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Abstract

Nested optimization problems arise when an agent must take into account
the effect of their decisions on their own future behavior, or the behavior of
others. In these problems, calculating marginal costs and benefits involves
differentiating the solutions to nested problems. But are these solutions
differentiable functions? We develop a tool called Reverse Calculus, and
establish first-order conditions for (i) a Stackelberg leader considering the
follower’s best response function, (ii) a sovereign borrower considering its
own future default policy, and (iii) non-convex dynamic programming prob-
lems.

Keywords: first-order conditions; non-convex dynamic programming; Stackelberg prob-
lems; unsecured credit

1 Introduction
A fundamental insight of economics is that optimal choices occur where marginal
benefit equals marginal cost. In simple economies, both sides of this first-order con-
dition are exogenous, and can be assumed to exist. In recursive macroeconomies,
the marginal benefit of preparing for the future is endogenous, and envelope the-
orems have established its existence in well-behaved convex settings. But there are

*Earlier versions of this paper circulated under the titles “Envelope Theorems for Non-Smooth
and Non-Concave Optimization” and “A General and Intuitive Envelope Theorem.” We are very
grateful to Michael Elsby, Philipp Kircher, Dirk Krueger, Tzuo Hann Law, George Mailath,
Jochen Mankart, Steven Matthews, Nirav Mehta, Guido Menzio, Leonard Mirman, Kurt Mitman,
John H. Moore, Georg Nöldeke, Andrew Postlewaite, Kevin Reffett, José-Victor Ríos-Rull, Felipe
Saffie, József Sákovics, Ilya Segal, Shouyong Shi, Philip Short, Jonathan Thomas, Xi Weng, Tim
Worrall, and Mark Wright for fruitful discussions. We thank all of the referees for their insightful
comments, especially the one who suggested we restructure our paper around the Differentiable
Sandwich Lemma. Email: andrew.clausen@ed.ac.uk and cs@carlostrub.ch.

1



many other important economic problems in which policy or value functions appear
in optimization objectives or constraints. In these nested optimization problems,
it is unknown whether first-order conditions are applicable.

Threats to first-order conditions. Jumps can arise in objective functions even
if all of the model primitives are continuous. For example, consider the Stackel-
berg duopoly game, which we study in detail in Section 3.1. The follower’s policy
function appears inside the leader’s objective function. Several conditions (such
as strictly convex costs) are required to ensure that the follower’s policy function
is continuous. Otherwise, the follower’s policy function is discontinuous, so the
leader’s objective function is not continuous, let alone differentiable.

Kinks can arise in objective functions even if all model primitives are differen-
tiable. This occurs when a continuous choice is taken along side a discrete choice.
For example, consider a Stackelberg leader who can build his factory in China
or Europe. Assume each location has a differentiable cost function. Despite this
assumption, the firm’s overall cost function has a kink at the quantity where both
locations are equally costly.

Hidden jumps and kinks arise when the objective is differentiable, but ingredi-
ents such as benefit and cost are not. For example, suppose that the Stackelberg
leader does not know the follower’s cost curve. He assigns probabilities to two
different follower cost curves, and hence to two different leader benefit functions.
Even if the expected benefit of selling output is differentiable, this does not imply
that the ex post benefit curves are differentiable. They might have kinks or jumps
that cancel each other out. In this case, it is impossible to write a meaningful
first-order condition involving marginal costs and marginal benefits.

Boundary problems arise when decision makers prefer to make boundary choices,
such as exhausting capacity constraints. Since first-order conditions only apply to
interior solutions, economists often steer decision makers to the interior by impos-
ing Inada conditions. This is problematic as the relevant envelope theorems depend
on placing uniform bounds on derivatives. In other words, economists wishing to
apply first-order conditions have an uncomfortable choice between (i) assuming
Inada conditions hold to ensure that all solutions are interior, or (ii) assuming
that Inada conditions do not hold, to ensure that derivatives exist.

These threats are common place in important economic problems. For example,
all four threats arise in the unsecured credit market model of Arellano (2008),
which we study in Section 3.2. First, the borrower’s future default policy appears
in his objective, because it determines default risk and hence interest rates. There
is no a priori reason why his policy would be differentiable. Second, the borrower
has a discrete choice – whether to honour or default on debts owed – leading to
kinks in his value function. Third, even if the objective is differentiable, the default
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policy and value function might have jumps or kinks that cancel each other out.
Fourth, Arellano focuses on a utility function that satisfies the Inada conditions.
These four features of Arellano’s model pose difficulties to applying existing tools.

Techniques. We devise a recipe that addresses these threats to first-order condi-
tions. The recipe makes use of two new techniques. Our Differentiable Sandwich
Lemma reformulates a classical result about subderivatives in simple form that
is useful for establishing first-order conditions.1 It establishes that a function F is
differentiable at a point c̄ if it is sandwiched between two differentiable functions
U and L, as depicted in Figure 1a. Specifically, the lemma applies if the two func-
tions, which we call differentiable upper and lower support functions, satisfy (i)
U(c̄) = F (c̄) = L(c̄), (ii) U(c) ≥ F (c) ≥ L(c) for all c, and (iii) L and U are dif-
ferentiable at c̄. Our lemma accommodates functions that are neither continuous
nor differentiable in any open neighbourhood of c̄, as depicted in Figure 1b.

U(c)

L(c)

c

F (c)

c̄

(a) F is differentiable at c̄

U(c)

L(c)
c

F (c)

c̄

(b) F is differentiable at c̄

c
ĉ

F (c)

U(c)

v(c, d1) v(c, d2)

(c) Upper support at a max

Figure 1: Differentiable Sandwich Lemma

The Differentiable Sandwich Lemma has a natural economic interpretation. Sup-
pose a decision maker wants to choose c to maximise F (c). If F lacks a differen-
tiable upper support function at c, then F is “better-than-differentiable” in the
following sense: every differentiable function that correctly values c will undervalue
some choices near c. Similarly, if F lacks a differentiable lower support function
at c, then it is “worse-than-differentiable”, i.e. every differentiable function that
correctly values c will overvalue some choices near c. If F is not an objective
function, then a similar interpretation is possible, where “better” or “worse” de-
pends on whether bigger quantities are better or worse for the decision maker.

