for convex menus A and B, A > B
if and only if ¢% > ¢%. The monotonicity of I then follows from Axioms 4 and
5. The remainder of the proof uses Axioms 3—6 to show that [ is continuous and

convex, and employs duality arguments to establish the desired representation. [J

Remark 1. As discussed in Section 4.1, Axiom 5 reflects the idea that the internal
conflicts satisfy vNM independence over lotteries. This facilitates comparison with

the literature and also plays an important technical role in the proof of Theorem
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1. In particular, the restriction to expected utility functions ensures that @ is a
convex space, which is important to apply the duality arguments used to derive

the representation.

5.2 Elicitation

The normative utility in the self-regulation model is identified by the DM’s commit-
ment ranking. In particular, for a given self-regulation preference =, there exists a
unique u € V such that for all p,q € P, {p} 7= {q} if and only if u(p) > u(q) (see
Lemma 2 in Appendix A.2). Moreover, the following result shows that, for each

self-regulation preference, there is a unique minimal cost function.?

Theorem 2. Let =~ be a self-requlation preference with normative utility u € V.
Then, the function c¢* : A(V) — [0, 00], defined by ¢*(m) = sup 4c 4 (b%(7) — u(pa))

for all m € A(V), is the unique minimal cost function where (u,c*) represents 7.

Theorem 2 shows that self-regulation preferences can always be represented by
the unique normative utility and minimal cost function (u,¢*). In particular, the
minimal cost function ¢* can be constructed from data on commitment equivalent
menus. For instance, since ¢*(m) > 0% (7) — u(p4) for any menu A, the commitment
equivalent p4 can be used to determine b%(m) — u(p4) as a lower bound on the cost
of w. Using commitment equivalents for other menus then leads to a more precise
lower bound. Theorem 2 shows that this procedure approximates ¢*(7) arbitrarily
closely, thereby establishing a direct connection between the self-regulation cost
function and menu-choice behavior. Moreover, as the following corollary shows, c*

satisfies the canonical properties in Definition 2.

Corollary 1. Let ¢* be the minimal cost function for a given self-requlation pref-

erence 7. Then c¢* satisfies groundedness, convexity, and monotonicity.

As such, the minimal cost function ¢* is canonical, and we refer to (u,c*) as the

canonical representation of 7.

20In general, it is not possible to identify a unique cost function. For instance, if a self-regulation
preferences - is represented by (u, ¢), then for any positive constant k, (u,cy) also represents -,
where ¢, () = ¢(m) + k for all m € A(V).
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Remark 2. Our approach to identification relies on the ex-ante implications of the
self-regulation model, with the assumption that the DM acts as if she anticipates
solving a costly self-regulation problem before the choice of an alternative in a
future period. In this regard, Theorem 2 shows how the DM’s anticipated costs
of self-regulation can be elicited with menu-choice data. A related issue would
be to identify whether the DM is sophisticated enough to correctly anticipate the
parameters of her self-regulation problem. To address this question, in addition
to menu choice-data, one would also require ex-post choice data from each menu.
For instance, using ex-ante data on commitment equivalents and ex-post stochastic
choice data, Ahn, lijima, Le Yaouang, and Sarver [2017] provide a behavioral
condition to test sophistication/naivety in the random Strotz model, and one could
adapt their approach to also study the sophistication of a DM with more general

self-regulation preferences.?!

5.3 Comparative statics

As an application of our identification result, we consider a behavioral measure of
comparative self-regulation. Let 7~; and 5 be self-regulation preferences of two
DMs. We say that DM2 is less able to self-requlate than DM1 when their normative
utilities are the same, but self-regulation is costlier for DM2 than DM1; that is,

uy = uy and ¢ > c}.??

Intuitively, when DM2 is less able to self-regulate, she should find the option of
commitment—which eliminates the need to exercise self-regulation—more valuable
than DM1. Dekel and Lipman [2012] define a comparative menu-choice behavior

that formalizes when DM2 finds commitment more valuable than DM1.

Definition 4. [Comparative desire for commitment] Let 7; and -5 be binary
relations on the set of menus A. Then -, has a stronger desire for commitment

than 77 if, for all menus A and lotteries p, {p} 721 A implies {p} 752 A.

21 Ahn, lijima, Le Yaouang, and Sarver [2017]’s key assumption is that the ex-ante data
is generated by a random Strotz model. In this regard, our characterization of the ex-ante
implications of random Strotz (Proposition 1 in Section 5.4) can be used to test their assumption.

22The restriction that us = u; is required to meaningfully compare the canonical costs, as these
costs are measured in the same units as the normative utilities.
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The following theorem shows that the comparative in Definition 4 characterizes
when DM2 is less able to self-regulate than DM1.

Theorem 3. Let =1 and 7o be self-requlation preferences with canonical repre-
sentations (uy,c;) and (ug,ch), respectively. Then, 7o has a stronger desire for

commatment than 21 if and only if us = uy and ¢ > cf.

Theorem 3 provides a behavioral measure of comparative ability to self-regulate. In
particular, Theorem 3 implies that the utility difference between the normatively
best alternative in a menu and the commitment equivalent of the menu is higher
for a DM who is less able to self-regulate. As such, the DM will be willing to
pay a higher premium for the option to commit ex-ante to the normatively best

alternative, thereby avoiding higher self-regulation costs.

5.4 Special cases

We conclude this section by characterizing two special cases of the self-regulation

model.

Fixed self-regulation

An important special case of our self-regulation model is one where the DM’s
self-regulation effort is fixed. This special case is characterized by the following

axiom.

Axiom. [Neutral Desire for Commitment] For all menus A, B € A and lotteries
p,q € P, if A~ {p} and B ~ {q}, then a{p} + (1 — a){q} ~ aA+ (1 —a)B for
all a € (0,1).

Neutral Desire for Commitment (NDC) reflects the idea that the DM’s desire for
commitment does not change for a menu when it is mixed with another menu. As
such, NDC is stronger than IDC, and the following result shows that self-regulation
preferences satisfy NDC if and only if there is a common solution to the DM’s

self-regulation choice problem.
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Proposition 1. Let 7~ be a self-requlation preference. Then =~ satisfies the Neutral
Desire for Commitment axiom if and only if there exists a unique m € A(V) such
that for all A, B € A, A7 B if and only if b%(m) > bl (7).

Dekel and Lipman [2012] study the representation in Proposition 1, which they call
random Strotz. In particular, they characterize the class of “continuous-intensity”
random Strotz preferences. However, there are also important random Strotz
preferences, such as the Strotz and the dual-self preferences, which are not in the
continuous-intensity class. Proposition 1 (together with Theorem 1) provides a

characterization result for the entire class of random Strotz preferences.

Constrained self-regulation

Another special case of our self-regulation model is one where the DM’s self-
regulation effort is constrained, rather than costly. This special case is characterized

by the following axiom.

Axiom. [Weak Neutral Desire for Commitment] For each menu A € A and lottery
pe P, if A~ {p}, then A~ af{p}+ (1 —a)A for all a € (0,1).

Weak Neutral Desire for Commitment (WNDC) reflects the idea that the DM’s
desire for commitment does not change for a menu when it is mixed with its
commitment equivalent menu. As such, WNDC is weaker than NDC, and the
following result shows that self-regulation preferences satisfy WNDC if and only if

the DM'’s self-regulation choice is costless, but constrained.

Proposition 2. Let 7 be a self-requlation preference. Then 77 satisfies the Weak
Neutral Desire for Commitment aziom if and only if there exists a set 11 C A(V)
such that for all A,B € A, Az B if and only if max b4 (m) > max b (m).

As such, relative to the random Strotz model where the self-regulation effort is

fixed, for the representation in Proposition 2 self-regulation choices can vary across

menus, but are restricted to a constraint set.
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6 Related literature

In this section, we review the related literature. Most models of internal conflict
extend on Gul and Pesendorfer [2001]’s self-control model, which is characterized

by a non-trivial weak order on menus that satisfies the following axioms.

Axiom. [Strong Continuity] For all menus A € A, the upper, {B € A : B 7 A},
and the lower, {B € A : A, B}, contour sets are closed.

Axiom. [Set Betweenness] For all menus A, B € A, if A7 B, then A7 AUB 7, B.

Axiom. [Set Independence] For all menus A, B,C € A, if A 7 B, then for all
ac(0,1),aA+(1—-a)CZaB+(1—a)C.

Strong Continuity directly implies Mixture Continuity (Axiom 2), while Set Inde-
pendence directly implies both Weak Set Independence (Axiom 3) and Increasing
Desire for Commitment (Axiom 6). On the other hand, while Set Independence
and Strong Continuity together imply Indifference to Convexification (Axiom 4),
Set Betweenness together with Strong Continuity and Set Independence implies

Monotonicity (Axiom 5).

