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Abstract

We consider a bandit problem faced by a team of two heterogeneous players. The

team is hierarchical in that one (the principal) retains the exclusive right to terminate the

project while the other (the agent) focuses strictly on implementing the project assigned

to him. As a key departure, we assume that the principal may be privately informed

about the project quality. In contrast to the existing literature, the belief in our model

is generally non-monotonic: while each failure makes the agent less confident in the

project, the uninformed principal drops out gradually over time, which partially restores

his confidence. We derive explicit solutions for the agent’s effort and the principal’s

exit decisions, which allow us to obtain a full characterization of the equilibrium. We

also discuss the role of effort monitoring in this context and suggest a new rationale for

delegation.
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1 Introduction

Suppose that a manager and a worker jointly experiment with a project of unknown quality.

The team is organized hierarchically with clear role specialization where the manager retains

the exclusive right to decide when to terminate the project while the worker focuses strictly

on running the project assigned to him. There is asymmetry of information between the

two parties: the manager has access to her own sources of information and is hence better

informed about the prospect of the project. The worker knows that the manager has superior

information, but does not know precisely what she knows, in particular how much confidence

she has in the project.

The fact that the manager may be privately informed about the project quality totally

alters the strategic nature of the problem, because her termination (or continuation) decisions

partially reveal her private information. Conducting experiments in this environment then

yields two conflicting effects. On one hand, as time lapses without any sign of success, skepti-

cism about the project looms large and naturally diminishes the worker’s motivation. On the

other hand, given that the project survives, the fact that the principal has not terminated

the project reflects her confidence, which partially restores the worker’s motivation. The

latter possibility is the novel aspect of this situation which sets it apart from the standard

setup of experimentation. How should the worker allocate his effort over time in such an

environment? At what point should the manager give up and terminate the project? And

most importantly, how do these decisions dynamically interact with each other?

Examples of this situation abound in reality. Searching for new ideas and innovations

by trial and error is obviously an essential aspect of economic activities. Truly valuable

innovations are very rare to come by, however, because they require many different qualities

such as vision and leadership to set the right course of action and relentless effort to work

through adversities. Since it is very difficult, or nearly impossible, for a single individual to

provide all those qualities, this whole process often involves decisions of many individuals

at various stages. In most firm organizations, for instance, key strategic decisions are made

by higher-level officers because they tend to possess superior information and judgement. In

many cases, though, resources required for production, such as time and expertise, reside with

lower-level workers, and various operational decisions must be delegated to them. In principle,

a similar pattern of role specialization emerges more or less when a group of individuals with

different degrees of experience jointly engage in a project of exploratory nature, examples of

which range from a fledgling entrepreneur working with a venture capitalist on a business

startup to a graduate student collaborating with a professor on a research project.
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Given the ever increasing complexity of economic activities, some extent of role special-

ization, as dictated by comparative advantages, is clearly indispensable. The vast majority of

production units are in fact organized in a hierarchial manner with clear role specialization, as

exemplified by the separation of planning and execution – a hallmark of modern corporations.

As is often the case, however, the presence of information asymmetry hampers collaborations

of this kind. When valuable information is dispersed within a team, informed parties may

attempt to hide undesirable information while uninformed ones may haggle to squeeze it,

thereby limiting the benefit of role specialization and the team’s ability to experiment with

new ideas.

To analyze this dynamic conflict and its consequences, we consider a bandit problem faced

by a team of two players, referred to as the principal and the agent, who are endowed with

different sets of productive resources. The basic setup builds on a standard (two-armed)

bandit problem where the team owns a project to experiment with, which is either good or

bad and can succeed only if it is good. We extend this canonical setup in two important

ways. First, the team we consider here is hierarchical in the sense described above: at each

instance, the agent chooses how much effort to supply to the project; conditional on no

success having occurred, the principal decides whether to terminate the project. Second, we

assume that the principal is potentially better informed about the project quality than the

agent. To be more precise, she knows that the project is good for sure with some probability

(the informed type), whereas she has no more information than the agent with the remaining

probability (the uninformed type). The principal’s type, either informed or not, is her private

information which the agent cannot observe directly. The game ends either when the agent

attains a success or when the principal decides to terminate the project.

We obtain several findings within this framework. First, we derive explicit solutions

for the agent’s effort level and the principal’s exit rate, which allow us to obtain a full

characterization of the equilibrium. We in particular show that despite rather complicated

dynamic interactions, the equilibrium of our model takes a very simple form consisting of at

most three phases:

1. Experimentation phase: The agent supplies maximum effort, and the uniformed type

never drops out. The game in this phase is like a standard two-armed bandit problem

with one safe arm where the belief monotonically decreases over time.

2. Screening phase: The agent lowers the effort level to screen out the uniformed type

who starts dropping out gradually over time. The game in this phase is like the war of

attrition with implementation delays on the equilibrium path. The screening phase is
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the defining feature of our model which would never arise under complete information.

3. No-uncertainty phase: Only the informed type survives and all the uncertainty regard-

ing the project quality is resolved. The agent supplies maximum effort indefinitely until

he attains a success.

Each of the first two phases may or may not exist while the final no-uncertainty phase always

exists, meaning that the equilibrium of our model is characterized by the lengths of the first

two phases.

A key determining factor of the nature of the equilibrium – in particular the lengths of

the first two phases – is the initial prior belief. Note that the belief of our model is defined

in two dimensions: the belief that the principal is informed, and the belief that the project

is good, conditional on the principal being uninformed. Interestingly, although an increase

in either dimension enhances the agent’s prior confidence in the project, each comes with

a totally different, and in fact opposite, welfare implication. In general, an increase in the

former shortens the screening phase and is welfare-improving whereas an increase in the latter

prolongs it and is welfare-reducing.1 As a practical interpretation, one may argue that more

trust in the principal’s evaluation ability or “vision” raises efficiency but a more optimistic

outlook on the project harms welfare.

The equilibrium is often, though not always, inefficient largely due to the the screening

phase which necessarily entails an implementation delay.2 During the screening phase, the

agent keeps his effort inefficiently low to screen out the uniformed type who responds by

dropping out gradually over time. This draws clear contrast to the efficient allocation under

which the agent always supplies maximum effort to the project until the belief falls below

some threshold, and the uninformed type terminates once and for all at the threshold belief.

We also discuss the role of effort monitoring in this dynamic context. When effort is

observable, an additional increment of effort directly lowers the uninformed type’s belief. As

this forces the uninformed type to drop out at a faster pace, the agent has an extra incentive

to raise effort. An interesting point is that although one may think that this can only benefit

the agent, this conjecture does not always hold true in this setup: the agent’s expected payoff

can either increase or decrease with observable effort. To see why, it is important to note

that the uninformed type’s continuation payoff depends on the current belief as well as the

expected future effort sequence. On one hand, when the agent supplies more effort, the belief

1To be more precise, we obtain this result when the initial project quality, i.e., the initial prior probability
of the project being good conditional on the agent’s information set, is fixed.

2The efficient benchmark here is the case with symmetric information in which the agent knows the prin-
cipal’s type.
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will decline at a faster pace, which accelerates the uninformed type’s learning and bring

forward the timing of project termination. On the other hand, there is also a countervailing

effect: knowing that the agent has a stronger incentive to exert effort, the principal expects a

higher continuation payoff and is less willing to terminate the project. The agent thus faces

a time-inconsistent objective. When the latter aspect dominates the former, better effort

monitoring actually reduces the agent’s expected payoff.

Finally, our analysis illuminates that prolonged implementation delays can occur as a

means to extract the principal’s private information. One way to solve this dynamic conflict

is therefore to delegate the termination right entirely to the agent, so that he would have

no incentive to wait for the principal’s action. We show that this form of delegation indeed

improves the overall efficiency of the team under some conditions even though this neces-

sarily entails the cost of losing the principal’s potentially valuable information. The result

suggests that hiving no information at all as a team can be better than having some imperfect

information when the information is sparsely distributed.

Related literature: There are now increasingly many works, often called strategic experi-

mentation, where a group of individuals, rather than a single individual, face bandit problems

with informational externalities among them.3 A prototype of this strand of literature, such

as Bolton and Harris (1999), Keller et al. (2005), and Bonatti and Hörner (2011), considers

the case where a team of homogeneous players collaborate on a common project (perfectly

correlated payoffs).4 In contrast, we consider a team of heterogeneous individuals who are

endowed with different sets of resources and therefore are in charge of different sets of tasks.

With few exceptions, most recent works of strategic experimentation assume that only

one type can succeed, and hence one success can resolve all the uncertainty. Due to this

structure, which may be called the “breakthrough type,” the game effectively ends as soon

as a success is achieved.5 While breakthrough-type models are highly tractable and provide

crucial insights that would otherwise be more obscure, one inevitable consequence of this

specification is that any player’s belief is by design monotonically decreasing over time; as

such, those models exhibit no “encouragement effect.”6 This draws clear contrast to our

3An early application of the bandit problem is Rothschild (1974). See Bergemann and Välimäki (2008) for
a succinct survey.