1 Specifically, Rockafellar and Wets (1998, Proposition 8.5) establish that a function is sub-
differentiable if and only if it has a differentiable lower support function. (See Clausen and Strub
(2016, Appendix F) for a simpler proof.) It is then straightforward to show that a function is
differentiable if and only if it is both sub- and superdifferentiable; see Kruger (2003).
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The Differentiable Sandwich Lemma establishes that F is either differentiable,
worse-than-differentiable, or better-than-differentiable at c.2

The lemma is well suited to studying optimal choices. Suppose that the decision
maker must make a continuous choice c ∈ R followed by a discrete choice d ∈ D.
Assume that his utility function v(c, d) is differentiable in c for each discrete choice
d. Let F (c) = maxd∈D v(c, d) be the value after choosing c. Notice that at an
optimal choice (ĉ, d̂), the value function is sandwiched between the horizontal line
U(c) = F (ĉ) and v(·, d̂). This sandwich is depicted in Figure 1c, where d̂ = d2. The
differentiable upper support function rules out F being better-than-differentiable
at ĉ – otherwise, there would be a better choice near ĉ. The differentiable lower
support function rules out F being worse-than-differentiable at ĉ, because the
optimal discrete choice d̂ is available near ĉ. Thus, the Differentiable Sandwich
Lemma establishes that F is differentiable at ĉ. Milgrom and Segal (2002, Corollary
2) previously drew this conclusion for the special case that {v(·, d)}d∈D is equi-
differentiable and has uniformly bounded derivatives. Their redundant conditions
conflict with Inada conditions. In contrast, our Differentiable Sandwich Lemma is
applicable to problems with discrete choices and Inada conditions. 3

Our second and most novel innovation, Reverse Calculus, is the opposite of
normal calculus. Whereas normal calculus establishes that H(c) = F (c) +G(c) is
differentiable if F and G are differentiable, Reverse Calculus establishes that F
and G are differentiable if H is differentiable. The main requirement for Reverse
Calculus is that each ingredient function must have an appropriate differentiable
support function. For example, if H(c) = F (c) + G(c), then we require F and
G have differentiable lower support functions f and g at c̄, depicted in Figure 2.
Under these conditions, F is sandwiched between f and H − g, and is therefore
differentiable at c̄. Similarly, G is differentiable at c̄. We develop a Reverse Cal-
culus for many standard operations, including addition, multiplication, function
composition and upper envelopes.
Reverse calculus is well suited to studying nested optimization problems in which
the objective involves the solutions to other optimization problems. In these prob-
lems, it is insufficient to establish that the objective function (e.g. H) is differenti-
able. Meaningful first-order conditions require us to establish that all of the nested
solution functions (e.g. F and G) are differentiable.

We combine these two tools into a recipe for deriving first-order con-
ditions in nested optimization problems. Previous tools either focused on
establishing the differentiability of value functions (as in the envelope theorems of

2 Note that a function can be both better and worse than differentiable, e.g. F (c) = c sin 1
c

at c = 0.
3 Our result accommodating Inada conditions has been applied in computational research.

Fella (2014) uses our Theorem 5 to construct a value function interpolation algorithm. Fella’s
algorithm has been adapted to higher dimensions by Druedahl and Jørgensen (2017).
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Figure 2: Reverse calculus: F is differentiable at c̄.

Mirman and Zilcha (1975); Benveniste and Scheinkman (1979); Milgrom and Segal
(2002)), or of policy functions in smooth concave problems (Araújo and Scheink-
man (1977); Santos (1991)). The first half of the recipe applies the Differentiable
Sandwich Lemma to establish that the objective is differentiable at optimal choices.
The second half of the recipe applies Reverse Calculus to establish that the nested
solution functions are differentiable at optimal choices. The main ingredient re-
quired for using the recipe is the collection of differentiable upper or lower support
functions, one for each nested solution function.

How are these support functions to be found? One approach is based on “lazy
decision maker” constructions that involve unreactive policy functions. Benveniste
and Scheinkman’s (1979) applied this strategy to construct a differentiable lower
support function for value functions. This is a special case of a more general ap-
proach of constructing optimistic or pessimistic valuations. For example, in our
analysis of unsecured credit markets, we construct support functions for optimal
default rules based on a pessimistic value of honoring debts. Similarly, we con-
struct a support function for a Stackelberg follower policy based on pessimistic
beliefs about when the follower is capacity constrained.

Outline. Section 2 formally specifies and proves the lemmas used in the recipe.
Section 3.1 describes our recipe for deriving first-order conditions using a Stack-
elberg duopoly as a running example. Section 3.2 applies the recipe to Arellano’s
model of unsecured credit markets. Section 3.3 provides an elementary proof of
the Benveniste and Scheinkman (1979) envelope theorem for convex dynamic pro-
gramming problems. Section 3.4 uses our recipe to establish first-order conditions
in non-convex stochastic dynamic programming problems. Section 4 concludes. Ap-
pendix A presents Reverse Calculus rules for convex combinations and function
composition.
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2 Techniques
This section presents the techniques used in our recipe, namely the Differentiable
Sandwich Lemma and Reverse Calculus, as well as a lemma for constructing the
top half of sandwiches.

2.1 Differentiable Sandwich Lemma
The Differentiable Sandwich Lemma establishes that if a function F : C → R
is sandwiched at some point c̄ between two differentiable functions, then F is
differentiable at c̄. The domain is typically a subset of Rn, although we can study
the (Fréchet) differentiability of functions on any Banach space.

Lemma 1 (Differentiable Sandwich Lemma). Let N ⊆ C be an open neighbourhood
of c̄. If

(i) U(c̄) = F (c̄) = L(c̄),

(ii) U(c) ≥ F (c) ≥ L(c) for all c ∈ N , and

(iii) L and U are differentiable at c̄,

then F is differentiable at c̄ with F ′(c̄) = L′(c̄) = U ′(c̄).

Proof. The difference function d(c) = U(c)−L(c) is locally minimized at c̄. There-
fore, d′(c̄) = 0 and we conclude L′(c̄) = U ′(c̄).

Let m = L′(c̄) = U ′(c̄). For all ∆c with c̄+∆c ∈ N ,

L(c̄+∆c)− F (c̄)−m∆c

∥∆c∥

≤ F (c̄+∆c)− F (c̄)−m∆c

∥∆c∥
≤ U(c̄+∆c)− F (c̄)−m∆c

∥∆c∥
. (1)

Consider the limits as ∆c → 0. Since L′(c̄) = U ′(c̄) = m, the limits of the first
and last fractions are 0. By Gauss’ Squeeze Theorem, we conclude that the limit
in the middle is also 0, and hence that F is differentiable at c̄ with F ′(c̄) = m.

2.2 Maximum Lemma
In optimization problems, the top half of the sandwich can be constructed as a
horizontal line (or hyperplane) through the maximum (see Figure 3c).

Lemma 2 (Maximum Lemma). Let ϕ : C → R be a function. If ĉ ∈ int(C)
maximises ϕ, then U(c) = ϕ(ĉ) is a differentiable upper support function of ϕ.
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2.3 Reverse Calculus
Calculus involves rules such as “if F and G are differentiable at c̄, then H(c) =
F (c) + G(c) is also differentiable at c̄.” Reverse calculus rules go in the opposite
direction. We provide the most important rules here, and additional rules for con-
vex combinations and more general function composition in Appendix A. We omit
the corresponding rules for subtraction and division, which involve both upper and
lower support functions.

Lemma 3 (Reverse Calculus). Suppose F : C → R, and G : C → R have
differentiable lower support functions f , and g respectively at c̄.

(i) If H(c) = F (c) +G(c) is differentiable at c̄, then F is differentiable at c̄.

(ii) If H(c) = F (c)G(c) is differentiable at c̄ and F (c̄) > 0 and G(c̄) > 0, then
F is differentiable at c̄.