The self-regulation model can induce preferences that violate these three axioms
used to characterize the self-control model. In the following, we consider other
models in the literature which also relax these three axioms, and we discuss their

relations with the self-regulation model.

Strong Continuity

To characterize the Strotz model, Gul and Pesendorfer [2001] weaken the Strong
Continuity axiom by dropping Lower Semicontinuity.?® Similarly, to characterize
the dual-self model in Eq. 2, Chatterjee and Krishna [2009] relax the Strong
Continuity axiom. Clearly, both models are random Strotz, and as such, they are
both special cases of the self-regulation model. Moreover, self-regulation preferences

contain many other preferences violating Strong Continuity, such as the class of

23Lower Semicontinuity only requires that the lower contour sets are closed.
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“non-continuous intensity” random Strotz preferences (see Section 5.4). As such, we
use in our analysis Mixture Continuity to permit many plausible models of internal

conflict that can lead to preferences violating Strong Continuity.

Set Betweenness

Dekel, Lipman, and Rustichini [2009] argue that Set Betweenness can exclude some
natural features (e.g., randomness) of internal conflicts. As an alternative, they
propose the Weak Set Betweenness (WSB) axiom, which restricts Set Betweenness

to certain menus.

Axiom. [Weak Set Betweenness] For all menus A, B € A, if {p} = {q} for all
peAandq€ B, then A>- AUB ~ B.

Axiom 5 directly implies WSB, whereas WSB implies Axiom 5 if Strong Continuity
and Set Independence are also satisfied. Although self-regulation preferences
imply WSB, this axiom is too weak to ensure that each ex-post choice behavior is

rationalized by a weak order satisfying vNM independence.?*

Stovall [2010] generalizes the self-control model by allowing random internal conflicts,
where his axiomatization replaces Set Betweenness with WSB. Stovall [2010]’s model
is a special case of the self-regulation model where preferences over menus satisfy
Set Independence and Strong Continuity, as well as a finiteness axiom.?® Dekel,
Lipman, and Rustichini [2009] further relax WSB to characterize a model with multi-
dimensional conflicts, where preferences over menus satisfy the Strong Continuity
and Set Independence axioms. The overlap with the self-regulation model is Stovall

[2010]’s model of random self-control.

To capture perfectionism in choice making, Kopylov [2012] restricts Set Betweenness
to the sets with common normatively best alternatives, while retaining both Strong
Continuity and Set Independence axioms. The overlap of his model with the

self-regulation model is the self-control model.

24In Appendix A.4, we provide two examples of menu comparisons which illustrate why our
monotonicity condition (Axiom 5) cannot be replaced with WSB in our characterization of the
self-regulation model.

25Gtovall [2010] also provides examples demonstrating how Set Betweenness can exclude some
intuitive choice behaviors that might occur under the presence of internal conflicts.
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Set Independence

Noor and Takeoka [2010] extend on the self-control model by allowing for convex
self-control costs. In their axiomatization, they relax Set Independence, while
retaining both Strong Continuity and Set Betweenness. In particular, convex

self-control preferences satisfy the following axiom.

Axiom. [Decreasing Desire for Commitment] For all menus A, B € A and lotteries
p.q € P, if A~ {p} and B ~ {q}, then aA+ (1 — a)B Z a{p} + (1 — a){q} for
all a € (0,1).

Thus, preferences satisfying DDC also capture systematic violations of Set Inde-
pendence, but do so in the opposite direction of self-regulation preferences. The
overlap of the convex self-control model with the self-regulation model leads to
preferences that satisfy the NDC axiom.?® As such, the overlap is a random Strotz
model, and in particular, it coincides with the self-control model since it leads to

preferences that also satisfy Strong Continuity and Set Betweenness.

Timing of resolution of uncertainty

By associating menus with degenerate lotteries, preferences over menus can be
extended to preferences over “lotteries of menus”. In this extended choice setting,
mixtures of commitment equivalents can be interpreted as early resolutions of
uncertainty, while mixtures of menus can be interpreted as late resolutions (see,
e.g., Ergin and Sarver [2015]). In this regard, whether preferences violate NDC
or not would reveal differing attitudes towards the timing of the resolution of
uncertainty. For instance, while IDC can be interpreted as a desire for early
resolution, NDC can be interpreted as an indifference to the timing of resolution,
and DDC can be interpreted as a desire for late resolution. In particular, our
self-regulation model implies IDC, since early resolution allows the DM to focus

her costly self-regulation efforts towards the payoff relevant menu.

To illustrate an economic implication of these differing attitudes, consider the

consumption-saving problem in Section 2. Suppose that, in an earlier period 0,

26Given our Axioms 1-5, the NDC axiom is equivalent to the Set Independence axiom.
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the DM can invest in two risky assets, A and B. In period 1, Asset A returns an
income of my, with probability a and an income of m; with probability 1 — a. Over

periods 1 and 2, Asset B yields consumption vector (z,z%) with probability «

and consumption vector (z},z}) with probability 1 — a. Now, suppose that for
k = h,l, the DM is indifferent in period 1 between facing the consumption-saving
problem with income m;, or committing to the consumption vector (xf,z%). As
such, while asset A can be seen as a mixture of menus, asset B is a mixture of
commitment equivalents of these menus. In that case, (i) models satisfying NDC
(e.g., self-control or dual-self) induce indifference between assets A and B, (ii)
models satisfying DDC (e.g., convex self-control) induce a preference for asset A,
and (iii) models satisfying IDC (e.g., self-regulation) induce a preference for asset

B, which provides more commitment.

Other related models

There are also other models, which overlap with the self-regulation model. Chan-
drasekher [2014] proposes a generalization of the random Strotz model, weakening
the assumption that preferences are complete while retaining the NDC axiom. The
overlap of the model in Chandrasekher [2014] with the self-regulation model is the

random Strotz model.

Masatlioglu, Nakajima, and Ozdenoren [2017] generalize the Strotz model by
allowing the DM to resist internal conflicts subject to her willpower stock. Similarly,
Grant, Hsieh, and Liang [2017] generalize the self-control model by allowing the
DM to reconcile with internal conflicts subject to her stock of willpower. Both
models lead to preferences which can violate Strong Continuity and IDC (Axiom
6). In particular, the overlap of the willpower model in Masatlioglu, Nakajima,
and Ozdenoren [2017] with the self-regulation model is the Strotz model, while
the overlap of the willpower model in Grant, Hsieh, and Liang [2017] with the

self-regulation model is the self-control model.

Similar in spirit to the discrete choice model in Nehring [2006], Koida [2017]
proposes, using lotteries over menus, a model of internal conflict, where the DM

can exercise cognitive control over mental states that trigger ex-post choices. Koida
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[2017]’s model, which he calls Anticipated Stochastic Choice (ASC), can also lead to
preferences that violate Strong Continuity, Set Betweenness, and Set Independence.
However, the overlap of ASC preferences and self-regulation preferences satisfy the
WNDC axiom and so they can be represented by the constrained self-regulation
model in Proposition 2. Koida [2017]’s model extends this representation in two
directions: (i) the set of distributions can vary with the menu, and (ii) the support
of the distributions can contain non-expected utility functions. As such, ASC
preferences can violate Axiom 5; hence, neither the self-regulation nor the ASC

model nests the other.

The self-regulation model also shares features with variational models, first intro-
duced in Maccheroni, Marinacci, and Rustichini [2006]. The closest models in the
menu-choice literature with a similar structure are the costly contemplation model
in Ergin and Sarver [2010] and the rational inattention model in De Oliveira, Denti,
Mihm, and Ozbek [2017]. In particular, the IDC axiom, which reveals the hidden
action problem in our model, is related to the Aversion to Contingent Planning

(ACP) axiom used to characterize these other models.

Axiom. [Aversion to Contingent Planning/] For all menus A, B € A, if A 7, B,
then for all o € (0,1), A7 0A+ (1 —a)B.

For a preference relation satisfying Axioms 1-5, IDC is equivalent to ACP and
Upper Semicontinuity.?” As such, in our analysis, IDC cannot be replaced with ACP
since we only assume Mixture Continuity (Axiom 2). Moreover, these variational
models lead to a desire for flexibility, and the self-regulation leads to preferences
that violate desire for flexibility except when cost of self-regulation is zero. As a
result, the overlap of these models with the self-regulation model is the standard

expected utility model.

