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Abstract

Consider a society with two sectors (issues or objects) that faces a design prob-

lem. Suppose that the sector-2 dimension of the design problem is fixed and

represented by a mechanism Γ2, and that the designer operates under this

constraint for institutional reasons. A sector-1 mechanism Γ1 constrained im-

plements a social choice rule ϕ in Nash equilibrium if for each profile of agents’

preferences, the set of (pure) Nash equilibrium outcomes of the mechanism

Γ1 × Γ2 played by agents with those preferences always coincides with the rec-

ommendations made by ϕ for that profile. If this mechanism design exercise

could be accomplished, ϕ would be constrained implementable. We show that

constrained monotonicity, a strengthening of (Maskin) monotonicity, is a nec-

essary condition for constrained implementation. When there are more than

two agents, and when the designer can use the private information elicited

from agents via Γ2 to make a socially optimal decision for sector 1, constrained

monotonicity, combined with an auxiliary condition, is suffi cient. This suffi -

ciency result does not rule out any kind of complementarity between the two

sectors.
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1. Introduction

The challenge of implementation lies in designing a mechanism (i.e., game form)

where the equilibrium behavior of agents always coincides with the recommendations

given by a social choice rule (SCR) ϕ. If such a mechanism exists, ϕ is said to be

implementable. The fundamental study on implementation in (pure strategies) Nash

equilibrium is thanks to Maskin (1999; circulated since 1977).1

Since this seminal work, the method used in the literature to understand how to

solve an implementation problem is partial equilibrium analysis. This method isolates

outcomes to be allocated as well as agents’preferences for those outcomes from the rest

of the world, under a ceteris paribus (all else equal) assumption. When there is more

than one decision problem and the practice dictated by the partial equilibrium analysis

is taken as a given institutional constraint, Hayashi and Lombardi (2017) quantify the

effect of the practice by showing that the scope of implementation has to be confined

essentially to separable preferences. A centralized allocation mechanismmay be better

equipped to deal with issues arising from non-separability of preferences. However,

this mechanism is not available or feasible in real life.

This leaves the question of whether there are ways to broaden the scope of im-

plementation. The main objective of this study is to examine this question with

only a minimal departure from the standard practice. The departure consists of two

elements.

First, we consider a society with two sectors (issues or objects) that faces a design

problem. We suppose that the sector-2 dimension of the design problem is fixed

and represented by a mechanism Γ2 =
(
(M2

i )i∈I , g
2
)
, and that the designer operates

under this constraint for institutional reasons.2 This departure is motivated by the

1Moore and Repullo (1990), Dutta and Sen (1991), Sjöström (1991) and Lombardi and Yoshi-

hara (2013) refine Maskin’s theorem by providing necessary and suffi cient conditions for an SCR

to be implementable in (pure strategies) Nash equilibrium. For an introduction to the theory of

implementation see Jackson (2001) and Maskin and Sjöström (2002).
2M2

i is agent i’s sector-2 message space and g
2 : M2 → A2 is the sector-2 outcome function.
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observation that when, for example, a society faces the issue of whether to supply a

public good, it must solve this problem by taking as given how private goods markets

work. When a school authority faces the issue of allocating students to schools, the

authority must solve it by taking as given how the housing market works.

Second, we introduce incomplete, yet not negligible, communication between the

designer and other mechanisms, in the sense that the designer bases his allocation

decision not only on information directly elicited from the agents but also on infor-

mation elicited from them via Γ2. Suppose that Γ2 is a market mechanism for private

goods and that a society faces the issue of sharing the cost of providing a public good

under the constraint of Γ2. Then, the society needs to use the private information

elicited from the agents via Γ2 if it wants to make a socially optimal decision. For the

same reason, when Γ2 is a housing market and a school authority faces the issue of

allocating students to schools under the constraint of Γ2, it needs to use the private

information elicited from the agents via the housing market Γ2.3

Note that this communication creates incentive problems. Indeed, given that

agents are aware that the designer also bases his sector-1 decision on the information

that they transmit to sector-2 mechanism Γ2, agents may have incentives to lie for

manipulating not only outcomes determined by Γ2 but also sector-1 decisions. For

example, once families know that the school authority bases its school allocation

on information that they transmit to the housing market, families have incentives

to use this information for manipulating not only the housing market outcome but

also the school allocation outcome. Therefore, the change described above makes a

significant departure from the standard literature as well as from the problem studied

by Hayashi and Lombardi (2017). Recall that in Hayashi and Lombardi (2017), every

Sector 2 can itself be a collection of many sectors.
3When the designer does not have access to information elicited via other mechanisms, we basi-

cally go back to implementation in partial equilibrium, as studied by Lombardi and Hayashi (2017),

in which there is no communication among sector authorities about the information elicited from

the agents.
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sector-designer is under the assumption of partial equilibrium analysis, and so each

allocation problem is isolated from others.

In this paper, the designer faces a constrained implementation problem. It con-

sists of designing a mechanism for sector 1, Γ1, with the property that for any type

of agents’preferences, the set of (pure) Nash equilibrium outcomes of the mechanism

Γ1 × Γ2 coincides with the set of outcomes that ϕ would select for those preferences.

If this design exercise can be accomplished, the SCR is said to be constrained imple-

mentable.

Within this set-up, we investigate the theory of implementation pioneered by

Maskin (1999) under the constraint Γ2. Our conclusion is that a small departure

from the standard practice dramatically increases the scope for implementation, in

the sense that our suffi ciency results do not rely on any domain restriction of agents’

preferences. Thus, unlike the negative result of Hayashi and Lombardi (2017), our

suffi ciency result does not rule out any kind of complementarity between the two

sectors.

We also show that an SCR that can be constrained implemented satisfies an invari-

ance condition, named constrained monotonicity. This condition is a strengthening

of monotonicity. Monotonicity means that if an outcome (a1, a2) is recommended

by the SCR ϕ in state θ but ϕ does not recommend it when the state is changed

to θ′, then the outcome (a1, a2) must have fallen strictly in someone’s ordering at

the state θ′. To introduce our condition, suppose that the sector-2 outcome a2 is

supported by a profile of sector-2 strategy choices m2– that is, g2 (m2) = a2. Con-

strained monotonicity requires that if an outcome (a1, g2 (m2)) is recommended by

ϕ in state θ but the SCR ϕ does not recommend it when the state is changed to

θ′, then, to break the Nash equilibrium via some deviation, there exists an agent i

who can generate a sector-2 outcome by varying his own sector-2 strategy choice, m̂2
i ,

while keeping the other agents’sector-2 strategy choices fixed at m2
−i, such that an

outcome
(
b1, g2

(
m̂2
i ,m

2
−i
))
, which is less preferred than (a1, g2 (m2)) at θ, is strictly
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preferred to (a1, g2 (m2)) at θ′.

Section 2 outlines the basic model. Section 3 defines constrained monotonicity

and shows that it is necessary for constrained implementation. Section 4 provides

our characterization result. Sections 5 provides an account of welfare implications

of constrained implementability. Section 6 studies the relationships between con-

strained implementability and the standard unconstrained implementability. Section

7 concludes.

2. Setting

We consider a finite set of agents indexed by i ∈ I = {1, · · · , n}, which we refer to as

a society. The set of outcomes available to agents is A1 × A2, where As is the set of

sector-s outcomes, for s = 1, 2. The information held by the agents is summarized in

the concept of a state. Write Θ for the domain of possible states, with θ as a typical

state. In the usual fashion, agent i’s preferences in state θ are given by a complete

and transitive binary relation, subsequently an ordering, Ri (θ) over the set A1 ×A2.

The corresponding strict relation is denoted by Pi (θ). We assume that the true state

is common knowledge among the n agents but is unknown to the designer. To avoid

trivialities, we assume that |Θ| ≥ 2 and |A1 × A2| ≥ 2.4

The goal of the designer is to implement an SCR ϕ, which is a correspondence

ϕ : Θ � A1 × A2 such that for each state θ ∈ Θ, ∅ 6= ϕ (θ) ⊆ A1 × A2. We refer to

(a1, a2) ∈ ϕ (θ) as a ϕ-optimal outcome at θ.

A sector-2 mechanism is a collection Γ2 =
(
(M2

i )i∈I , g
2
)
where M2

i 6= ∅ is agent

i’s sector-2 message space and g2 : M2 → A2 is a sector-2 outcome function. Given a

sector-2 mechanism Γ2, a sector-1 mechanism is a collection Γ1 =
(
(M1

i ×M2
i )i∈I , g

1
)

where M1
i ×M2

i 6= ∅ is agent i’s message space and g1 : M1×M2 → A1 is a sector-1

outcome function. Thus, the sector-1 outcome function is defined onM1×M2, rather

4Given a set Y , |Y | denotes its cardinality.

5



than on M1, and for each profile of (m1,m2), g1 (m1;m2) represents the resulting

sector-1 outcome. This property of Γ1 captures the idea that the designer bases his

sector-1 outcome decision not only on information supplied directly to him by agents

but also on information elicited from agents via Γ2.