(iii) If H(c) = max {F (c), G(c)} is differentiable at c̄ and F (c̄) = H(c̄), then F
is differentiable at c̄.

(iv) If H(c) = J(F (c)) is differentiable at c̄ and J : R → R is continuously
differentiable at F (c̄) with J ′(F (c̄)) ̸= 0, then F is differentiable at c̄.

Proof. Let f and g be differentiable lower support functions of F and G at c̄. For
(i)–(iii), we sandwich F between f and an appropriate differentiable upper support
function U and apply the Differentiable Sandwich Lemma (Lemma 1). Appropriate
upper support functions are (i) U(c) = H(c) − g(c), (ii) U(c) = H(c)/g(c), and
(iii) U(c) = H(c).

For (iv), F (c) = J−1(H(c)) is differentiable at c̄ by the inverse function theorem
and the chain rule.

3 Applications
3.1 Stackelberg Duopoly
This section illustrates our recipe for deriving first-order conditions in a model
of Stackelberg duopoly. The model is very simple, so the reader can focus on
understanding the recipe.

In Stackelberg duopoly games, the leader’s first-order condition involves the de-
rivative of the follower’s policy function. But this first-order condition is only valid
if the follower’s policy is differentiable (at the leader’s optimal quantity). Other
related problems are explored by Kydland and Prescott (1977) and Ljungqvist and
Sargent (2012, Chapter 19).
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We study a Stackelberg duopoly in which the follower is capacity constrained,
and the leader does not know the follower’s cost function. The leader chooses her
output y1 first. Then the follower chooses his output y2, subject to an exogenous
capacity constraint y2 ≤ Y . The leader pays a production cost of C(y1, a). The
follower is either productive or unproductive, and pays a production cost of C(y2, b)
or C(y2, c). The follower knows his own cost function z ∈ {b, c}, but the leader
only knows the probability pz of the function C(·, z) occurring. The output is sold
at the market price, P (y1+y2). If firm i has the cost function Cz, he earns a profit
of π(y1, y2, i, z) = yiP (y1 + y2) − C(yi, z). The follower chooses y2 = f(y1, z) by
solving

f(y1, z) = arg max
y2

π(y1, y2, 2, z) (2)

and the leader chooses y1 to maximise

ϕ(y1) =
∑

z∈{b,c}

pzπ(y1, f(y1, z), 1, a) =
∑

z∈{b,c}

pzy1P (y1 + f(y1, z))− C(y1, a). (3)

Can we write down necessary first-order conditions for these choices? If so, the
follower’s and leader’s first-order conditions would be

P (y1 + ŷ2) + P ′(y1 + ŷ2)ŷ2 = Cy2(ŷ2, z) and (4)∑
z∈{b,c}

pz [P (ŷ1 + f(ŷ1, z)) + P ′(ŷ1 + f(ŷ1, z))(1 + fy1(ŷ1, z))ŷ1] = Cy1(ŷ1, a). (5)

But do the derivatives fy1(ŷ1, z) of the follower’s policies exist? We can not simply
assume the follower chooses differentiable policies. In fact, each policy has a kink
where he would voluntarily choose the maximum capacity, as depicted in Figure 3a.
We will show that these kinks are better-than-differentiable for the leader, because
the capacity constraint only ever makes the follower respond less aggressively.
These kinks are reflected in the leader’s objective as better-than-differentiable
kinks, and are depicted in Figure 3b. We will show that the leader avoids these
better-than-differentiable kinks, because there are better choices nearby. We con-
clude that the leader chooses a differentiable point, and first-order conditions hold.

Two remarks are in order. First, the leader’s uncertainty about the follower’s
costs turns out to be straightforward in this example – all kinks in the follower’s
policies carry into the leader’s objective, so no kinks are hidden by kink can-
cellation. But it is not always this trivial. For example, in the unsecured credit
application in Section 3.2, the budget constraint contains both better- and worse-
than-differentiable kinks.

Second, suppose we had imposed a minimum quantity instead of a capacity
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constraint. To keep things simple, assume the follower’s costs are publicly known.
Like before, the follower’s policy would have a kink where he voluntarily chooses
the minimum quantity. However, the kink would now be worse-than-differentiable
for the leader, because the constraint makes the follower react more aggressively
to the leader’s output choice. The leader might therefore choose this kink, because
the nearby choices provoke a non-differentiably aggressive reaction. In this case,
first-order conditions do not hold at the leader’s optimal choice.

y1

y2

Y

1 5 9

(a) Follower’s policies

y1

ϕ

1 5 9

(b) Leader’s profit

y1

ϕ1

1 5 9

U(y1)

L(y1)

(c) Differentiable sandwich at
ŷ1

Figure 3: A Stackelberg duopoly

Theorem 1. Assume the demand function P and cost functions C(·, z) are twice
differentiable, and strictly concave and convex respectively. If (ŷ1, ŷ2(b), ŷ2(c)) are
equilibrium quantities, then (i) ϕ, f(·, b) and f(·, c) are differentiable at ŷ1, and
(ii) ŷ1 satisfies (5).

Proof. The proof is a simple example of the following recipe used in all of the
applications.

Ingredients: Differentiable support functions. We construct differential
support functions for the leader’s objective and the follower’s policy, to rule out
them being worse-than-differentiable for the leader at ŷ1.

First, we construct a differential upper support function F (·, b) for f(·, b) at
ŷ1. From the leader’s point of view, f(·, b) is better than the differentiable policy
F (·, b) because it involves less aggressive competition. Thus, we will rule out f(·, b)
being worse-than-differentiable at ŷ1. Now, f(·, b) is the lower envelope of the con-
stant policy Y and the unconstrained best response policy, i.e. it selects the less
aggressive of the two policies at ŷ1. Since the less aggressive policy is more aggress-
ive than f(·, b), it is an upper support function at ŷ1. Moreover, it is differentiable
because both policies are differentiable (under the assumptions above). We con-
clude that the less aggressive policy is a differentiable upper support function for
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f(·, b) at ŷ1. A similar argument applies to construct a differentiable upper support
function F (·, c) for f(·, c) at ŷ2.

Second, we construct a differential lower support function L for the leader’s
objective ϕ at ŷ1. Since F (·, z) is more aggressive than fz, it leads to lower profits
to the leader. Therefore L(y1) =

∑
z∈{b,c} pzy1P (y1 + F (y1, z)) − C(y1, a) is a dif-

ferentiable lower support function for ϕ.

Step 1: Upper support function. The constant function U(y1) = ϕ(ŷ1) is a
differentiable upper support function for ϕ at ŷ1. This rules out ϕ being better-
than-differentiable at ŷ1 – otherwise there would be a better choice than ŷ1 nearby.

Step 2: Apply the Differentiable Sandwich Lemma. The support functions
L and U form a sandwich around ϕ, as illustrated in Figure 3c. By the Differentiable
Sandwich Lemma, the leader’s objective is differentiable at ŷ1 with ϕ′(ŷ1) = U ′(ŷ1).
Since U ′(ŷ1) = 0, we deduce the first-order condition ϕ′(ŷ1) = 0.