4Other examples of strategic experimentation include Bergemann and Välimäki (2000), Decamps and
Mariotti (2004), Strulovici (2010) and Klein and Rady (2011) among others. Chen and Ishida (2014) analyze
a “tenure-clock problem” in which the principal retains the right to terminate the project (or the employment
relationship). There, the situation is opposite in that the agent privately observes his own type which the
principal attempts to uncover through experimentation.

5Early models of strategic experimentation, such as Bolton and Harris (1999) and Bergemann and Välimäki
(2000), consider a setting where the belief follows a Wiener process. However, due to the technical complexity
of the Brownian model, many recent models of strategic experimentation adopt the breakthrough specification.

6The encouragement effect is one of the analytical focuses of Bolton and Harris (1999) whereby the presence
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setting in which, even though it also retains the breakthrough-type structure, the agent’s

belief in general follows a non-monotonic path, as the continuation of the project serves as

an encouraging news for the agent.

The current model also has an inherent connection to the war of attrition under incomplete

information; in fact, it can be seen as a hybrid of experimentation and war-of-attrition models.

Our work bears certain resemblance to reputational models of bargaining in which a player

may “irrationally” stick to his own demand and never concede (Kambe, 1999; Abreu and Gul,

2000; Wolitzky, 2012). Given that a player may be irrationally stubborn, even a player who

is not has an incentive to behave as if he is stubborn, so as to convince the other party that

he will never give in. While our setup differs from theirs in many ways,7 a similar economic

principle applies to the screening phase of our game: the informed type is like the stubborn

type who never concedes, although here rationally, and the uninformed type acts as if she is

informed until the last minute.

Finally, there is a large body of literature which discusses whether and under what con-

ditions delegation (or decentralization) dominates more centralized decision-making.8 Many

works on this topic depict delegation as a means to incorporate local information, with em-

phasis on the tradeoff between better information and loss of control (e.g., Aghion and Tirole,

1997; Dessein, 2002; Acemoglu et al., 2007).9 Our work is also related to this strand of liter-

ature in that it displays a virtue of delegation. Note, however, that the information structure

of our setting is totally different from theirs as it is the principal who possesses superior

information, and centralized control is adopted in the first place precisely because of this

informational advantage. As such, the way delegation works in this context in fact goes in

the opposite direction: here, delegation is a commitment device to refrain from the principal’s

information, thereby eliminating asymmetry of information that could otherwise be the cause

of inefficient implementation delays.

of other players, and the possibility that they will bring in useful information in future, provide an additional
incentive for current experimentation.

7The most notable difference is that the uninformed type is unsure of the project quality, and must hence
gather information about it over time. This learning process is in general absent in those reputational models
of bargaining.

8A large body of literature on this topic centers around the Revelation Principle which implies that cen-
tralized contracting cannot be dominated by hierarchial contracting. Given this fact, attention has been paid
to cases where the Revelation Principle fails to hold, e.g., due to costly communication/information process-
ing or collusion among agents. See Mookherjee (2006) for an excellent survey from this mechanism design
perspective.

9Aghion and Tirole (1997) analyze the impact of the allocation of authority on the incentive to acquire
information with particular focus on the distinction between real and formal authority. Dessein (2002) con-
siders cheap talk communication in organizations, and shows that delegation emerges as the optimal choice as
long as the incentive conflict is not too large. Acemoglu et al. (2007) examine a situation where a firm must
decide whether to adopt a new technology and argue that the firm delegates control to the manager when the
value of local information is high.
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2 Model

Environment: We consider a problem faced by a team consisting of a principal (female) and

an agent (male). The team is hierarchical and characterized by the separation of planning

and execution. To be more precise, the principal is conferred authority to terminate the

project at any time. The agent is endowed with λ units of perfectly divisible resource at his

disposal and faces a canonical two-armed bandit problem in which he allocates a fraction of

his resource to implement the project.

Information: The team owns a project of unknown quality. The expected return of the

project depends on its quality θ ∈ {0, 1} which is either good (θ = 1) or bad (θ = 0). The

principal is either informed or uninformed about the project type: with probability q0 ∈ (0, 1),

she is informed and knows that the project is good for sure; with probability 1 − q0, she is

uninformed and believes that the project is good with prior probability p0 ∈ (0, 1).10 The

agent has no information of his own, aside from q0 and p0 that are common knowledge.

Project implementation: The outcome of the project is either a success or a failure at

each instance, where the agent can achieve a success or a “breakthrough” only if the project is

good. At each instance, the agent chooses how much of his resource to allocate to the project,

conditional on the continuation of the game. Let at ∈ [0, λ] denote the amount of the resource

allocated at time t, which we refer to as the effort level for expositional clarity throughout the

analysis. If the agent chooses at = a for t ∈ [t, t+ dt), he achieves a success with probability

atθdt.
11 The outcome is publicly observable, and the game ends immediately when the agent

achieves a success. For most part, we assume that the principal cannot directly observe at.

Project termination: At each instance, conditional on no success having occurred, the

principal chooses either to terminate the project and take the outside option or to continue

the project (for expositional purposes, we often say that the principal “drops out” when

she terminates the project). The principal terminates the project when she believes that its

continuation payoff is not high enough to justify further experimentation. The decision to

terminate the project is irreversible, and the game ends once the principal chooses to exercise

this option. The value of the outside option for the principal is b which summarizes all the

opportunity costs of implementing the project. The agent, on the other hand, receives a

payoff of zero once the project is terminated.

10The project type can alternatively be interpreted as reflecting the agent’s productivity or innate ability.
Under this interpretation, the principal is assumed to possess superior information about how productive the
agent is, as often emphasized in social psychology as well as in works such as Benabou and Tirole (2003),
Ishida (2006) and Swank and Visser (2007).

11This means that if the effort level is constant over time, the arrival of a success has an exponential
distribution. This specification, which is now common in the literature, is due to Keller et al. (2005).

6



Payoffs: A success yields a non-transferrable benefit, normalized to unity, to each party.

The instantaneous payoff for the principal in period t is given by

uPt = yt,

where yt = 1 if the worker attains a success and yt = 0 otherwise. The instantaneous payoff

for the agent is given by

uAt = yt − cat,

where c ∈ (0, 1) measures the effort cost (or the opportunity cost of implementing the project).

A crucial aspect of the model is that the effort cost is borne entirely by the agent, so that

the interests of the two players are not perfectly aligned. Both players are risk neutral and

maximize the discounted sum of payoffs, with a common discount rate given by r.

3 Analysis

3.1 Equilibrium concept

Throughout the analysis, we adopt the concept of perfect Bayesian equilibrium (PBE). As

is well known, a potential problem with PBE is that it often admits a plethora of equilibria,

including those that do not appear intuitively reasonable. This is also the case in the current

setup because the following set of strategies may constitute a PBE: for some t′, the agent

chooses at = 0 for all t ≥ t′, and both types of the principal choose to terminate the project

altogether at time t′.12 We argue that this is less reasonable as an equilibrium outcome, given

that the informed type always has a strictly larger incentive to continue the project than the

uninformed type: under this incentive structure, one could argue that if anyone drops out,

then the uninformed type must do so no later than the informed type. In fact, this is precisely

the spirit of the D1 criterion proposed by Banks and Sobel (1987). Throughout the analysis,

therefore, we restrict our attention to those perfect Bayesian equilibria that survive the D1

criterion, which we refer to as non-trivial for the sake of exposition.

Definition 1 A non-trivial equilibrium is a PBE satisfying the D1 criterion.

It is intuitively clear that when b is large relative to the value of a success (which is

normalized at one), there only exists an equilibrium in which the uninformed type terminates

the project immediately at time 0, resolving any information asymmetry at the outset. Since

12Given that at = 0 for t ≥ t′, the continuation payoff is zero for both types. This set of strategies then
constitutes a PBE if the agent holds a very pessimistic belief off the equilibrium path and continues to choose
at = 0 even after a deviation.
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this equilibrium is obviously uninteresting for the purpose of our study, we further restrict

our attention to the case where b is relatively small, so that the uninformed type stays in the

game for a positive duration of time.

Assumption 1 p0 >
Br
λ

where B := b
1−b

.

3.2 Belief updating

The informed type knows that the project is good, and as such, her belief stays constant over

time regardless of the history of the game. In contrast, both the agent and the uninformed

type gradually update their beliefs about the project quality from the observed sequence of

outcomes. Due to the initial information asymmetry, however, they hold different expec-

tations regarding the eventual likelihood of a success. Formally, the belief of this game is

two-dimensional and denoted by (pt, qt), where pt denotes the belief that the project is good

conditional on the principal being uninformed while qt denotes the belief that the principal

is informed. Purely for expositional purposes, we refer to pt as the uninformed type’s be-

lief and to qt as the agent’s belief although, more accurately, pt also constitutes part of the

agent’s belief. As noted above, the initial prior (p0, q0) is a key parameter of the model which

characterizes the underlying production environment.

For a given effort sequence {as}s∈[0,t] up to time t, the uninformed type’s belief is computed

as

pt =
p0e

−
∫ t

0 asds

1− p0 + p0e
−

∫ t

0
asds

, (1)

provided that the game still continues. As is well known, the law of motion for the belief is

given by

ṗt = −atpt(1− pt).