A DM could also take precautionary actions to regulate many other mood-driven
factors which impact choice behavior. For instance, the DM could self-regulate
in order to better control addictive or habitual behaviors (Bernheim and Rangel
[2004], Gul and Pesendorfer [2007]); or in order to become more attentive to choice

alternatives (Masatlioglu, Nakajima, and Ozbay [2012], Manzini and Mariotti

2TUpper Semicontinuity only requires that the upper contour sets are closed.
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[2014], Lleras, Masatlioglu, Nakajima, and Ozbay [2017]); or in order to weaken
choice overload (Buturak and Evren [2017]) or status quo bias (Masatlioglu and
Ok [2005], Dean, Kibris, and Masatlioglu [2017]); or in order to lessen present bias
to avoid procrastination (O’'Donoughe and Rabin [2001]); or in order to overcome
pessimistic/optimistic biases in payoff relevant beliefs (Epstein and Kopylov [2007]);
or in order to reduce selfishness to make more virtuous choices (Dillenberger and
Sadowski [2012]).

7 Ex-post choice

In this section, we provide several examples to illustrate some possible implications
of the self-regulation model for the ex-post choice of alternatives from menus.
In particular, these examples show that, for both deterministic and stochastic
choice, self-regulation can lead to systematic violations of well-known consistency

principles, which have been widely documented in experiments.

Deterministic choice

We start by considering a simple model that generalizes the self-control model in
Eq. (1). In particular, suppose that self-regulation effort allows the DM to adjust
her capacity of self-control, k, in order to better resist temptations in her ex-post
choice problem. Specifically, let © € V be the DM’s normative utility, and v € V
be her temptation utility. When the DM does not self-regulate, her temptation
utility v receives equal weight in reconciling with the normative utility u; that is,
k = 1. However, the DM can exert effort with a cost ¢ > 0 to lower k to % , thereby

increasing her capacity of self-control to better resist ex-post temptations.

While the self-control model, where k is fixed, leads to ex-post choices that satisfy
WARP, the following example illustrates that the ability to self-regulate can lead
to choices that violate WARP. In particular, the choice behavior in this example is
consistent with the well-documented attraction effect (Huber and Puto [1983]).

Example 1. [WARP] Consider lotteries p, ¢, € P where u(p) > u(q) > u(r) and
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v(r) > v(q) > v(p) and u(r)+v(r) > u(q)+v(q) > u(p)+v(p). In addition, assume
(i) [u(p) + 30(p)] = [u(r) + g0(r)] > cand (i) ¢ > [u(p) + 50()] - [u(a) + jv(a)]
Under these conditions, for menu {p, ¢}, it is optimal not to self-regulate. In that
case, temptation utility v is weighted equally as the normative utility u, and so
the DM cannot resist the most tempting alternative and therefore chooses q. On
the other hand, for menu {p,q,r}, it is optimal to self-regulate. In that case,
temptation utility v receives half the weight as the normative utility u, and so the
DM can resist the most tempting alternative r and chooses p. Since ¢ is chosen in
{p,q}, and p is chosen in {p, ¢, r}, this choice behavior violates WARP.?® O

Moreover, while the self-control model satisfies the IND condition in Section 4.1,
the following example illustrates that the ability to self-regulate can lead to choices
that violate IND. In particular, the choice behavior in this example is consistent
with the well-documented common ratio effect (Allais [1953] and Kahneman and
Tversky [1979]).

Example 2. [IND] Consider the same setting as in Example 2, but now replace
assumption (ii) with assumption (ii’) ¢ > ([u(p) + %v(p)} — [u(r) + %U(T)D

Under these conditions, for menu {p, r}, it is optimal to self-regulate. In that case,
temptation utility v receives half the weight of the normative utility u, and so the
DM can resist the most tempting alternative r and chooses p. On the other hand,
for any lottery s, it is optimal not to self-regulate for menu {{p,r} + 2{s}. In that
case, temptation utility v is weighted equally with the normative utility «, and so
the DM cannot resist the most tempting alternative and therefore chooses %r + %s.
Since p is chosen in {p,r}, and {r + 3s is chosen in {{p,r} + 3{s}, this choice
behavior violates IND.?’ 0

Noor and Takeoka [2010] show that the convex self-control model can also lead to

ex-post choices that violate WARP and IND. However, the ex-post choice patterns

28In general, the attraction effect refers to the increased attractiveness of an alternative (e.g.,
p) when an inferior alternative (e.g., r) is added to the choice set {p, q}.

29Let [a; x] denote a lottery in which the DM receives $z with probability a, and $0 otherwise,
and let p = [1;3000], r = [%; 4000}, and s = [1;0]. The common ratio effect is the finding, for in-
stance, that many subjects in experiments choose p from {p, 7}, but also choose i?ﬂr %s = [%, 4000]
from {3p+ 25, 1r 4+ 35} = {[4;3000], [£;4000]}, violating IND as in Example 2.
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generated by these models can differ significantly. For instance, consider Example 1,
where the DM chooses ¢ from {p, ¢} and p from {p, ¢, 7} whilst u(p) > u(q) > u(r).
Moreover, assume that ¢ > [u(q) + 3v(q)] — [u(r) + 3v(r)], hence r is chosen from
{q,r}. This choice pattern, where ¢ is chosen from {p, ¢}, r is chosen from {q,r}
and p is chosen from {p, ¢, 7}, is incompatible with the convex-self control model
(see Appendix A.5).

Similarly, the willpower model in Masatlioglu, Nakajima, and Ozdenoren [2017]
can also lead to ex-post choices that violate WARP and IND. However, the ex-post
choice patterns generated by their model and the self-regulation model can differ
significantly. For instance, consider Example 2, where the DM chooses p from
{p,r} and {r + 3s from }{p,r} + 2{s} for any s. Now let s = p. Then the choice
pattern, where p is chosen from {p,r} and {r + 3p is chosen from {p, 7} + 3{p},
is incompatible with the model in Masatlioglu, Nakajima, and Ozdenoren [2017]
(see Appendix A.5).

There are also other choice anomalies documented in experiments that the self-
regulation model can generate. An example is the magnitude effect, which has
been observed in settings with both choice over time and choice under risk.?’ For
choice over time (respectively, under risk), the magnitude effect refers to the finding
that people are more impatient (respectively, risk-seeking) when stakes are small,
but they become increasingly patient (respectively, risk-averse) when stakes are
large (see, e.g., Prelec and Lowenstein [1991]). Such choice patterns can naturally
arise with self-regulation since the benefits of self-regulation increase when the
magnitudes increase, which generates higher incentives to self-regulate and influence

the way ex-post choices are driven.!

30Motivated by robust findings on the magnitude effect in experimental settings for intertemporal
choice, Noor and Takeoka [2018] characterize, by using preferences over consumption streams,
a model of discounting utility with endogenous impatience, where the DM exerts effort in
empathizing with future utilities by supressing her selfishness.

31By contrast, Noor and Takeoka [2010]’s convex self-control model, due to increasingly higher
costs of patient choices (respectively, risk-averse choices), induces higher impatience (respectively,
risk-seeking) when stakes get larger. For instance, in the consumption-saving problem discussed
in Section 2, an increase in income m would induce the DM to make consumption-saving choices
as if she becomes more impatient, which is incompatible with findings on the magnitude effect.
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Stochastic choice

We now consider a simple model which generalizes the dual-self model in Eq. (2).
In particular, self-regulation efforts allow the DM to lower the probability 8 that her
alter ego realizes, in order to increase the chances of choosing normatively better
alternatives. Specifically, let © € ¥V be the DM’s normative utility, and v € V be her
alter ego utility. When the DM does not self-regulate, with probability % her ex-post
choice are made by maximizing u first and with probability % by maximizing v first.
However, the DM can exert effort with a cost ¢ > 0 to increase the probability of u
to % (hence, decrease the probability of v to %), thereby increasing the chances of

choosing normatively better alternatives.

While the ex-post choices induced by the dual-self model satisfy a regularity
principle (REG) of stochastic choice, the following example illustrates that the
ability to self-regulate can lead to violations of REG.?? In particular, the choice
behavior in this example is consistent with the asymmetrical dominance effect
(Huber, Payne, and Puto [1982]).