Step 3: Apply Reverse Calculus. However, we have not yet established (5),
which is a more useful first-order condition. In particular, we have not yet de-
termined whether the policies f(·, b) and f(·, c) are differentiable at ŷ1. This is a
Reverse Calculus problem: we have established that the left side of (3) is differ-
entiable, and we would now like to infer that f(·, b) and f(·, c) on the right side
are differentiable. Absent the leader’s uncertainty about z, this problem could be
solved by applying the Implicit Function Theorem to (3). With uncertainty, it is
possible that neither term is differentiable, but the sum is differentiable, e.g. if the
first term were better-than-differentiable, and the second term were worse-than-
differentiable.

In the ”ingredients” step, we have ruled out the policies f(·, b) and f(·, c) being
worse-than-differentiable at ŷ1. Reverse Calculus will rule out them being better-
than-differentiable at ŷ1 – otherwise there would be a better choice than ŷ1 nearby.
First, we apply the reverse summation rule from Lemma 3. The right side of (3) is
the sum of three terms, each of which has a differentiable lower support function.
(The first of these functions is y1 7→ pby1P (y1 + F (y1, b)).) The rule then implies
that each term is differentiable at ŷ1.

We apply Reverse Calculus rules from Lemma 3 as follows:

• By the reverse product rule, P (y1 + f(y1, b)) is differentiable at ŷ1.

• By the reverse chain rule, y1 + f(y1, b) is differentiable at ŷ1.

• By the reverse summation rule, f(·, b) is differentiable at ŷ1.

A similar procedure establishes that f(·, c) is differentiable at ŷ1.
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3.2 Unsecured Credit
Our second application is about unsecured debt contracts where borrowers may
decide either to repay in full or to default. The borrower uses debt to smooth
consumption against endowment shocks. We focus on markets without collateral
such as sovereign debt. The punishment for default is exclusion from the credit
market thereafter. Nevertheless, default occasionally occurs so interest paid by the
borrower must compensate for the default risk. For this reason, the interest charged
is non-linear and determined by a recursive relationship with the borrower’s value
function. If the interest rates are low, then the borrower’s value of honouring debt
contracts is high because rolling over debt is cheap. Conversely, if the borrower’s
value of repaying is high tomorrow, then the default risk today is low. This recursive
relationship determines interest rates as a function of loan sizes.

All four threats to first-order conditions from the introduction are present.
First, the borrower’s future default policy appears in his objective, because it
determines default risk and hence interest rates. There is no a priori reason why his
policy would be differentiable. Second, the borrower has a discrete choice – whether
to honour or default on debts owed – leading to kinks in his value function. Third,
even if the objective is differentiable, the default policy and value function might
have jumps or kinks that cancel each other out. Fourth, we impose (problematic)
Inada conditions so that the borrower makes interior consumption choices.

We find that both nested solution functions – the value function and the interest
rate – are differentiable at optimal debt choices, except when the borrower exhausts
his risk-free credit. Hence, we derive a first-order condition involving a marginal
interest rate and a marginal continuation value. We use this condition to prove
that the borrower never exhausts his (risky) credit limit.

We sketch the logic behind these results. First, consider the risk-free limit, i.e.
the largest loan which is repaid with certainty. Imagine the borrower decreasing his
loan to this limit. We prove that the default probability abruptly stops decreasing
at zero. Hence, the interest rate abruptly stops decreasing at the risk-free rate.
This kink is worse-than-differentiable, and the borrower might choose it.

All remaining kinks are better-than-differentiable, so the borrower would never
choose such a kink – there is a better choice nearby. First, consider the value
function. It has kinks at states where the borrower is indifferent between honouring
our defaulting on debt. But these kinks are better-than-differentiable, because at
nearby states, the borrower chooses the better of honouring or defaulting.

But what about the risky part of the interest rate function? The default policy
can be described in terms of the default/honour frontier. This frontier is depicted
in Figure 4a, where debt is on the horizontal axis, and the endowment shock on
the vertical axis. We just argued that the value of honouring debt only contains
better-than-differentiable kinks, i.e. kinks where any differentiable function under-
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values honouring promises. These kinks lead to better-than-differentiable kinks in
the honour frontier, i.e. kinks where any differentiable function misclassifies some
nearby honour states as default states. Thus, the interest rate function only has
kinks that are better-than-differentiable. Our main conclusions then follow.

We build on the unsecured credit analysis by Arellano (2008) which is in the
tradition of Eaton and Gersovitz (1981). Arellano carefully analyses it theoretic-
ally and numerically. She also sketches a Laffer curve for the debt choice, but –
without first-order conditions – does not characterise borrower behaviour along
it. One paper by Aguiar, Amador, Hopenhayn and Werning (2019) derives first-
order conditions for a simple example, where it is possible to avoid differentiating
any policy functions. The following three papers apply some Euler equations, with
the first explicitly acknowledging that they lack justification for differentiating the
interest rates with respect to loan size. We provide a justification. Aguiar and Gop-
inath (2006) dropped a detailed discussion of their heuristic Euler equation from
their nber working paper version. Similarly, Arellano and Ramanarayanan (2012)
use heuristic Euler equations to compare maturity structures of loans. Finally,
Hatchondo and Martinez (2009) discuss an Euler equation, implicitly assuming
differentiability of interest rates.

Model. A risk-averse borrower has a differentiable utility function u and dis-
count factor β ∈ (0, 1). The borrower’s marginal value of consumption at zero is
infinite, i.e. limc→0+ u1(c) = ∞. Every period, the borrower receives an endow-
ment x which is independently and identically distributed with density f(·) on the
support [xmin, xmax]. We assume the borrower’s endowment is bounded away from
zero, i.e. xmin > 0. To smooth out endowment shocks, the borrower may take out
loans from a lender with deep pockets. We focus our attention on debt contracts
of the following form. The borrower promises to pay a lender b′ in the follow-
ing period, although both understand that the borrower only has an incentive to
honour the promise if tomorrow’s x′ lies in some set H ′. Thus, a debt contract
consists of (b′, H ′). The lender is risk-neutral, discounts time at the same rate, and
is therefore willing to pay β

∫
H′ f(x

′) dx′b′ in return for the promise. If the bor-
rower defaults – regardless of whether x′ ∈ H ′ – he is excluded from credit markets
thereafter. We also accommodate an additional exogenous sanction of s ≥ 0 units
of consumption every period for defaulting, which reflects the difficulty of settling
non-financial transactions without credit.4 The borrower’s autarky value after de-

4 Exogenous sanctions are often included in unsecured credit models, so we include them
to show the generality of our technique. Without them, Bulow and Rogoff (1989) show that
exclusion from credit markets alone is an insufficient punishment for enforcing debt contracts if
the borrower can make private investments.
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faulting is
A(x) = u(x− s) + β

∫
A(x′)f(x′)dx′. (6)

The lender only agrees to the contract (b′, H ′) if the borrower has an incentive
to honour the promise for the proposed endowmentsH ′. Specifically, the borrower’s
value of repaying b′ at an honour endowment x′ ∈ H ′, denoted V (b′, x′), should
not be less than the autarky value A(x). The borrower’s value of honouring debts
is therefore5

V (b, x) = sup
c,b′,H′

u(c) + β

∫
max {A(x′), V (b′, x′)} f(x′)dx′,

s.t. c+ b = x+

[
β

∫
H′

f(x′) dx′
]
b′,

V (b′, x′) ≥ A(x′) for all x′ ∈ H ′,
b′ ≤ bponzi.

