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Abstract

It has been conjectured that canonical Bewley–Huggett–Aiyagari heterogeneous-agent
models cannot explain the joint distribution of income and wealth. The results stated below
verify this conjecture and clarify its implications under very general conditions. We show
in particular that if (i) agents are infinitely-lived, (ii) saving is risk-free, and (iii) agents have
constant discount factors, then the wealth distribution inherits the tail behavior of income
shocks (e.g., light-tailedness or the Pareto exponent). Our restrictions on utility require
only that relative risk aversion is bounded, and a large variety of income processes are
admitted. Our results show conclusively that it is necessary to go beyond standard models
to explain the empirical fact that wealth is heavier-tailed than income. We demonstrate
through examples that relaxing any of the above three conditions can generate Pareto tails.
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1 Introduction

When studying wealth inequality, one empirical feature stands out as striking and persistent
over time and space: the wealth distribution exhibits a power law tail. This fact was first
discovered by Pareto (1896, 1897) and has since been confirmed by many studies.1 A closely
related observation is that the income distribution is also heavy-tailed, although its Pareto
exponent is significantly larger, implying a heavier tail for wealth than income.2

∗We thank Jess Benhabib, Dan Cao, Chris Carroll, Makoto Nirei, Neng Wang, and seminar participants at Uni-
versity of Queensland and Sapporo Summer Workshop on Monetary and Financial Economics for comments and
suggestions. We are especially grateful to Yuichiro Waki for improving one of our earlier results as Lemma A.2.

†Email: john.stachurski@anu.edu.au.
‡Email: atoda@ucsd.edu.
1See Gabaix (2009, 2016) for introductions to power laws in economics.
2The Pareto exponent for wealth is about 1.5 (Pareto, 1897; Klass, Biham, Levy, Malcai, and Solomon, 2006;

Vermeulen, 2018), versus 2–3 for income (Atkinson, 2003; Nirei and Souma, 2007; Toda, 2012). Since the tail proba-
bility of a Pareto random variable satisfies P(X > x) ∼ x−α, where α > 0 is the Pareto exponent, a smaller value
for α corresponds to higher tail probability, implying a heavier tail (more inequality).
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It is well known in the quantitative macroeconomics literature that canonical Bewley (1977,
1983, 1986)–Huggett (1993)–Aiyagari (1994) models have difficulty in explaining the joint dis-
tribution of income and wealth. For example, Aiyagari (1994) documents that the wealth Gini
coefficient is 0.32 in the model, while it is 0.8 in the data. Huggett (1996) notes that the model-
implied top 1% wealth share is half of that in the data. Krueger, Mitman, and Perri (2016) argue
that idiosyncratic unemployment risk and incomplete financial markets alone cannot generate
a sufficiently dispersed wealth distribution,3 even though such dispersion is crucial for the
study of aggregate fluctuations. More specifically, Benhabib, Bisin, and Luo (2017) show that,
in a setting where income has a Pareto tail and agents use a linear consumption rule, the Pareto
exponent of wealth is either entirely determined by the distribution of returns on wealth, or
equal to the Pareto exponent of income. They argue that similar results must obtain with ratio-
nal agents with constant relative risk aversion (CRRA) preferences because, in such settings,
the policy rules are asymptotically linear.4

In this paper we confirm and significantly extend this conjecture by showing that, for
canonical Bewley–Huggett–Aiyagari models, all attempts to explain the large skewness of the
wealth distribution are bound to fail. By the qualification “canonical”, we mean models in
which (i) agents are infinitely-lived, (ii) saving is risk-free, and (iii) agents have constant dis-
count factors. In our main result (Theorem 3.5), we prove that the equilibrium wealth distri-
bution inherits the tail behavior of income shocks in any such model. This is an impossibility
theorem in the following sense: the tail thickness of the model output (wealth) cannot exceed
that of the input (income). If income is light-tailed (e.g., bounded, Gaussian, exponential, etc.),
so is wealth. If income is heavy-tailed, so is wealth, but with the same Pareto exponent, contra-
dicting the empirical relationship between the income and wealth distributions stated above.
Thus, one cannot produce a model consistent with the data without relaxing at least one of
assumptions (i)–(iii).

Our findings can be understood via the following intuition. In infinite-horizon dynamic
general equilibrium models, the discount factor β > 0 and the gross risk-free rate R > 0 must
satisfy the “impatience” condition βR < 1, for otherwise individual consumption diverges to
infinity according to results in Chamberlain and Wilson (2000), which violates market clearing.
But under this impatience condition, we show that rational agents consume than what is im-
plied by the permanent income hypothesis c(a) = (1 − 1/R)a, more than the interest income,
and the accumulation equation for wealth at becomes a “contraction” in the sense that

at+1 ≤ ρat + yt+1 (1.1)

for large enough at, where yt+1 is income and ρ is some positive constant strictly less than 1.
This inequality implies that the income shocks die out in the long run, and hence the wealth
distribution inherits the tail behavior of income shocks. To obtain (1.1), we use the results from
Li and Stachurski (2014), who show the validity of policy function iteration for solving income
fluctuation problems. With the bound (1.1) in hand, we characterize the tail behavior of wealth
using the properties of the moment generating function and applying several inequalities such
as Markov, Hölder, and Minkowski.

3The literature has extended the “canonical” Bewley–Huggett–Aiyagari model to explain the heavy-tailed
wealth distribution by introducing random discount factors (Krusell and Smith, 1998) and idiosyncratic invest-
ment risk (Benhabib, Bisin, and Zhu, 2011). We discuss this literature in Section 4.

4In a similar vein, Wang (2007) shows that the constant absolute risk aversion (CARA) utility augmented with
the Uzawa (1968) discounting function generates a stationary wealth distribution and that the wealth distribution
cannot be more skewed than income.
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Relative to the work of Benhabib, Bisin, and Luo (2017) discussed above, our contributions
are as follows: First, we provide a complete proof of the impossibility result stated above
in the context of an equilibrium model with rational, optimizing agents, thereby confirming
their conjecture on optimizing households with CRRA utility in a general equilibrium setting.
Second, our results are established in a class of models where relative risk aversion need not
be constant. We require only that relative risk aversion is asymptotically bounded. This means
that minor deviations from standard utility functions cannot reverse our results. Similarly,
our income process is required only to have a finite mean. Third, we provide a complete
analytical framework on tail thickness that accommodates both light-tailed and heavy-tailed
distributions, and connect it to the joint distribution of income and wealth. In the sense that
we handle all classes of shocks and allow for nonstationary additive processes, our proofs
extend what is contained in the related mathematical literature, such as the work of Grey (1994)
on Pareto tails.5 Moreover, our proofs are almost completely self contained, and hence can
be readily adapted to subsequent research on income and wealth distributions that tackles
extensions to our framework.

To tie up loose ends, we also show that the conditions of the impossibility theorem are
tight. In Section 4, we show through examples that relaxing any of the three assumptions be-
hind our main theorem (agents are infinitely-lived, saving is risk-free, and the discount factor
is constant) can generate Pareto-tailed wealth distributions. In doing so, we draw on exist-
ing literature as it pertains to this topic and also provide a simple, exactly solved model that
features heterogeneous discount factors and a Pareto-tailed wealth distribution.6

1.1 Other literature

Our work provides a logical converse to the findings of the growing literature that relies on
idiosyncratic investment risk (as opposed to earnings risk) to explain the Pareto tail behavior
in the wealth distribution.

As mentioned in the introduction, it has been known at least since Aiyagari (1994) that
canonical Bewley–Huggett–Aiyagari models have difficulty in matching the empirical wealth
distribution. While the vast majority of papers in this literature are numerical, several authors
have theoretically shown that the wealth distribution is bounded under certain assumptions.
Schechtman and Escudero (1977, Theorems 3.8, 3.9) show the boundedness of wealth when
income is independent and identically distributed (i.i.d.) with a bounded support and the
utility function exhibits asymptotically constant relative risk aversion (CRRA). Aiyagari (1993,
Proposition 4) relaxes the assumption on the utility function to bounded relative risk aversion
(BRRA). Huggett (1993) proves the boundedness of wealth when utility is CRRA and income is
a two-state Markov chain with a certain monotonicity property. To prove the existence of a sta-
tionary equilibrium in an Aiyagari economy, building on results in Li and Stachurski (2014) as
we do, Açıkgöz (2018, Proposition 4) proves that wealth is bounded when the income process
is a finite-state Markov chain and the absolute risk aversion coefficient converges to 0 as agents
get richer (which is a weaker condition than BRRA). Achdou, Han, Lasry, Lions, and Moll (2017,
Proposition 3) show a similar result in a continuous-time setting under the BRRA assumption.