The uninformed type’s belief pt is relatively simple and well-behaved as it only depends on

at. With at bounded between 0 and λ, one can see that it is always continuous and weakly

decreasing in t.

It is, on the other hand, more complicated to compute the agent’s belief, as it depends

on the rate at which the principal terminates the project as well as his own effort choice. In

principle, both types of the principal can terminate the project when the continuation payoff

is sufficiently low compared to the value of the outside option. As it turns out, though,

we can show that the informed type never drops out under Assumption 1 (see Lemma 1

below). Except for some point masses at which the uniformed type terminates the project
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with positive probability (with an infinite density), the principal’s termination strategy can

be represented by an exit rate xt, which is the rate at which the uninformed type terminates

the project.

Let qt denote the agent’s belief that the principal is informed at time t. For clarity, we

sometimes refer to pAt := qt + (1− qt)pt as the project quality which is the probability of the

project being good conditional on the set of information available to the agent. Given that

xs ∈ [0,∞) for s ∈ [t′, t) (i.e., no discontinuity in qt), the agent’s belief is computed as

qt =
qt′e

−
∫ t

t′
asds

(1− qt′)e
−

∫ t

t′
(psas+xs)ds + qt′e

−
∫ t

t′
asds

. (2)

As above, the law of motion for the belief is

q̇t =
(

xt − (1− pt)at
)

qt(1− qt).

Unlike the uninformed type’s belief that can only go down, the agent’s belief can go up and

down, depending on the exit rate. In fact, it may not even be continuous, for the uninformed

type may terminate the project with positive probability. Throughout the analysis, we assume

that qt is left-continuous and sometimes denote the right-hand limit by q̃t := lims↓t qs to

indicate “ the belief immediately after time t.”13

3.3 Some useful properties

We begin our analysis by establishing two useful properties that must hold in any non-trivial

equilibrium. The first property is that the informed type never terminates the project as we

claimed above. That is, if it is not optimal for the informed type to terminate the project at

time 0, it is never optimal to do so at any subsequent time. This property is highly convenient

as it allows us to focus on the uninformed type’s problem and substantially simplifies our

analysis.

Lemma 1 Under Assumption 1, the informed type never terminates the project in any non-

trivial equilibrium.

Proof: To see this, note first that the expected instantaneous payoff for the informed type

is at whereas that for the uninformed one is ptat for any given at. It is thus clear that the

incentive to continue the project is always strictly larger for the informed type. This, along

with the D1 criterion, means that the informed type terminates the project only if qt = 1

13In an interval with xt < ∞, the belief is continuous and q̃t = qt. If the uninformed type terminates the
project with probability π at some time t, then q̃t =

qt
(1−π)(1−qt)+qt

.
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(after the uniformed type completely drops out), at which point all the uncertainty regarding

the project quality is resolved.

Given this fact, the lemma is almost self-evident. We first show that the agent chooses the

maximum effort level if there exists some T such that qt = 1 for t > T . With no uncertainty,

the current effort choice has no future implication, so that the problem is essentially a static

one where the agent only needs to maximize the instantaneous payoff (1 − c)at. Given that

c < 1, it is optimal for the agent to choose at = λ for t > T .

Since the informed type’s belief is constant, her continuation payoff is also constant when

the agent always chooses the maximum effort level. The optimal choice for the informed

type is hence either to stop now or never. Given that the agent exerts maximum effort, the

informed type chooses never to stop if
∫ ∞

0
λe−(λ+r)tdt =

λ

λ+ r
> b ⇔ λ > Br,

which holds under Assumption 1.

The second useful property is that the probability that the uniformed type continues

the project must reach zero in some finite time, meaning that the uncertainty regarding the

project type will eventually be resolved at some point.

Lemma 2 There exists some finite T such that qt = 1 and at = λ for t > T in any non-trivial

equilibrium.

Proof: Suppose otherwise. For this to be the case, the uninformed type’s belief pt must

remain high enough to continue the project. This means that for any ε > 0, there must exist

some tε such that at < ε for all t > tε. However, this is not compatible with the equilibrium

condition because when ε is arbitrarily close to zero, the continuation payoff is also arbitrarily

close to zero for any t > tε, prompting the uniformed type to terminate the project. The fact

that at = λ when qt = 1 follows from the proof of Lemma 1.

3.4 The agent’s problem

As we have seen, the uninformed type completely drops out by time T and qt = 1 for all

t > T . The agent chooses at = λ for t > T , knowing that the project is good for sure. The

continuation payoff for the agent from that point on is then given by

VT =

∫ ∞

0
λ(1− c)e−(λ+r)tdt =

λ

λ+ r
(1− c).
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Given pt and qt, the agent’s value function is

Vt(pt, qt;T ) = qt

(

∫ T

t

(1− c)ase
−

∫ s

t
(au+r)duds+ e−

∫ T

t
(as+r)dsVT

)

+ (1− qt)

∫ T

t

(ps − c)ase
−

∫ s

t
(puau+xu+r)duds

= qt

(

∫ T

t

(1− c)ase
−

∫ s

t
(au+r)duds+ e−

∫ T

t
(au+r)duVT

)

+ (1− qt)
(

pt

∫ T

t

(1− c)ase
−

∫ s

t
(au+xu+r)duds− (1− pt)

∫ T

t

case
−

∫ s

t
(xu+r)duds

)

,

for t ≤ T .14 By the Principle of Optimality, the value function must satisfy

Vt(p, q) = max
a∈[0,λ]

{

(pA − c)adt + e−(pAa+(1−q)x+r)dtE[Vt+dt(p+ dp, q + dq) | a]
}

,

where pA := q + (1− q)p. Since

E[Vt+dt(p+ dp, q + dq) | a] = Vt(p, q)−
(

pa(1− p)∂Vt

∂p
− (pa+ x− a)q(1− q)∂Vt

∂q
− V̇t

)

dt,

by letting dt→ 0 and rearranging, we obtain the Bellman equation:

Vt(p, q) =
1

r + (1− q)x

(

qx(1− q)∂Vt

∂q
+ V̇t +maxa∈[0,λ]Φt(p, q)a

)

,

where

Φt(p, q) := pA − c− p(1− p)∂Vt

∂p
− (1− p)q(1− q)∂Vt

∂q
− pAVt(p, q).

The Bellman equation implies that the optimal effort is governed by Φt where

at











= λ if Φt(pt, qt) > 0,

∈ [0, λ] if Φt(pt, qt) = 0,

= 0 if 0 > Φt(pt, qt).

Since

∂Vt
∂p

= (1− q)
(

∫ T

t

(1− c)ase
−

∫ s

t
(au+xu+r)duds +

∫ T

t

case
−

∫ s

t
(xu+r)duds

)

,

∂Vt
∂q

=
(

∫ T

t

(1− c)ase
−

∫ s

t
(au+r)duds+ e−

∫ T

t
(au+r)duVT

)

−
(

p

∫ T

t

(1− c)ase
−

∫ s

t
(au+xu+r)duds− (1− p)

∫ T

t

case
−

∫ s

t
(xu+r)duds

)

,

14More precisely, this expression holds when the exit rate is finite. However, the argument remains essentially
the same even if there is a point mass in the exit rate. Suppose that the uninformed type terminates the project
with probability π at some time τ ∈ (t, T ). In this case, the integral is improper, and the probability that the

uninformed type stays in the game throughout this interval is given by (1− π)e− limz↑τ

∫
z

t
xsds−limz↓τ

∫
T

z
xsds.

With abuse of notation, we let π := 1−e−
∫
τ

τ
xτds and denote e−

∫
T

t
xsds = (1−π)e− limz↑τ

∫
z

t
xsds−limz↓τ

∫
T

z
xsds

throughout the analysis.
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by the envelope theorem,15 we have

Φt(p, q) = pA − c− q
(

∫ T

t

(1− c)ase
−

∫ s

t
(au+r)duds+ e−

∫ T

t
(au+r)duVT

)

− p(1− q)

∫ T

t

(1− c)ase
−

∫ s

t
(au+xu+r)duds, (3)

which can be used to characterize the agent’s effort choice.

3.5 The uninformed type’s problem

The uninformed type decides when to terminate the project taking the current belief pt

as given. Clearly, it is optimal for the uninformed type to continue the project when the

continuation payoff is strictly above b while it is never optimal when it is strictly below b.

When the continuation payoff equals b, the uninformed type may drop out at some positive

rate xt > 0. To be more precise, for a time interval in which xt ∈ (0,∞), the uninformed

type must be indifferent between terminating and continuing, which implies the following

condition to be satisfied.

Lemma 3 If there exists an open interval I such that xt ∈ (0,∞) for t ∈ I, then ptat = Br

for t ∈ I.

Proof: The proof follows the standard argument from the war of attrition. If the princi-

pal terminates the project at time t, she earns b; if she terminates the project at the next

instance, she earns ptatdt+ b(1− rdt− ptatdt). The uninformed principal is thus indifferent

and randomizes between terminating and continuing for any t ∈ I only if ptat = Br.

Given that at ≤ λ, Lemma 3 implies that p := Br
λ

is the lowerbound of pt, below which the

uniformed principal has no incentive to continue the project any further. Moreover, because

at = λ for t > T and pt is continuous, the belief must reach this lowerbound at time T , i.e.,

pt > pT = p for t < T .