(7)

The last constraint rules out Ponzi schemes and the bponzi parameter may be ar-
bitrarily large.

Reformulation. We reformulate this problem by making two simplifications.
First, Arellano (2008, Proposition 3) established that because x is iid, the honour
set H ′ chosen by the borrower is determined by a cut-off rule y(·) so that the bor-
rower honours his debt at state (b′, x′) if and only if x′ ≥ y(b′). In other words, the
borrower only ever chooses debt contracts of the form (b′, H ′) = (b′, [y(b′), xmax]),
so debt contracts are characterised by b′ alone. This means we may denote the
price of debt q(b′) as a function of b′. Second, we substitute the budget constraint
into the objective, so that the borrower’s only choice is his future debt obligation
b′. The reformulated problem becomes

V (b, x) = sup
b′≤bponzi

ϕ(b′; b, x), (8)

5 We mention some technicalities: (i) the borrower should be constrained to choosing a meas-
urable honour set, and (ii) since we focus on first-order conditions, we take it for granted that
the value function in the sequence problem is the unique solution to the Bellman equation.
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where

ϕ(b′; b, x) = u(x− b+ q(b′)b′) + βW (b′), (9a)

W (b′) =

∫
max {A(x′), V (b′, x′)} f(x′)dx′, (9b)

q(b′) = β[1− F (y(b′))], (9c)
y(b′) = min

({
x′ ∈ [xmin, xmax] : V (b′, x′) ≥ A(x′)

}
∪ {xmax}

)
. (9d)

We denote optimal policy functions by b̂′(b, x).6
The objective (9a) has two nested solution functions, q and W , which we will

show are not globally differentiable. The value function W has downward kinks at
states of indifference between honouring and defaulting, as depicted in Figure 1c.
Similarly, we have no a priori knowledge of the differentiability of the debt price
q.

We will follow the four steps of the recipe to establish that at optimal choices,
first-order conditions hold and that ϕ(·, b, x), q and W are differentiable. However,
we find that there is one exception: the debt price exhibits an upward kink at the
risk-free credit limit. This means that first-order conditions are inapplicable when
the borrower chooses to exhaust his risk-free credit limit.

b′

x′

xmax

xmin

honour

b∗

y(·)

b̄′

default

(a) Borrowers default when x′ < y(b′)

b′

x′

honour

b∗ b̄′

y(b̄′)

ȳ(b′; b̄′)

default

(b) A “pessimistic” borrower undervalues
honouring debts, and defaults too much

Figure 4: The default cut-off rule

Ingredients: Differentiable Lower Support Functions. The most import-
ant ingredient of the recipe is providing appropriate differentiable support func-
tions for the nested solution functions to rule out worse-than-differentiable kinks.
The borrower prefers to sell his promises at high prices which must reflect low de-
fault probabilities, and he prefers high continuation values. Therefore, ruling out

6 The borrower might be indifferent between several optimal policies.
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worse-than-differentiable kinks involves finding differentiable lower support func-
tions for the debt price q(·) and the continuation value W (·), and a differentiable
upper support function for the default cut-off rule y(·).

For debts below some threshold b∗, the borrower always honours his obligations,
so the cut-off y(·) is constant and hence differentiable on (−∞, b∗). At each debt
level b̄′ > b∗, we now construct a differentiable upper support function for y(·). We
consider a pessimistic borrower that undervalues honouring debts, and hence uses
a higher cut-off than y(·). Specifically we consider a pessimistic borrower who in-
correctly anticipates the state to be (b′, x′) = (b̄′, y(b̄′)), i.e. he anticipates his state
will be on the cut-off. In unanticipated states, he chooses his debt to be b̂′′(b̄′, y(b̄′))
independently of the realized endowment x′. His consumption is adjusted by the
differences from the anticipated endowment and debt. This pessimistic borrower’s
value function is

L(b′, x′; b̄′) = u(x′ − b′ + q(b̄′′)b̄′′) + βW (b̄′′). (10)

Since the pessimistic borrower undervalues honouring debts, his honour cut-off
ȳ(·; b̄′) implicitly defined by

L(b′, ȳ(b′; b̄′); b̄′) = A(ȳ(b′; b̄′)) for all b′ (11)

provides an upper support function for the cut-off y(·) at b̄′ that involves defaulting
too often, depicted in Figure 4b. Since the pessimistic borrower’s value function
is differentiable, the implicit function theorem implies that ȳ(·; b̄′) is differentiable
with y1(b̄

′; b̄′) > 1 for all b̄′ > b∗.7
Thus far, we have established that the slope of the cut-off y(·) is zero approach-

ing the risk-free limit b∗ from the left, but greater than one approaching b∗ from
the right. Therefore, the cut-off has a worse-than-differentiable kink at b∗, and it
has no differentiable upper support function at this point. This means we have
established:
Lemma 4. At every b̄′ ̸= b∗, there exists a differentiable upper support function
ȳ(·; b̄′) for y(·), and hence a differentiable lower support function q(·; b̄′) for q(·).
Moreover, y(·) has a worse-than-differentiable kink at b∗ with 0 = y′(b∗−) < 1 <
y′(b∗+).
To construct a differentiable lower support function for W , we begin by construct-
ing a differentiable lower support function for V (b′, x′). However, this time, we use

7 Applying the implicit function theorem to (11) gives

ȳ1(b̄
′; b̄′) =

u1(c̄′(b̄
′, y(b̄′)))

u1(c̄′(b̄′, y(b̄′)))− u1(y(b̄′)− s)
> 1.
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a lazy borrower’s value function that differs from the pessimistic value function
used to construct (10). The lazy borrower correctly anticipates x′, but incorrectly
anticipates b′ to be b̄′. He takes on a debt of b̄′′(x′) = b̂′′(b̄′, x′) independently of his
previous obligation of b′. His value function is

M(b′, x′; b̄′) = u(x′ − b′ + q(b̄′′(x′))b̄′′(x′)) + βW (b̄′′(x′)). (12)

This means that,

W (b′; b̄′) = A(x′) +

∫ xmax

ȳ(b′;b̄′)

[
M(b′, x′; b̄′)− A(x′)

]
f(x′) dx′ (13)

is a lower support function for W at b̄′. We would like to establish that W (·; b̄′) is
differentiable. First, M(·, x′; b̄′) is continuously differentiable for all (x′, b̄′). Second,
we note that without loss of generality, we may assume some optimal policy b̂′′(·, ·)
is measurable, and hence the resulting lazy policy b̄′′(·) is also measurable.8 Third,
the measurability of the lazy policy implies that M1(b

′, ·; b̄′) is measurable for all
(b′, b̄′). Moreover, it is possible to show that M1(b

′, ·; b̄′) is uniformly bounded for
all b′ in some open neighbourhood of b̄′. Hence the Leibniz rule for differentiating
under the integral sign implies that W (·; b̄′) is differentiable at b′ = b̄′ with9

W 1(b
′; b̄′) =

∫ xmax

ȳ(b′;b̄′)

M1(b̄
′, x′; b̄′)f(x′) dx′. (14)

This means we have established:

Lemma 5. At every b̄′, there exists a differentiable lower support function W(·; b̄′)
for W .