5The extra generality means that our results are less sharp in other directions, although not in a way that im-
pinges on our main findings. See the remark on page 6 for more details.

6This theory connects to several applied studies, such as Carroll, Slacalek, Tokuoka, and White (2017) and
McKay (2017), which use numerically solved heterogeneous-agent quantitative models with several agent types
and different discount factors to generate skewed wealth distributions.
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Our contribution relative to this literature is that we do away with the boundedness as-
sumption on income and prove, in a fully micro-founded general equilibrium setting, that
wealth inherits the tail behavior of income, whether it be light-tailed or heavy-tailed. This is a
significant contribution, for showing the boundedness alone does not tell us much about the
tail behavior because any unbounded distributions (with potentially different tail properties)
can be approximated by bounded ones.

The key to proving our main result is to show that under the impatience condition βR < 1,
agents uniformly consume more than the interest income (Proposition 3.2), which implies the
AR(1) upper bound (1.1) as a consequence of individual optimization and equilibrium con-
siderations. This component of our paper is related to Carroll and Kimball (1996) and Jensen
(2018), who prove the concavity of the consumption function when the utility function ex-
hibits hyperbolic absolute risk aversion (HARA). The concavity of consumption implies a lin-
ear lower bound (though not necessarily as tight as c(a) ≥ ma with m > 1 − 1/R), which
we exploit to obtain an AR(1) upper bound on wealth accumulation as in (1.1). In contrast to
these papers, we obtain the linear lower bound on consumption under BRRA, which is a much
weaker condition than HARA.

Finally, our paper is related to Benhabib, Bisin, and Zhu (2015), who show that a Bewley–
Huggett–Aiyagari model with idiosyncratic investment risk can generate a Pareto-tailed wealth
distribution. To obtain their possibility result, they derive a bound on wealth accumulation
similar to (1.1) by assuming that agents have CRRA utility, and that earnings and investment
risks are mutually independent and i.i.d. over time. Our paper is different in that (i) we focus
on the impossibility result in the absence of financial risk, and (ii) we consider a less restric-
tive environment, requiring only bounded (rather than constant) relative risk aversion and
minimal restrictions on nonfinancial income.

2 Tail thickness via moment generating function

In this section we define several notions of tail thickness of random variables using the mo-
ment generating function. To this end, recall that, for a random variable X defined on some
probability space (Ω,F , P), the moment generating function of X is defined at s ∈ R by
MX(s) = E[esX] ∈ (0, ∞]. We define light- and heavy-tailed random variables as follows:

Definition 2.1 (Tail thickness). We say that a random variable X has a light upper tail if MX(s) =
E[esX] < ∞ for some s > 0. Otherwise we say that X has a heavy upper tail.

Remark. One can justify this definition as follows. A random variable X is commonly referred
to as having a heavy (Pareto) upper tail if there exist constants A, α > 0 such that P(X > x) ≥
Ax−α for large enough x, where α is the Pareto exponent. Since for y ≥ 0 we have ey ≥ yn/n!
for any n by considering the Taylor expansion, for any s, x > 0 by Markov’s inequality we
obtain

E[esX] ≥ E[esX1X>x] ≥ E[esx1X>x] = esxP(X > x) ≥
(sx)n

n!
Ax−α.

Taking n > α and letting x → ∞, we obtain E[esX] = ∞.

The following lemma shows that the tail probability of a light-tailed random variable has
an exponential upper bound.

Lemma 2.2. If X is a light-tailed random variable, then

P(X > x) ≤ MX(s)e−sx for all x ∈ R. (2.1)
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Proof. This is immediate from Markov’s inequality, since, for any x, we have

MX(s) = E[esX] ≥ E[esX1X>x] ≥ E[esx1X>x] = esxP(X > x).

The moment generating function MX(s) is convex and MX(0) = 1. Therefore the set
{s ∈ R | MX(s) < ∞} is an interval containing 0, so

λ = sup {s ≥ 0 | MX(s) < ∞} ∈ [0, ∞] (2.2)

is well-defined. Taking the logarithm of (2.1) for s ∈ (0, λ), dividing by x > 0, and letting
x → ∞, we obtain

lim sup
x→∞

1
x

log P(X > x) ≤ −s.

Therefore letting s ↑ λ, it follows that

lim sup
x→∞

1
x

log P(X > x) ≤ −λ. (2.3)

Using the argument in Widder (1941, pp. 42–43, Theorem 2.4a), one can easily show that the
inequality (2.3) is actually an equality, although this fact plays no role in the subsequent discus-
sion. Motivated by (2.3), we call the number λ in (2.2) the exponential decay rate of the random
variable X.

Next we categorize heavy-tailed random variables. Since the logarithm of a Pareto random
variable is exponential, it is convenient to define the tail thickness based on the logarithm.
Let X be a heavy-tailed random variable and X+ = X1X≥0 be its positive part. The moment
generating function of log X+ is

Mlog X+
(s) = E[es log X+ ] = E[Xs

+],

which is a convex function that is finite at s = 0.7 By the same argument as above,

α = sup {s ≥ 0 | E[Xs
+] < ∞} ∈ [0, ∞] (2.4)

is well-defined and we have the property

lim sup
x→∞

log P(X > x)
log x

= −α.

We call α the polynomial decay rate of the random variable X.
So far we have defined the tail thickness of a single random variable X, but as we shall

see below, it is convenient to define similar concepts for a class of random variables. Let T
be some nonempty set and (Xt)t∈T be a collection of random variables defined on a common
probability space (Ω,F , P). Then we say that (Xt)t∈T is uniformly light-tailed if there exists
s > 0 such that

MT (s) := sup
t∈T

E[esXt ] < ∞.

If (Xt)t∈T is uniformly light-tailed, then it immediately follows from Lemma 2.2 that

sup
t∈T

P(Xt > x) ≤ MT (s)e−sx

7By convention, we set 00 = 1. Therefore E[Xs
+] ∈ (0, ∞] is well-defined for s ≥ 0 and E[X0

+] = 1.
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for all x. Therefore the tail probabilities of (Xt)t∈T can be uniformly bounded by an exponential
function. By taking the supremum over such s > 0, we can define the exponential decay
rate λ of (Xt)t∈T . We can similarly define uniformly heavy-tailed random variables and their
polynomial decay rate α in the obvious way.

The following theorem, which is used in the proof of our main result, shows that a stochas-
tic process that has a certain contraction property inherits the tail behavior of the shocks.

Theorem 2.3. Let φ : R+ → R+ be a function such that (i) φ is bounded on any bounded set, and
(ii) ρ := lim supx→∞ φ(x)/x < 1. Let X0 ≥ 0 be some real number and {Xt, Yt}

∞
t=1 be a nonnegative

stochastic process such that
Xt ≤ φ(Xt−1) +Yt (2.5)

for all t ≥ 1. Then the following statements are true.

1. If {Yt}
∞
t=1 has a compact support, then so does {Xt}

∞
t=1.

2. If {Yt}
∞
t=1 is uniformly light-tailed with exponential decay rate λ, then {Xt}

∞
t=1 is uniformly

light-tailed with exponential decay rate λ′ ≥ (1 − ρ)λ.

3. If supt E[Yt] < ∞ and {Yt}
∞
t=1 is uniformly heavy-tailed with polynomial decay rate α, then

{Xt}
∞
t=1 has a polynomial decay rate α′ ≥ α.