A mechanism Γ1×Γ2 together with a state θ defines a strategic game (Γ1 × Γ2, θ),

in which each agent chooses his message and all agents’strategy choices are made

simultaneously (i.e., when making a strategy choice, no agent is informed of the

strategy choice made by any other agent). A strategy profile (m1,m2) ∈M1 ×M2 is

a Nash equilibrium (in pure strategies) of (Γ1 × Γ2, θ) if for all i ∈ I, it holds that

(
g1 × g2

) (
m1,m2

)
Ri (θ)

(
g1 × g2

) ((
m̂1
i ,m

1
−i
)
,
(
m̂2
−i,m

2
−i
))
∀
(
m̂1
i , m̂

2
i

)
∈M1

i ×M2
i ,

where, as usual,ms
−i is the message profile of all agents except i such that

(
ms
i ,m

s
−i
)

=

ms, for s = 1, 2. We write NE (Γ1 × Γ2, θ) for the set of Nash equilibrium profiles of

(Γ1 × Γ2, θ), and (g1 × g2) (NE (Γ1 × Γ2, θ)) for the set of Nash equilibrium outcomes

of (Γ1 × Γ2, θ).

Definition 1 Let Γ2 be given. A sector-1 mechanism, Γ1, constrained (Nash) imple-

ments the SCR ϕ : Θ � A1 × A2 if

ϕ(θ) = (g1 × g2)(NE(Γ1 × Γ2, θ)) ∀θ ∈ Θ.

If such a sector-1 mechanism exists, we say that ϕ is constrained implementable.

Let (Γ2, θ) be given. For any agent i, any m2
−i and any outcome (a1, a2), the lower

contour set of Ri (θ) at (a1, a2) is

Li
(
θ,
(
a1, a2

))
= {
(
b1, b2

)
∈ A1 × A2|

(
a1, a2

)
Ri (θ)

(
b1, b2

)
},

whereas the
(
g2,m2

−i
)
-constrained lower contour set of Ri (θ) at (a1, a2) is defined by

Li,m2
−i

(
θ,
(
a1, a2

))
=
{(
b1, g2

(
m2
i ,m

2
−i
))
∈ A1 × g2

(
M2

i ,m
2
−i
)

:
(
a1, a2

)
Ri (θ)

(
b1, g2

(
m2
i ,m

2
−i
))}

.
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It is clear that

Li,m2
−i

(
θ,
(
a1, a2

))
⊆ Li

(
θ,
(
a1, a2

))
.

Finally, for any (nonempty) subset B1 × B2 ⊆ A1 × A2, let proj2 {B1 ×B2} denote

the projection of B1 ×B2 onto A2.

3. Constrained monotonicity

In this section, we introduce a new condition, called constrained monotonicity, which

we show to be necessary for our notion of implementation.

A condition that is central to the implementation of SCRs in Nash equilibrium

is (Maskin) monotonicity. According to this condition, if an outcome (a1, a2) is ϕ-

optimal at state θ, and this (a1, a2) does not strictly fall in preference for anyone

when the state is changed to θ′, then (a1, a2) must remain an ϕ-optimal outcome at

θ′. Formally, we present the following definition.

Definition 2 (Maskin, 1999) An SCR ϕ : Θ � A1 × A2 is monotonic provided

that ∀ (a1, a2) ∈ A1 × A2 and ∀θ, θ′ ∈ Θ, if (a1, a2) ∈ ϕ (θ) and Li(θ, (a1, a2)) ⊆

Li(θ
′, (a1, a2)) ∀i ∈ I, then (a1, a2) ∈ ϕ (θ′).

The key to our analysis is identifying the appropriate notion of monotonicity

in the present setting, which we call constrained monotonicity. To introduce this

condition, we need additional notation. For any message profile of sector 2, m̄2, let

g2
(
M2

i , m̄
2
−i
)
represent the set of outcomes that agent i can generate in sector 2 by

varying his own strategy, keeping the other agents’ strategy choices fixed at m̄2
−i.

Therefore, we provide the following definition.

Definition 3 Let Γ2 be given. The SCR ϕ : Θ � A1 ×A2 is constrained monotonic

provided that ∀ (a1, a2) ∈ A1 × A2 and ∀θ ∈ Θ, if (a1, a2) ∈ ϕ (θ), then there exists

m2 ≡ m2
ϕ (θ, (a1, a2)) ∈M2 such that:

7



(i) g2 (m2) = a2 and proj2
{
Li,m2

−i
(θ, (a1, a2))

}
= g2

(
M2

i ,m
2
−i
)
∀i ∈ I, and

(ii) ∀θ′ ∈ Θ, Li,m2
−i

(θ, (a1, a2)) ⊆ Li,m2
−i

(θ′, (a1, a2)) ∀i ∈ I =⇒ (a1, a2) ∈ ϕ (θ′).

Suppose that the designer wants to implement the outcome (a1, a2) in state θ.

Part (i) requires the existence of a sector-2 message profile, m2, such that it induces

the sector-2 outcome a2. Moreover, since agents can deviate and misreport in sector

2, the second component of part (i) allows the designer to find a suitable sector-1

punishment outcome for any unilateral deviation from m2. Part (ii) is a constrained

version of monotonicity. With a fixed Γ2 and the assumption that a sector-1 outcome

also depends on the strategies played by agents in sector 2, the set of outcomes that

agent i can generate by unilaterally deviating from an equilibrium profile is smaller

than the set of outcomes that he can induce in the standard Nash implementation

framework. Thus, part (ii) applies the monotonicity condition to this smaller set of

outcomes.

The importance of part (i) is twofold. First, it allows us to construct a sector-1

mechanism, Γ1, that guarantees that every ϕ-optimal outcome results in an equilib-

rium outcome. Second, as in the case of rule 2 of Maskin’s canonical mechanism,

part (i) allows us to devise a Γ1 that questions the credibility of agent i’s report when

all agents except i make exactly the same announcement. Finally, part (ii) is used

to incentivize agents to report the true environment when everyone is lying about

it– that is, when there is a unanimous false announcement.

The condition is a strengthening of monotonicity. To this end, our first result

shows that constrained monotonicity implies monotonicity.

Theorem 1 Let Γ2 be given. If ϕ : Θ � A1 × A2 is constrained monotonic, then it

is monotonic.

Proof. Assume that the hypotheses of the theorem are met. Take any (a1, a2), any

θ, and any θ′ such that (a1, a2) ∈ ϕ (θ) and Li(θ, (a1, a2)) ⊆ Li(θ
′, (a1, a2)), ∀i ∈ I.

We show that (a1, a2) ∈ ϕ (θ′).
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Since (a1, a2) ∈ ϕ (θ), part (i) of constrained monotonicity implies that there is

m2 ≡ m2
ϕ (θ, (a1, a2)) such that g2 (m2) = a2. Fix any i ∈ I and any

(
b1, g2

(
m̄2
i ,m

2
−i
))
∈

Li,m2
−i

(θ, (a1, a2)). Since, by assumption, Li(θ, (a1, a2)) ⊆ Li(θ
′, (a1, a2)) and since, by

the definitions of the lower contour sets, Li,m2
−i

(θ, (a1, a2)) ⊆ Li(θ, (a
1, a2)), it follows

that
(
b1, g2

(
m̄2
i ,m

2
−i
))
∈ Li(θ′, (a1, a2)). The definition of

(
g2,m2

−i
)
-constrained lower

contour set of Ri (θ) at (a1, a2) implies that
(
b1, g2

(
m̄2
i ,m

2
−i
))
∈ Li,m2

−i
(θ′, (a1, a2)).

Since the choices of
(
b1, g2

(
m̄2
i ,m

2
−i
))
and agent i are arbitrary, we have Li,m2

−i
(θ, (a1, a2)) ⊆

Li,m2
−i

(θ′, (a1, a2)), ∀i ∈ I. Part (ii) of constrained monotonicity implies that (a1, a2) ∈

ϕ (θ′), as we aimed to achieve. Thus, ϕ is monotonic.

One can easily check that monotonicity is equivalent to constrained monotonicity

when A2 = {a2}. However, these two conditions are generally not equivalent. This

point is illustrated in Example 1.

Example 1 Monotonicity does not imply constrained monotonicity. There are two

agents, 1 and 2, two states, θ and θ′, and three outcomes, (a1, a2), (a1, b2), and (a1, c2).

Individuals have state-dependent preferences represented in the table below, where

x2 is understood as (a1, x2), and, as usual, x
2

y2 for agent i means that i strictly prefers

x2 to y2, while x2, y2 means that i is indifferent between x2 and y2.

θ θ′

Agent 1 Agent 2 Agent 1 Agent 2

a2,b2 c2 c2 c2

c2 a2 a2, b2 a2

b2 b2

The designer aims to implement the SCR ϕ, with ϕ (θ) = {(a1, a2) , (a1, b2)} and

ϕ (θ′) = {(a1, a2)}. One can check that ϕ is monotonic.

Suppose that the designer faces a Γ2 in which M2
i = {m2

i , m̂
2
i } for each agent i

9



and the outcome function g2 is defined as follows:

m2
2 m̂2

2

m2
1 a2 b2

m̂2
1 b2 b2

The outcome in each box is the outcome of the action profile to which the box

corresponds. Note that, by definition of g2, g2 (m2
1,m

2
2) = a2 and g2 (m̂2

1,m
2
2) = b2.

Let us first check that part (i) of constrained monotonicity is satisfied. Let us

define m2
ϕ (θ, (a1, a2)), m2

ϕ (θ, (a1, b2)) and m2
ϕ (θ′, (a1, a2)) as follows:

m2
ϕ

(
θ,
(
a1, a2

))
= m2

ϕ

(
θ′,
(
a1, a2

))
=
(
m2
1,m

2
2

)
,

m2
ϕ

(
θ,
(
a1, b2

))
=
(
m̂2
1,m

2
2

)
.