Combining the differentiable support functions for q and W from Lemma 5 and
Lemma 4, we conclude that for all (b, x) and all b̄′ ̸= b∗, the function

b′ 7→ u(x− b+ q(b′; b̄′)b′) + βW(b′; b̄′) (15)

is a differentiable lower support function for ϕ(·; b, x) at b̄′.
We now have all the ingredients ready to apply the recipe.

Theorem 2. Suppose ĉ(·, ·) and b̂′(·, ·) are optimal policies for (8).10 Fix any state
(b, x) and let b̂′ = b̂′(b, x). Then either

8See the Measurable Maximum Theorem in Aliprantis and Border (2006, Theorem 18.19).
9 See for example Weizsäcker (2008, Theorem 4.6).
10 Note that c does not appear in (8). It is shorthand for x− b+ q(b′)b′.
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(i) b̂′ = b∗, or

(ii) b̂′ < b∗ and b̂′ satisfies the first-order condition

u1(ĉ(b, x)) = βW1(b̂
′) =

∫
u1(ĉ(b

′, x′)f(x′) dx′, (16)

and the value function W is differentiable at b̂′, or

(iii) b̂′ > b∗ and b̂′ satisfies the first-order condition

u1(ĉ(b, x))(q(b̂
′) + q1(b̂

′)b̂′) = βW1(b̂
′), (17)

and the nested functions W , q and y are differentiable at b̂′ with

W1(b̂
′) =

∫ xmax

y(b̂′)

u1(ĉ(b̂
′, x′))f(x′) dx′, (18)

q1(b̂
′) = −βF1(y(b̂

′))y1(b̂
′), (19)

y1(b̂
′) =

u1(ĉ(b̂
′, y(b̂′)))

u1(ĉ(b̂′, y(b̂′)))− u1(y(b̂′)− s)
. (20)

Proof. The first case does not involve any first-order conditions. We apply the
recipe for the other two cases.

Step 1. At the optimal choice b̂′ = b̂′(b, x), the borrower’s objective ϕ(·; b, x) has
a trivial upper support function U(b′; b, x) = ϕ(b̂′, b, x).

Step 2. At b̂′, the borrower’s objective ϕ(·; b, x) is sandwiched between (15) and
U(·; b, x). So, the Differentiable Sandwich Lemma (Lemma 1) implies the bor-
rower’s objective is differentiable at the optimal debt choice b̂′.

Step 3. Repeated application of Reverse Calculus (Lemma 3) implies that W

(in the second case) or W , q and y (in the third case) are differentiable at b̂′.11

11 We repeatedly apply Lemma 3 as follows. First, we apply rule (i) (summation) to (9a) to
establish that both terms, b′ 7→ u(x− b+ q(b′)b′) and b′ 7→ βW (b′) are differentiable at b̂′. Hence
W is differentiable at b̂′. If b̂′ < b∗, then we know that q(b′) = β, so we stop here, giving the
second case. Otherwise we are in the third case, and we continue. We apply rule (iv) (function
composition) to b′ 7→ u(x − b + q(b′)b′), which establishes that b′ 7→ q(b′)b′ is differentiable at
b̂′. Next, we apply rule (ii) (multiplication) to establish that q is differentiable at b̂′. This also
means that both sides of (9c) are differentiable. So we apply rule (iv) (function composition) to
the right side, b′ 7→ β[1− F (y(b′))] and conclude that y is differentiable at b̂′.
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The first-order condition (17) can be interpreted as follows. The borrower equates
the marginal benefit of owing debt with the marginal cost. The marginal cost con-
sists of the expected marginal utility of the foregone consumption when repaying
the following period (when the endowment shock is above the default cut-off). The
marginal benefit consists of the marginal utility of consumption times the marginal
revenue from promising an extra payment to the lender. Reverse calculus allows
us to quantify the marginal revenue of promises. Specifically, when promising an
extra payment, the honour probability decreases according to q1, which reflects an
increase in the default cut-off of y1.

Also note that the theorem gives formulae for all derivatives. In particular all
prices and marginal prices can be written in terms of quantities. This means it is
possible to write the first-order condition in terms of quantities only, which can be
helpful in computational work.12

b′

q(b′)b′

b∗∗b∗

(a) Laffer curve for debt

q(b′)b′

1
q(b′)

q(b∗∗)b∗∗q(b∗)b∗

risk-free rate 1/β

(b) Endogenous interest rate

Figure 5: Characterisation of endogenous borrowing

Credit Limits. We now turn our attention to the borrower’s behaviour near the
credit limit. The amount the lender is willing to pay, q(b′)b′ in return for a promise
of b′ is not an increasing function. This is because there are two types of empty
promises: b′ = 0, and b′ so large it is never honoured. The borrower’s return on
promises therefore follows a Laffer curve, depicted in Figure 5a. The borrower’s
credit limit is the maximum of this curve, q(b∗∗)b∗∗, where

b∗∗ = arg max
b′

q(b′)b′. (21)

We apply the recipe for this new optimisation problem. If b∗∗ > b∗, then we have
already constructed a differentiable lower support function for q at b∗∗, so the

12 A FOC without prices is u1(ĉ(b, x))[1− F (y(b̂′))− F1(y(b̂
′))y1(b̂

′)b̂′] = W1(b̂
′).
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Differentiable Sandwich Lemma (Lemma 1) together with the Reverse Calculus
Lemma (Lemma 3) imply that q is differentiable at b∗∗ with

q(b∗∗) + q1(b
∗∗)b∗∗ = 0. (22)

Substituting this into the Euler equation (17), we see that the marginal benefit
of taking on debt at b∗∗ is zero, while the marginal cost is positive. Therefore, we
conclude

Theorem 3. For any given model primitives, either

(i) the overall and risk-free credit limits coincide, i.e. b∗∗ = b∗, or

(ii) the overall credit limit is higher and exhausting it is suboptimal, i.e. b∗∗ > b∗

and b̂′(b, x) < b∗∗ for all states (b, x).