4 Equilibrium characterization

We have seen that in any non-trivial equilibrium, there exists some finite T such that at = λ

and qt = 1 for t > T with pT = p. Before time T , the uninformed type remains with some

positive probability and may gradually drop out as time passes. What, then, happens just

before the game reaches time T ? The fact that the uninformed type persists until time T , but

15See Milgrom and Segal (2002)
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not beyond, implies that there must be a small number ε such that at > 0 for t ∈ (T − ε, T ].

Along with the lowerbound of pt, this suggests that there must also exist some lowerbound

for qt, so as to satisfy the agent’s incentive compatibility constraint.

Lemma 4 qT ≥ q :=
c−p

r
λ+r

(1−c)+(c−p) >
c−p

1−p
.

Proof: See Appendix.

Now suppose that there exists some τ < T such that at ∈ (0, λ) for t ∈ (τ, T ). We can

then show that during this interval, if it exists, the uninformed type must also drop out

at some positive (yet finite) rate to keep the agent indifferent. These indifferent conditions

imply some additional conditions that the belief pair (pt, qt) must satisfy, which can be used

to characterize the equilibrium of the model.

Lemma 5 Suppose that there exists some τ < T such that at ∈ (0, λ) for t ∈ (τ, T ). Then,

xt ∈ (0,∞) for t ∈ (τ, T ). During this phase, at is strictly increasing in t with limt↑T at = λ

whereas xt, pt and qt are all strictly decreasing with qT = q. Moreover,

qt + (1− qt)pt > c > pt,

for t ∈ (τ, T ).

Proof: See Appendix.

With the preceding results, we can now make the following statement which provides a

characterization of the equilibrium.

Proposition 1 For any given p0 and q0, there exists τ ∈ [0, T ] such that

at

{

= λ for t ∈ [0, τ),

∈ (0, λ) for t ∈ (τ, T ),
and xt

{

= 0 for t ∈ [0, τ),

∈ (0,∞) for t ∈ (τ, T ).

If T > τ , given pτ and q̃τ , the effort level and the exit rate follow

at =
Bre−Br(t−τ)

e−Br(t−τ) − (1− pτ )
, (4)

xt = − r +
−1 + c

(1−pτ )eBr(t−τ)−(1−c)

−1
r
+ c

r(1−c)

∑∞
n=1

1
1+nB

( 1−c
1−pτ

)ne−nBr(t−τ) +Ωτer(t−τ)
, (5)

for t ∈ (τ, T ) where

Ωτ :=
1

r

(

1 +
(1− q̃τ )pτ
q̃τ (1− c)

−
c

1− c

∞
∑

n=1

1

1 + nB

( 1− c

1− pτ

)n

)

.
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Proof: See Appendix.

The proposition states that any non-trivial equilibrium consists of at most three phases

and is completely characterized by a pair (τ, T ). For expositional clarity, we label them as

follows:

Experimentation phase t ∈ [0, τ ]: The agent allocates all of his resource to implement the

project, and the uniformed type never drops out. The game in this phase is like a standard

two-armed bandit problem with one safe arm where a single agent allocates his resource be-

tween the two arms.

Screening phase t ∈ (τ, T ]: The agent controls his effort to screen out the uniformed prin-

cipal who starts dropping out gradually over time. The game in this phase is like a war of

attrition where the agent attempts to screen out the uniformed type by controlling effort,

and the uninformed type drops out gradually over time.

No-uncertainty phase t ∈ (T,∞): Only the informed principal survives with no uncer-

tainty regarding the project quality.

The final no-uncertainty phase always exists in any non-trivial equilibrium whereas each of

the other two may not under certain conditions. As we will discuss below, key determining

factors of (τ, T ) are the prior belief (p0, q0), and the upper bound of effort λ. In what follows,

we thus think of τ and T as functions of (p0, q0, λ) and examine how they depend on those

parameters.

To construct an equilibrium of this model, it is convenient to summarize several properties

that must be satisfied by the belief pair (pt, qt).

1. pt strictly decreases over time and reaches p at time T [Lemmas 3 and 5].

2. qt strictly decreases for t ∈ [0, τ ] and (τ, T ] with qT ≥ q (and a possible jump at time

τ) [Lemma 5].

3. If T > τ , qT = q and qt + (1− qt)pt > c > pt for t ∈ (τ, T ) [Lemma 5].

4. At time T , qt jumps up to one and stays there for all t > T [Lemma 2].

Note that given (4), the uniformed type’s belief at time T is obtained as

pT =
p0e

−(λτ+
∫ T

τ
asds)

1− p0 + p0e
−(λτ+

∫ T

τ
asds)

,

14



which must equal p by property 1. Simple computation shows that

λτ +

∫ T

τ

asds = A(p0) := ln
[(1− p)p0

p(1− p0)

]

, (6)

regardless of (τ, T ), meaning that the total amount of effort over [0, T ] is fixed at A(p0) in any

non-trivial equilibrium. This fact then implies that since at < λ for t ∈ (τ, T ), an increase in

τ must be accompanied by a decrease in T and hence T − τ .

Given the initial prior belief (p0, q0) and the equilibrium strategies, τ and T are determined

so as to satisfy those four properties, with discrete jumps of qt at time T and also possibly at

time τ . Note that from property 3, the screening phase cannot exist if p ≥ c, as the uninformed

type’s belief would not reach c before time T . In this case, therefore, the equilibrium takes a

very simple form: the agent chooses at = λ for all t, and the uninformed type drops out once

and for all at time T when the agent’s belief reaches p.

If c > p, on the other hand, the equilibrium may involve the screening phase. To actually

construct an equilibrium, we first suppose that xt <∞ for t ∈ [0, T ), so that the agent’s belief

is continuous everywhere (up to time T ). Define ℓ := T − τ as the length of the screening

phase. The uniformed type’s belief in this phase can be derived from (4), (5) and the terminal

condition pT = Br
λ
. Since c > pt must hold in this phase, there is an upperbound of ℓ, denoted

as ℓ, such that pT−ℓ = c if c > Br
λ
. Let

L(p0) := {(τ, T ) | given p0, τ , T ∈ (τ, τ + ℓ), and xτ <∞, pT = p}

be the set of (τ, T ) such that pT = Br
λ

for a given initial prior p0, assuming no discontinuity

of qt at t = τ . Then, for each (τ, T ) ∈ L(p0), there is a correspondent q0 such that qT = q.

Given this, we can define

Q(p0) := {q0 | given p0 and xτ <∞, qT = q for (τ, T ) ∈ L(p0)}, (7)

which is connected.

Proposition 2 If c > p, then for any p0, there exists a nonempty interval Q(p0), defined by

(7), such that

1. for q0 ∈ Q(p0), τ ≥ 0 and T − τ > 0;

2. for q0 ≥ sup{Q(p0)}, τ > 0 and T − τ = 0;

3. for q0 ≤ inf{Q(p0)}, τ > 0 and T − τ = ℓ if p0 > c, whereas τ = 0 and T − τ < ℓ if

c ≥ p0.
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If p ≥ c, then τ > 0 and T − τ = 0.

Proof: See Appendix.

Note that the source of preference incongruence in this setup is the effort cost c that must

be privately borne by the agent. When c is sufficiently close to zero, the equilibrium ceases to

a simple one where the agent simply exerts maximum effort until the project is terminated.

In what follows, therefore, we restrict our attention to the case where c is relatively large to

ensure that the interests of the two players are sufficiently divergent.

Assumption 2 c > p.

The efficiency of the equilibrium depends heavily on the length of the screening phase

measured by ℓ := T − τ : as a rule of thumb, the equilibrium becomes less efficient as ℓ

becomes larger. An important question is hence how ℓ changes with the initial prior. The

answer to this question is relatively straightforward when q0 /∈ Q(p0): if q0 > sup{Q(p0)}

or q0 < inf{Q(p0)} with p0 > c, a small change in the initial prior has no effect on ℓ; if

q0 < inf{Q(p0)} with c > p0, an increase in p0 prolongs the screening phase while an increase

in q0 has no effect.16 For q0 ∈ Q(p0), on the other hand, ℓ changes continuously with a change

in the initial prior. Even in this case, however, we can obtain very clear-cut results.

Proposition 3 For any given p0 and q0 ∈ Q(p0),

1. ∂τ
∂q0

> 0, ∂T
∂q0

< 0 and ∂ℓ
∂q0

< 0;

2. ∂τ
∂p0

< 0, ∂T
∂p0

> 0 and ∂ℓ
∂p0

> 0.

Proof: See Appendix.

Note that both an increase in p0 and an increase in q0 raise the initial project quality

pA0 . As it turns out, however, they yield totally different, and in fact opposite, efficiency

implications. To see this, consider (p′0, q
′
0) and (p′′0 , q

′′
0 ), q

′
0 > q′′0 , such that q′0 ∈ Q(p′0) and

q′0 + (1 − q′0)p
′
0 = q′′0 + (1 − q′′0)p

′′
0 . Proposition 3 then implies that the case with (p′0, q

′
0)

entails a shorter screening phase and hence yields a higher joint payoff than the case with

(p′′0, q
′′
0 ). In other words, with the initial project quality pA0 being fixed, an increase in q0 is

welfare-improving whereas an increase in p0 is welfare-reducing.