Let us first consider the case in which (a1, a2) ∈ ϕ
(
θ̄
)
for each θ̄ ∈ {θ, θ′}. Then, by

definition, there exists m2
ϕ (θ, (a1, a2)) = (m2

1,m
2
2) ∈ M2 such that g2 (m2

1,m
2
2) = a2

and

proj2

{
L1,m2

2

(
θ̄,
(
a1, g2

(
m2
1,m

2
2

)))}
= g2

(
M2
1 ,m

2
2

)
=
{
a2, b2

}
,

proj2

{
L2,m2

1

(
θ̄,
(
a1, g2

(
m2
1,m

2
2

)))}
= g2

(
m2
1,M

2
2

)
=
{
a2, b2

}
.

Thus, part (i) is satisfied for the case in which (a1, a2) ∈ ϕ
(
θ̄
)
for each θ̄ ∈ {θ, θ′}.

Next, let us consider the case in which (a1, b2) ∈ ϕ (θ). Then, by definition, there

exists m2
ϕ

(
θ̄, (a1, b2)

)
= (m̂2

1,m
2
2) ∈M2 such that g2 (m̂2

1,m
2
2) = b2 and

proj2

{
L1,m2

2

(
θ,
(
a1, g2

(
m̂2
1,m

2
2

)))}
= g2

(
M2
1 ,m

2
2

)
=
{
a2, b2

}
,

proj2

{
L2,m̂2

1

(
θ,
(
a1, g2

(
m̂2
1,m

2
2

)))}
= g2

(
m̂2
1,M

2
2

)
=
{
b2
}
.

It follows that part (i) of constrained monotonicity is satisfied.

Finally, let us show that part (ii) of constrained monotonicity is violated. By

definition of the outcome function g2, one can observe that

L1,m2
2

(
θ,
(
a1, g2

(
m̂2
1,m

2
2

)))
= L1,m2

2

(
θ′,
(
a1, g2

(
m̂2
1,m

2
2

)))
L2,m̂2

1

(
θ,
(
a1, g2

(
m̂2
1,m

2
2

)))
= L2,m̂2

1

(
θ′,
(
a1, g2

(
m̂2
1,m

2
2

)))
.
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Since (a1, b2) is ϕ-optimal at state θ, it follows that the premises of part (ii) of

constrained monotonicity are satisfied. However, (a1, b2) is not ϕ-optimal at state θ′,

in violation of constrained monotonicity.

The next result shows that only constrained monotonic SCRs are implementable.

Theorem 2 If ϕ : Θ � A1 ×A2 is an SCR that is constrained implementable, then

it is constrained monotonic.

Proof. Suppose that ϕ : Θ � A1 × A2 is constrained implementable. Thus, there

exists a Γ1 such that ϕ(θ̄) = (g1× g2)(NE(Γ1×Γ2, θ̄)) for all θ̄ ∈ Θ. Take any θ ∈ Θ

and any (a1, a2) ∈ ϕ (θ). By constrained implementability, there exists (m1,m2) ∈

NE(Γ1 × Γ2, θ) such that (g1 × g2) (m1,m2) = (a1, a2) and that

(
g1 × g2

) ((
M1

i ,m
1
−i
)
,
(
M2

i ,m
2
−i
))
⊆ Li,m2

−i

(
θ,
(
a1, a2

))
, ∀i ∈ I. (1)

Let m2 ≡ m2
ϕ (θ, (a1, a2)) ∈M2.

Let us show part (i). Since (m1,m2) ∈ NE(Γ1 × Γ2, θ), it is clear that g2 (m2) =

a2. Moreover, by (1), one can easily observe that proj2
{
Li,m2

−i
(θ, (a1, a2))

}
=

g2
(
M2

i ,m
2
−i
)
, for each i ∈ I. Thus, part (i) is satisfied.

Let us show part (ii). Take any θ′ ∈ Θ such that

Li,m2
−i

(
θ,
(
a1, a2

))
⊆ Li,m2

−i

(
θ′,
(
a1, a2

))
, ∀i ∈ I. (2)

Then, given (1) and (2), it follows that

(
g1 × g2

) ((
M1

i ,m
1
−i
)
,
(
M2

i ,m
2
−i
))
⊆ Li,m2

−i

(
θ′,
(
a1, a2

))
, ∀i ∈ I,

and thus, (m1,m2) ∈ NE(Γ1 × Γ2, θ′). By constrained implementability of ϕ, we

have that (g1 × g2) (m1,m2) ∈ ϕ (θ′), as we aimed to achieve. Thus, ϕ is constrained

monotonic.
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4. A characterization theorem

While constrained monotonicity is necessary for constrained implementation, it is not

suffi cient.5 We need an extra condition for the suffi ciency result.

As a part of suffi ciency, we introduce constrained no veto power, which is analogous

to the condition of no veto power (Maskin, 1999),6 adjusted for the fact of a fixed

mechanism in sector 2. According to this condition, if there is an outcome (a1, g2 (m2))

that is maximal under state θ for at least n−1 agents over the set A1×g2
(
M2

i ,m
2
−i
)
,

then this (a1, g2 (m2)) must be a ϕ-optimal outcome at this θ. Formally, we provide

the following definition.

Definition 4 Let Γ2 be given. The SCR ϕ : Θ � A1 × A2 satisfies constrained no

veto power provided that ∀θ ∈ Θ, ∀a1 ∈ A1 and ∀m2 ∈M2,∣∣∣{i ∈ I : A1 × g2
(
M2

i ,m
2
−i
)
⊆ Li,m2

−i

(
θ,
(
a1, g2

(
m2
)))}∣∣∣ ≥ n−1 =⇒

(
a1, g2

(
m2
))
∈ ϕ (θ) .

The condition is weak in some contexts, such as in environments in which there are

private goods in sector 1 and there are at least three (non-satiated) agents. However,

in other environments, constrained no veto power might not be a trivial condition.

We are now ready to present our characterization theorem.7

Theorem 3 Assume that n ≥ 3. Any constrained monotonic SCR ϕ : Θ � A1×A2

satisfying constrained no veto power is constrained implementable.

Proof. See the Appendix.
5For example, suppose that A2 =

{
a2
}
. As we noted in Section 3, constrained monotonicity is

equivalent to monotonicity when A2 =
{
a2
}
. Maskin (1999, pp. 33—34)’s Example 2 shows that

although an SCR is monotonic, it is not implementable.
6No veto power requires that if an outcome is top-ranked by at least n − 1 agents, then this

outcome should be chosen irrespective of the preferences of the remaining agent.
7We thank a referee for proposing a much simpler proof, which has clear parallels to Maskin’s

theorem (Maskin, 1999, Theorem 3).
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The proof of Theorem 3 relies on the construction of a canonical mechanism that

is similar to that used, for example, in Maskin (1999), but it is modified to deal with

our objective. First, it is constructed to capture the designer’s constraint represented

by Γ2: The designer cannot design the outcome function g2. Second, to capture the

notion that there is a unidirectional flow of information from sector 2 to sector 1, we

modify the mechanism so that its outcomes depend on both m1 and m2.

Heuristically, the SCR is obtained by the following mechanism. Agents simulta-

neously report a state, θ, an outcome for sector 1, a1, and an outcome for sector 2, a2.

Let m2 ∈ M2 be the information elicited from agents via Γ2. If all reports coincide,

and the jth coordinate ofm2 coincides with the jth coordinate ofm2
ϕ (θ, (a1, a2)) spec-

ified by part (i) of constrained monotonicity, then the designer chooses the sector-1

outcome according to agents’reports. However, if there is a single agent i whose re-

port is not consistent with other reports, the ith coordinate ofm2
ϕ (θ, (a1, a2)), or both,

then, the sector-1 outcome is the one announced by agent i if the pair (a1i, g2 (m2))

is not better than the pair (a1, a2) announced by the others under the preference for

i announced by the other agents. Otherwise, the designer chooses a sector-1 outcome

b1 such that the pair (b1, g2 (m2)) is not better than the pair (a1, a2) announced by

the others under the preference for i announced by the other agents– the outcome b1

exists because m2 ∈ M2 and proj2
{
Li,m2

−i
(θ, (a1, a2))

}
= g2

(
M2

i ,m
2
−i
)
. Finally, if

neither of the abovementioned two cases holds, then agents play a modulo game, and

the winner determines the sector-1 outcome.

5. Applications

This section provides two applications. In one, we design a school choice mechanism

under a constraint that we cannot change, and we take how the housing market works

as given. In the other application, we design a public goods provision mechanism

under a constraint that we cannot change, and we take how the private goods market
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works as given.

Note that in these applications, the given sector-2 mechanisms are “satisfactory”

enough to implement Walrasian equilibria. This leaves out the question of what we

can do when we are constrained by a “poor”sector-2 mechanism. We return to this

question in the next section.

5.1 School choice problems constrained by a com-

petitive housing market

There are three disjoint sets C, I, and H of schools, agents, and houses, respectively.

Agents do not own any house and each needs one house. Each school c ∈ C has a

quota, qc, of places. Moreover, each school c has a (strict) priority ranking >c over

I, where agent i has a priority higher than agent j if i >c j. Note that the priority

ranking is state independent. Although it would be more realistic to have the priority

ranking depend on housing allocation, it is diffi cult to know what this ranking is when

agent i takes over agent j’s house by deviating in the housing market: how should

agent j be ranked? Because of this, we assume that school admissions depend on

housing allocations through catchment areas. Thus, let Hc be the set of houses in

the catchment area of school c ∈ C. Note that for any c, c′ ∈ C, Hc and Hc′ may or

may not be disjoint sets.

