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Abstract

This paper investigates endogenous network formation by heterogeneous agents. The
agents’ types determine the value of linking and we incorporate spillovers as utility
from indirect connections. We provide sufficient conditions for a class of networks
with sorting to be stable for low to moderate spillovers; with only two types these
networks are the unique pairwise stable ones. We also show that this sorting is
suboptimal for moderate to high spillovers despite otherwise obeying the conditions
for sorting in Becker (1973). This shows that in our sorted networks a tension between
stability and efficiency is present. We analyze a policy tool to mitigate suboptimal
sorting.
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1. Introduction1

Social relations and their network structures are fundamental in almost all as-2

pects of our lives: which jobs we get, how we perceive the world, the decisions we3

make, etc. (Jackson, 2019). A ubiquitous finding in studies of social relations is the4

tendency to form more ties with people similar to one-self, i.e. the pattern known5
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as sorting or homophily, see the meta-study McPherson et al. (2001). Pioneered by6

Becker (1973), economic research has contributed to the understanding of sorting7

by providing mathematically sufficient conditions for sorting in marriage- and labor8

markets to be stable and optimal. The essential condition for sorting is supermodu-9

larity. This condition entails complementarity in type is such that similar types gain10

higher value from linking than dissimilar ones. Previous research has not analyzed11

what implications supermodularity has for assortative matching in the context of12

networks, either with or without utility from indirect connections.13

We extend assortative matching to the context of networks. We demonstrate14

fundamental properties for a class of networks which we label as having sorted con-15

nectivity. We require these networks to satisfy the following conditions: perfect16

sorting such that all agents link only with agents of the same type; type-connectivity17

whereby any two agents of the same type are connected; and, no-link surplus whereby18

all available links are used. Intuitively, these networks maximize utility both at the19

individual and aggregate levels, conditional on perfect sorting. We show that net-20

works with sorted connectivity exist when the number of agents for each type exceeds21

the number of links allowed per agent and a regularity condition holds, see Proposi-22

tion 3.23

We provide a novel, parsimonious framework which unites the frameworks of com-24

plementarity between heterogeneous agents (Becker, 1973) and utility from indirect25

connections to friends of friends (Jackson and Wolinsky, 1996). In our setup every26

agent has, at most, a fixed number of links, which reflects limited amounts of time27

and effort.3 We investigate stability of networks in the following sense: no two agents28

can form and/or delete links in the network to improve their joint payoff (we allow29

for transfers of utility). Our central result is that if Becker’s condition for supermod-30

ularity holds and spillovers (i.e magnitude of utility from indirect connections) are31

low to moderate, then networks with sorted connectivity are stable; with only two32

types of agents it further holds that every stable network has sorted connectivity.33

See details in Theorem 1.34

We also investigate the efficiency for networks with sorted connectivity. For35

moderate to high spillovers and supermodularity we show that networks with sorted36

connectivity are inefficient. Therefore, we may refer to inefficient sorted networks37

as ‘under-connected’ as they have too little connectivity across types relative to the38

efficient networks. In the situation where there are only two types of agents, and39

3A limited number of partners is consistent with empirical research: Ugander et al. (2011) show
that the average number of social ties for the entire Facebook network is a few hundred, and likewise
Miritello et al. (2013) show the number of phone calls for millions of people is also limited.
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supermodularity holds, we strengthen the results: for low spillovers, networks with40

sorted connectivity are efficient – otherwise, networks with connectivity across types41

are efficient. Note that among these results, the latter is about global efficiency42

whereas the former is about comparative (relative) efficiency, see Theorem 2 for43

details.44

The complementarity captured by supermodularity resembles situations where45

more similarity in matches increases the joint utility. In these situations heterogeneity46

in type may refer to productive and non-productive capabilities as well as other47

characteristics with synergy between types. Natural examples include geography or48

language, as suggested by Church and King (1993). Matching contrary to these49

characteristics may lead to increased transaction costs or miscommunication and,50

therefore, to lower aggregate productivity. Another example is combined effects in51

skills – it could be that matching workers or students with similar skills results52

in higher joint utility, e.g. as in the classic O-ring model of Kremer (1993). A53

property of this complementarity is exogeneity; synergy depends only on agents’54

pre-defined types, not other parts of the matching/network. We note there are55

other kinds of homophily/sorting on exogenous characteristics, e.g. eye-color, height.56

However, these kinds of homophily are often based directly on mutual preference for57

similarity and do not require conditions on the joint utility. This difference often58

discussed as transferable versus non-transferable utility, where this paper uses the59

former framework.60

Our results show that Becker’s supermodularity condition is no longer sufficient61

for sorting to be either stable or efficient. This comes from the fact that agents face62

a trade-off between two sources of utility: on the one hand, complementarity implies63

that increased sorting leads to higher direct utility as links between similar agents are64

more valuable; on the other hand, positive spillovers entail that more sorting can lead65

to a loss of utility from indirect connections. Therefore, instability and inefficiency of66

sorting stems from the utility of indirect connections dominating complementarity,67

which imply that the stable networks are under-connected. However, when com-68

bined, our results show that if there are moderate spillovers and supermodularity,69