Example 3. [REG] Consider lotteries p,q,r € P such that u(p) > u(q) > u(r)
and v(r) > v(q) > v(p), and suppose that ¢ satisfies (i) § (u(p) — u(r)) > ¢ and (ii)
&> ¢ (u(p) — u(q))-

Under these conditions, for menu {p, ¢} it is optimal not to self-regulate. In that
case, with probability % the alter ego v realizes and chooses ¢ instead of p, and
with probability % the normative self u realizes and chooses p. On the other hand,
for menu {p, q,r} it is optimal to self-regulate. In that case, with probability
% the normative self u realizes and chooses p, and with probability % the alter
ego v realizes and chooses r instead of p. Since p is chosen with probability % in

{p,q}, and p is chosen with a higher probability § in {p, ¢, r}, this stochastic choice
behavior violates REG. 0

Moreover, while the ex-post choices induced by the dual-self model satisfy the

strong stochastic transitivity (SST) principle, the following example illustrates that

32The regularity principle asserts that adding a new alternative to a choice set should never
increase the probability of selecting an existing alternative (see, e.g., Rieskamp, Busemeyer, and
Mellers [2006]).
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the ability to self-regulate can lead to violations of SST.3? In particular, the choice
behavior in this example is consistent with the comparability effect (Mellers and
Biagini [1994]).

Example 4. [SST] Consider the same setting as in Example 3, but now with the

additional assumption (iii) ¢ > ¢ (u(q) — u(r)).

Under these conditions, for menu {p, ¢} it is optimal not to self-regulate. In that
case, with probability % the alter ego v realizes and chooses ¢. Similarly, for menu
{q,r}, it is optimal not to self-regulate. In that case, again with probability % the
alter ego v realizes and chooses 7. On the other hand, for menu {p, r}, it is optimal
to self-regulate. In that case, only with probability % the alter ego v realizes and
chooses . Since ¢ is chosen in {p, ¢} with probability 2 > 7, r is chosen in {q, r}
with probability % > % , but r is chosen in {p, r} with probability %, this stochastic

choice behavior violates SST.3* O

These examples illustrate that, when the DM can self-regulate to influence the
probability that her alter ego realizes, then her ex-post choices are consistent
with well-documented violations of consistency principles, such as REG and SST.
Moreover, self-regulation can also lead to systematic violations of other well-known
stochastic choice properties, such as the linearity property (LIN) in Gul and
Pesendorfer [2006]. This property asserts that the probability of choosing p from
{p,r} should be the same as the probability of choosing ap + (1 — a)q from
afp,r} + (1 —a){q} for all ¢ € P and a € (0,1). LIN is satisfied by any random
Strotz model (e.g., the dual-self model). However, in Examples 3 and 4, p is chosen
%. On the other hand, for any a < m,
lottery ap + (1 — a)q is chosen in menu a{p,r} + (1 — a){q} with probability g,

in menu {p,r} with probability

violating LIN. As such, similar to the violations of IND for deterministic choice
(e.g., the common ratio effect), changes in the incentives naturally lead to violations
of LIN for stochastic choice.

33The strong stochastic transitivity principle asserts that if the probability of selecting g is
higher than 0.5 in {p, ¢} and the probability of selecting r is higher than 0.5 in {g,r}, then the
probability of selecting r in {p,r} should be higher than both probabilities (see, e.g., Rieskamp,
Busemeyer, and Mellers [2006]).

34In particular, these specific choice patterns fit the experimental findings for stochastic choice
among gambles in Mellers and Biagini [1994].
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8 Conclusion

In this paper, we study the behavior of a DM who can exercise costly effort
to regulate herself, thereby reducing internal conflicts between her normative
preferences and mood-driven choices. We provide an axiomatic characterization
of self-regulation preferences and show how the costs of self-regulation can be
elicited and compared across individuals. We also show that the self-regulation
model generalize many well-known models of internal conflict and argue that self-
regulation can also be relevant in a variety of other settings, including choice with

addiction, inattention, cognitive load, status quo bias, and selfishness.

We show that self-regulation (i) induces an increase in desire for commitment,
leading to systematic violations of Set Independence, which is satisfied by many
prominent models of internal conflicts in the literature, (ii) provides a novel source
for well documented violations of consistency principles for ex-post deterministic
choice (e.g., the attraction effect and the common ratio effect) and stochastic
choice (e.g., the asymmetrical dominance effect and the comparability effect), and
(iii) generates unintended income effects in a consumption-saving problem. The
self-regulation model is therefore sufficiently general to rationalize a wide variety
of mood-driven choices and internal conflicts, while having enough structure to

identify meaningful behavioral parameters from choice data.

A Appendix

A.1 Preliminaries

Let 3 denote the Borel sigma-algebra over V, and let B(X) be the set of bounded
Y-measurable functions mapping V to R. When endowed with the sup-norm
metric, B(X) is a Banach space. The topological dual of B(X) is the space ba(X)
of all bounded and finitely-additive set functions p : 3 — R, the duality being
(o, ) = [, p(v) p(dv) for all p € B(X) and all p € ba(X) (see, e.g., Dunford and
Schwartz [1958, p. 258]). For ¢, ¢ € B(X), we write ¢ > 1 if p(v) > ¢(v) for all
ve.
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Let ® be a non-empty subset of B(X), and ®. be the constant functions in .
Set @ is called a tube if & = & + R. A functional [ : & — R is (i) normalized
if I(k) = k for all k € ®.,% (i) monotone if ¢ > 1) implies I(¢) > I(¢)) for all
o, € O, (iii) translation invariant if I(ap + (1 — a)k) = I(ap) + (1 — a)k for
all p € @, k € &, and « € [0, 1], such that ap,ap + (1 — a)k € D, (iv) vertically
invariant if I(p+k) = I(p)+k for all ¢ € ® and k € O, such that ¢ + k € ¢, and
a (v) niveloid if I() — I(¢) < sug(go(v) —(v)) for all p,¢) € .3
ve

For notational convenience, we denote oA + (1 — «)B by Ala|B for A,B € A
and a € [0,1]. Let P° be the interior of P (i.e., the set of lotteries with full
support), and A° C A the collection of non-empty closed subsets of P°. Denote by
p = (1/n,...,1/n) the uniform distribution over X.

Foru € Vand A € A, define ¢ : V — R by ¢%(v) = max,en, a) u(p) forallv € V.
When w is clear from the context, we omit the superscript u. By the Maximum
Theorem (see, e.g., Aliprantis and Border [2006, pp. 569-570]), v is an upper
semicontinuous function taking values in K = [u,, u*], where u, = I;éi}g u(p) and
ut = max u(p). Upper semicontinuous functions are ¥-measurable (Billingsley [1995,
pp. 184-186]). As a result, p4 € B(3, K), where B(X, K) denotes the functions
in B(X) assuming values in K. Let ® = {p4 : A€ A} and ®° = {p4 : A € A°}.
Clearly 0 € ®° and ®° C ®. Moreover, since @aqp = apa + (1 — a)pp for any
A,B € Aand a € |0,1], both & and ®° are convex sets. It is straightforward to
show that v = @ee(a) for all A € A.

A.2 Lemmas

In this Section, we state and prove three lemmas that are used to establish the
results in the text. The first lemma characterizes the dominance relation. The
second lemma provides a representation for a binary relation satisfying Axioms 1-6.

The final lemma establishes that there is a common solution to the self-regulation

35We abuse notation by writing k for k1, where it is obvious from the context.

36Clearly, a niveloid is Lipschitz continuous. Moreover, Cerreia-Vioglio, Maccheroni, Marinacci,
and Rustichini [2014] show that a niveloid is a monotone vertically invariant functional, while the
converse is true whenever its domain is a tube.
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choice problem for a collection of menus if and only if the DM is neutral with

respect to the mixture of these menus.

A characterization of dominance: In the following, fix some u € V. Let
A,, = {reco(A) : ulp) >u(r)>u(q)} for A € A and p,q € P such that
u(p) > u(q), and let A, = {r € co(A) : u(r) =u(p)} if u(p) = u(q). Now de-
fine a partial order >, on A by A >, B if for all p,q € P, u(p) > u(q) implies
A51B, O B[54,

Lemma 1. Forall A,B € A, A>, B if and only if o4 > ¢p.

Proof. [Necessity]: Let A, B € A such that A >, B. First, suppose A = A, U A4,
and B = B, U B, for two lotteries p, ¢ € P with u(p) > u(q), where A,, A,, B, and
B, are non-empty. Fix any v € V, and let r € M,(A4,), r" € M,(A,), s € M,(B,),
and s’ € M,(B,). Since A,[3]B, D B,[3]Aq, sv(r)+30(s’) > u(s)+ 5v(r’), and so
v(r)—wv(r') > v(s) —v(s’). Hence, p(v) > ¢p(v). Since v was arbitrary, o4 > ¢p.
Now consider arbitrary A, B € A. Fix v € V, and let r € arg max,e, (a) u(p) and
s € M,(B). By way of contradiction, suppose u(s) > u(r). Then A,[3]B, D B[3]A,.
Sincer € A, and s € By, both of these sets are non-empty. Since A,[2]B, D B,[1]4,,
it follows that A, and B, are non-empty. Hence, by the argument in the previous
paragraph, 4,04, > ¢B.uB,, and so there exists s’ € M,(As U A,) N A, implying
s" € M,(co(A)). Since u(s') > u(r), this contradicts r € argmax,en,(a)u(p).
Hence, pa > pp.