This conclusion is a logical generalisation of behaviour in Aiyagari’s (1994) model.
Both here and there, the borrower reaches the risk-free credit limit with positive
probability. In the model we study, the overall credit limit is potentially higher,
as the borrower has the additional possibility of taking out risky loans. However,
behaviour near the two credit limits is strikingly different. Below the risk-free limit,
the interest rate 1/q(b′) remains constant as the loan size q(b′)b′ increases. Above
the risk-free limit, the interest rate increases as the borrower takes on more debt
and increases the default risk, as depicted in Figure 5b. This difference accounts
for why borrowers might exhaust their risk-free limit, but not their overall limit.

Arellano (2008, Figure 2) plots a similar Laffer curve as in Figure 5a. Possibly
for computational reasons, her curve is smooth and does not depict the upward
kink of the Laffer curve at the risk-free limit, b∗. She does not apply first-order
conditions along the Laffer curve.

Final Remarks. Our main contributions here are: (i) establishing that first-
order conditions – involving derivatives of both policy functions and value func-
tions – hold at optimal choices, (ii) providing formulas for these derivatives, so
(marginal) prices can be written in terms of quantities, and (iii) applying the
same logic to a Laffer curve for debt, concluding that borrowers do not exhaust
their credit limits.

Others have applied these techniques to study various issues in both consumer
and sovereign credit markets; see Jeske, Krueger and Mitman (2013) and Müller,
Storesletten and Zilibotti (2016).

To keep the analysis simple, we assumed that shocks are iid. This condition
was important for Arellano (2008) to establish that the default policy is a cut-off
rule. More generally, persistent shocks cause interest rates to depend on the shock
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in addition to the size of the loan, which is crucial for understanding how credit
markets operate when borrowers are distressed.

There are two potential ways to accommodate persistent shocks. First, Chatter-
jee, Corbae, Nakajima and Ríos-Rull (2007, Theorem 3) established that two-sided
cut-off rules are optimal in an environment with persistent shocks. We conjecture
that it is possible to construct differentiable support functions for the two cut-offs,
and use this to construct a differentiable upper support function for the repayment
probability.

Second, we could assume that all persistence is summarised by a finite Markov
chain. The shock x would be drawn from a distribution determined by a Markov
state, such as “boom” or “recession”. There would be one cut-off rule for each
Markov state, and hence one risk-free credit limit for each state. Hence there
would be multiple debt-levels where first-order conditions are inapplicable.

3.3 Convex Dynamic Programming
Benveniste and Scheinkman (1979) study value functions in smooth convex dy-
namic programming problems, but not policy functions. Their main theorem es-
tablishes that value functions in this setting are differentiable. The Differentiable
Sandwich Lemma leads to an elementary proof of their theorem.
Problem 1. Consider the following dynamic programming problem:

V (c) = sup
c′∈{c̄′:(c,c̄′)∈Γ}

u(c, c′) + βV (c′), (23)

where the domain of V is C. We assume that (i) Γ is a convex subset of C × C,
(ii) u is concave, and (iii) u(·, c′) and u(c, ·) are differentiable, respectively.
Theorem 4 (Benveniste-Scheinkman Theorem). If ĉ′ is an optimal choice at state
c ∈ int({c̄ : (c̄, ĉ′) ∈ Γ}), then V is differentiable at c with Vc(c) = uc(c, ĉ

′).

Proof. V is concave because u is concave and Γ is convex. Hence, the supporting
hyperplane theorem can be applied to the hypograph of V to construct a linear
upper support function U that touches V at c. We construct the differentiable lower
support function L(c) = u(c, ĉ′) + βV (ĉ′). Lemma 1 delivers the conclusions.

Graduate economics textbooks such as Stokey and Lucas (1989) do not provide
a self-contained proof of this theorem. Our proof is short and elementary, and
therefore suitable for junior graduate students. The original proof is based on a
sandwich lemma, which Benveniste and Scheinkman (1979) prove with the help of
Rockafellar (1970, Theorem 25.1). (Their lemma imposes a redundant assumption,
that the lower support function be concave.) Mirman and Zilcha (1975, Lemma 1)
prove a one-dimensional special case using Dini derivatives rather than sandwiches.
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3.4 Non-Convex Dynamic Programming
In this section, we study a more general class of stochastic dynamic programming
problems. We drop all convexity assumptions, and we accommodate discrete choice
sets and uncertainty. As discussed in the introduction, discrete choices can lead
to kinks, and the expectations operator can hide problematic kinks. Nevertheless,
we establish that recursive first-order conditions hold at optimal choices. This
is true for two reasons. First, discrete choices only ever introduce better-than-
differentiable kinks – it is always feasible for the decision maker to stick with a
particular discrete choice when the state changes, so any deviation from this must
be favourable. Second, since all kinks point in the same direction (i.e. better-than-
differentiable), kink cancellation does not occur when calculating expectations.

Problem 2. Each period, a household chooses (c′, d′) ∈ Ω, where c′ ∈ Rn are
continuous choices and d′ are discrete choices. The state variable consists of the
previous period’s choices (c, d) as well as an exogenous Markov state θ ∈ Θ with
transition matrix π. We assume that the per-period utility u(c, c′; d, d′; θ) is differ-
entiable with respect to c and c′. The set of combinations of states and feasible
choices is denoted Γ. The Bellman equation is

V (c, d, θ) = sup
c′,d′

u(c, c′; d, d′; θ) + β
∑
θ′∈Θ

πθθ′V (c′, d′, θ′),

s.t. (c, c′; d, d′; θ) ∈ Γ,

where the domain of V is Ω×Θ.

Suppose that ω(c, d, θ) is an optimal choice vector at the state (c, d, θ).

Definition 1. Fix any state (c, d, θ), and consider the optimal choices (c̄′, d̄′) =
ω(c, d, θ) and (c̄′′(θ′), d̄′(θ′)) = ω(c̄′, d̄′, θ′) for the following two periods. Then the
set of feasible one-shot deviations from c̄′ is

Λ(c, d, θ) =
{
c′ : (c, c′; d, d̄′; θ) ∈ Γ, and for all θ′, (c′, c̄′′(θ′); d′, d̄′′(θ′); θ′) ∈ Γ

}
.

Theorem 5. Let (ĉ′, d̂′) = ω(c, d, θ) be optimal choices at state (c, d, θ). If ĉ′ is an
interior choice, i.e. ĉ′ ∈ int(Λ(c, d, θ)), then (i) V (·, d̂′) is differentiable at ĉ′ and
(ii) ĉ′ satisfies the first-order condition

−uc′(c, ĉ
′; d, d̂′; θ) = β

∑
θ′

πθθ′ Vc(ĉ
′, d̂′, θ′) = β

∑
θ′

πθθ′ uc(ĉ
′, ĉ′′(θ′); d̂′, d̂′′(θ′); θ′),

where (ĉ′′(θ′), d̂′′(θ′)) = ω(ĉ′, d̂′, θ′).
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Proof. We assumed that ĉ′ maximises

ϕ(c′) = u(c, c′; d, d̂′; θ) + β
∑
θ′∈Θ

πθθ′V (c′, d̂′, θ′), (24)

where the domain of ϕ is Λ(c, d, θ).
Ingredients. We prepare the ingredient support functions. V has a differen-

tiable lower support function at (ĉ′, d̂′, θ′),

v(c′, d̂′, θ′) = u(c′, ĉ′′(θ′); d′, d̂′′(θ′), θ′) + β
∑
θ′′∈Θ

πθ′θ′′V (ĉ′′(θ′), d̂′′(θ′), θ′′). (25)

This leads to a differentiable lower support function for ϕ at ĉ′, namely

L(c′) = u(c, c′; d, d̂′; θ) + β
∑
θ′∈Θ

πθθ′v(c
′, d̂′, θ′).