In what follows, we assume that Π is the set of all school matchings. A school

matching π is a function from I to C such that each agent is assigned to at most one

school or remains unmatched (being unmatched is denoted by ∅), and each school

is matched to at most its quota of agents. The set Σ denotes the set of all house

matchings. A house matching σ is a one-to-one and surjective function from I to H

such that each agent receives one and only one house.

Let A1 ≡ Π be the set of sector-1 outcomes and let A2 ≡ Σ × R|I| be the set of

sector-2 outcomes. Then, (π, σ, z) ∈ A1 × A2 is an outcome, which specifies a school
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matching, a house matching, and income transfers. Individual i’s (self-regarding)

preferences in state θ ∈ Θ are given by an ordering Ri (θ) over the set A1 × A2. For

each θ ∈ Θ, we assume that agent i’s ordering Ri (θ) is numerically represented by

uθi : A1 × A2 → R, which is strictly increasing in money. For each θ ∈ Θ, each i ∈ I,

and each π ∈ A1, the sector-2 marginal ordering, R2i [θ, π], on A2 induced by (θ, π) is

defined by

∀ (σ, z) , (σ′, z′) ∈ A2 : (σ, z)R2i [θ, π] (σ′, z′) ⇐⇒ (π, σ, z)Ri (θ) (π, σ′, z′) .

We assume that agent i’s sector-2 marginal ordering R2i [θ, π] is numerically repre-

sented by υR
2
i [θ,π]

i : A2 → R, which is strictly increasing in money. Let R2 [θ, π] ≡

(R2i [θ, π])i∈I denote a profile of sector-2 marginal orderings induced by (θ, π). Let

R (Θ,Π) be the set of profiles of sector-2 marginal orderings induced by (Θ,Π), with

R2 as a typical element.

The set of feasible outcomes is denoted by F and is defined by

F =
{

(π, σ, z) ∈ A1 × A2|σ (i) ∈ Hπ(i),∀i ∈ I
}
.

In other words, the allocation (π, σ, z) is feasible if each agent i ∈ I is assigned to a

school π (i) that is compatible with his allocated house σ (i), in that this house σ (i)

is in the catchment area of the assigned school π (i). We assume that F is not empty.

Definition 5 Let Γ2 = (M2, g2) be a sector-2 mechanism such that ∀R2 ∈ R (Θ,Π);

it holds that

1. (σ, z) ∈ g2 (NE (Γ2, R2)) if and only if (σ, z) ∈ A2 is a housing competitive

equilibrium for R2, that is, there exists a house price vector p ∈ R|H| such that

∀i ∈ I, zi = −pσ(i) and

υ
R2i
i

(
σ,−pσ(i)

)
≥ υ

R2i
i

(
h,−ph

)
, ∀h ∈ H.
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2. ∀(σ, z) ∈ g2(NE(Γ2, R2)), there is a unique m2 ∈ NE(Γ2, R2) such that (σ, z) =

g2(m2) and Li (R2, (σ, z)) = g2(M2
i ,m

2
−i) ∀i ∈ I.8

Sector-2 mechanisms that satisfy Definition 5 are found, for example, in Svensson

(1991) and Hayashi and Sakai (2009).

We adopt the following notion of stability.

Definition 6 The outcome (π, σ, z) ∈ F is stable under θ ∈ Θ if there exists a house

price vector p ∈ R|H| such that ∀i ∈ I, zi = −pσ(i) and

(a) ∀c ∈ C with c 6= π(i), and ∀h ∈ Hc,

uθi (π(i), σ(i),−pσ(i)) ≥ uθi (c, h,−ph)

or ∣∣π−1(c)∣∣ = qc and j >c i ∀j ∈ π−1(c).

(b) ∀c ∈ C with c 6= π(i) and σ(i) ∈ Hc,

uθi (π(i), σ(i),−pσ(i)) ≥ uθi (c, σ(i),−pσ(i))

or ∣∣π−1(c)∣∣ = qc and j >c i ∀j ∈ π−1(c).

(c) ∀h ∈ Hπ(i),

uθi (π(i), σ(i),−pσ(i)) ≥ uθi (π(i), h,−ph).
8For any R2i and any (σ, z) ∈ A2, the lower contour set of R2i at (σ, z) is defined by

Li
(
R2, (σ, z)

)
= {(σ′, z′) ∈ A2| (σ, z)R2i (σ′, z′)}. A sector-2 mechanism Γ2 and a profile R2 in-

duce a strategic game
(
Γ2, R2

)
. A (pure strategy) Nash equilibrium of

(
Γ2, R2

)
is a strategy profile

m2 such that ∀i ∈ I, g2
(
m2
)
R2i g

2
(
m̄2
i ,m

2
−i
)
∀m̄2

i ∈ M2
i . We write NE

(
Γ2, R2

)
for the sector-

2 Nash equilibrium strategies of
(
Γ2, R2

)
and g2

(
NE

(
Γ2, R2

))
for its corresponding set of Nash

equilibrium outcomes.
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Parts (a)—(b) require that each agent i either has no incentives to move from

(π(i), σ(i),−pσ(i)) to (c, h,−ph), or cannot move because under (π, σ, z) school c 6=

π (i) has already filled its quota and each agent j assigned to c has a priority higher

than agent i. Part (c) requires that no agent i wants to change σ(i) with a house h

that is in the same catchment area of school π (i), and at the same time remain at

the school π (i) assigned to him by (π, σ, z).

Definition 7 The constrained stable solution of
(
I, C,H, (>c)c∈C , (H

c)c∈C , θ; Γ2
)
,

denoted by ϕS (θ), is the collection of all feasible outcomes that are stable under θ,

ϕS (θ) = {(π, σ, z) ∈ F|(π, σ, z) is stable under θ} .

The following theorem establishes that the constrained stable solution is con-

strained implementable when the domain of possible states, Θ, satisfies the following

condition.

Condition 1 The domain Θ satisfies condition 1 if ∀θ ∈ Θ, ∀i ∈ I, and ∀ (π, σ, z) ∈

A1 × A2 with σ (i) /∈ Hπ(i), it holds that

uθi (π′, σ′, z′) > uθi (π, σ, z) ∀ (π′, σ′, z′) ∈ A1 × A2 such that σ′ (i) ∈ Hπ′(i).

Condition 1 requires that each agent i strictly prefers living in rather than outside

the catchment area of the assigned school. This domain requirement seems to be a

natural one for the problem at hand.

Theorem 4 Suppose that Θ satisfies Condition 1. Suppose that Γ2 satisfies Defini-

tion 5. Let
(
I, C,H, (>c)c∈C , (H

c)c∈C
)
be given such that |I| = |H| ≥ 3. Then, the

constrained stable solution ϕS, defined over Θ, is constrained implementable.

Proof. Let the premises hold. To prove the statement, it suffi ces to show that ϕS sat-

isfies constrained monotonicity and constrained no veto power. Since the preferences
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of agents are strictly increasing in money, ϕS satisfies constrained no veto power.9

Thus, we need only show that ϕS is constrained monotonic. To this end, from now

on, we fix any θ and any (π, σ, z) ∈ ϕS(θ).

Since by part (c) of Definition 6 no agent wants to move within the catchment area

of the school assigned to him under (π, σ, z), and since by Condition 1 no agent wants

to move outside the catchment area of the school assigned to him under (π, σ, z) while

remaining at the school π (i), it follows that (σ, z) is a housing competitive equilibrium

at R2 [θ, π]. Definition 5 implies that (σ, z) ∈ g2 (NE (Γ2, R2 [θ, π])), that there exists

a unique m2 ∈M2 such that (σ, z) = g2 (m2), and that Li (R2, (σ, z)) = g2(M2
i ,m

2
−i)

∀i ∈ I. Thus, one can see that part (i) of constrained monotonicity is satisfied.

Finally, let us show that ϕS satisfies part (ii) of constrained monotonicity. Fix

any θ′ ∈ Θ and suppose that the premises of part (ii) of constrained monotonicity

are satisfied. We show that (π, σ, z) ∈ ϕS(θ′). Since (π, σ, z) ∈ ϕS(θ), it follows that

(π, σ, z) is stable under θ, that is, it meets the requirements (a)-(c) of Definition 6

and zi = −pσ(i) for all i ∈ I.

Take any (c, h,−ph) such that c 6= π (i) and either h ∈ Hc, or σ(i) ∈ Hc and

h = σ (i). From parts (a)-(b), it follows that each agent i ∈ I either has no incentives

to move from (π(i), σ(i),−pσ(i)) to (c, h,−ph), or if he has incentives to move, he

cannot move because at (π, σ, z) school c has already filled its quota and each agent

j assigned to c has a priority higher than agent i. Since this does not change when

the state moves from θ to θ′, it follows that parts (a)-(b) of Definition 6 are satisfied

at the new state θ′.

Since (π, σ, z) is stable under θ, by part (c) of Definition 6, it holds that no agent

i wants to change the house σ (i) with a house that is in the same catchment area

9By introducing infinitesimal monetary transfers in the sector-1 mechanism. An alternative

way to see that the constrained stable solution is constrained implementable is to observe that in

Theorem 3 constrained no veto power can be replaced with two other auxiliary conditions. These

two conditions are generalizations of unanimity and weak no veto power (see Takashi and Lombardi,

2017).
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while remaining at the school assigned to him by (π, σ, z). Since, by assumption,

Li,m2
−i

(θ, (π, σ, z)) ⊆ Li,m2
−i

(θ′, (π, σ, z)) for all i ∈ I, it follows that part (c) of the

definition continues to hold at θ′.