16Similarly, when p ≥ c, a small change in the initial prior has no effect on ℓ.
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While the current framework offers a wide of range of interpretations, one possible inter-

pretation is that p0 reflects the inherent difficulty of the project at hand while q0 reflects the

principal’s evaluation ability or “vision.” According to this view, our results imply that more

trust in the principal’s vision is welfare-improving (a shorter equilibrium delay) but a more

optimistic outlook on the project is welfare-reducing (a longer delay). As such, our analysis

lends support to the recent leadership literature that emphasizes vision as an essential aspect

of effective leadership (e.g., Bennis and Nanus, 1985; Tichy and Devanna, 1986; Conger and

Kanungo, 1998) and complements it by presenting a specific mechanism through which vision

can become an asset in organizations.17

5 The role of information in hierarchical experimentation

The model we have considered thus far has both hidden information and hidden action: on

one hand, the agent does not know whether the principal is informed or not; on the other,

the principal cannot directly observe the agent’s resource allocation. Of course, the former

aspect is the major focus of our analysis which sets it apart from the existing literature.

The latter is more subtle, but nonetheless gives rise to an argument that is instrumental in

illustrating the intricate nature of the problem faced by the agent. In this section, we relax

each of them in order to illuminate the role of information in the current setup.

5.1 The efficient benchmark

To obtain the (constrained) efficient allocation, we consider the case where the agent has both

the information and the productive resource to carry out the project.18 More precisely, we

assume that the agent now knows whether the principal is informed or not. Aside from this,

to keep the situation comparable, the model is exactly the same as above; we in particular

continue to assume that the principal retains the right to terminate the project.

With no information asymmetry, the problem is enormously simplified: when the agent

is informed and knows that the project is good for sure, he simply chooses at = λ until a

success is attained; when he is not informed, the problem is effectively reduced to a standard

two-armed bandit problem. To obtain the efficient allocation, therefore, we only need to

17There are also some economic analyses which illustrate the role of vision in organizations from different
perspectives. Rotemberg and Saloner (2000) model vision as a bias which makes the manager favor one project
over the other. Hiring a manager with a vision can be beneficial because it reduces uncertainty as to what
kind of employee initiatives will be favored later. Van den Steen (2005) also formalizes the notion of vision
and shows that a leader with strong beliefs would attract employees with similar beliefs. This sorting effect
gives direction to the firm and improves coordination, suggesting a channel through which strong vision can
affect the firm’s performance.

18The subsequent benchmark result is constrained efficient in that the players must take the allocation of
the implementation costs, as captured by b and c, as given.
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consider the case where the agent is not informed about the project quality. Since the game

ends once the agent attains a success, the optimal choice for the agent is simply to choose

at = λ if pt ≥ c and at = 0 if c > pt, both on and off the equilibrium path.

On the other hand, the principal’s termination decision is essentially the same. The

principal is indifferent between terminating and continuing when ptat = Br. Given the

agent’s strategy, the principal terminates the project when the belief reaches Br
λ

if Br
λ

≥ c.

If c > Br
λ
, the agent stop exerting effort at pt = c. Since the continuation payoff is zero

from that point on, it is optimal for the principal to terminate the project when the belief

reaches c. This means that the principal terminates the project at pt = max{Br
λ
, c} = c

under Assumption 2.

The distortion caused by the information asymmetry (and the consequent role specializa-

tion) should now be clear. When the project is known to be good, the agent should exert

maximum effort indefinitely until he attains a success in the efficient allocation. In contrast,

the equilibrium allocation often involves a phase where the agent controls effort in some range

(0, λ), in order to screen out the uninformed type. As such, the information asymmetry often

prolongs the experimentation process even though, in the end, the project will end up with

a success with probability one when it happens to be good.

The contrast is even more interesting when the project type is not known ex ante. Again,

the efficient allocation involves no phase where the agent chooses an intermediate effort level.

The belief pt thus declines no faster in the equilibrium allocation than in the efficient one and

again slows down the experimentation process. Moreover, in this case, there is also distortion

on termination decisions. Since the uninformed type is pooled with the informed type, the

marginal value of experimentation is higher, which induces the principal to procrastinate. In

equilibrium, the uninformed type starts dropping out at a positive rate only after the belief

falls below c and persists until it reaches p, suggesting that the project continues for too long

compared to the efficient benchmark.19

5.2 Observable effort

Another crucial aspect of our model is that effort is not directly observable to the principal,

so that the agent’s deviation from the equilibrium strategy would not affect the uninformed

type’s belief. Although we believe that the case with unobservable effort is a more realistic

description of situations of our interest, it is still helpful to consider, at least as a theoretical

benchmark, the case where the principal can directly observe the agent’s effort level to see

19If p ≥ c, the agent chooses at = λ for all t, and the uninformed type terminates the project once and for
all when the belief reaches p. The project is hence terminated at the right timing with no implementation
delay, so that the allocation coincides with the efficient benchmark.
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the role of effort monitoring in this context. In particular, our main focus here is to show

through an example that the agent’s expected payoff can either increase or decrease with

observable effort.

A full characterization of the case with observable effort requires as much work, if not

more, and is out of the scope of our analysis. For this reason, we restrict our attention to

a particular equilibrium allocation which we call the full-effort equilibrium, i.e., the one in

which the agent exerts maximum effort all the time, and the uniformed type drops out once

and for all at time T . Letting qs :=
c−p

1−p
and ν :=

p(1−p0)

p0(1−p) , we obtain the following condition

for the full-effort equilibrium.

Proposition 4 With observable effort, the full-effort equilibrium exists if

q0 ≥
qs(1− p0 + p0ν)

(1− qs)ν + qs(1− p0 + p0ν)
.

Proof: See Appendix.

It follows from Proposition 2 that under Assumption 2, the full-effort equilibrium exists

if and only if

q0 ≥ sup{Q(p0)} =
q(1− p0 + p0ν)

(1− q)ν + q(1− p0 + p0ν)
,

when effort is not observable. Proposition 4 then suggests that the condition with unobserv-

able effort is a proper subset of the condition with observable effort. This is because, with

observable effort, the agent has an additional incentive to work harder, as more effort directly

lowers the uninformed type’s belief and thereby forces her to drop out at a faster rate.

Since the agent has better control over the uniformed type’s behavior, one might think

that he is always better off with observable effort. As it turns out, though, this is not always

the case in the current setup because of a time-inconsistent objective that the agent faces.

To see this, note that the uninformed type’s continuation payoff at time t depends on two

factors: the current belief pt and the expected effort sequence {as}
∞
s=t. The agent can thus

screen out the uninformed type either by exerting high effort (which lowers pt) or by exerting

low effort (which diminishes the continuation payoff). From the agent’s point of view, the

latter is a more thrifty way to induce the principal’s information. When it is more effective,

the agent would actually be better off if he could commit to a low-effort sequence, although

he would always have an incentive to deviate and exert higher effort in equilibrium.

Intuitively, with observable effort, the uninformed type starts dropping out later (a higher

τ) due to higher continuation payoffs, but the belief pt reaches the lowerbound p earlier (a
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lower T ). The benefit of effort observability for the agent is hence that it takes shorter to

reach the no-uncertainty phase where the expected payoff is maximized, whereas the cost

is that the uninformed type is more willing to stay in the game. Below, we show that the

agent’s expected payoff can indeed either increase or decrease with observable effort because

of this tradeoff.

Proposition 5 Let q0 =
qs(1−p0+p0ν)

(1−qs)ν+qs(1−p0+p0ν)
, so that the agent chooses at = λ for all t with

observable effort, but at ∈ (0, λ) for some t with unobservable effort.

(i) Fix Br = K for some K ∈ (0, λ). There exists ε > 0 such that for r < ε and B = K
r
, the

agent receives a higher payoff with unobservable effort than with observable effort.

(ii) There exists λ∗ > 0 such that for λ > λ∗, the agent receives a higher payoff with observable

effort than with unobservable effort.

Proof: See Appendix.

The uninformed type’s incentive to continue the project is determined by p = Br
λ
, where

a better outside option (a higher b) implies a higher opportunity cost of continuing the

project: in a sense, p measures how patiently the principal can wait for a success by forgoing

the outside option. Fixing p, a decrease in r means that the agent becomes more patient,

compared to the uninformed type, and is willing to go through a prolonged screening phase:

in fact, as r → 0, the agent faces almost no cost from implementation delays, so that at → 0

for t ∈ (τ, T ) to screen out the uninformed type with unobservable effort. With observable

effort, however, the agent cannot do this, as he has a stronger current incentive to exert

higher effort at each instance. In other words, the agent obtains a higher expected payoff

with unobservable effort because the fact that effort cannot be observed by the principal

works as a commitment device to keep his effort low enough.

In contrast, effort observability increases the agent’s expected payoff when the upperbound

of the effort level is sufficiently high. As can be seen from (4) and (5), λ has no impact on

at and xt for t ∈ (τ, T ). The difference is that the maximum instantaneous payoff is high

for a given belief pt, and the uninformed type is therefore more willing to wait for a success

even when the belief is relatively low. Since the equilibrium necessarily involves the screening

phase with unobservable effort by assumption, the agent must now go through a prolonged

screening phase, which diminishes his expected payoff.