[Sufficiency]: Let A, B € A such that 4 > ¢p. Let p,¢ € P such that
u(p) > u(q). The following steps show A,[3]B, D B,[1]4,.

Step 1: If u(wy) = Irneifrllu(r) > rgleanu(s) = u(bg), then the claim is trivially
true. Thus, assume that u(bg) > u(wy). Since u,—u € V, we must have
u(by) = max u(r) > u(bg) and u(ws) > Isréig u(s) = u(wp), and so if u(p) > u(bp)
or u(wy) > u(q), the claim holds easily. Thus, assume u(bg) > u(p) > u(q) > u(wy).
Step 2: We now argue that ¢, > ¢p, . To see this, let v € V such that
op(v) = u(r) for some r € M,(B). First, if u(r) > u(p), then for any s € co(B)
with u(p) > u(s), there exists some v € (0, 1) satistfying ar + (1 — «)s € B,,. Hence,
v-[ar+(1—a)s|] > v-s implying M, (B, ) C B,. The same argument applies for A
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yielding M, (A, 4) € Ay, and so ¢4, (v) = ¢p,,(v). Second, if u(p) > u(r) > u(q),
then clearly ¢p,,(v) = ¢p(v) and @4, ,(v) = @a(v), and so a4, ,(v) > ¢3,,(v)
since we have ¢4 > pp. Finally, if u(q) > u(r), then for any s € B with u(s) > u(q),
there exists some « € (0, 1) satisfying ar + (1 — a)s € B,. Hence, for any s € B
with u(s) > u(q), v - [ar + (1 — a)s| > v - s implying M,(B,,) C B, and so
Py, (V) 2 ¢, ,(v). Thus, we have g4, , > ¢p, .

and notice that there is a unique @ € (—1, 1) such that v = au + (M) weV
satisfies M5(A, UA,) = M, (Ap) UM, (A,). That is, v(r) = v(s) for all r € M, (A,)
and s € M,,(4,). We claim that Mz(B, U B,) N M,,(B,) # 0. That is, v(r) < v(s)
for all r € M,,(B,) and s € M,(B,).

Step 3: We now show that p,u4, > ¢B,uB,- Fixsomew € W= {v eV : v-u=0}

Assume, for contradiction, that this is not true. Let ry,, = (u-7)-u+(w-r)-w € R"
denote the projection of any r € P onto the space spanned by w and w in
R™. Note that for any £ € A and r € P, all points in M,(E,) are pro-
jected onto the same point rZ € R". Let M,,(E,) = {rf, € R"} and let

w,u w,u

My (Esy) = U My (E,) for any £ € A and s,t € P. Note that by

u(s)Zu(r)>u(t)
assumption we have v(p5,) > v(¢5,) and v(p},) = v(q),). Without loss of

generality, let o(p5 ) > 0(ps.,) = v(qg.,) > (g5 ).

Define a function f : [0,1] — R such that f(a) = w(r[a]d,) — w(r[a)Z ) where

w,u w,u

rla] = ap+ (1 —a)q € P for all a € [0,1]. Observe that f is a continuous function
from [0, 1] into R such that f(0) > 0 and f(1) < 0. Hence, by the Intermediate

Value Theorem, there is some a € (0, 1) satisfying f(a) = 0. That is, there is
A B

some a € (0,1) such that w(rlaly,,) — w(r[a]Z,) = 0 implying r(al}, = r[a]Z .

Therefore, the set F' = M, ,(A,,) ﬁ Myu(Byy) 7is non-empty. Moreover, it can be
easily verified that F' is a closed (and convex) set. Let r[a*] be the unique element
of M,(F). Note that a* € (0,1); that is, u(p) > u(rla*]) > u(q) since p} , # k.,
and g, 40

For all a € (a*, 1], let a®*(a) € (—1,1) be the unique number such that the vector
v = at(a)u + ( 1- (aA(a))Q)w € V satisfies vA(r[a*]) = v (rla]2,). Note

a a W,

that a’(a) is a monotonically decreasing upper semicontinuous function. Hence

o, = lim a(a) is well defined. Similarly, for all a € (a*,1] let af(a) € (—1,1)

a—a*
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such that v? = o (a)u + ( 1— (ozB(a))2> w €V satisfies v (rla*]) = v/ (r[a]}) )

and define af = lim a®(a). Observe that it must be —1 < a% < a* < 1. Moreover
a—a*

since r[a*] is the unique element of M, (F"), without loss of generality, let o < o.

Pick some & € (aj, o) and let © = adu + (M) w € V. Note that since
oy < & and of(a) is decreasing, there must be some 75 € My(M,, .(B,,)) such
that u(fz) > u(r[a*]). Moreover, since & < o < a?(a) for all a € (a*, 1], we
have u(r[a*]) > u(#4) for all 74 € My(My(A,,)). Combining these, we deduce
©a,,(0) < ep,,(0), a contradiction. Hence, it must be My(B, U B,) N M, (B,) # 0.

Note that any v € V\{u, —u} can be uniquely given as v = vj , = au+ (m) w
for some w € W and some « € (—1,1). Moreover, for any F € A, and for any
Ut Vi € V Withw € Wand o, § € (=1, 1), we have Mo (EJUE) M, (E;) = 0
implies M s (EsUEy)NM,(E;) = ) whenever s,t € P with u(s) > u(t) and a < .
Therefore, given that My(A,UA,) N M, (A,) # 0 implies My (B,UB,) M, (B,) # 0,
for any v = au + (m) w eV with w e W and a € (—1,1), we must have
M,(B, U B,) N M,,(B,) = 0 implies M,(A, U A,) N M,(A,) = 0. Thus, we obtain
PA,UA, 2= PB,UB,-

Step 4: Finally let 7 = Ip + 3¢, and let Cr = A,[5]B,, C; = Ay[3]B,, and
D; = Aq[%]Bp. We want to show that Cz 2 Dy. Note that since ¢4,04, > ¢B,uB,
we have pc,uc, = 3Pa,ua, + 398, = PB,UB, T 394, = ¢D,uc,. Assume for
contradiction that there exists some s € D; \ Cz. Then Cr and E = co({s} UC,)
are both closed and convex sets in R" with Cz N E = (). Hence, by a Strong
Separating Hyperplane theorem (see, e.g., Dunford and Schwartz [1958, p. 417] or
Aliprantis and Border [2006, p. 207]), there exists some v € V and k € R such that
v-e>kforallee Fandv- f <k for all f € Cr.

Ifv-s > wv-eforall e € Cy, then we must have pp.uc,(v) = u-s > u-q¢ = ¢p,uc, (v), a

contradiction. Thus, assume that maxuv-e > v-sand let ¢ € Oy such that v-c > v-e
ecCy

for all e € Cy. Now let a = ——r5mme—-r € (0,1) and w = av + (1 — @)u. Then
w-s = w-c > w-eforalle € Cy. On the other hand, w-c = w-s > w- f forall f € C5.
Thus, we must have ¢p.uc,(vw) =u- s> u-q = ¢p.uc,(Vw), a contradiction. To

summarize, there cannot be any s € D; \ C;, and so 4,[1]B, D B,[1]4,. O

Implications of Axioms 1-6: The following lemma obtains several results which
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we use in proving Theorems 1 and 2 in the text:

Lemma 2. Let 7, be a binary relation on A that satisfies Axioms 1-6. Then:

(i) There exists uw € V such that, for all p,q € P, u(p) > u(q) if and only if

{r} = {a}-

(it) Every menu A € A has a commitment equivalent pa € P.

(tit) The function c* defined on A(V) by c*(7) = supe4 ((¢%, ) —u(pa)) for all

m € A(V) is non-negative lower-semicontinuous and proper.

() The functional U : A — R, defined by U(A) = maxea(y) ({(¢%, ) — c*(7))
for all A € A represents 7.

Proof. Let 7~ be a binary relation on A that satisfies Axioms 1-6.

[Part (i)]: Let p,q € P and assume that {p} ~ {¢}. By Axiom 6, we have
{p} = {¢}[31{p}. This implies {¢}[3]{p} = {q} by Axiom 3, and so we must
have {p} ~ {¢}[3]{p}. By Axiom 3 again, we have {p}[5]{r} ~ {q}[3]{r} for any
r € P. Hence, by Herstein and Milnor [1953], there exists u € V representing the

commitment ranking.