Remark. It could be the case that {Yt}
∞
t=1 is heavy-tailed but {Xt}

∞
t=1 is light-tailed. An obvious

example is φ(x) ≡ 0 and Xt ≡ 0, in which case the polynomial decay rate of Xt is α′ = ∞.

Remark. The lower bounds on the tail exponents in Theorem 2.3 are sharp. To see this, sup-
pose that ρ ∈ [0, 1), X0 = 0, Xt = ρXt−1 +Yt, and {Yt}

∞
t=1 is perfectly correlated, so Yt = Y1 for

all t. By iteration, we obtain

Xt = Yt + ρYt−1 + · · ·+ ρt−1Y1 =
1 − ρt

1 − ρ
Y1.

Therefore Xt → X = 1
1−ρY1 as t → ∞ almost surely. Hence if Y1 is exponentially-distributed

with decay rate λ (i.e., Y1 has density f (x) = λe−λx for x ≥ 0), then X is exponentially dis-
tributed with decay rate (1 − ρ)λ. If Y1 is Pareto-distributed with Pareto exponent α and min-
imum size 1 (i.e., Y1 has density f (x) = αx−α−1 for x ≥ 1), then X is Pareto-distributed with
Pareto exponent α and minimum size 1

1−ρ .

Remark. Grey (1994) studies the Kesten (1973) process

Xt = AtXt−1 + Yt (2.6)

when {At, Yt}
∞
t=1 is i.i.d. and shows under some assumptions that Xt and Yt have the same

Pareto exponent (implying the same polynomial decay rate). Ghosh, Hay, Hirpara, Rastegar, Roitershtein, Schulteis, and Suh
(2010) extend this result to the Markovian case. If we set φ(x) = ρx in (2.5) and assume that
Yt is Markovian, then Theorem 2.3(3) can be strengthened by setting At = ρ in (2.6). On
the other hand, Theorem 2.3 allows us to (i) treat the bounded, light-tailed, and heavy-tailed
cases simultaneously using elementary arguments and (ii) handle potential non-stationarity in
{Yt}

∞
t=1.

Remark. Mirek (2011) studies the nonlinear recursion Xt = ψ(Xt−1, θt) when {θt} is i.i.d.
and shows that Xt is heavy-tailed when ψ is asymptotically linear in the sense that M(θ) =

limx→∞ ψ(x, θ)/x exists and |ψ(x, θ)− M(θ)x| ≤ Y(θ) for some Y(θ). Some key assumptions
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are (i) M(θ) > 1 with positive probability (ensuring random growth, see Assumption H5)
and (ii) the “additive” term Y(θ) does not dominate the “multiplicative” term M(θ) (see As-
sumption H7). Since our focus is impossibility of heavier tails without multiplicative risk, the
assumption lim supx→∞ φ(x)/x < 1 in Theorem 2.3 suffices. Benhabib, Bisin, and Zhu (2015)
apply the Mirek (2011) result to show that wealth is heavy-tailed.

3 Wealth accumulation and tail behavior

In this section we show that the wealth accumulation equation satisfies the AR(1) upper bound
(1.1) under the impatience condition βR < 1 and other weak conditions, which allows us to
prove that wealth inherits the tail behavior of income.

We consider the following income fluctuation problem (Schechtman and Escudero, 1977):

maximize E0

∞

∑
t=0

βtu(ct) (3.1a)

subject to at+1 = R(at − ct) + yt+1, (3.1b)

0 ≤ ct ≤ at, (3.1c)

where u : R+ → {−∞} ∪ R is the utility function, β > 0 is the discount factor, R > 0 is
the gross risk-free rate, yt ≥ 0 is income, at is financial wealth at the beginning of period t
including current income, and the initial wealth a0 > 0 is given. The constraint (3.1c) im-
plies that consumption must be nonnegative and the agent cannot borrow. The no borrowing
assumption is without loss of generality as discussed in Chamberlain and Wilson (2000) and
Li and Stachurski (2014).

We impose standard assumptions on the utility function.

Assumption 1. The utility function is twice continuously differentiable on R++ = (0, ∞) and satisfies
u′

> 0, u′′
< 0, u′(0) = ∞, and u′(∞) = 0.8

Regarding the income process, we introduce the following assumption.

Assumption 2. The income process {yt} takes the form yt = y(zt), where {zt} is a Markov process
on some set Z and supz∈Z E [y(zt+1) | zt = z] < ∞.

Assumption 2 is relatively weak because we have not specified the state space Z. The
income process can be very general: for example, it can accommodate nonstationary life-cycle
features. The only important assumption is that income has a (uniformly) finite conditional
mean, which is natural in a stationary general equilibrium environment.9

The reason why we assume that income is a function of a Markov process (not necessarily
that income itself is Markovian) is for generality. For example, in the empirical literature on
earnings dynamics, it is common to assume that income has a persistent-transitory decompo-
sition

log yt = ξt + ηt,

8These assumptions are stronger than necessary. It suffices that u is continuously differentiable on (0, ∞), u′
> 0,

u′ is strictly decreasing, and u′(∞) = 0. In particular, we do not need the twice differentiability and the Inada
condition u′(0) = ∞, although the proof becomes more involved.

9We use the uniform finiteness supz∈Z E [y(zt+1) | zt = z] < ∞ to apply Theorem 2.3(3). Li and Stachurski
(2014) prove the existence of a solution to the income fluctuation problem similar to (3.1) under a weaker finiteness
assumption (see their Assumption 2.4).
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where ξt and ηt are the persistent and transitory components, respectively (Ejrnæs and Browning,
2014). In this case yt = exp(ξt + ηt) is a function of a Markov process zt = (ξt, ηt), but yt itself
may not be Markovian. More generally, Assumption 2 holds if zt = (ξt, ηt), {ξt} follows a
finite-state Markov chain, the distribution of ηt depends only on ξt, and E [y(zt+1) | ξt] < ∞.

Due to strict concavity, the solution to the income fluctuation problem (3.1) is unique, if it
exists. The following proposition shows that a solution exists under the “impatience” condi-
tion βR < 1 and that it can be computed by policy function iteration. This result is essentially
due to Li and Stachurski (2014) (see Appendix B for details).

Proposition 3.1. Suppose Assumptions 1 and 2 hold and βR < 1. Then there exists a unique con-
sumption policy function c(a, z) that solves the income fluctuation problem (3.1). Furthermore, we have
0 < c(a, z) ≤ a, c is increasing in a, and c(a, z) can be computed by policy function iteration.10

Proof. Immediate from Lemmas B.1–B.3 and the Banach fixed point theorem.

To obtain the bound (1.1) for the wealth accumulation process, we assume that the utility
function exhibits asymptotically bounded relative risk aversion (BRRA).11

Assumption 3. The utility function u satisfies lim supx→∞ γ(x) < ∞, where

γ(x) := −
xu′′(x)
u′(x)

> 0 (3.2)

is the local relative risk aversion coefficient.

The widely used constant relative risk aversion (CRRA) utility clearly satisfies Assumption
3. More generally, let u be the hyperbolic absolute risk aversion (HARA) utility, so

−
u′′(x)
u′(x)

=
1

ax + b

for some a, b ∈ R, where x takes values such that ax + b > 0. It is well-known that the general
functional form of HARA utility is

u(x) =















1
a−1(ax + b)1−1/a, (a 6= 0, 1)

−be−x/b, (a = 0, b > 0)

log(x + b), (a = 1)

(3.3)

up to an affine transformation. Since the relative risk aversion of u is

γ(x) = −
xu′′(x)
u′(x)

=
x

ax + b
,

we obtain

lim sup
x→∞

γ(x) =
1
a
< ∞

if a > 0, so Assumption 3 holds. On the other hand, the constant absolute risk aversion (CARA)
utility exhibits relative risk aversion γ(x) = x/b → ∞ as x → ∞, so it violates Assumption 3.

10To be precise, c(a, z) is the limit obtained by iterating the map K : C → C starting from any c0 ∈ C, where C is
the set of candidate policy functions defined in Appendix B and (Kc)(a, z) is the value t ∈ (0, a] that satisfies the
Euler equation (A.5).