20



5.3 Delegation and the value of the principal’s information

The inefficiency of the equilibrium arises largely from the screening phase in which the agent

lowers effort to extract the principal’s private information. As is evident, one potential remedy

for this is to take the principal entirely out of the game and delegate the termination right

to the agent even though it necessarily entails a cost of losing the principal’s (potentially

useful) information. Here, we explore whether this type of delegation can ever improve the

productive efficiency of the team as measured by the joint payoff of the principal and the

agent.

The optimal strategy under delegation is fairly straightforward. The agent exerts maxi-

mum effort until the belief pAt reaches c and then terminates the project. The cost of dele-

gation in this context is obvious: with no additional information, the agent must terminate

the project once and for all at some point, independently of the project quality. This means

that a good project is terminated prematurely with some probability while a bad project on

average persists for too long. However, there is also a potential gain from delegation because

the agent now knows that he can no longer rely on the principal’s information and so always

exerts maximum effort as long as he continues the project.

Can this benefit be large enough to more than compensate for the cost? As it turns

out, the answer to this question is yes, i.e., the team as a whole can be made better off by

giving up the principal’s information entirely under some conditions. The argument here

runs parallel to part (ii) of Proposition 5: roughly, the benefit dominates the cost when both

λ and q0 are sufficiently large. As q0 approaches one, the project is good almost surely, and

the risk of having a bad project for too long also diminishes to zero. Even in this case, when

λ is sufficiently large, the equilibrium without delegation involves some implementation delay

(see Lemma 8 in the proof of Proposition 5), leading to the following proposition.

Proposition 6 Let q0 =
qs(1−p0+p0ν)

(1−qs)ν+qs(1−p0+p0ν)
. There exists λ∗∗ such that delegation raises

the joint payoff for λ > λ∗∗.

Proof: The argument here is very closely related to part (ii) of Proposition 5, especially

Lemma 8. Note that since limλ→∞ q0 = 1, the project is almost surely good as λ tends to

infinity. This means that the project succeeds almost surely by the time the belief reaches p.

The allocation under delegation thus converges to the efficient one that maximizes the joint

payoff. In contrast, it follows from Lemma 8 that the equilibrium without delegation must

involve a prolonged screening phase with a probability that is bounded away from zero and

hence yield a strictly lower joint payoff than the efficient allocation.
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6 Conclusion

This paper provides a model of hierarchical experimentation in which a team of heteroge-

neous players faces a bandit problem in order to understand how the presence of information

asymmetry limits the team’s ability to explore new ideas. We derive explicit solutions for the

agent’s effort choice and the principal’s exit rate that are used to obtain a full characterization

of the equilibrium. The equilibrium is often, though not always, inefficient, with prolonged

delays occurring on the equilibrium path, which constrains the benefit of role specialization.

In general, more trust in the principal’s vision improves welfare whereas more optimistic

outlook on the project lowers it.
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Appendix: Proofs

Proof of Lemma 4: We first show that there exists a small number ε > 0 such that at > 0

for t ∈ (T − ε, T ). Suppose otherwise, i.e., there exists some t′ such that the agent chooses

at = 0 for t ∈ (t′, T ). During this time interval, however, the probability of attaining a success

is zero, and it is hence strictly better for the uninformed type to terminate the project at

time t′ rather than at time T , which is a contradiction.

The fact that the agent exerts some effort when it is sufficiently close to time T implies

a certain lowerbound for qt. It follows from the Bellman equation that limt↑T at > 0 only if

lim
t↑T

Φt(pt, qt) = lim
t↑T

(

qt + (1− qt)pt − c− qtVT
)

≥ 0,

which can be written as

qT ≥
c− pT

r
λ+r

(1− c) + (c− pT )
>
c− pT
1− pT

.

Proof of Lemma 5: The agent chooses at ∈ (0, λ) only if Φt(pt, qt) = 0. This implies that

Φ̇t = 0 for t ∈ (τ, T ). Let

St
t′ := qt′e

−
∫ t

t′
asds + (1− qt′)pt′e

−
∫ t

t′
(as+xs)ds + (1− qt′)(1− pt′)e

−
∫ t

t′
xsds.

denote the probability that the game reaches time t, conditional on that it has reached time

t′ ≤ t. Given this, we define a modified version of Φt as φt(pt, qt; t
′) := e−r(t−t′)St

t′Φt(pt, qt),

which can be written as

φt(pt, qt; t
′) =

(

qt′e
−

∫ t

t′
(as+r)ds + pt′(1− qt′)e

−
∫ t

t′
(as+xs+r)ds

)

(1− c)

− (1− qt′)(1− pt′)e
−

∫ t

t′
(xs+r)dsc

− qt′e
−

∫ t

t′
(as+r)ds

(

∫ T

t

(1− c)ase
−

∫ s

t
(au+r)duds + e−

∫ T

t
(au+r)duVT

)

+ pt′(1− qt′)e
−

∫ t

t′
(as+xs+r)ds

∫ T

t

(1− c)ase
−

∫ s

t
(au+xu+r)duds.

This modified version of Φ has a desirable property that φ̇t(pt, qt; t) = 0 if and only if

Φ̇t(pt, qt) = 0, provided that Φt(pt, qt) = 0. Moreover, φt and Φt always have the same

sign. Since the only thing that matters is the sign of Φt, we use this modified function φ

to characterize the agent’s effort choice for analytical convenience. Evaluating at t′ = t, we
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obtain

φ̇t(pt, qt; t) = −
(

qt(at + r) + (1− qt)pt(at + xt + r)
)

(1− c) + (1− qt)(1− pt)(xt + r)c

+ qt(1− c)at + (1− qt)pt(1− c)at

= (1− qt)(c− pt)xt −
(

qt + (1− qt)pt − c
)

r. (8)

The agent thus chooses at ∈ (0, λ) for t ∈ (τ, T ) only if

(1− qt)(c − pt)xt =
(

qt + (1− qt)pt − c
)

r. (9)

Given this, we first show that xt ∈ (0,∞) if at ∈ (0, λ) for t ∈ (τ, T ). Since xt ≥ 0 and

qt+(1−qt)pt > pt, we must have qt+(1−qt)pt ≥ c ≥ pt with at least one of them holding with

strict inequality. Suppose that there exists some t′ ∈ (τ, T ) such that c = pt′ . Since pt > pt′

for any t > t′, we have qt + (1 − qt)pt > pt > c for t ∈ (τ, t′), which violates (9). Similarly,

suppose that there exists some t′ ∈ (τ, T ) such that qt′ + (1 − qt′)pt′ = c and xt′ = 0. Given

that at′ > 0 and xt′ = 0, both ṗt′ and q̇t′ must be negative, meaning that ṗAt′ is negative as

well and (9) can no longer be satisfied. This implies that qt + (1− qt)pt > c > pt, and hence

xt ∈ (0,∞), for t ∈ (τ, T ).

To show that qt is decreasing in t ∈ (τ, T ), we obtain explicit solutions for at and xt.

From Lemma 3, we know that ptat = Br for t ∈ (τ, T ). This implies that the optimal effort

is characterized by the following ordinary differential equation:

ṗtat + ptȧt = 0 ⇔ ȧt = −
at
pt
ṗt =

at
pt
ptat(1− pt) = at(at −Br).

Solving this yields

at =
Bre−Br(t−t′)

e−Br(t−t′) − (1− pt′)
, pt = 1− (1− pt′)e

Br(t−t′), (10)

which shows how the effort level evolves over time from an arbitrarily chosen initial point

t′ ∈ (τ, t].

As for the exit rate xt, note that

xt =

(

qt + (1− qt)pt − c
)

r

(1− qt)(c − pt)
=

(

qt(1− c)

(1− qt)(c − pt)
− 1

)

r, (11)

for t ∈ (τ, T ). With some computation, we obtain

xt =

(

(1− c)qt′

(c− pt)(1− qt′)
e
∫ t

t′
(xs−(1−ps)as)ds − 1

)

r

=

(

(1− c)qt′
(

(1− pt′)eBr(t−t′) − (1− c)
)

(1− qt′)
e

∫ t

t′

(

xs−
Br(1−p

t′
)eBrs

1−(1−p
t′

)eBrs

)

ds
− 1

)

r

=

(

qt′
(

1
pt′

−
1−pt′
pt′

eBr(t−t′)
)

(1− qt′)
(1−pt′

1−c
eBr(t−t′) − 1

)
eBr

∫ t

t′
xsds − 1

)

r, (12)
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for any t′ ∈ (τ, t]. By solving (12), we obtain

xt = − r +
−1 + c

(1−pt′)e
Br(t−t′)−(1−c)

−1
r
+ c

r(1−c)

∑∞
n=1

1
1+nB

( 1−c
1−pt′

)ne−nBr(t−t′) +Ωt′er(t−t′)
, (13)

where

Ωt′ :=
1

r

(

1 +
(1− qt′)pt′

qt′(1− c)
−

c

1− c

∞
∑

n=1

1

1 + nB

( 1− c

1− pt′

)n

)

.