Since parts (a)—(c) hold at θ′ and since pσ = z is still a competitive price vector

at θ′, we conclude that (π, σ, z) is stable under θ′, and therefore, (π, σ, z) ∈ ϕS (θ′).

Thus, ϕS satisfies constrained monotonicity.

5.2 A public goods provision problem constrained

by a competitive market of private goods

Let us consider an economy with a finite number ` ≥ 1 of private goods and one public

good.10 The consumption set of each agent i is R`+1+ . Each agent i has an endowment

ωi ∈ R`+. The consumption of agent i is denoted by (vi, y) ∈ R`+1+ , where vi ∈ R`+
is the vector of private goods and y ∈ R+ is the public good outcome consumed by

agent i.

The public good is produced in sector 1. The production technology is described

by a production function f : R`+ → R+, which is continuous, strictly increasing, and

strictly quasi-concave. f (x) denotes the maximum level of public good associated

with the vector of factors of production x ∈ R`+. The outcome space of sector 1 is

given by A1 =
{

(x, y) ∈ R`×n+1+ |f
(∑

i∈Ixi
)

= y
}
, where x ≡ (xi)i∈I is the profile of

individual contributions to the production of y.

The outcome space of sector 2 is the set of closed net trade vectors of private

goods, which is defined by A2 =
{
z ∈ R`×n|

∑
i∈Izi = 0

}
. Then, (x, y, z) ∈ A1×A2 is

a typical allocation, which specifies a technological feasible scale of the public good,

y, a technological feasible profile of individual contributions to the production of y,

and a net trade vector.
10For the sake of simplicity, and to save space, we assume there is one public good. However, the

application can easily be extended to the case in which there are k > 1 public goods.
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We make the following assumption about the set Θ. Agent i’s (self-regarding)

preferences in state θ ∈ Θ are given by an ordering Ri (θ) over the set A1 × A2.

For each θ ∈ Θ, we assume that agent i’s ordering over the consumption space

is numerically represented by uθi : R`+1+ → R, which is continuous, quasi-concave,

and strictly increasing. For each θ ∈ Θ, each agent i, and each sector-1 allocation

(x, y) ∈ A1, the sector-2 marginal ordering, R2i [θ, x, y], on A2 induced by (θ, x, y) is

defined by

∀z, z′ ∈ A2 : zR2i [θ, x, y] z′ ⇐⇒ (x, y, z)Ri (θ) (x, y, z′) .

We assume that agent i’s sector-2 marginal ordering R2i [θ, x, y] is numerically repre-

sented over the consumption space of private goods υR
2
i [θ,x,y]

i : A2+{ωi} → R. Follow-

ing Schmeidler (1980), we assume that υR
2
i [θ,x,y]

i is strictly increasing in the consump-

tion of private goods and satisfies the following assumptions: υR
2
i [θ,x,y]

i (zi + ωi) > −∞

if zi+ωi ∈ R`+; otherwise, υ
R2i [θ,x,y]
i (zi + ωi) = −∞.11 Let R2 [θ, x, y] ≡ (R2i [θ, x, y])i∈I

denote the profile of sector-2 marginal orderings induced by (θ, x, y). Let R (Θ, A1)

be the set of profiles of sector-2 marginal orderings induced by (Θ, A1), with R2 as a

typical element.

The set of feasible outcomes is denoted by F and is defined by

F =
{

(x, y, z) ∈ R`×n+ × R+ × R`×n| (x, y) ∈ A1, z ∈ A2
}
.

Given a vector p ∈ R`+ of prices of factors of production and a level y ∈ R+ of public

good, the cost-minimization problem of sector 1 is

c(p, y) = min
a∈R`+:y=f(a)

p · a.

Definition 8 Let Γ2 = (M2, g2) be a sector-2 mechanism such that ∀R2 ∈ R (Θ, A1);

it holds that
11Note that agent i’s endowment may vary, depending on the production plan chosen by sector

1. However, this is not problematic, because for the sector-2 mechanism of Definition 8 to work, we

need only agents’marginal preferences over the set of net trade vectors.
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1. z ∈ g2 (NE (Γ2, R2)) if and only if z is a competitive equilibrium for R2, that

is, there exists a price vector p ∈ R` such that ∀i ∈ I, p · zi = 0 and

∀z̄i ∈ R` : p · z̄i = 0 =⇒ υ
R2i
i (zi + ωi) ≥ υ

R2i
i (z̄i + ωi) ,

and ∑
i∈Izi = 0.

2. ∀z ∈ g2(NE(Γ2, R2)), there is a unique m2 ∈ NE(Γ2, R2) such that z = g2(m2)

and Li (R2, z) = g2(M2
i ,m

2
−i) ∀i ∈ I.

A sector-2 mechanism that satisfies Definition 8 is found in Schmeidler (1980).

In this subsection, we are interested in constrained implementing the ratio solution

of Kaneko (1977) and Diamantaras and Wilkie (1994). To this end, the ratio ri is the

portion of the cost that agent i ∈ I is required to contribute. Thus, ratio allocations

can be defined as follows.

Definition 9 A feasible allocation (x, y, z) ∈ F is a ratio allocation for θ ∈ Θ if

there exist a price vector p ∈ R`+ and a ratio vector r ∈ Rn+, with
∑

i∈I ri = 1, such

that ∑
i∈I

zi = 0 and y = f
(∑

i∈Ixi
)
,

and ∀i ∈ I; it holds that

p · zi = 0 and p · xi = ric(p, y),

and

uθi (zi + ωi − xi, y) ≥ uθi (z̄i + ωi − x̄i, ȳ)

∀z̄i ∈ R` such that p · z̄i = 0, and ∀ȳ ∈ R+ and ∀x̄i ∈ R`+ such that p · x̄i = ric(p, ȳ).

Thus, a ratio allocation (x, y, z) is generated by a ratio vector r and a price vector

p such that the allocation yields each agent the largest level of utility given the
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generalized budget constraints, the market for the private goods clears, and
∑

i∈Ixi is

the vector of factors of production that minimizes the cost of production of y. Note

that if (x, y, z) is a ratio allocation for θ generated by (r, p), then taking the pair (x, y)

as given, the net trade vector z is a competitive allocation for R2 [θ, x, y] generated

by the competitive price vector p. We let ϕr (θ) denote the set of ratio allocations for

θ.

Definition 10 The constrained ratio solution, ϕr, for
(
I, θ, (ωi)i∈I ; Γ2

)
selects the

set of ratio allocations for θ,

ϕr (θ) = {(x, y, z) ∈ F|(x, y, z) is a ratio allocation for θ} .

The following theorem establishes that the constrained ratio solution is con-

strained implementable.

Theorem 5 Let n ≥ 3. Suppose that Γ2 satisfies Definition 8. Then, the constrained

ratio solution ϕr, defined over Θ, is constrained implementable.

Proof. Let the premises hold. To prove the statement, it suffi ces to show that

ϕr satisfies constrained monotonicity and constrained no veto power. Since agents’

preferences are strictly monotonic, the ratio solution satisfies constrained no veto

power. Thus, let us show that it is constrained monotonic. To this end, fix any θ and

any (x, y, z) ∈ ϕr(θ).

Then, the ratio allocation (x, y, z) for θ is generated by a price vector p and a

ratio vector r. Then, z is a competitive equilibrium for the marginal preferences over

the consumption space induced by (x, y), and thus, it is a competitive equilibrium for

R2 [θ, x, y]. By Definition 8, it follows that z ∈ g2 (NE (Γ2, R2 [θ, x, y])), that there is

a unique m2 ∈ NE(Γ2, R2) such that z = g2(m2), and that Li (R2, z) = g2(M2
i ,m

2
−i)

∀i ∈ I. It can be observed that part (i) of constrained monotonicity is satisfied.

Next, fix any θ′ so that the premises of part (ii) of constrained monotonicity are

satisfied when the state changes from θ to θ′. We show that (x, y, z) ∈ ϕr(θ′). Given
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that no agent i finds it profitable to choose any different (z̄i, ȳ, x̄i) such that p · zi = 0

and that x̄i = ric(p, ȳ) in state θ, it follows that no agent i wants to choose differently

when the state moves to θ′. Thus, (x, y, z) is a ratio allocation for θ′ generated by the

price vector p and the ratio vector r. By definition of the ratio solution, we conclude

that (x, y, z) ∈ ϕr (θ′). Thus, the ratio solution is constrained monotonic.

6. Comparative statics

In this section, we examine the relationships between constrained implementability

and the standard unconstrained implementability. The broad question is whether

constrained implementation is easier or more diffi cult to achieve than unconstrained

implementability? Put differently, when does constrained implementability reduce to

unconstrained implementability? The answer to this broad question depends on what

the given mechanism in sector 2 is, what our aim is, and what the preference domain

is. To obtain answers, we pose specific questions and provide answers to them in this

section.

6.1 Implementation when constrained by a “poor”

sector-2 mechanism

First, we ask if we can implement something when an arbitrary mechanism is given

as fixed in sector 2. There is a trivial yes answer here. Provided that Γ2 always allows

Nash equilibria under any marginal ordering, one can always constraint implement a

‘trivial’SCR. It is simply that we do “nothing” in sector 1 and let agents play the

sector-2 game as it is.