11This assumption is stronger than necessary. It suffices to assume condition (A.6), which is slightly weaker
than BRRA (see Lemma A.2). However, we maintain BRRA because it is more intuitive and weak enough for all
practical purposes.
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Remark. Schechtman and Escudero (1977) assume the following “asymptotic exponent” as-
sumption:

∃γ = lim
x→∞

−
log u′(x)

log x
. (3.4)

Under twice continuous differentiability, the condition (3.4) is stronger than BRRA. To see this,
by l’Hôpital’s rule we have

γ = lim
x→∞

−
log u′(x)

log x
= lim

x→∞
−
(log u′(x))′

(log x)′
= lim

x→∞
−

xu′′(x)
u′(x)

= lim
x→∞

γ(x),

so (3.4) implies that u is asymptotically CRRA (in particular, BRRA). Aiyagari (1993, Proposi-
tion 4) and Achdou, Han, Lasry, Lions, and Moll (2017, Proposition 3) assume that u is BRRA.
On the other hand, BRRA is stronger than the assumption used in Rabault (2002), which is that
the absolute risk aversion coefficient approaches 0:

lim
x→∞

−
u′′(x)
u′(x)

= 0. (3.5)

In fact, if u is BRRA, then

lim
x→∞

−
u′′(x)
u′(x)

= lim
x→∞

γ(x)
x

= 0

so (3.5) holds, but the converse is not true. (As a counterexample, take u such that −u′′(x)/u′(x) =
x−ν for some ν ∈ (0, 1).)

The following proposition shows that under the impatience condition βR < 1, agents uni-
formly consume more than the interest income, which is related to the permanent income
hypothesis.12 We use this result to bound the wealth accumulation process from above.

Proposition 3.2. Suppose Assumptions 1–3 hold and 1 ≤ R < 1/β. Let

γ̄ = lim sup
x→∞

−
xu′′(x)
u′(x)

∈ [0, ∞)

be the asymptotic relative risk aversion coefficient and c(a, z) be the optimal consumption rule for the in-
come fluctuation problem established in Proposition 3.1. Then for all m ∈ (1− 1/R, 1 − β1/γ̄R1/γ̄−1),
there exists an asset level A ≥ 0 such that, for all a ≥ A and z ∈ Z, we have

c(a, z) ≥ ma. (3.6)

The reason we need Assumption 3 is because we are working with arbitrary (potentially
unbounded) income processes. Under Assumption 1, βR < 1, and (3.5), Rabault (2002, Lemma
C.1) shows that the next period’s wealth in the consumption-saving problem becomes in-
finitely smaller than the current wealth a as a → ∞, which implies that a is bounded. Açıkgöz
(2018, Proposition 2) proves a similar result by relaxing the limit in (3.5) to lim inf. Although
such arguments are enough for obtaining an upper bound for wealth when income is bounded,
for the unbounded case we need m > 1− 1/R, for which a stronger assumption such as BRRA
is necessary. Proposition 3.2 not only tells us that we can take some such number m, but it also
gives an explicit choice: any number m ∈ (1− 1/R, 1− β1/γ̄R1/γ̄−1) will do, where the bounds
depend only on the discount factor β, the gross risk-free rate R, and the asymptotic relative
risk aversion coefficient γ̄.

12Interestingly, Wang (2003) and Toda (2017) show that the permanent income hypothesis holds in general equi-
librium when the utility function is CARA, which is ruled out by Assumption 3.
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Using Proposition 3.2, we can show that the wealth dynamics arising from the income fluc-
tuation problem has the contraction property shown in (1.1) under the impatience condition
βR < 1.

Proposition 3.3. Suppose Assumptions 1–3 hold and βR < 1. Let {at} be the wealth arising from
the solution to the income fluctuation problem (3.1). Then the contraction property (1.1) holds for
sufficiently high wealth level, and consequently the following statements are true:

1. If {yt} is uniformly light-tailed, then so is {at}.

2. If {yt} is uniformly heavy-tailed with polynomial decay rate α, then {at} has polynomial decay
rate α′ ≥ α.

Furthermore, the coefficient ρ ∈ (0, 1) in (1.1) can be chosen as follows:

• If R < 1, then ρ = R.

• If R ≥ 1, then ρ is any number in ((βR)1/γ̄, 1), where γ̄ is the asymptotic relative risk aversion
coefficient defined in Proposition 3.2.

Proof. If R < 1, by the budget constraint (3.1b) we obtain

at+1 ≤ Rat + yt+1 = ρat + yt+1, (3.7)

where ρ = R < 1. Hence (1.1) holds. If 1 ≤ R < 1/β, by the budget constraint and Proposition
3.2, we can take any m ∈ (1 − 1/R, 1 − β1/γ̄R1/γ̄−1) and some A ≥ 0 such that

at+1 ≤ R(at − mat) + yt+1 = ρat + yt+1 (3.8)

for ρ = R(1 − m) ∈ ((βR)1/γ̄, 1) whenever at ≥ A. Once again, the bound in (1.1) holds.
By (3.7) and (3.8), letting φ(x) = max {ρx, RA}, we obtain

at+1 ≤ φ(at) + yt+1.

Therefore the claims follow from Theorem 2.3.

The intuition for this result is as follows. Under the impatience condition βR < 1, by
Proposition 3.2, agents uniformly consume more than the interest income at high wealth level.
Since agents draw down their assets, wealth behaves similarly to income.

We now apply Proposition 3.3 to show that in canonical heterogeneous-agent models, the
wealth distribution cannot have a heavier tail than income, which is our main result. We
formally define a Bewley–Huggett–Aiyagari model as follows.

Definition 3.4. A Bewley–Huggett–Aiyagari model is any dynamic general equilibrium model
such that ex ante identical, infinitely-lived agents solve an income fluctuation problem (3.1).

Remark. By requiring that the gross risk-free rate R is constant over time in (3.1b), we are
excluding models with aggregate shocks. Thus, we are focusing on a stationary environment at
the aggregate level, although the individual income processes may be nonstationary according
to Assumption 2. We conjecture that our results extend to models with aggregate risk, although
it is beyond the scope of this paper.

While the preceding argument assumes the impatience condition βR < 1, in general equi-
librium models this condition is necessarily satisfied. To prove this impatience condition, we
introduce an additional assumption on the income process.
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Assumption 4. Let {yt}
∞
t=0 be the income process. There is an ǫ > 0 such that for any x ∈ R, we

have

Pr

(

x ≤
∞

∑
s=0

βsyt+s ≤ x + ǫ | zt

)

< 1 − ǫ (3.9)

for all t ≥ 0 and history zt = (z0, . . . , zt).

Assumption 4 is identical to condition (Uγ) in Chamberlain and Wilson (2000). Note that
because yt ≥ 0 by assumption, the discounted sum of future income ∑

∞
s=0 βsyt+s exists in

[0, ∞]. Condition (3.9) says that the conditional distribution of this discounted sum is not
concentrated on a small enough interval. This condition is relatively weak and it roughly says
that the discounted sum of income is stochastic. It holds, for example, if income is stationary
and stochastic (nondeterministic).

Theorem 3.5 (Impossibility of heavy/heavier tails). Consider a Bewley–Huggett–Aiyagari model
such that Assumptions 1–3 hold. Suppose that an equilibrium with a wealth distribution with a finite
mean exists and let R > 0 be the equilibrium gross risk-free rate. If R 6= 1/β, then the following
statements are true:

1. If the income process is light-tailed, then so is the wealth distribution.

2. If the income process is heavy-tailed with polynomial decay rate α, then the wealth distribution
has a polynomial decay rate α′ ≥ α.

If in addition Assumption 4 holds, the condition R 6= 1/β can be dropped.

Remark. Although we present Theorem 3.5 as if the economy consists of ex ante identical
agents, the result trivially generalizes to models with multiple agent types with heterogeneous
preferences and income processes as long as each type satisfies the assumptions (in particular,
the infinite horizon setting).

The proof is an immediate consequence of Proposition 3.3 combined with the convergence
results in Chamberlain and Wilson (2000). Theorem 3.5 is valuable since it places few assump-
tions. The only important assumption is that an equilibrium exists, which gives us the impa-
tience condition βR < 1 to apply Proposition 3.3. This assumption is minimal, for it is vacuous
to study the wealth distribution unless an equilibrium exists. Regarding the income shocks,
persistence and/or stationarity are irrelevant.