[Part (ii)]: Since A is non-empty and compact, and u is a continuous function on
P, there exist some by, wy € A such that {ba} 77 {p} = {wa} for all p € A. Clearly
{ba} = Az {wa} by Axiom 5, and so by Axiom 2, the following (non-empty) sets,
whose union is equal to [0, 1], must be closed: {a € [0,1] : {ba}[a]{wa} Zz A} and
{a€[0,1]: A {ba}[a{wa}}. Since [0, 1] is a connected set, these two sets must
intersect; that is, there must exist some « € [0,1] such that A ~ {bas}[a]{wa}.
Let ps € P be equal to abs + (1 — @)wys. Finally, note that if A € A°, then
ba,ws € P°, and so py € P°.

[Part (iii)]: For any m € A(V), <<p{p},7r> —u(p) = u(p) — u(p) = 0, and so c*
is non-negative. Since ¢* is the supremum of continuous functions, it is lower
semicontinuous. Finally, for any A € A, (pa,0_,) = u(wya). Since u(r) = u(wa)
for all 7 € A, it follows that A,[3]{wa}, D {wa},[3]A, for all p,q € P such that
{p} = {¢}. To see why, note that either {wa}, =0 or A, = (). Hence, by Axiom
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5, A7 {wa} and so u(pa) > u(wa). It follows that (p4,d_,) —u(pa) <0 for all
A€ A, and so ¢*(0_,) = 0. Hence, ¢* is proper.

[Part (iv)]: To establish the desired representation, we show that there is a normal-
ized convex niveloid I : & — R such that, for all menus A and B, A 7~ B if and only
if I(pa) > I(pp). Following the approach in Maccheroni et al. [2006], an application
of Fenchel-Moreau duality then establishes I(¢4) = max can) ((pa, ) — c*(7))
for all A € A. For technical reasons, we start by defining a functional 7° on A°,

and then use Axiom 2 to extend the functional to A.

Let I°: ®° — R be a functional defined by 1°(p4) = u(pa) for all A € A, where
pa denote a commitment equivalent of A. For any two menus A, B € A° with
commitment equivalents ps and pg, A 7 B if and only if {pa} == {pp}, and so
I°(pa) > I°(pp) if and only if A =~ B. Moreover, the following argument shows

that 1° is monotonic, and so it is well-defined.

Let A,B € A? such that p4 > ¢p. Since Y4 = Yeoa) and Yp = QYeo(p), it
follows that veoa) = @eo(p). Moreover, it follows immediately from Lemma 1, that
Peo(A) = Peo() implies A > B. Hence, by Axiom 5, co(A) 7z co(B). As a result,
Axiom 4 implies I°(p4) > I°(¢B).

For the rest of the proof, we proceed in steps to establish that I° is a normalized

convex niveloid.
Step 1 (1° is normalized): Let k € R such that k € ®°. That means there is a
lottery p € P? such that k = ¢,y = u(p). Hence, I°(k) = I°(¢gy) = u(p) = k.

Step 2 (I1° is convex): Let A, B € A° and « € [0,1]. Note that Ala]B € A° and so
©ajap € ®°. By part (ii) there exist some p4,pp € P° such that {ps} ~ A and
{pp} ~ B. By Axiom 6, we have {p4}[a){ps} 7 Ala]B, and so

al’(pa) + (1 =a)l°(pp) = au(pa)+ (1 —a)ulps) = I°(Opayialps))
> I°(pajB) = I°(apa + (1 — a)pp).

vV

Step 3 (1° is translation invariant): Let A € A° p € P with u(p) = k, and
a € (0,1). Let byw € A such that {b} = {q} = {w} for all ¢ € A. By
part (i), {b}ol{p} = {d}a{p} = {w}lal{p} for all ¢ € A, and so by Axiom
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5 {b}al{p} == Alal{p} = {w}[a]{p}. The argument used in the proof of Claim
part (ii) yields a g € [0, 1] such that ({b}[a]{p}) [B] {w}|a]{p}) ~ Ala]{p}. Hence,
r=pb+ (1—p)w € P° satisfies {r}a]{p} ~ A[a]{p}. By Axiom 3, it follows that
{r}al{p} ~ Alal{p}, and so

Ilapa+ (1 —a)k) = I°(papp) = I°(91yalipy)
= au(r) + (1 — a)u(p) = au(r) + (1 — a)k
= au(r) + (1 — a)u(p) + (1 — a)k
= I(ppryaip) + (1= )k = I°(papy) + (1 — a)k
= (apa+ (1 —a)ep) + (1 —a)k
= I’(apa) + (1 - a)k,

establishing that /¢ is translation invariant.

Step 4 (1° is vertically invariant): The result follows from Step 1 of the proof of
Lemma 20 in Maccheroni et al. [2004] once we show that for all A € A4° and k € R
such that p4 + k € ®°, there exists some a € (0, 1) satisfying %4, 50“;—”“ € ¢°. To
see this, let p’ = Op + (1 — 0)p for any p € P and § > 0 and note that for any
given p € P° there exists some # > 1 such that p? € P°. Clearly if p’ € P°, then
p” € P° for any 0’ < 6.

Since A € A° is a finite set, there must exist some § > 1 such that p’ € P° for all
p € A. Pick any such 6 > 1, and call it 4. Since ¢4 + k € ®°, there must exist
some B € A° such that pp = w4 + k. Similarly, B € A° is a finite set, and so
there must exist some # > 1 such that p? € P° for all p € B. Pick any such 6 > 1,
and call it 05 and let 6, = min{04,0p}.

Let A% = {p’ : p € A} € A° and B> = {p’ : p € B} € A° Observe
that v - p? = (v -p) for any v € V, p € P, and § > 0. Therefore, we have
pa6. = O, s € P and ppo. = 0, - pp € P° . Let @ = 1/6,. We have shown

A “0A+k € ¢° as desired.

Step 5 (I° is a niveloid): Since I° is vertically invariant, functional I* : P°+R — R,
defined by I*(¢ + k) = I°(¢) + k for all ¢ € ®°, is the unique vertically invariant
extension of I* to the tube generated by ®° (Maccheroni et al. [2004, Lemma
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22]). Moreover, since ®° is a convex set and /° is a convex functional, the obvious
adaption of the arguments in Maccheroni et al. [2004, Lemma 22] establishes that
I* is also convex. We now show that [* must also be monotone. By the first
paragraph in the proof of Maccheroni et al. [2004, Lemma 24], it is sufficient to
show that if ¢, 1) € ®° and ¢ + k > 1, then I*(p + k) > I* ().

Let A, B € A° and k € R such that o4 + k > ¢p. Clearly there exists a € (0,1)
such that a(ps + k) + (1 — a)pp = apa + (1 — a)pp + ak € $°. Moreover, since
oat+k>ep, alpa+k)+ (1 —a)pp > ¢p. Now assume, for contradiction, that
I*(pa + k) < I*(¢p). Since I* is convex, this would imply

I°(¢p) = al(ep)+ (1 —a)l*(¢p) > al*(ps+k) + (1 —a)[*(¢p)
> I'(a(pa+ k) + (1 —a)pp) = I°(a(pa+ k) + (1 — a)pp),

which contradicts that I° is monotone, and thus I* must be monotone.

Since [° is vertically invariant, and its unique vertically invariant extension to the
tube generated by ®°, I*, is monotone, I° is a niveloid by Maccheroni et al. [2004,

Lemma 23]. In sum, we have shown that I is a normalized convex niveloid.

We now extend I° to . For any menu A € A and number m € N, define
A™ = A[2=L{p} and denote ¢ = pam. Note that for all A € A and m € N,
A™ e A% and ¢} — ¢4 uniformly as m — oco. Define the a functional I : & — R
by I(pa) = lim,,_,o 1°(¢'}) for all A € A. Since I° is a niveloid, it is a continuous
function, and so I° preserves convergence. Thus, for any menu A € A, the sequence
{I°(¢"}) }men converges to a point in [u,, u*| showing that I is well-defined. The
following arguments show that I preserves the properties of I?) i.e., it is also a

normalized convex niveloid.

Since I° is a niveloid, we have I°(¢'}) —I°(¢"}) < max (¢} — ¢'¥) for any A, B € A,

and m € N. Thus we obtain,

I(ea) = I(pp) = lim (I°(¢})) — lim (I°(¢p)) = lim (I°(¢}) — I°(¢))
< Jim (max (¢ — ) = Jim " (max (pa— ¢5)

= max (pa — ¥B),
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establishing that [ is a niveloid.