Example 2 Fix any â1 ∈ A1. For each θ ∈ Θ, agent i’s sector-2 marginal ordering,

R2i [θ, â1], on A2, is defined by

∀a2, b2 ∈ A2 : a2R2i
[
θ, â1

]
b2 ⇐⇒

(
â1, a2

)
Ri (θ)

(
â1, b2

)
.
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Let R2 [θ, â1] = (R2i [θ, â1])i∈I denote the profile of sector-2 marginal orderings induced

by â1 under θ. Let Γ2 be given. Let us suppose that the set of (pure) Nash equilibrium

strategy profiles of (Γ2, R2 [θ, â1]), denoted by NE (Γ2, R2 [θ, â1]), is not empty for

every state θ ∈ Θ. Define ϕ : Θ→ A1×A2 by ϕ(θ) = {(â1, a2) : a2 ∈ g2 ◦NE(Γ2, R2 [θ, â1])}.

One can implement ϕ by designing Γ1 = (M1, g1) such that M1
i = {m1

i }, ∀i ∈

I, and g1(m1) = â1. One can easily verify that ϕ is constrained monotonic. Under a

suitable restriction on the set Θ, one can observe that ϕ is constrained implementable.

Observe that the above example is consistent with Example 1. The reason is

that in Example 1, not all equilibria of the sector-2 mechanism are selected by the

SCR under the same profile of marginal orderings. Instead, in the above example,

we include all sector-2 Nash equilibria in the definition of ϕ. This entails that the

set of sector-2 Nash equilibrium outcomes is the same for states inducing the same

marginal orderings over the sector-2 outcome space.

In light of the above example, the question is whether there always exists a “satis-

factory”constrained implementable SCR or not. The answer depends on the quality

of Γ2. For example, the answer is no when Γ2 is a “poor”sector-2 mechanism.

Example 3 Let Γ2 be a constant mechanism, that is, there exists â2 ∈ A2 such that

g2 (m2) = â2 for all m2 ∈M2. Let us suppose that A1 = A2 = A. Moreover, let Θ be

a domain of preferences such that (a, a)Pi(θ)(b, c) for all a, b, c ∈ A such that b 6= c.

Thus, at best, what we can constrained implement is represented by the pair (â2, â2),

which is clearly ineffi cient.

6.2 When does constrained implementability re-

duce to unconstrained implementability?

The analysis so far proves that the design problem of the sector-1 designer is rather

complicated owing to the interplay between the sector-2 mechanism Γ2, the preference
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domain Θ, and the SCR ϕ. However, it is noteworthy that the constrained implemen-

tation exercise of the sector-1 designer reduces to the classical sector-1 implementation

exercise when the preference domain Θ is fully separable, that is, Θ = ΘSEP , the SCR

is decomposable, and Γ2 implements the sector-2 SCR in Nash equilibrium or in one

of its refinements.12 Decomposability is not a necessary condition for constrained

implementation.

We pose the following question: what are the necessary and almost suffi cient

conditions in the special (but still somewhat general) case in which the solution

concept adopted by sector-2 designer is that of Nash equilibrium?13 The answer is

that the conditions of Theorem 3 do not change. To observe this, we introduce below a

new condition, called constrained monotonicity∗ using additional notation, and show

that it is equivalent to constrained monotonicity.

We say that the ordering Ri (θ) is sector-2 separable if R2i [θ, a1] = R2i [θ, b1]

∀a1, b1 ∈ A1. To save space, for any sector-2 separable ordering Ri (θ), write R2i (θ)

for the sector-2 marginal ordering induced by Ri (θ). Let R2 (θ) = (R2i (θ))i∈I denote

the profile of sector-2 marginal orderings induced by θ. The preference domain Θ∗ is

defined by

Θ∗ = {θ ∈ Θ|∀i ∈ I, Ri (θ) is a sector-2 separable ordering} .

We assume that ΘSEP ⊆ Θ∗.

Let Γ2 be given. Define the SCR ϕ, over Θ∗, as follows: ∀θ ∈ Θ∗, ϕ (θ) =

ϕ1 (θ) × g2 (NE (Γ2, R2 (θ))), where NE (Γ2, R2 (θ)) denotes the set of (pure) Nash

equilibrium strategy profiles of (Γ2, R2 (θ)), and ϕ1 : Θ∗ � A1 is a correspondence.

12The preference domain is fully separable, denoted by ΘSEP , when each state θ ∈ ΘSEP induces,

for each agent and each sector s, a sector-smarginal ordering over As that is independent of outcomes

chosen from the other component set of the outcome space. The SCR ϕ : ΘSEP � A2 × A2 is

decomposable provided that for each sector s ∈ {1, 2}, there exists a (nonempty) correspondence

ϕs : Ds � As such that ϕ (θ) = ϕ1(R1 (θ)) × ϕ2
(
R2 (θ)

)
for each state θ ∈ ΘSEP , where Ds is set

of profiles of sector-s marginal orderings induced by ΘSEP .
13The result of Theorem 6 holds for any suitable refinement of the Nash equilibrium.
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Since ϕ (θ) is not an empty set, by definition, it follows that NE (Γ2, R2 (θ)) and

ϕ1 (θ) are not empty. Constrained monotonicity∗ is defined as follows.

Definition 11 Let Γ2 and Θ∗ be given. The SCR ϕ : Θ∗ � A1 × A2 is constrained

monotonic* provided that ∀ (a1, a2) ∈ A1 × A2 and ∀θ ∈ Θ∗, if (a1, a2) ∈ ϕ (θ),

then there exists m2 ≡ m2
ϕ (θ, (a1, a2)) ∈ NE (Γ2, R2 (θ)) such that parts (i)—(ii) of

constrained monotonicity are satisfied with respect to this m2.

Constrained monotonicity∗ differs from constrained monotonicity in only one as-

pect: the sector-2 message profilem2
ϕ (θ, (a1, a2)) is a Nash equilibrium strategy profile

for (Γ2, R2 (θ)). Nevertheless, constrained monotonicity∗ is equivalent to constrained

monotonicity.

Theorem 6 Let Γ2 be given. The SCR ϕ : Θ∗ � A1×A2 is constrained monotonic∗

if and only if it is constrained monotonic.

Proof. Let Γ2 be given. Clearly, constrained monotonicity∗ implies constrained

monotonicity. Thus, suppose that ϕ is constrained monotonic. We show that it

is constrained monotonic∗. Fix any θ ∈ Θ∗ and any (a1, a2) ∈ A1 × A2 such that

(a1, a2) ∈ ϕ (θ). Constrained monotonicity implies that there exists m2 ∈ M2 such

that g2 (m2) = a2 and proj2
{
Li,m2

−i
(θ, (a1, a2))

}
= g2

(
M2

i ,m
2
−i
)
for all i ∈ I. To ob-

serve that ϕ is constrained monotonic∗, it suffi ces to show that m2 ∈ NE (Γ2, R2 (θ)).

To this end, fix any i ∈ I. Since proj2
{
Li,m2

−i
(θ, (a1, a2))

}
= g2

(
M2

i ,m
2
−i
)
and

since R2i (θ) is a sector-2 marginal ordering induced by θ ∈ Θ∗, it follows that

g2
(
M2

i ,m
2
−i
)
⊆ Li (R

2 (θ) , a2). Since the choice of agent i is arbitrary, we obtain

m2 ∈ NE (Γ2, R2 (θ)), as we aimed to achieve.

Remark 1 Theorem 6 also holds in the case in which Θ∗ = ΘSEP .

Constrained monotonicity continues to be a necessary and almost suffi cient con-

dition for constrained implementation in the case in which the sector-1 designer does
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not care at all about sector 2. This situation can be modeled by defining the SCR

ϕ : Θ � A1 × A2 by ϕ (θ) = ϕ1 (θ)× g2 (M2), for all θ ∈ Θ, where ϕ1 : Θ � A1 is a

(nonempty) correspondence.14 The reason is that the designer of sector 1 still needs

to condition the outcome of the sector-1 mechanism to strategies played by agents in

sector 2 because, for example, there are complementarities between sectors.

As already noted at the beginning of this subsection, constrained monotonicity

is equivalent to sector-1 monotonicity provided that agents’preference orderings are

fully separable, the SCR ϕ is decomposable, and Γ2 implements the sector-2 SCR in

Nash equilibrium or in one of its refinements.

Definition 12 The sector-1 SCR ϕ1 : Θ � A1 is sector-1 monotonic provided that

∀ (a1, a2) ∈ A1 × A2 and ∀θ, θ′ ∈ Θ, if a1 ∈ ϕ1 (θ) and

Li
(
R1
[
θ, a2

]
, a1
)
⊆ Li

(
R1
[
θ′, a2

]
, a1
)
∀i ∈ I,

then a1 ∈ ϕ1 (θ′).

We now pose the following question: are there cases in which sector-1 monotonic-

ity is equivalent to or implies constrained monotonicity? The following examples

summarize our answers.

Example 4 Let us consider the case in whichA2 = {a2} and ϕ (θ) = ϕ1 (θ)×g2 (M2),

for all θ ∈ Θ, where ϕ1 : Θ � A1 is a (nonempty) correspondence. In this setting,

constrained monotonicity is equivalent to sector-1 monotonicity. Since A2 = {a2},

one can easily observe that constrained monotonicity implies sector-1 monotonicity.