Theorem 3.5 has two important implications on the wealth distribution. (i) It is impossi-
ble to generate heavy-tailed wealth distributions from light-tailed income shocks. (ii) If the
income shock has a Pareto tail with exponent α, the wealth distribution can have a Pareto tail,
but its tail exponent α′ can never fall below that of income shocks. Noting that smaller tail
exponent means heavier tail, it follows that the wealth distribution cannot have a heavier tail
than income.

Below, we discuss several applications of Theorem 3.5.

Example 1. Aiyagari (1994) uses the CRRA utility and a finite-state Markov chain for income.
Hence by Theorem 3.5, the wealth distribution is light-tailed. (In fact, it is bounded by applying
Theorem 2.3(1).13)

13The boundedness result for the case with finite-state Markov chain is already known from Aiyagari (1993,
Proposition 4) and Açıkgöz (2018, Proposition 4). The case when the income process is unbounded but light-tailed
is new.
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Example 2. In Quadrini (2000), even though there is idiosyncratic investment risk (stochastic
returns), agents are restricted to only three levels of investment {k1, k2, k3} (see p. 25). There-
fore the only investment vehicle that allows for unbounded investment is the risk-free asset,
and the budget constraint reduces to one with stochastic income only. Since utility is CRRA,
the wealth distribution is light-tailed.

Example 3. In Castañeda, Díaz-Giménez, and Ríos-Rull (2003), the utility function is addi-
tively separable between consumption and leisure and the consumption part is CRRA. Since
shocks follow a finite-state Markov chain, the wealth distribution is light-tailed.

Example 4. The budget constraint in Cagetti and De Nardi (2006) is

a′ = (1 − δ)k + θkν − (1 + r)(k − a)− c,

where a is risk-free asset and k is capital (see their Equation (4) on p. 846). Here ν ∈ (0, 1) is
a parameter, r is the net interest rate, δ ∈ (0, 1) is capital depreciation rate, and θ is a random
variable for productivity that has bounded support. Although there is some restriction on k, by
ignoring the constraint and maximizing, we can bound the right-hand side by (1+ r)a+Y − c,
where Y is some random variable with bounded support. Since utility is CRRA, the wealth
distribution is light-tailed.

4 Possibility results

Our Theorem 3.5 states that in canonical Bewley–Huggett–Aiyagari models in which (i) agents
are infinitely-lived, (ii) agents have constant discount factors, and (iii) the only financial asset is
risk-free, the wealth distribution necessarily inherits the tail property of income. Thus, it is nec-
essary to go beyond standard models to explain the empirical fact that wealth is heavier-tailed
than income. A natural question is whether relaxing any of these assumptions can generate
heavy-tailed wealth distributions from light-tailed income shocks. The answer is yes.

First, consider relaxing condition (iii) (saving is risk-free). In this case the return to in-
vestment is stochastic, and it is well-known that the wealth distribution can be heavy-tailed.
(See, for example, Nirei and Souma (2007), Benhabib, Bisin, and Zhu (2011, 2015), Toda (2014),
Cao and Luo (2017), and the references in Benhabib and Bisin (2018).) Next, consider relaxing
condition (ii) (constant discounting). Krusell and Smith (1998) have numerically shown that
when agents have random discount factors (i.e., they are more patient in some states than in
others), the wealth distribution can be more skewed than the income distribution. Recently,
Toda (2018) has theoretically proved that the wealth distribution can have a Pareto tail un-
der random discounting even if there is no income risk, although the numerical value of the
Pareto exponent is highly sensitive to the calibration of the discount factor process. Finally,
consider relaxing condition (i) (infinite horizon). Carroll, Slacalek, Tokuoka, and White (2017)
and McKay (2017) numerically solve heterogeneous-agent quantitative models with several
agent types with different discount factors to generate skewed wealth distributions.14 Below,
we provide a simplified version of such heterogeneous discount factor models and theoreti-
cally show that its wealth distribution is Pareto-tailed.15

14To our knowledge, Samwick (1998) is the first paper that uses a model with constant but heterogeneous dis-
count factors to explain the wealth distribution.

15This example is essentially just a discrete-time, micro-founded, general equilibrium version of
Wold and Whittle (1957), so there is nothing surprising in the results. Nevertheless, we think that it has a pedagogi-
cal value since Carroll, Slacalek, Tokuoka, and White (2017) and McKay (2017) do not theoretically characterize the
wealth distribution and the assumptions in Wold and Whittle (1957) are endogenously satisfied in equilibrium.
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Consider an infinite-horizon endowment economy consisting of several agent types in-
dexed by j = 1, . . . , J. Let πj ∈ (0, 1) be the fraction of type j agents, where ∑

J
j=1 πj = 1. Type

j agents are born and die with probability pj ∈ (0, 1) every period, are endowed with constant
endowment yj > 0 every period, and have CRRA utility

E0

∞

∑
t=0

β̃t
j

c
1−γj
t

1 − γj
, (4.1)

where β̃ j = β j(1 − pj) is the effective discount factor (β j ∈ (0, 1) is the discount factor) and
γj > 0 is the relative risk aversion coefficient. There is a risk-free asset in zero net supply,
and let R > 0 be the gross risk-free rate determined in equilibrium. We assume that there is
a perfectly competitive annuity market and let R̃j =

R
1−pj

be the effective gross risk-free rate
faced by type j agents. We can show that a type j agent maximizes utility (4.1) subject to the
budget constraint

wt+1 = R̃j(wt − ct), (4.2)

where wt > 0 is wealth (financial wealth plus the annuity value of future income; see Toda
(2018) for a rigorous discussion). A stationary equilibrium consists of a gross risk-free rate
R > 0, optimal consumption rules, and wealth distributions such that (i) agents optimize,
(ii) the commodity and risk-free asset markets clear, and (iii) the wealth distributions are invari-
ant. The following theorem shows that a stationary equilibrium always exists and the wealth
distribution exhibits a Pareto tail if and only if discount factors are heterogeneous across agent
types.

Theorem 4.1. A stationary equilibrium exists. Letting R > 0 be the equilibrium gross risk-free rate,
the following statements are true.

1. If
{

β j
} J

j=1 take at least two distinct values, then β jR > 1 for at least one j and the stationary
wealth distribution has a Pareto upper tail with exponent

α = min
j:β jR>1

[

−γj
log(1 − pj)

log(β jR)

]

> 1. (4.3)

2. If β1 = · · · = β J = β, then R = 1/β and the wealth distribution of each type is degenerate.

Theorem 4.1 shows that neither idiosyncratic investment risk nor random discounting are
necessary for Pareto tails. Random birth/death is sufficient, although discount factor hetero-
geneity is necessary in this case.

5 Concluding remarks

In this paper we rigorously prove under weak conditions that, in canonical Bewley–Huggett–
Aiyagari models in which (i) agents are infinitely-lived, (ii) saving is risk-free, and (iii) agents
have constant discount factors, the wealth distribution always inherits the tail behavior of
income shocks. The key intuition is that (i) equilibrium considerations (market clearing) com-
bined with the convergence results in Chamberlain and Wilson (2000) require the “impatience”
condition βR < 1, but (ii) under this condition agents draw down their assets (Proposition 3.2)
and income shocks die out in the long run (Theorem 2.3).

The impossibility of heavier-tailed wealth distributions in canonical models comes from
the fact that individual wealth shrinks with probability 1 as in (1.1). The literature has long
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considered mechanisms to break the tight link between income and wealth, including random
birth/death (Wold and Whittle, 1957), random discount factors (Krusell and Smith, 1998), and
idiosyncratic investment risk (Benhabib, Bisin, and Zhu, 2011). In all of these cases, individual
wealth can grow with positive probability, which essentially makes the wealth accumulation
a random growth model (which is known to generate Pareto tails). Which mechanism is more
important is an empirical question.