Clearly I is normalized. Now let A, B € A, and « € [0, 1]. Since ® is a convex set,
aps+ (1 —a)pp € &, and so by convexity of I° we have

Haga+ (1 =a)pp) = lim (I°(¢%p)) = lim (I°(agy + (1 - a)ep)
Tim (al°(p%) + (1 - a)I°(¢))
= o lim I°(¢%) + (1 — ) lim I°(¢f)

al(pa) + (1 —a)I(¢s),

IN

showing that [ is convex. As a result, [ is a normalized convex niveloid which

assumes values in K = [u., u*].

Since ® is a convex subset of B(X, K) and [ is a normalized convex niveloid,
the obvious adaption of the arguments in the proof of Maccheroni et al. [2004,
Lemma 27] establishes that I(¢) = maxeaw) ((¢,m) — c*(7)) for all ¢ € @, where
¢ A(V) — [0, 00] is defined as in Part (iii).

Hence, it remains to show that, forall A, B € A, A 77 Bifandonlyif I(p4) > I(¢p).

We establish the contrapositive for each direction.

First, suppose that A > B. Using parts (i) and (ii), we can find p,q € P such that
A = {p} = {q} = B. Then by Axiom 2, there exists some M € N such that for all
m > M, A" Z {p} = {q} Z B™.

Otherwise, it must be the case that {p} = A or B 7= {¢q}, a contradiction. Thus,
for all m > M, we must have I°(¢}) > u(p) > u(q) > 1°(¢'5). As such, we obtain
I(pa) > u(p) > u(q) > I(pp) since weak inequalities are preserved in the limit,
and so I(pa) > I(pp).

For the converse, suppose that I(p4) > I(¢p). By construction, u* > I(p,4) and
I(¢p) > u.. Hence, there exist p,q € P such that I(¢4) > u(p) > u(q) > I(pp).

Since [ is continuous, I°(¢}) > wu(p) > u(q) > I°(¢R) for all m > M for
someM € N implying that for all m > M, A™ = {p} = {q} = B™. Hence,
by Axiom 2, it follows that A 7 {p} > {¢} Z B, and so A = B.

As a result, the function U : A — R, defined by U(A) = I(p4) represents =. [
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Neutral desire for commitment: Our final lemma is used in the proofs of
Proposition 2 and Proposition 1. It characterizes when there is a common solution

to the self-regulation choice problem for a finite collection of menus.

Let U : A — Rand D : A — A(V) represent, respectively, the value function
and policy correspondence of the self-regulation choice problem with parame-
ters (u,c). That is, for any A € A let U(A) = maxea) ({¢a,7) — ¢(m)) and
D(A) = argmaxXrea(y) ({(pa, ) — c(n)).

Let SN o;A; = {SN aups = pi € Ay, Vi = 1,..,N} for Aj,..., Ay € A and
ai,...,ay € (0,1) such that ¥ «; = 1. We observe that U has the following
convexity property, U(>; a;A;) < 3 auU(A;).

Lemma 3. Let Ay, ..., Ay € A and ay, ...,ay € (0,1) such that YN, o; = 1. Then,
U, aiA) =X, U (A) if and only if N, D(A;) # 0.

Proof. [Necessity]: Let Ay, ..., Ay € Aand ay,...,ay € (0,1) with ©N  a; =1
and U(>; a;A;) = > a;U(A;). We proceed by induction on N. If N = 1, then
the result trivially holds. Now suppose that N > 1, and the implication holds for
N —1.

Without loss of generality, let oy = min; ;, and set B = =
Since «;/(1 — 1) < 1 for all i = 2,..., N, we have B € A. By the convexity
property of U, we have U(B) < ¥ ( > ) U(A;) and

ZaiU( ; (Z Q; l) U (AiJaa]B) < oqnU(A7) + (1 — aq)U(B).

Hence, YN, ayU(A;) = (1 —ay)U(B) and oy U(A;) + (1 — a1)U(B) = U(A;|ay]B).
Now choose some 7 € D(A;[ay]|B). Then,

(o, + (1 —an)pp, m) — U (Ai]on]B) = () = (pa,,m) — U (A1)
Replacing U(p4,) with Q%U (A1[o]B) — 1;%U(B), and rearranging, we get

1—041 1—041

U(B) = (1 - 051) <90A177T> -

a Qq

(1 - al) <Qva 7T> - U (Al[()él]B) .
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Multiplying both sides of the inequality by a; /(1 — ) and adding (1 —«ay) (¢, ),
we get (pp,m) — U(B) > {anpa, + (1 —aq)pp, ) — U (Aj]on]B) which implies
that (pp,m) — U(B) > ¢(m), and so w € D(B).

By an analogous argument, 7 € D(A;) and thus, D (A;[a1]B) C D(A;) N D(B).
Since SN, o;U(A;) = (1 — a;)U(B), by the inductive assumption, D(B) C D(A;)
for all i = 2,...,N, and so D(>; v;A;) C D(4;) for all ¢ = 1,...,N. Since
D (¥; a;A;) # 0, we have N, D(A;) # 0.

[Sufficiency]: Let 7 € N; D (A;). Then >, U (A;) = (X aipa,, m) — c(m) imply-
ing >, a;U(A;) < U (X; @ A;). On the other hand, the convexity property of U
implies Y-, ;U (A;) > U (X; awAy), and so U(X; i A;y) = > 00U (A;). O

A.3 Proofs for the results in the text

Proof of Theorem 1: It is straightforward to show that a self-regulation preference
satisfies Axioms 1-6 (in particular, Axiom 5 follows from the necessity part of
Lemma 1). For the converse, let 7 be a binary relation that satisfies Axioms 1-6.

Then by Lemma 2, (u, ¢*) represents 7~ and so 7 is a self-regulation preference. [

Proof of Proposition 1: Let - be a self-regulation preference with a represen-
tation (u,c). It is straightforward to show that if there is a common maximizer
7 € A(V) which solves the self-regulation problem of 7~ for each menu A € A, then
> satisfies the NDC axiom. For the converse, define the value function U : 4 — R

as in Section A.2.

Let A,B € A and o € (0,1), and let p4 and pp be commitment equivalents of
A and B, respectively. By NDC, {pa}[a[{ps} ~ {pa}[a]|B ~ Ala]B. Hence,
U(Ala]B) = aU(A) + (1 — «)U(B). By induction, for menus A, ...., Ay € A and
aq,...,ay € [0,1] such that >, 0, = 1, U(X; i Ay) = > awU(A;).

Let D : A — A(V) be the policy correspondence defined as in Section A.2. By
Lemma 3, it follows that N, D(A;) # 0. Hence, the collection of closed sets
{D(A) : A € A} has the finite intersection property. Since A(V) is compact, it
follows that there exists some m € Nyea D(A), and so U(A) = (pa, ) — c(7) for
all menus A € A. Thus, A 77 B if and only if (pa,m) > (pa,m) for all menus
A, B € A. Moreover, by Theorem 3 in Dekel and Lipman [2012], 7 is unique. [
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Proof of Proposition 2: It is straightforward to prove that a preference 7~ defined

in Proposition 2 is a self-regulation preference which satisfies the WNDC axiom.

For the converse, suppose 7~ is a self-regulation preference which satisfies the WNDC
axiom. Let (u,c) represent -, and assume without loss of generality that ¢ is the

minimal cost function. Let U : A — R be given by U(A) = maxeav){(@a, T) —c(m).

Let A € A and p € P be such that {p} ~ A. By WNDC, A ~ oA+ (1 — a){p} for
any a € (0,1), and so U(aA + (1 — a){p}) = aU(A) + (1 — «)U({p}). As such,
by Lemma 3, there exists some 74 € D(A) N D({p}), where D : A — A(V) is the
policy correspondence defined as Section A.2. Since c is the minimal cost function,
it is grounded and so ¢(m4) = 0. Hence, U(A) = (pa,74) —c(ma) = maxen(pa, m)
where IT = {7 € A(V) : ¢(w) = 0}. O

Proof of Theorem 2: Let 7 be a self-regulation preference represented by (u, c).
By Lemma 2, (u, c*) also represents 7. It therefore remains to show that ¢ > ¢*
(establishing ¢* as the minimal cost function). By way of contradiction, suppose
c(m) < ¢*(m) for some m € A(V). Then, by definition of ¢*, there exists a menu
A € A such that (pa,7m) — u(pa) > c(m), ie., (pa, ) —c(m) > u(pa). Hence,
u(pa) = max,eaw) ((pa, p) —c(p)) > u(pa), a contradiction. O

Proof of Corollary 1: Let (u,c*) be a representation for a self-regulation prefer-
ence where ¢* is the minimal cost function. In the proof of Lemma 2, part (iii),
we show that ¢* is grounded. Since ¢* is the supremum over linear functions, c*
is convex. Finally, to establish monotonicity, let 7, p € A(V) with 7w >* p. Then
by Theorem 4 and Lemma 6 in Dekel and Lipman [2012], (@4, 7) > (@4, p) for
all A € A. Hence, sup e ((pa,m) —u(pa)) > supes ({¢a,p) —u(pa)), and so
¢(x) = ¢(p). O
Proof of Theorem 3: Let =1 and 75 be self-regulation preferences with canonical

representations (uq, c}) and (us, ¢3), respectively.