For the converse, take any θ ∈ Θ and any a1 ∈ A1 such that (a1, a2) ∈ ϕ (θ). Part

(i) of constrained monotonicity is satisfied, since, by definition of Γ2, there exists

m2 ∈ M2 such that g2 (m2) = a2 and proj2

{
Li,m2

−i
(θ, (a1, a2))

}
= {a2} for each

agent i ∈ I. Next, take any θ′ ∈ Θ so that Li,m2
−i

(θ, (a1, a2)) ⊆ Li,m2
−i

(θ′, (a1, a2))

for each i ∈ I. Since (a1, a2) ∈ ϕ (θ), it follows that a1 ∈ ϕ1 (θ). Moreover, given

14This result holds without restricting our attention to Θ∗.
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that the set Li,m2
−i

(
θ̄, (a1, a2)

)
is equivalent to Li

(
R1
[
θ̄, a2

]
, a1
)
for each θ̄ ∈ Θ,

where R1
[
θ̄, a2

]
is the profile of marginal orderings induced by a2 under θ̄, we obtain

Li (R
1 [θ, a2] , a1) ⊆ Li (R

1 [θ′, a2] , a1) for each i ∈ I. Sector-1 monotonicity implies

that a1 ∈ ϕ1 (θ′), and thus, (a1, a2) ∈ ϕ (θ′), by definition of ϕ.

Example 5 For the same reason shown in the above example, constrained monotonic-

ity is equivalent to sector-1 monotonicity when Γ2 is a constant mechanism, that is,

when g2 (m2) = a2 ∈ A2 for all m2 ∈M2.

Example 6 Let Θ = ΘSEP . Let Γ2 be given. Let ϕ2 : D2 � A2 denote a

sector-2 SCR, where D2 is set of profiles of sector-2 marginal orderings induced by

ΘSEP . Assume that Γ2 implements ϕ2 in Nash equilibrium, that is, ϕ2 (R2 (θ)) =

g2◦NE (Γ2, R2 (θ)) for all θ ∈ ΘSEP . Define ϕ by ϕ (θ) = ϕ1 (θ)×g2◦NE (Γ2, R2 (θ))

for each θ ∈ ΘSEP .

Let us show that constrained monotonicity is implied by sector-1 monotonic-

ity. Suppose that ϕ1 is sector-1 monotonic. Suppose that (a1, a2) ∈ ϕ (θ) for

some θ ∈ ΘSEP . Then, by definition of ϕ, there exists m2 ∈ NE (Γ2, R2 (θ)) such

that g2 (m2) = a2. Moreover, since Θ = ΘSEP , by assumption, it follows that

proj2

{
Li,m2

−i
(θ, (a1, a2))

}
= g2

(
M2

i ,m
2
−i
)
for each i ∈ I. Thus, ϕ satisfies part (i) of

constrained monotonicity. To verify part (ii), take any θ′ ∈ ΘSEP and suppose that

Li,m2
−i

(θ, (a1, a2)) ⊆ Li,m2
−i

(θ′, (a1, a2)) for each i ∈ I. We show that (a1, a2) ∈ ϕ (θ′).

Let us first show that m2 ∈ NE (Γ2, R2 (θ′)). Fix any agent i and any m̂2
i ∈ M2

i .

Since m2 ∈ NE (Γ2, R2 (θ)), it follows that a2Ri (θ) g
2
(
m̂2
i ,m

2
−i
)
. Since θ ∈ ΘSEP ,

we obtain
(
a1, g2

(
m̂2
i ,m

2
−i
))
∈ Li,m2

−i
(θ, (a1, a2)) ⊆ Li,m2

−i
(θ′, (a1, a2)). Then, by our

supposition that θ′ ∈ ΘSEP , it follows that a2R2i (θ′) g2
(
m̂2
i ,m

2
−i
)
. Since the choice of

m̂2
i , as well as that of agent i, is arbitrary, one can observe thatm

2 ∈ NE (Γ2, R2 (θ′)),

as we aimed to achieve.

Next, let us show that a1 ∈ ϕ1 (θ′). Note that a1 ∈ ϕ1 (θ), by definition of ϕ. Fix

any b1 ∈ A1 and any i ∈ I. Let us show that a1R1i (θ) b1 =⇒ a1R1i (θ′) b1. Suppose
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that a1R1i (θ) b1. Then, since θ ∈ ΘSEP , it follows that (a1, g2 (m2))Ri (θ) (b1, g2 (m2)).

Since Li,m2
−i

(θ, (a1, a2)) ⊆ Li,m2
−i

(θ′, (a1, a2)), it follows that (a1, g2 (m2))Ri (θ
′) (b1, g2 (m2)).

Again, since θ ∈ ΘSEP , we obtain a1R1i (θ′) b1. Since the choice of b1, as well as that

of agent i, is arbitrary, we obtain ∀i ∈ I, ∀b1 ∈ A1, a1R1i (θ) b1 =⇒ a1R1i (θ′) b1.

Sector-1 monotonicity implies that a1 ∈ ϕ1 (θ′).

Finally, since we have established that a2 ∈ g2 ◦NE (Γ2, R2 (θ′)) and a1 ∈ ϕ1 (θ′),

it follows that (a1, a2) ∈ ϕ (θ′), by definition of ϕ.

It is noteworthy that sector-1 monotonicity implies decomposability of ϕ when

Θ = ΘSEP and Γ2 implements ϕ2 : D2 � A2 in Nash equilibrium. The reason is that

for each sector s = 1, 2, as ∈ ϕs (θ′) if as ∈ ϕs (θ) and Rs (θ) = Rs (θ′) ∀i ∈ I.

7. Concluding remarks

In this study, we investigate the theory of implementation pioneered by Maskin (1999)

under the assumption that some dimensions of the design problem are fixed and the

designer works under this constraint. Specifically, the designer’s constraint is repre-

sented by mechanisms “solving”implementation problems linked to the implementa-

tion problem at hand. Under the simplifying assumption that there are two sectors,

issues, or objects, we assume that the dimension of sector 2 of the design problem is

fixed. We denote this constraint by Γ2. The implementation problem of the designer

consists of designing a mechanism for sector 1, Γ1, with the property that for any

type of agents’preferences, the set of Nash equilibrium outcomes of Γ1×Γ2 coincides

with the set of ϕ-optimal outcomes. If this design exercise can be accomplished, the

SCR is said to be constrained implementable.

We identify a necessary condition for constrained implementation, named con-

strained monotonicity. This condition is a strengthened version of monotonicity.

Furthermore, under an auxiliary condition, we show that constrained monotonicity

is suffi cient for constrained implementation. This result is obtained under the infor-
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mational assumption that the designer can use the private information elicited from

agents via Γ2 to make a socially optimal decision for sector 1. Unlike the negative

result of Hayashi and Lombardi (2017), our suffi ciency result does not rule out any

kind of complementarity between the two sectors.

This main result is obtained by imposing a very stringent assumption: there is

complete information among agents. This assumption is not often met in reality.

Moreover, the mechanism used in constructing the proof inherits all limitations of

Nash implementation. Indeed, the devised mechanism has several technical problems,

in addition to having strategy spaces that are diffi cult to interpret. For more on these

limitations, see, in particular, Jackson (1992), Abreu and Matsushima (1992), and

more recently Ollár and Penta (2017). The main result we obtain must be thought

of as providing a theoretical benchmark; its applicability should not be exaggerated.

Appendix

Proof of Theorem 3

Let Γ2 = (M2, g2) be given. Take any constrained monotonic SCR ϕ : Θ � A1 × A2

satisfying constrained no veto power. Let us define Γ1 = (M1 ×M2, g1) as follows.

For all i ∈ I, agent i’s action space is defined by:

M1
i = Θ× A1 × A2 × {0, 1, ..., n} .

Let m1
i = (θi, a1i, a2i, ki) denote a typical element of M1

i . The outcome function g
1 is

defined by the following four rules.

∀ (m1,m2) ∈M1 ×M2,

Rule 1: If m1
j = (θ̄, a1, a2, 0) for all j ∈ I, (a1, a2) ∈ ϕ

(
θ̄
)
and m2 = m2

ϕ

(
θ̄, (a1, a2)

)
,

then (g1 × g2) (m1,m2) = (a1, g2 (m2)), where m2
ϕ

(
θ̄, (a1, a2)

)
is the sector-2 message

specified by part (i) of constrained monotonicity.
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Rule 2: For all i ∈ I, if each agent j ∈ I\ {i} plays m1
j = (θ̄, a1, a2, 0), with (a1, a2) ∈

ϕ
(
θ̄
)
, and, moreover, for each j ∈ I\ {i}, m2

j coincides with the jth coordinate

of m2
ϕ

(
θ̄, (a1, a2)

)
, and agent i plays m1

i = (θi, a1i, a2i, ki) 6= (θ̄, a1, a2, 0), m2
i does

not coincide with the ith coordinate of m2
ϕ

(
θ̄, (a1, a2)

)
, or both, then there are the

following two cases.

1. If (a1, a2)Ri

(
θ̄
)

(a1i, g2 (m2)), then (g1 × g2) (m1,m2) = (a1i, g2 (m2)).

2. Otherwise, let (g1 × g2) (m1,m2) = (b1, g2 (m2)) such that (a1, a2)Ri

(
θ̄
)

(b1, g2 (m2))

for some b1 ∈ proj1
{
Li,g2,m2

−i

(
θ̄, (a1, a2)

)}
, which is not empty by part (i) of

constrained monotonicity.

Rule 3: Otherwise, a modulo game is played: divide the sum
∑

i∈I k
i by the cardi-

nality of I and identify the remainder, which can be 0, 1, · · · , or n − 1. The agent

i∗ with the same index of the remainder is declared the winner of the game and the

alternative implemented is (g1 × g2) (m1,m2) =
(
a1i
∗
, g2 (m2)

)
, with the convention

that the winner is agent n if the remainder is 0.