A Proofs

A.1 Proof of Theorem 2.3

We first show that we may assume φ(x) = ρx without loss of generality. To this end, take ρ′ ∈

(ρ, 1). By assumption, ρ = lim supx→∞ φ(x)/x < 1, so we can choose x̄ such that φ(x) ≤ ρ′x
for x ≥ x̄. Since φ is bounded on bounded sets, we can choose M ≥ 0 such that φ(x) ≤ M
for x ∈ [0, x̄]. Therefore φ(x) ≤ max {M, ρ′x} ≤ ρ′x + M for any x ≥ 0, so (2.5) implies Xt ≤

φ(Xt−1) +Yt ≤ ρ′Xt−1 + M +Yt. If we define Y′
t = Yt + M, then (2.5) holds for φ(x) = ρ′x and

Yt = Y′
t . Since adding a constant M to Yt does not change its tail behavior (e.g., boundedness,

exponential decay rate, polynomial decay rate), setting φ(x) = ρx in (2.5) costs no generality.
Iterating on (2.5) with φ(x) = ρx yields

Xt ≤ Yt + ρYt−1 + · · ·+ ρt−1Y1 + ρtX0. (A.1)

Case 1: {Yt}
∞

t=1 has a compact support. Take Y ≥ 0 such that Yt ∈ [0, Y] for all t. Then it
follows from (A.1) that

Xt ≤ (1 + ρ + · · ·+ ρt−1)Y + ρtX0 =
1 − ρt

1 − ρ
Y + ρtX0 ≤

1
1 − ρ

Y + X0,

so {Xt}
∞
t=1 is bounded.

Case 2: {Yt}
∞

t=1 is uniformly light-tailed. Let λ > 0 be the exponential decay rate. By defini-
tion, for any s ∈ [0, λ), we have

f (s) := sup
t

E[esYt ] < ∞. (A.2)

In general, for any random variables Z1, Z2 and θ ∈ (0, 1), by Hölder’s inequality we have

M(1−θ)Z1+θZ2
(s) = E[es((1−θ)Z1+θZ2)] = E

[

(

esZ1

)1−θ (

esZ2

)θ
]

≤ E[esZ1 ]1−θE[esZ2 ]θ = MZ1(s)
1−θ MZ2(s)

θ .

Multiplying both sides of (A.1) by 1 − ρ > 0, we get

(1 − ρ)Xt ≤
t

∑
k=0

θkYk, (A.3)

where Y0 ≡ (1 − ρ)X0, θ0 = ρt, and θk = (1 − ρ)ρt−k for k ≥ 1. Noting that θk ≥ 0 for all k and

∑
t
k=0 θk = 1, multiplying (A.3) by s > 0, taking the exponential, taking the expectation, and

applying Hölder’s inequality, it follows that

E[e(1−ρ)sXt] ≤
t

∏
k=0

E[esYk ]θk

= e(1−ρ)ρtsX0
t

∏
k=1

E[esYk ]θk ≤ e(1−ρ)ρtsX0 f (s)1−ρt
,
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where f (s) is as in (A.2). Redefining (1 − ρ)s as s and noting that 0 < ρt
< 1 and X0 ≥ 0, we

obtain

E[esXt ] ≤ esX0 max
{

1, f
(

s
1 − ρ

)}

.

By the definition of the exponential decay rate λ > 0, the right-hand side is finite if s
1−ρ <

λ ⇐⇒ s < (1 − ρ)λ. Therefore by definition {Xt}
∞
t=1 is uniformly light-tailed, and the

exponential decay rate satisfies λ′ ≥ (1 − ρ)λ.

Case 3: {Yt}
∞

t=1 is uniformly integrable and heavy-tailed. Since by assumption supt E[Y1
t ] =

supt E[Yt] < ∞, the polynomial decay rate satisfies α ≥ 1. Let s ∈ [1, α]. Applying Minkowski’s
inequality to both sides of (2.5) yields E[Xs

t ]
1/s ≤ ρE[Xs

t−1]
1/s + E[Ys

t ]
1/s. Letting f (s) =

supt E[Ys
t ] and iterating, we get

E[Xs
t ]

1/s ≤
1 − ρt

1 − ρ
f (s)1/s + ρtX0 ≤

1
1 − ρ

f (s)1/s + X0.

Therefore

E[Xs
t ] ≤

(

1
1 − ρ

f (s)1/s + X0

)s

.

Since the right-hand side does not depend on t and f (s) < ∞ for s = 1 and s < α by definition,
it follows that the polynomial decay rate of {Xt}

∞
t=1 satisfies α′ ≥ α ≥ 1.

A.2 Proof of Proposition 3.2

To prove Proposition 3.2, we first use the fact that the optimal consumption rule in the original
problem can be bounded below by that with zero income.

Lemma A.1. Suppose Assumptions 1 and 2 hold and βR < 1. Given asset a > 0 and state z,
let c(a, z), c0(a) be the optimal consumption rules for the income fluctuation problem (3.1) with and
without income (which are established in Proposition 3.1). Then c(a, z) ≥ c0(a).

Proof. If an optimal consumption rule exists, by considering whether the no borrowing con-
straint c ≤ a binds or not, it must satisfy the Euler equation

u′(c(a, z)) = max
{

βRE
[

u′(c(R(a − c(a, z)) + y′, z′)) | z
]

, u′(a)
}

. (A.4)

We use policy function iteration as discussed in Appendix B to characterize properties of
c(a, z).

Given a candidate policy function c(a, z), define the policy function (Coleman) operator
(Kc)(a, z) as the unique value 0 < t ≤ a that solves the equation

u′(t) = max
{

βRE
[

u′(c(R(a − t) + y′, z′)) | z
]

, u′(a)
}

. (A.5)

Lemma B.2 shows that K is a well-defined monotone self map. Proposition 3.1 shows that K
has a unique fixed point and Knc converges to this fixed point as n → ∞. Because the optimal
consumption policy is a fixed point of K, which is unique, it suffices to show Kc0(a) ≥ c0(a),
for if that is the case we obtain c0(a) ≤ (Knc0)(a) → c(a, z).

Let t = (Kc0)(a) solve (A.5) for c(a, z) = c0(a). To show t ≥ c0(a), suppose on the contrary
that t < c0(a). Since by Proposition 3.1 c0(a) is increasing in a, y′ ≥ 0, and t < c0(a), we have

c0(R(a − t) + y′) ≥ c0(R(a − c0(a))).
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Since u′ is strictly decreasing and c0(a) satisfies (A.4) for y′ ≡ 0, we obtain

u′(t) > u′(c0(a)) = max
{

βRE
[

u′(c0(R(a − c0(a)))) | z
]

, u′(a)
}

≥ max
{

βRE
[

u′(c0(R(a − t) + y′)) | z
]

, u′(a)
}

= u′(t),

which is a contradiction. Therefore (Kc0)(a) = t ≥ c0(a).

Next, we derive a useful implication of BRRA. Consider the following condition:

For any constant κ ∈ (0, 1), we have lim inf
x→∞

(u′)−1(κu′(x))
x

> 1. (A.6)

Condition (A.6) is relatively weak. To see this, since u′
> 0, κ ∈ (0, 1), and u′′

< 0 (hence u′

and (u′)−1 are decreasing), we always have

(u′)−1(κu′(x))
x

>
(u′)−1(u′(x))

x
= 1.

Condition (A.6) adds a degree of uniformity to this bound at infinity. The following lemma
shows that bounded relative risk aversion (BRRA, Assumption 3) is sufficient for condition
(A.6) to hold, and almost necessary.

Lemma A.2. Let γ(x) = −xu′′(x)/u′(x) be the local relative risk aversion coefficient. Then the
following statements are true.