[(i) implies (ii)]: Suppose 72 has a stronger preference for commitment than ;.
Thus, for any p,q € P, {p} 71 {q} implies {p} 7> {q}. We want to show that
also {p} 72 {q} implies {p} =1 {¢} and so us = u;. Suppose, for contradiction,
that this is not the case; that is, there exist p,q € P such that {p} 72 {¢} and

{q} »1 {p}. Since {q} »1 {p}, we must have {q} =2 {p} and so {p} ~2 {¢}. Since
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uy is non-constant, there must exist some r € P such that either {r} >, {p} or
{p} =2 {r}. Suppose {r} =2 {p} (the argument in the opposite case is analogous).
Then {r}a]{p} = {p} for all « € (0,1). On the other hand, since {q¢} =1 {p},
there exists some a € (0,1) such that {q¢} =1 {r}[a]{p}. Since 7, has a stronger
preference for commitment, it follows that {q} =2 {r}a]{p} =2 {p} ~2 {q}, which

is a contradiction.

Now consider a menu A and let {pa} ~1 A and {ga} ~2 A. Since 22 has a stronger
preference for commitment than 221, {pa} 72 {qa} and so us(pa) > uz(qa). As a
result, for any 7 € A(V),

ca(m) = sup ((pa, m) = uz(qa)) 2 sup ((pa, 7) = wi(pa)) = ei(m).
AeA AeA

[(ii) implies (i)]: Suppose that u; = uy and ¢; < ¢o. Let {p} 771 A for some

p € P and A € A. Then {p} 72 A follows since,

uy(p) = ur(p) > nax ((pa,m) —ci(m)) > ymax, ((pa, ) — ca(m)) .

A.4 Monotonicity and WSB

Similar to Axiom 5, Weak Set Betweenness can be thought of as a monotonicity
condition. However, the intuition behind Weak Set Betweenness (WSB) uses only
the idea that the DM anticipates her ex-post choice behavior to satisfy WARP, and
not necessarily IND.?” The stronger requirement of IND allows our monotonicity
axiom (Axiom 5) to make additional comparisons of menus where WSB cannot
make any comparison. The following figures illustrate two examples of such menu

comparisons, where we focus on a setting with three prizes, so each lottery can be

37To illustrate, suppose that ex-post choices satisfy WARP and consider two menus A and B.
WARP implies all lotteries chosen in menu A U B are either all chosen in menu A or all chosen in
menu B. As a result, when {p} = {¢q} for all p € A and ¢ € B, then for any lottery chosen in B,
there is a better lottery chosen in A U B, and for any lottery chosen in A U B, there is a better
lottery chosen in A. As such, A should be preferred over A U B, which should be preferred over
B. Hence, IND is not needed by ex-post choices to derive WSB for menu choices.
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represented by a point in the Marschak-Machina triangle.

Figure 2(a) depicts two menus A = {p, ¢} and B = {p, ¢,7’,¢'}, where the dashed
lines labeled u(p) and u(q) represent two indifference curves of the normative
utility u and the arrow indicates the direction of improvement. Menu B is a union
of A and its translation A’ = {p/, ¢’} parallel to the indifference curves; that is,
P —p=q¢ —qwith u(p’) = u(p) and u(q’) = u(q). WSB makes no prediction about
how the DM ranks menu A versus menu B, allowing for the possibility that the
DM could strictly prefer either one of these menus. However, since B is a union of
A and its translation A’, a choice correspondence that satisfies IND leads to the
choice of ¢ (respectively, p) in menu A if and only if it leads to a choice of g or
¢ (respectively, p or p’) in menu B. Intuitively, a DM who anticipates that her
ex-post choices will be consistent with IND should therefore be indifferent between

menus A and B, and this indifference is implied by Axiom 5.

u(r)_
- N

__ulp)

- Pe--
»_p_.__-—“' _’Z-»—""J

Nufa) N\ula)

—e-i” -8

g e~ q
- q
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(a) Menus A and B (b) Menus A" and B"

Figure 2: Monotonicity and WSB

Figure 2(b) depicts two other menus A” = {r,p, q} and B” = {r,p,q,p’, ¢'}, which
are obtained by adding an alternative r to the menus A and B, respectively.
Moreover, 7 satisfies p = ar 4+ (1 — «)q for some a € (0,1); hence, the DM strictly
prefers lottery r to lottery p. Similar to the choice situation in Figure 2(a), a choice
correspondence that satisfies IND leads to the choice of ¢ in menu A” if and only
if it leads to the choice of ¢ or ¢’ in menu B”. On the other hand, if the choice
correspondence leads to the choice of p,p’ or r in menu B”, then it leads to the
choice of only 7 in menu A”. As a result, a DM who anticipates that ex-post choices
will be consistent with IND should not prefer menu B” over menu A”. While WSB

makes no prediction about how the DM ranks A” versus B”, Axiom 5 implies that
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the DM weakly prefers A” to B”.

A.5 DDC and ex-post choice

There are several models of internal conflicts in the literature that, in contrast
to the implications of the self-regulation model, can imply a decreasing desire
for commitment (DDC). For instance the convex self-control model in Noor and
Takeoka [2010], and the willpower model in Masatlioglu, Nakajima, and Ozdenoren
[2017] are two such models. Below we briefly discuss how these two models can
also generate different ex-post choice patterns than the self-regulation model. In
particular, we show that these models are incompatible with the choice patterns

given in Section 7.

Convex self-control model

According to the convex self-control model in Noor and Takeoka [2010], the DM
evaluates menu A in terms of maxye4 (u(p) — ¢ (max,ea v(g) — v(p))), for u,v € V
and a convex function ¢ : R, — R with ¢(0) = 0. In particular, the convexity of
leads to menu preferences that exhibit DDC. Now, consider Example 1, where there
is a DM with normative utility that satisfies u(p) > u(q) > u(r). We have argued
that the DM chooses ¢ from {p, g}, r from {¢, 7}, and yet chooses p from {p,q,r}
(violating WARP). These ex-post choice patterns are not consistent with the convex
self-control model. To see this, note that u(p) > u(q) and ¢ chosen from {p, ¢} imply
that v(q) > v(p) and u(p)—u(q) < ¢ (v(q) — v(p)). Likewise, u(q) > u(r) and r cho-
sen from {q,r} implies that v(r) > v(q) and u(q) —u(r) < ¢ (v(r) — v(q)). As a re-
sult, u(p)—u(r) < ¢ (v(r) —v(q))+¢ (v(q) — v(p)). Since ¢ is convex and ¢(0) = 0,
¢ is superadditive and so ¢ (v(r) — v(q))+¢ (v(g) — v(p)) < ¢ (v(r) — v(p)). Thus,
u(p) — u(r) < ¢ (v(r) —v(p)), and therefore the DM does not choose p from the
menu {p,q,r}.

48



Willpower model

According to the willpower model in Masatlioglu, Nakajima, and Ozdenoren [2017],
the DM chooses a lottery p from menu A which solves max,e4 u(p) subject to
maxgea v(q) —v(p) < w(p), for u,v € V and w : P — Ry. This model can imply
preferences over menus that satisfy DDC, for example, when w is constant. Now,
consider Example 2, where there is a DM with normative utility that satisfies
u(p) > u(r). We have argued that the DM chooses p from {p,r}, and yet chooses
Tr+3p from {{p,r} + 2{p} (violating IND). These ex-post choice patterns are not
consistent with the willpower model. To see this, note that p chosen from {p,r}
implies v(r) — v(p) < w(p). It follows that } (v(r) — v(p)) < w(p), and therefore
v (iv(r) + %U(p)) —v(p) < w(p). As a result, the DM has enough willpower to
choose p within menu i{p, r}+ %{p}, and therefore does not choose the normatively

worse alternative ir + %p.
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