Fix any θ ∈ Θ. We show that ϕ (θ) = (g1 × g2)(NE(Γ1 × Γ2, θ)). Let us first

show that ϕ (θ) ⊆ (g1 × g2)(NE(Γ1 × Γ2, θ)). Fix any (a1, a2) ∈ ϕ (θ). Part (i)

of constrained monotonicity implies that there is m2 = m2
ϕ (θ, (a1, a2)) such that

g2 (m2) = a2, and proj2
{
Li,m2

−i
(θ, (a1, a2))

}
= g2

(
M2

i ,m
2
−i
)
, for each i ∈ I. Then,

let m1
i = (θ, a1, a2, 0), for each i ∈ I, and let agent i ∈ I play m2

i . Then, (m1,m2)

falls into Rule 1, and thus, (g1 × g2) (m1,m2) = (a1, a2). Note that no agent can

induce Rule 3. In addition, note that each agent can induce Rule 2 by unilaterally

deviating from (m1,m2). Since no agent can benefit by unilaterally deviating from

(m1,m2)– since every agent i ∈ I can obtain outcomes only in Li,m2
−i

(θ, (a1, a2)), it

follows that (m1,m2) ∈ NE (Γ1 × Γ2, θ), as we aimed to achieve.
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For the converse, take any (m1,m2) ∈ NE (Γ1 × Γ2, θ). We proceed according to

the following cases.

Case 1: (m1,m2) falls into Rule 1.

Then, the outcome is (g1 × g2) (m1,m2) = (a1, a2). Take any agent i ∈ I. First, it

can be easily checked that agent i can never induce Rule 3. Second, by part (i) of

constrained monotonicity, take any

b2 ∈ proj2
{
Li,m2

−i

(
θ̄,
(
a1, a2

))}
= g2

(
M2

i ,m
2
−i
)
. (3)

Then, there is m̂2
i ∈ M2

i such g
2
(
m̂2
i ,m

2
−i
)

= b2. Moreover, take any b1 ∈ A1 such

that (a1, a2)Ri

(
θ̄
)

(b1, b2)– note that there exists b1 such that (a1, a2)Ri

(
θ̄
)

(b1, b2)

since (3) holds, by part (i) of constrained monotonicity. By changing (m1
i ,m

2
i ) into

(m̂1
i , m̂

2
i ), agent i induces part (1) of Rule 2 and obtains (b1, b2). Since the choice of

(b1, b2), as well as that of agent i, is arbitrary, it follows that

Li,m2
−i

(
θ̄,
(
a1, a2

))
⊆
(
g1 × g2

) ((
M1

i ,m
1
−i
)
,
(
M2

i ,m
2
−i
))
∀i ∈ I. (4)

Since (m1,m2) ∈ NE ((Γ1 × Γ2, θ)), it follows from (4) that

Li,m2
−i

(
θ̄,
(
a1, a2

))
⊆ Li,m2

−i

(
θ,
(
a1, a2

))
∀i ∈ I.

Part (ii) of constrained monotonicity implies that (g1 × g2) (m1,m2) ∈ ϕ (θ), as we

aimed to achieve.

Case 2: (m1,m2) falls into Rule 2.

Fix any agent j ∈ I\ {i}. Take any m̂2
j ∈ M2

j and any c
1 ∈ A1. Then, by changing(

m1
j ,m

2
j

)
into

(
m̂1
j , m̂

2
j

)
, where m̂1

j =
(
θ̄, c1, g2

(
m̂2
j ,m

2
−j
)
, kj
)
and kj 6= 0, agent j

can induce Rule 3. To obtain
(
c1, g2

(
m̂2
j ,m

2
−j
))
, agent j has only to adjust kj by

which he becomes the winner of the modulo game. Since the choice of
(
c1, m̂2

j

)
, as

well as that of agent j ∈ I\ {i}, is arbitrary, we established that any agent j ∈ I\ {i}

can induce any outcome of A1 × g2
(
M2

j ,m
2
−j
)
. Since (m1,m2) ∈ NE (Γ1 × Γ2, θ), it

32



follows that A1 × g2
(
M2

j ,m
2
−j
)
⊆ Lj,g2,m2

−j
(θ, (g1 × g2) (m1,m2)), for all j ∈ I\ {i}.

Constrained no veto power implies that (g1 × g2) (m1,m2) ∈ ϕ (θ), as we aimed to

achieve.

Case 3: (m1,m2) falls into Rule 3.

Fix any agent i ∈ I. Take any m̂2
i ∈ M2

i and any b
1 ∈ A1. Suppose that for all

j ∈ I\ {i}, (θj, a1j, a2j, kj) =
(
θ̄, a1, a2, k

)
for some 0 ≤ k ≤ n. It is clear that

agent i can induce Rule 3 and obtain
(
b1, g2

(
m̂2
i ,m

2
−i
))
when k 6= 0. Then, let

k = 0. Since (m1,m2) falls into Rule 3, it follows that (a1, a2) /∈ ϕ
(
θ̄
)
or m2

j does

not coincide with the jth coordinate of m2
ϕ

(
θ̄, (a1, a2)

)
, for some agent j ∈ I\ {i} -

otherwise, (m1,m2) would fall either into Rule 1 or into Rule 2. Since |Θ| ≥ 2, by

assumption, take any θ̃ 6= θ̄. By changing (m1
i ,m

2
i ) into (m̂1

i , m̂
2
i ) such that m̂

1
i =(

θ̃, b1, g2
(
m̂2
i ,m

2
−i
)
, ki
)
, agent i can induce Rule 3. To obtain

(
b1, g2

(
m̂2
i ,m

2
−i
))
,

agent i has only to adjust ki by which he becomes the winner of the modulo game.

Thus, let us consider the case in which (θj, a1j, a2j, kj) 6=
(
θh, a1h, a2h, kh

)
for some

j, h ∈ I\ {i}, with j 6= h. In this case, note that agent i can always induce Rule 3

by playing ki 6= 0. In addition, note that agent i can freely determine the winner of

the modulo game by playing an appropriate integer ki 6= 0.15 It follows that agent

i can obtain the outcome
(
b1, g2

(
m̂2
i ,m

2
−i
))
. Since the choice (b1, m̂2

i ), as well as

the choice of agent i, is arbitrary, any agent i ∈ I can induce any outcome in A1 ×

g2
(
M2

i ,m
2
−i
)
. Since (m1,m2) ∈ NE (Γ1 × Γ2, θ), it follows that A1× g2

(
M2

i ,m
2
−i
)
⊆

Li,g2,m2
−i

(θ, (g1 × g2) (m1,m2)), for all i ∈ I. Constrained no veto power implies that

(g1 × g2) (m1,m2) ∈ ϕ (θ), as we aimed to achieve.

15Note that if agent i needs to achieve the remainder of
(∑

j∈I\{i}k
j
)
/n , he can obtain it by

playing ki = n.

33



References

[1] Abreu, D., Matsushima, H., 1992. Virtual Implementation in Iteratively Undom-

inated Strategies: Complete Information. Econometrica 60, 993-1008.

[2] Diamantaras, D., Wilkie, S., 1994. A generalization of Kaneko’s ratio equilibrium

for economies with private and public goods. J. Econ. Theory 62, 499-512.

[3] Dutta, B., Sen, A., 1991. A necessary and suffi cient condition for two-person

Nash implementation. Rev. Econ. Stud. 58, 121-128.

[4] Hayashi, T., Lombardi, M., 2017. Implementation in partial equilibrium. J Econ

Theory 169, 13-34.

[5] Hayashi, T., Lombardi, M., 2018. One-step-ahead implementation. J Math Econ,

forthcoming.

[6] Hayashi T., Sakai T., 2009. Nash implementation of competitive equilibria in the

job-matching market. Intern. J. Game Theory 38, 453-467.

[7] Kaneko, M., 1977. The ratio equilibrium and a voting game in a public goods

economy. J. Econ. Theory 16, 123-136.

[8] Jackson, M.O., 1992. Implementation in Undominated Strategies: A Look at

Bounded Mechanisms. Rev. Econ. Stud. 59, 757-775.

[9] Jackson, M.O., Palfrey, T., Srivastava, S., 1994. Undominated Nash implemen-

tation in bounded mechanisms. Games Econ Behav 6, 474-501.

[10] Jackson, M.O., 2001. A crash course in implementation theory. Soc. Choice Wel-

fare 18, 655-708.

[11] Lombardi, M., Yoshihara, N., 2013. A full characterization of Nash implementa-

tion with strategy space reduction. Econ. Theory 54, 131-151.

34



[12] Moore, J., Repullo, R., 1990. Nash implementation: A full characterization.

Econometrica 58, 1083-1100.

[13] Maskin, E., 1999. Nash equilibrium and welfare optimality. Rev. Econ. Stud. 66,

23-38.

[14] Maskin, E., Sjöström, T., 2002. Implementation theory. In: K. Arrow, A.K. Sen,

K. Suzumura (Eds), Handbook of Social Choice and Welfare, Elsevier Science,

Amsterdam, 2002, 237—288.

[15] Ollár, M., Penta, A., 2017. Full implementation and belief restrictions. Am. Econ.

Rev. 107, 2243—2277.

[16] Schmeidler, D., 1980. Walrasian analysis via strategic outcome functions. Econo-

metrica 48, 1585-1593.

[17] Sjöström, T., 1991. On the necessary and suffi cient conditions for Nash imple-

mentation. Soc. Choice Welfare 8, 333-340.

[18] Svensson, L.-G., 1991. Nash Implementation of Competitive Equilibria in a

Model with Indivisible Goods. Econometrica 59, 869-877.

35


	Cover Sheet (AFV)
	189355