1. If lim supx→∞ γ(x) < ∞, then condition (A.6) holds.

2. If limx→∞ γ(x) = ∞, then condition (A.6) fails.

Proof. Take any κ ∈ (0, 1). For any x > 0, define y = (u′)−1(κu′(x)). By definition, u′(y)/u′(x) =
κ ∈ (0, 1). Since u′′

< 0, we have y > x. By the Fundamental Theorem of Calculus and (3.2),
we obtain

− log κ = log u′(x)− log u′(y) = −
∫ y/x

1

∂

∂s
log u′(xs)ds

= −
∫ y/x

1

xu′′(xs)
u′(xs)

ds =
∫ y/x

1

γ(xs)
s

ds. (A.7)

1. If lim supx→∞ γ(x) < ∞, then there exists M < ∞ such that γ(x) ≤ M for large enough
x. Then (A.7) implies

− log κ ≤
∫ y/x

1

M
s

ds = M log
y
x

⇐⇒
y
x
≥ κ−1/M.

Since this inequality holds for large enough x and y = (u′)−1(κu′(x)), we obtain

lim inf
x→∞

(u′)−1(κu′(x))
x

≥ κ−1/M
> 1, (A.8)

which is (A.6).

2. If limx→∞ γ(x) = ∞, take any M > 0 and choose x̄ > 0 such that γ(x) ≥ M for all x ≥ x̄.
Then for x ≥ x̄, by (A.7) we obtain

− log κ ≥
∫ y/x

1

M
s

ds = M log
y
x

⇐⇒
y
x
≤ κ−1/M.
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Since this inequality holds for large enough x and y = (u′)−1(κu′(x)), we obtain

lim inf
x→∞

(u′)−1(κu′(x))
x

≤ κ−1/M → 1

as M → ∞, so (A.6) fails.

We now use condition (A.6) to prove Proposition 3.2.

Proof of Proposition 3.2. Let K be the policy function operator defined in (A.5) associated
with the zero income model, so for a consumption policy c = c(a), the number t = (Kc)(a)
solves

u′(t) = max
{

βRu′(c(R(a − t))), u′(a)
}

. (A.9)

Fix some m ∈ (1 − 1/R, 1), A > 0, and consider the candidate policy

c(a) =

{

ǫc0(a), (0 < a < A)

ma, (a ≥ A)
(A.10)

where ǫ ∈ (0, 1) is a number such that ǫc0(A) ≤ mA. Clearly c(a) in (A.10) is increasing and
satisfies 0 < c(a) ≤ a. If we can show (Kc)(a) ≥ c(a) for all a, then by Proposition 3.1 and
Lemma A.1, we obtain

c(a) ≤ (Knc)(a) → c0(a) ≤ c(a, z),

which implies (3.6) for a ≥ A.

Step 1. Let γ̄ = lim supx→∞ −xu′′(x)/u′(x) < ∞ be the asymptotic relative risk aversion coefficient
and define m̄ by (βR)1/γ̄ = R(1 − m̄). Then m̄ ∈ (1 − 1/R, 1]. Furthermore, for any m ∈ (1 −

1/R, m̄), we have

lim inf
x→∞

(u′)−1(βRu(x))
x

>
1

R(1 − m)
. (A.11)

Since by assumption βR < 1 and γ̄ ∈ [0, ∞), we have (βR)1/γ̄ ∈ [0, 1). Since (βR)1/γ̄ =

R(1 − m̄) and R ≥ 1 by assumption, we have m̄ ∈ (1 − 1/R, 1]. Take any m ∈ (1 − 1/R, m̄).
Then (βR)1/γ̄ = R(1 − m̄) < R(1 − m). Since βR < 1, we can take sufficiently small M > γ̄

such that (βR)1/M
< R(1 − m). Letting κ = βR < 1 in (A.8), we obtain (A.11).

Step 2. The following statement is true:

(∀m ∈ (1 − 1/R, m̄))(∃A > 0)(∀a ≥ A)(t = (Kc)(a) ≥ ma). (A.12)

In seeking a contradiction, suppose

(∃m ∈ (1 − 1/R, m̄))(∀A > 0)(∃a ≥ A)(t = (Kc)(a) < ma). (A.13)

If βRu′(c(R(a − t))) < u′(a), by (A.9) we have u′(t) = u′(a) ⇐⇒ t = a ≥ ma, which
contradicts (A.13). Therefore βRu′(c(R(a − t))) ≥ u′(a). Noting that we are considering the
candidate policy (A.10), it follows from (A.9) that

g(t) := u′(t)− βRu′(mR(a − t)) = 0.

Since g′(t) = u′′(t) + βmR2u′′(mR(a − t)) < 0, g is strictly decreasing. Since t < ma by (A.13),
we obtain

0 = g(t) > g(ma) = u′(ma)− βRu′(mR(1 − m)a)

=⇒
(u′)−1(βRu′(mR(1 − m)a))

mR(1 − m)a
<

1
R(1 − m)

.

17



By (A.13), a > 0 can be taken arbitrarily large. Therefore letting a → ∞ and x = mR(1 − m)a,
we obtain

lim inf
x→∞

(u′)−1(βRu′(x))
x

≤
1

R(1 − m)
,

which contradicts (A.11). Therefore (A.12) holds.

Step 3. The bound (3.6) holds.

Take any m ∈ (1 − 1/R, m̄) and A > 0 such that (A.12) holds. Take ǫ ∈ (0, 1) such that
ǫc0(A) ≤ mA and define c(a) as in (A.10). By (A.12), we have (Kc)(a) ≥ ma = c(a) for
a ≥ A. Therefore it remains to show (Kc)(a) ≥ c(a) for a < A. Suppose on the contrary that
(Kc)(a) < c(a) for some a < A. Since c(a) = ǫc0(a) and ǫ ∈ (0, 1), we have (Kc)(a) < c0(a).
Applying K and using monotonicity and Proposition 3.1, it follows that

c0(a) > (Kc)(a) ≥ (Knc)(a) → c0(a),

which is a contradiction. Therefore (Kc)(a) ≥ c(a). The rest of the proof follows from the
discussion at the beginning of the proof.

A.3 Proof of Theorem 3.5

First let us show βR ≤ 1. By considering whether the borrowing constraint binds or not, the
Euler equation becomes

u′(ct) = max
{

βREt[u′(ct+1)], u′(at)
}

.

Therefore u′(ct) ≥ βREt[u′(ct+1)]. Multiplying both sides by (βR)t
> 0 and letting Mt =

(βR)tu′(ct) > 0, we obtain Mt ≥ Et[Mt+1]. Since M0 = u′(c0) < ∞, the process {Mt}
∞
t=0

is a supermartingale. By the Martingale Convergence Theorem (Pollard, 2002, p. 148), there
exists an integrable random variable M ≥ 0 such that limt→∞ Mt = M almost surely. Since
E[M] < ∞, we have M < ∞ (a.s.). If βR > 1, then

u′(ct) = (βR)−t Mt → 0 · M = 0 (a.s.),

so ct → ∞ (a.s.) because u′
> 0 and u′(∞) = 0. (This argument is exactly the same as Theorem 2

of Chamberlain and Wilson (2000).) Since this is true for any agent, the aggregate consumption
diverges to infinity, which is impossible in a model with a wealth distribution with a finite
mean. Therefore βR ≤ 1.

If R 6= 1/β, then βR < 1, so the conclusion follows from Proposition 3.3.
Finally, suppose Assumption 4 holds. If βR = 1, then by Chamberlain and Wilson (2000,

Theorem 4) we have ct → ∞ (a.s.), which is a contradiction.