With the explicit form of xt, we analyze how qt evolves over time. Notice that

e
∫ t

t′
xsds =

(1− qt′)pt′

rqt′(1− c)Γt
t′
,

where

Γt
t′ := −

1

r
+

c

r(1− c)

∞
∑

n=1

1

1 + nB

( 1− c

1− pt′

)n

e−nBr(t−t′) +Ωer(t−t′).

It then follows from this that

qt
1− qt

=
qt′

1− qt′

( 1

pt′
−

1− pt′

pt′
eBr(t−t′)

)

e
∫ t

t′
xsds

=
( 1

pt′
−

1− pt′

pt′
eBr(t−t′)

) pt′

r(1− c)Γt
t′
.

Note that qt is decreasing in t if qt
1−qt

is decreasing. It thus suffices to show that

d

dt

[

1− (1− pt′)e
Br(t−t′)

Γt
t′

]

< 0,

for any t′ ∈ (τ, t]. This can be written as

(

1− (1− pt′)e
Br(t−t′)

)

(

−rΓt
t′ − 1 +

c

(1− pt′)eBr(t−t′) − (1− c)

)

> −(1− pt′)Bre
Br(t−t′)Γt

t′ .

Since Γt
t′ |t′=t=

(1−qt)pt
rqt(1−c) , evaluating at t′ = t, this condition becomes

b(1− pt)(1− qt)(c− pt) > pt
(

c− qt − (1− qt)pt
)

,

which holds because qt + (1− qt)pt > c.

As for the effort level, since at > 0 implies that pt is strictly decreasing in t ∈ (τ, T ), at

must increase to satisfy ptat = Br. It then follows from (11) that xt is increasing because

both pt and qt are strictly decreasing. Note also that since limt↑T pt = p, we have limt↑T at =
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Br
p

= λ. Finally, if there exists some τ < T such that at ∈ (0, λ) for t ∈ (τ, T ), we must have

Φt(pt, qt) = 0 for this range, which means that

qT =
c− pT

r
λ+r

(1− c) + (c− pT )
>
c− pT
1− pT

.

Proof of Proposition 1: To prove the proposition, the following property is crucial.

Lemma 6 Suppose that pAt′ = qt′ +(1− qt′)ps > c for some t′ ≤ T . If there exists ε > 0 such

that at = λ for t ∈ (t′ − ε, t′), then at = λ and xt = 0 for all t < t′.

Proof: Given that pt >
Br
λ

for t < T , if at = λ for t ∈ (t′ − ε, t′), the uninformed type

would never terminate the project in [t′−ε, t′). Therefore, qt and pt are strictly decreasing in

t ∈ [t′ − ε, t′), and pAt = qt + (1− qt)pt > c for t ∈ [t′ − ε, t′). Furthermore, given that at = λ

for t ∈ (t′ − ε, t′), there also exists ε′ > 0 such that the uninformed type does not terminate

the project in (t′ − ε − ε′, t′ − ε], regardless of at during this interval. Given that xt = 0 in

(t′−ε−ε′, t′−ε], qt+(1−qt)pt > c for t ∈ (t′−ε−ε′, t′−ε]. Therefore, φ̇t(pt, qt; t) is negative

in (t′ − ε− ε′, t′ − ε]. This implies φt(pt, qt; t) > 0 ⇔ Φt(pt, qt) > 0 for t ∈ (t′ − ε − ε′, t′ − ε]

which in turn imply at = λ during this interval. Applying the same argument backward, we

can see that at = λ for all t < t′.

With this result as well as Lemma 5, we are now ready to prove the proposition. We

already know that either at = λ or at ∈ (0, λ) for t sufficiently close to T (see the proof of

Lemma 4). It follows from Lemma 6 that if at = λ for t sufficiently close to T , then at = λ

for all t < T . Now suppose that at ∈ (0, λ) for t sufficiently close to T . In this case, we define

τ := inf{t | at ∈ (0, λ) for all t ∈ (t, T )}.

By Lemma 5, xt ∈ (0,∞) for t ∈ (τ, T ), and q̃τ + (1− q̃τ )pτ > c.

To prove the proposition, it suffices to show that there exists a small number ε > 0 such

that at = λ for t ∈ (τ − ε, τ ]. By the definition of τ , it is either aτ = 0 or aτ = λ. We first

show that aτ = 0 is not feasible. Given that aτ = 0, there are two possibilities: (i) at = 0 or

(ii) at ∈ (0, λ) for t sufficiently close to τ . If (i) holds, however, the uninformed type should

start dropping out before time τ . This is a contradiction because we then must have at > 0

to satisfy ptat = Br. If (ii) holds, then at must be decreasing over time, which contradicts

Lemma 5. Now suppose that at ∈ (0, λ) for t ∈ (τ − ε, τ ] with aτ = λ. Along this path,

however, xt = 0 for t ∈ (τ − ε, τ ] because ptat > pτaτ = Br for t sufficiently close to τ and
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ptat = Br cannot be satisfied, but this contradicts Lemma 5. This shows that at = λ for t

sufficiently close to τ . We can then apply Lemma 6 to show that at = λ and xt = 0 for all

t ∈ [0, τ).

Explicit solutions for at and xt are from (10) and (13) in the proof of Lemma 5. Since pt

and qt are left-continuous, we obtain the expression in the proposition by replacing t′ with τ

and qτ with q̃τ (for qt may be discontinuous at time τ).

Proof of Proposition 2: We start with the case where c > p. First, it is clear by

definition that there exists a pair (τ, T ) that can satisfy all the equilibrium conditions with

no discontinuity at time τ if q0 ∈ Q(p0). We can uniquely pin down τ and ℓ = T − τ from the

two boundary conditions, i.e., qT = q and pT = p, as well as (4) and (5). For q0 ≥ sup{Q(p0)},

we first establish the following fact.

Lemma 7 For any given p0 and q0 ∈ Q(p0),
∂τ
∂q0

> 0, ∂T
∂q0

< 0 and ∂ℓ
∂q0

< 0.

Proof: We have already seen that the total amount of effort is fixed at A(p0) regardless of

(τ, T ). In contrast, given (4) and (5), the agent’s belief at time T is given by

qT =
q0e

−(λτ+
∫ T

τ
asds)

(1− q0)e
−(

∫ τ

0
psλds+

∫ T

τ
(psas+xs)ds) + q0e

−(λτ+
∫ T

τ
asds)

,

if there is no discontinuity at time τ . The total amount of effort needed to satisfy this

condition depends on (τ, T ) because xt > 0 only for (τ, T ). If qt converges to q without any

discontinuity, the following condition must be satisfied:

∫ τ

0
(1− ps)λds +

∫ T

τ

(

(1− ps)as − xs
)

ds = B(q0) := ln
[(1− q)q0

q(1− q0)

]

. (14)

It follows from (6) and (14) that if there is an exogenous increase in q0 while p0 is fixed, τ

and T must satisfy

(

(1− pτ )(λ− aτ ) + xτ
) ∂τ

∂q0
+
(

(1− pT ) lim
t↑T

at − lim
t↑T

xt
) ∂T

∂q0
=
dB

dq0
,

(λ− aτ )
∂τ

∂q0
+ lim

t↑T
at
∂T

∂q0
= 0.

With some algebra, we obtain

∂τ

∂q0
> 0 ⇔ lim

t↑T

xt
at

+
xτ

aT (λ− aτ )
> pτ − pT .
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Since xt ≥ 0 and at ∈ [0, λ], it suffices to show that

lim
t↑T

xt
at
> pτ − pT .

From (9) and the fact that limt↑T at = λ (from Lemma 5), this condition can be written as

(

qT + (1− qT )pT − c
)

r

(1− qT )(c− pT )
> λ(pτ − pT ).

Since c > pτ , this holds if

(

qT + (1− qT )pT − c
)

r

(1− qT )(c− pT )
> λ(c− pT ).

Substituting qT = q and rearranging, we obtain

c− pT +
r

λ+ r
(1− c)pT −

( r

λ+ r
(1− c) + c− pT

)

c >
λ

λ+ r
(1− c)(c− pT )

2,

which is reduced to 1 > c − pT . As this holds by assumption, τ must increase and T must

decrease when there is an increase in q0.

Note that Lemma 7 indicates that τ becomes larger (and T becomes smaller) as q0 becomes

larger, with limq0→sup{Q(p0)} ℓ = 0, i.e., there is no screening phase when q0 is sufficiently large.

This suggests that for q0 ≥ sup{Q(p0)}, the equilibrium is such that at = λ all the time, and

the uninformed type terminates the project once and for all at time T when pt reaches p.

For q0 ≤ inf{Q(p0)}, on the other hand, it should be either (i) τ = 0 and T − τ < ℓ or (ii)

τ > 0 and T − τ = ℓ.20 We need to consider two distinct possibilities. If p0 > c, the agent

starts out with maximum effort and the uninformed type drops out with positive probability

at time τ when the belief pt reaches c to satisfy qT = q. To see that this indeed constitutes an

equilibrium, note that since pτ = c, (8) is negative and Φt(pt, qt) > 0 for t ∈ [0, τ), meaning

that at = λ and xt = 0 in this range. For t ∈ (τ, T ], the continuation equilibrium is not

affected by the jump, so that at and xt are given by (4) and (5). If c ≥ p0, on the other hand,

the uninformed type is indifferent between terminating and continuing for any t ∈ [0, T ]. The

uninformed type thus drops out immediately at time 0 so that the revised belief jumps up to

satisfy qT = q, given (4) and (5).