Since we assumed ĉ′ is an interior choice, v and L are well-defined in an open
neighbourhood of ĉ′.

Step 1. ϕ has a differentiable upper support function at ĉ′, namely U(c′) = ϕ(ĉ′).

Step 2. ϕ is sandwiched between L and U at ĉ′. By the Differentiable Sandwich
Lemma, ϕ is differentiable at ĉ′ with ϕc′(ĉ

′) = Uc′(ĉ
′) = 0.

Step 3. The addition rule of Reverse Calculus implies that V is differentiable
with respect to c′ at each (ĉ′, d̂′, θ′).

Milgrom and Segal (2002, Corollary 2) proved a special case of this theorem in a
static context (when β = 0), and with two redundant assumptions, namely that
the utility function is equidifferentiable and the marginal utilities are uniformly
bounded. Milgrom and Segal make good use of these assumptions in establishing
global differentiability properties of value functions in their Theorem 3. But these
assumptions are redundant for studying first-order conditions.

Both conditions are problematic. The equidifferentiability condition is difficult
to check in infinite horizon dynamic problems. More importantly, the uniformly
bounded derivative condition conflicts with Inada conditions. Inada conditions are
often imposed to ensure first-order conditions hold by directing optimal choices
away from boundaries.

Milgrom and Segal (2002) impose these conditions in order to ensure that the
value function’s directional derivatives exist globally. Similarly, other papers make
assumptions including Lipschitz continuity (Clarke (1975)) and supermodularity
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(Amir, Mirman and Perkins (1991)) to ensure the existence of directional derivat-
ives. Our recipe does not make use of directional derivatives, so we can dispense
with these assumptions.

4 Conclusion
We can not assume that the solutions to nested optimization problems are smooth.
Nevertheless, we found that in some economic problems, it is optimal for decision
makers to choose from smooth parts of their menus. Nested optimization problems
come in many forms, so we do not provide a one-size-fits-all theorem. Instead, we
devised a recipe based on the Differentiable Sandwich Lemma. Applying the recipe
requires finding appropriate differentiable support functions.

There are potentially many ways to mix and match different constructions
of upper and lower halves of sandwiches. We used five constructions throughout,
namely (i) horizontal lines above maxima, (ii) supporting hyperplanes above con-
cave functions, (iii) Reverse Calculus, (iv) lazy value functions below rational value
functions, and (v) pessimistic cut-off rules. Of these constructions, only the Reverse
Calculus construction is truly unprecedented. The power of our approach derives
from the ability to combine these constructions, and the three-step recipe provides
an intuitive way to organise them. For example, the unsecured credit application
uses all but the supporting hyperplane construction.

There are also other possibilities that we did not explore. Decision makers can
be “lazy” in ways that lead to upper support functions, such as being lazily op-
timistic about future opportunities. In bargaining games, a lower support function
for one player’s value function leads to an upper support function for the other
player’s value function.

A Further Reverse Calculus Rules
This appendix provides two further Reverse Calculus rules that were not used in
the paper, but might be useful for other problems. Specifically, the rules relate to
convex combinations and function composition.

The rule for convex combinations is complicated, because the forward calculus
step is not obvious. The following lemma incorporates both a forward and reverse
calculus result.

Lemma 6. Suppose E : C → [0, 1], F : C → R, and G : C → R have differentiable
lower support functions e, f , and g respectively at c̄. Consider the function

H(c) = E(c)F (c) + (1− E(c))G(c).
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If F (c̄) > G(c̄), then

(i) The function h(c) = e(c)f(c) + (1− e(c))g(c) is a differentiable (local) lower
support function for H at c̄.

(ii) If H is differentiable at c̄, then e, f , and g are also differentiable at c̄.

Proof. Consider the two functions,

h(c) = e(c)f(c) + (1− e(c))g(c)

h̃(c) = E(c)f(c) + (1− E(c))g(c).

Since f(c̄) > g(c̄), we have that h(c) ≤ h̃(c), and hence h(c) ≤ H(c) in some open
neighbourhood of c̄. This establishes part (i).

For part (ii), we see that h̃ is differentiably sandwiched between h and H at c̄.
By the Differentiable Sandwich Lemma, h̃ is differentiable at c̄. This implies E(c) =
[h̃(c) − g(c)]/[f(c) − g(c)] is also differentiable at c̄. Therefore, both terms of H,
namely E(c)F (c) and (1−E(c))G(c), have differentiable lower support functions,
E(c)f(c) and (1− E(c))g(c), respectively. Part (i) of Lemma 3 implies that both
terms are differentiable at c̄, and hence F and G are differentiable at c̄.

Finally, we consider function composition of two functions, neither of which are
known to be differentiable a priori.

Lemma 7. If H(c) = J(K(c)) is differentiable at c̄, where

• J : R → R has an inverse J−1 and a differentiable lower support function
j(·) at K(c̄),

• K : R → R has an inverse K−1 and a differentiable lower support function
k(·) at c̄, and

• j′(K(c̄)) ̸= 0 and k′(c̄) ̸= 0,

then J and K are differentiable at K(c̄) and c̄ respectively.

Proof. We assume without loss of generality that j′(K(c̄)) > 0.13 We now establish
that this implies j−1 is a differentiable upper support function for J−1. To see this,
we evaluate the inequality j(c) ≤ J(c) at J−1(x) which gives

j(J−1(x)) ≤ J(J−1(x)) = x.

13 If j′(K(c̄)) < 0, then the lemma can be applied to H̃(c) = J̃(K(c)), where H̃(c) = − 1
H(c)+x0

and J̃(c) = − 1
J(c)+x0

, where x0 is a suitable constant to prevent division by zero near K(c̄). In
this case, j̃(c) = − 1

j(c)+x0
is a lower support function for J̃ with a strictly positive derivative

j̃′(c) = 1
[j(c)+x0]2

j′(c).
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Applying j−1 to both sides gives J−1(x) ≤ j−1(x).
We can express K(·) as a function of J and H as follows:

J−1(H(c)) = J−1(J(K(c))) = K(c).

This has a differentiable upper support function j−1(H(c)) at c̄. Thus K has dif-
ferentiable upper and lower support functions at c̄, and is therefore differentiable
by Lemma 1. Next, evaluating H(c) = J(K(c)) at c = K−1(x) gives

H(K−1(x)) = J(K(K−1(x))) = J(x),

so J is differentiable at K(c̄) by the chain rule and inverse function theorem.
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