A.4 Proof of Theorem 4.1

Since the proof is similar to Toda (2018, Theorems 3, 4), we only provide a sketch.
It is well-known that the optimal consumption rule for maximizing the CRRA utility (4.1)

subject to the budget constraint (4.2) is

c =
(

1 − β̃
1/γj

j R̃
1/γj−1
j

)

w.
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(See Levhari and Srinivasan (1969), Samuelson (1969), or more generally, Toda (2014, 2018) for
the solution in a Markovian environment.) Then the law of motion for wealth becomes

wt+1 =
(

β̃ jR̃j
)1/γj wt = (β jR)1/γj wt. (A.14)

Let Wj be the average wealth of type j agents. Since agents are born and die with probability
pj, by accounting we obtain

Wj = (1 − pj)(β jR)1/γjWj + pjwj0, (A.15)

where

wj0 =
∞

∑
t=0

R̃−t
j yj =

R̃j

R̃j − 1
yj (A.16)

is the initial wealth (present discounted value of future income) of type j agents. Assuming
(1 − pj)(β jR)1/γj < 1, we can solve (A.15) to obtain

Wj =
pjwj0

1 − (1 − pj)(β jR)1/γj
. (A.17)

Combining (A.16) and (A.17), the market clearing condition becomes

0 =
J

∑
j=1

πj(Wj − wj0) =
J

∑
j=1

Rπjyj

(

(β jR)1/γj − 1
)

(

R
1−pj

− 1
) (

1 − (1 − pj)(β jR)1/γj

) . (A.18)

Let f (R) be the right-hand side of (A.18) and R̄ = minj[β j(1 − pj)
γj ]−1, which is greater than 1

since β j, pj ∈ (0, 1) and γj > 0. Since

R
1 − pj

> 1, (1 − pj)(β jR)1/γj < 1

on R ∈ [1, R̄), the function f (R) is well-defined in this range and the denominators are positive.
Since β j < 1, we have f (1) < 0. Since (β jR)1/γj → 1

1−pj
> 1 as R ↑ R̄ for j that achieves the

minimum in the definition of R̄, we have f (R) ↑ ∞ as R ↑ R̄. Clearly f is continuous on [1, R̄).
Therefore there exists R ∈ (1, R̄) such that f (R) = 0, so an equilibrium exists.

To show the implications for the wealth distribution, first consider the case β1 = · · · =

β J = β. Then

f (R) =
J

∑
j=1

Rπjyj

(

(βR)1/γj − 1
)

(

R
1−pj

− 1
) (

1 − (1 − pj)(βR)1/γj

) .

Since the denominators are positive on [1, R̄) and the sign of the numerators depends only
on the magnitude of βR relative to 1, we have f (R) ≷ 0 according as R ≷ 1/β. Therefore
the unique equilibrium gross risk-free rate is R = 1/β. Then the dynamics of wealth (A.14)
becomes wt+1 = wt, so individual wealth is constant over time and the wealth distribution of
each type is degenerate.

Finally, suppose
{

β j
}J

j=1 take at least two distinct values. Let Gj = (β jR)1/γj be the gross
growth rate of wealth in (A.14). Since the numerator in (A.18) has the same sign as Gj − 1 and

Gj ≷ 1 according as β j ≷ 1/R, the fact that f (R) = 0 and
{

β j
}J

j=1 are not all equal implies that
there is some j with Gj > 1 and others with Gj < 1.

An agent type with Gj ≤ 1 does not affect the upper tail of the wealth distribution since
the wealth does not grow. Consider any type j with Gj > 1. Because type j agents die with
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probability pj every period, the probability that an agent survives at least n periods is (1− pj)
n.

Then wealth is at least Gn
j wj0. Therefore we have

Pr(w ≥ Gn
j wj0) = (1 − pj)

n,

so letting x = Gn
j wj0, we obtain Pr(w ≥ x) = (x/wj0)

−αj for

αj = −
log(1 − pj)

log Gj
= −γj

log(1 − pj)

log(β jR)
> 0.

Therefore the wealth distribution of type j has a Pareto upper tail with exponent αj. Noting
that (1− pj)(β jR)1/γj < 1 and β jR > 1, taking the logarithm we obtain αj > 1. Since the Pareto
exponent of the entire cross-sectional distribution is the smallest exponent among all types, we
obtain (4.3).

B Policy iteration in income fluctuation problem

In this appendix we adopt the arguments in Li and Stachurski (2014) to characterize the so-
lution to the income fluctuation problem by policy function iteration.16 Throughout this ap-
pendix, we maintain Assumptions 1 and 2 but not Assumption 3.

Let S = R++ × Z be the state space, where Z is as in Assumption 2. To identify a solution,
let C be the set of functions c : S → R such that c(a, z) is increasing in a, 0 < c(a, z) ≤ a, and
‖u′ ◦ c − φ‖ < ∞ (sup norm), where φ(a, z) ≡ u′(a). The set C identifies a set of candidate
consumption functions. For c, d ∈ C, define the distance

ρ(c, d) =
∥

∥u′ ◦ c − u′ ◦ d
∥

∥ .

Lemma B.1. (C, ρ) is a complete metric space.

Proof. Take any c, d, e ∈ C. Clearly ρ(c, d) ≥ 0, ρ(c, d) = ρ(d, c), and

ρ(c, d) = 0 ⇐⇒ (∀a, z)u′(c(a, z)) = u′(d(a, z)) ⇐⇒ c = d.

Furthermore, by the triangle inequality for the sup norm, we have

ρ(c, d) =
∥

∥u′ ◦ c − u′ ◦ d
∥

∥ ≤
∥

∥u′ ◦ c − φ
∥

∥+
∥

∥u′ ◦ c − φ
∥

∥ < ∞

and

ρ(c, d) =
∥

∥u′ ◦ c − u′ ◦ d
∥

∥ ≤
∥

∥u′ ◦ c − u′ ◦ e
∥

∥+
∥

∥u′ ◦ e − u′ ◦ d
∥

∥ = ρ(c, e) + ρ(e, d).

Therefore (C, ρ) is a metric space.
To show completeness, suppose {cn} is a Cauchy sequence in (C, ρ). Then {u′(cn(a, z))} is

a Cauchy sequence in R, so it has a limit µ. Since cn(a, z) ≤ a and u′ is strictly decreasing, we
have u′(cn(a, z)) ≥ u′(a) and hence µ ≥ u′(a). Since u′ is continuous, strictly decreasing, and
µ < ∞, there exists a unique c(a, z) ∈ (0, a] such that u′(c(a, z)) = µ. Since u′ is continuous, we
have cn(a, z) → c(a, z) pointwise. Since cn(a, z) is increasing in a, so is c(a, z). Therefore (C, ρ)

is complete.

16Our discussion is slightly different from Li and Stachurski (2014) due to the timing convention. In
Li and Stachurski (2014), a is savings (end-of-period asset holdings) and the budget constraint is c + a′ = Ra + y.
In our framework, a is beginning-of-period wealth and the budget constraint is a′ = R(a − c) + y′. This change in
the notation allows us to weaken the monotonicity requirement in Assumption 2.3 of Li and Stachurski (2014).
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For c ∈ C, define (Kc)(a, z) by the value t ∈ (0, a] that satisfies the Euler equation (A.5).

Lemma B.2. For any c ∈ C and (a, z) ∈ S, (Kc)(a, z) is well-defined. Furthermore, K : C → C and
c ≤ d =⇒ Kc ≤ Kd.

Proof. Fix any c ∈ C and (a, z) ∈ S. For t ∈ (0, a], define

g(t) = u′(t)− max
{

βRE
[

u′(c(R(a − t) + y′, z′)) | z
]

, u′(a)
}

.

The second term is finite because of the max operator and u′(a) < ∞. Therefore g is finite on
(0, a]. Since u′′

< 0, g is continuous and strictly decreasing. Furthermore, g(0) = ∞ and

g(a) = u′(a)− max
{

βRE
[

u′(c(y′, z′)) | z
]

, u′(a)
}

≤ 0.

Therefore there exists a unique t ∈ (0, a] such that g(t) = 0, so (A.5) holds.
To show K : C → C, it remains to show that (Kc)(a, z) is increasing in a. To show this, let

a1 ≤ a2 and tj = (Kc)(aj, z) for j = 1, 2. Suppose on the contrary that t1 > t2. Then using the
fact that c is increasing and u′ is strictly decreasing, we obtain

u′(t2) > u′(t1) = max
{

βRE
[

u′(c(R(a1 − t1) + y′, z′)) | z
]

, u′(a1)
}

≥ max
{

βRE
[

u′(c(R(a2 − t2) + y′, z′)) | z
]

, u′(a2)
}

= u′(t2),

which is a contradiction. Therefore t1 ≤ t2. The proof of c ≤ d =⇒ Kc ≤ Kd is similar.

Lemma B.3. If βR < 1, then ρ(Kc, Kd) ≤ βRρ(c, d) for all c, d ∈ C.

Proof. Similar to the proof of Lemma A.5 in Li and Stachurski (2014).
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