20Note that there is a sharp discontinuity between the case with q0 = 0 (the symmetric-information case)
and the case with an arbitrarily small q0. In the latter case, no matter how small q0 is to begin with, qt can
take any value between zero and one because the uninformed type can drop out with probability arbitrarily
close to one. This draws clear contrast to the symmetric-information case where there is zero measure of the
informed type, because q0 = 0 regardless of the uninformed type’s termination decisions in this case.
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If p ≥ c, L(p0) is empty for any p0 > p. The screening phase cannot exist, so that T = τ .

The agent exerts maximum effort until pt reaches p, at which point the uniformed type ter-

minates altogether.

Proof of Proposition 3: The first statement is directly from Lemma 7. The second

statement can be proved in a similar manner. If there is an exogenous increase in p0, τ and

T must satisfy

(

(1− pτ )(λ− aτ ) + xτ
) ∂τ

∂p0
+
(

(1− pT )aT − lim
t↑T

xt
) ∂T

∂p0
= 0

(λ− aτ )
∂τ

∂p0
+ aT

∂T

∂p0
=
dA

dp0
.

It follows from these that

∂τ

∂p0
< 0 ⇔

limt↑T xt
aT

> pτ − pT −
xτ

aT (λ− aτ )
.

From Lemma 7, we know that this condition holds. This also implies that ∂T
∂p0

> 0 to satisfy

(6).

Proof of Proposition 4: Given that the agent always exerts maximum effort, the unin-

formed type has no incentive to terminate the project for pt > p. Therefore, given p0 and q0,

qt is strictly decreasing over time, and there is a one-to-one mapping between pt and qt. As

such, we can work with the agent’s belief pAt = qt + (1 − qt)pt, which is a sufficient statistic

as we will see below, instead of keeping track of pt and qt independently. Let pA be the

correspondent agent’s belief when pt reaches p, and define T such that pAT = pA. Since the

game reaches time T with probability qte
−λ(T−t), the agent’s value function can be written

as

V (pA) = λ
(pA(1− c)

λ+ r

(

1− e−(λ+r)(T−t)
)

−
(1− pA)c

r

(

1− e−r(T−t)
)

+ e−(λ+r)(T−t) qt(1− c)

λ+ r

)

.

Note that the ratio between pt and qt is constant for t ∈ [0, T ), given that xt = 0 for this

interval. This means that

qt =
q0

pA0
pA,

where pAt := qt + (1− qt)pt. Note also that since pA = pAe−λ(T−t)

1−pA+pAe−λ(T−t) , we obtain

e−(T−t) =

(

pA(1− pA)

pA(1− pA)

)− 1
λ

=: ∆.
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It follows from these that

V (pA) = λ

(

pA(1− c)

λ+ r

(

1−∆λ+r
)

−
(1− pA)c

r

(

1−∆r
)

+
pAq0(1− c)

pA0 (λ+ r)
∆λ+r

)

.

Note that the value function depends only on the current belief pA, but not on t, since now

the uninformed type can condition her strategy on the belief pA which is commonly shared

even off the equilibrium path. With some computation, we obtain

dV

dpA
= λ

(

1− c

λ+ r

(

1−∆λ+r
)

+
c

r

(

1−∆r
)

+
q0(1− c)

pA0 (λ+ r)
∆λ+r

)

+
(1− c)(pA0 − q0)

(1− pA)pA0
∆λ+r −

c

pA
∆r,

The Bellman equation implies that at = λ for t ∈ [0, T ) if

pA − c− pA(1− pA)
dV

dpA
− pAV > 0.

A sufficient condition for this is

ψ(pA) := pA − c− pA

(

λ(1− c)

λ+ r

(

1−∆λ+r
)

+
(

1−
c

pA

)

∆λ+r

)

> 0. (15)

Note that ψ(pA) = 0 and ψ(1) = r
λ+r

(1− c). Furthermore,

ψ′(pA) = 1−
λ

λ+ r
(1− c) + κ

( 1

pA
− 1
)1+ r

λ
(

1−
λ+ r

λ(1− pA)

)

,

where

κ :=

(

λ

λ+ r
(1− c)−

(

1−
c

pA

)

)

( pA

1− pA

)1+ r
λ
.

It follows from this that ψ′(pA) = r
λ(1−pA)

(1− c
pA

), ψ′(1) = 1− λ
λ+r

(1− c) > 0, and

ψ′′(pA)







> 0 if λ
λ+r

(1− c)− (1− c
pA

) > 0,

< 0 if λ
λ+r

(1− c)− (1− c
pA

) < 0.

When pA ≥ c, ψ′(pA) > 0 for all pA > pA, and hence ψ(pA) > 0 for all pA > pA. This means

that the agent chooses at = λ if pA ≥ c.

Given p0, to reach p, T must satisfy e−λT = ν :=
p(1−p0)

p0(1−p) . Given this, pA = qT+(1−qT )p ≥

c, if and only if

q0 ≥
qs(1− p0 + p0ν)

(1− qs)ν + qs(1− p0 + p0ν)
.
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Proof of Proposition 5: Part (i): Let (τobs, T obs) denote the equilibrium allocation with

observable effort (we continue to denote the allocation with unobservable effort by (τ, T )).

Given q0, with observable effort, the agent always exerts maximum effort (τobs = T obs),

and the uninformed type drops out once and for all when pt reaches
K
λ

at time T obs. With

unobservable effort, by Proposition 2, the uninformed type drops out with strictly positive

probability at time τ ≥ 0, so that qt jumps up to a level that leads to limt↑T qt = q, which

is arbitrarily close to 1 when r approaches 0. By Lemma 5, qt is decreasing, so qt must also

be arbitrarily close to 1 after the jump. At time τ , pτ >
K
λ
, and the agent exerts effort lower

than λ until pt reaches p.

We now compare the payoffs when r approaches 0 while fixing Br = K. In both cases, the

agent chooses at = λ for t < τ , so the agent’s expected payoffs are identical up to that point.

With unobservable effort, the uninformed type terminates the project almost surely at time

τ , so that qτ jumps up almost to 1; with observable effort, the uninformed type waits until

pt reaches p = K
λ
. Since pt < c for t > τ , the agent incurs a loss if the principal happens to

be uninformed, meaning that the agent receives a higher expected payoff with unobservable

effort after time τ and before pt reaches p (at T and T obs). This is the benefit of unobservable

effort, which is strictly positive even when r tends to 0.

This comes with a cost, however, because the agent exerts effort lower than λ, so it takes

longer for pt to reach p. Note that given pτ and the fact that p is fixed at K
λ
, the time needed

to reach p is independent of r. As such, the loss which stems from a larger T diminishes to

0 as r tends to 0. This shows that, for r arbitrarily close to 0 and B = K
r
, the agent receives

a higher payoff with unobservable effort than with observable effort.

Part (ii): The cost and benefit of effort observability are still the same: the benefit is that the

game reaches the no-uncertainty phase earlier; the cost is that the uninformed type would

not drop out until time T . To prove the second part, the following lemma helps.

Lemma 8 Let q0 =
qs(1−p0+p0ν)

(1−qs)ν+qs(1−p0+p0ν)
. With unobservable effort, as λ → ∞, e−λτ con-

verges to a positive number, and ℓ := T − τ goes to ∞.

Proof: Note that τ and T change continuously with λ. With some computation, we also

obtain

lim
t↑T

qt = q ≥ q0 =
qs(1− p0 + p0ν)

(1− qs)ν + qs(1− p0 + p0ν)
⇔ B ≥ p0,

which implies that qt must jump up at t = τ with pτ = c if B ≥ p0 (see the proof of

Proposition 2). We thus have limλ→∞ e−λτ = c(1−p0)
p0(1−c) which is finite by assumption, and

limλ→∞ ℓ = ∞ by (10) since limλ→∞ p = 0.
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If B < p0, on the other hand, qt may or may not jump up at t = τ . If it does, the same

argument as above applies. We thus focus on the case where qt is continuous at t = τ . Now

define T such that

e−λT =
(λ+ r)B(1− p0)

p0
(

(1−B)λ−Br
) ,

which is the least amount of time that is needed for qt to reach q (by exerting maximum

effort all the way). Note that limλ→∞ e−λT = B(1−p0)
p0(1−B) > 0. Since qt decreases continuously,

we have T > τ and hence that e−λτ must also be bounded away from zero as λ→ ∞. It then

follows from (10) that limλ→0 ℓ = ∞.

The proposition follows immediately from this lemma. When λ tends to ∞, q0 must

be arbitrarily close to 1. The principal is then informed almost surely, and the cost of the

uninformed type waiting until T diminishes to 0. In contrast, since limλ→∞ e−λτ > 0 and

limλ→∞ ℓ→ ∞ from Lemma 8, the agent must go through a prolonged screening phase with

unobservable effort (with probability e−λτ ), and the benefit converges to a positive number.
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