then networks with sorted connectivity are stable but inefficient. The reason is that70

the underlying thresholds governing the two properties are not identical. The intu-71

ition behind this incompatibility of stability and efficiency is that two agents forming72

and removing links will internalize the direct utility from sorting, but they do not73

internalize the utility from indirect connections for third party agents. We show by74

visual inspection that the scope for incompatibility (i.e. the region of ‘moderate’75

spillovers) widens as the number of agents grows and strength of complementarity76

increases. We demonstrate in Proposition 4 how to enact policies that curb exces-77
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sive sorting by leveraging contracts that make payoffs conditional on links. These78

new insights can help policymakers within organizations to design better internal79

networks by overcoming under-connectivity, e.g. between individuals within schools,80

corporations or organizations.81

The policy implications are easy to see in a stylized example. Suppose there are82

two islands with costly transportation from one to the other. If spillovers are moder-83

ate in the sense of our model, then the network is under-connected – no inhabitants84

of either island want to establish connections with inhabitants of the other island as85

their individual payoff is too small. Nevertheless, by paying agents to connect, every-86

one could be better off. That is, policies that foster connectivity across the islands87

can increase the efficiency of the underlying network. With more islands that are all88

disconnected, the problem can compound and thus the scope for policies increases.89

Although unrealistic, the results should translate to situations with high levels of ho-90

mophily combined with strong complementarity and/or many agents. For instance,91

new empirical work has already shown that a few connections between otherwise92

connected sub-communities in online social media can foster diffusion of information93

that otherwise would be unlikely (Park et al., 2018). Our model also helps us to94

understand the potential consequences of forming organizations that consist of dis-95

joint parts, e.g. school classes, company divisions. If the organizational parts are not96

encouraged to interact across affiliated parts, it may lead to no interaction (which is97

suboptimal), as the disjoint structure provides an implicit complementarity among98

members from the same part of the organization.99

This paper also makes a number of additional contributions towards the under-100

standing of assortative matching. We establish that supermodularity is sufficient for101

stable networks to contain a general pattern of sorting by type without utility from102

indirect connections, see Proposition 1. We also show that if the agent population103

is very large, then sorting is the unique strongly stable outcome (i.e. the core),104

when Becker’s complementarity condition holds and spillovers are not too high, see105

Proposition 5.4106

Literature. In what follows we review relevant literature and discuss our results in107

the context of the most related work. A seminal mathematical work on sorting and108

segregation is Schelling (1969, 1971). Although related, the modeling differences109

between Schelling’s spatial model and networks (or matchings) are stark; networks110

are more flexible and allow for connections between any individuals and utility from111

indirect connections. Two-sided matching captures agents from two distinct sides112

4The level of spillovers satisfies asymptotic independence in social connections.
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who match, e.g. in labor and dating markets. The inaugural study on sorting is113

Becker (1973), which has since been extended to a search setting with match frictions,114

see Shimer and Smith (2000) and a recent review in Chade et al. (2017). Most of115

the earlier work on sorting investigates two-sided matching but we use a one-sided116

matching model. The research on one-sided assortative matching has been limited to117

formation of partnerships and clubs, which correspond respectively to one-to-one and118

many-to-many matchings (Farrell and Scotchmer, 1988; Kremer, 1993; Durlauf and119

Seshadri, 2003; Legros and Newman, 2002; Pycia, 2012; Baccara and Yariv, 2013;120

Xing, 2016).5 All the research on one-sided assortative matching finds conditions121

for sorting which correspond to type complementarity in Becker (1973). Yet, none122

of the above papers allows for general linking beyond partnerships and clubs, or123

considers network spillovers. We relax both of these assumptions. We have carefully124

chosen our framework to use the fundamental concepts from the earlier literature, i.e.125

supermodularity, a finite capacity for forming links, and pairwise link formation. Our126

main contribution to the literature on assortative matching is to show which extra127

conditions in combination with supermodularity lead to stability and efficiency in128

networks with utility from indirect connections. Another key contribution is that we129

show potential incompatibility between stability and efficiency and that policies that130

create incentives to link can fix the issue. We also extend the framework of assortative131

matching without externalities to a one-sided setting with many partners but without132

restrictions on link structure (i.e. limited to clubs): Proposition 1 establishes that133

sorting is stable using a novel measure of sorting which is tractable in equilibrium.134

The only paper that investigates sorting in networks with externalities is de Mart́ı135

and Zenou (2017); they also model type complementarity and positive spillovers.6136

Their results show the existence of sorted networks that are stable yet inefficient137

due to the lack of linking across types.7 Although this model is similar to ours,138

there are crucial differences that motivate our analysis. The essential difference139

is that we use exogenous complementarity which is independent of the network,140

while de Mart́ı and Zenou (2017) use endogenous complementarity. de Mart́ı and141

Zenou (2017) specifically assume that complementarity is strongest when the level of142

sorting is high, while there is no complementarity when there is negative sorting (i.e.143

5Buchanan (1965) defines clubs as groups where one’s utility depends on all other members. This
means that clubs are networks with the implicit assumption that any agents of the same group are
all linked. In the networks literature, such groups are known as cliques.

6Note that this paper was developed independently and without awareness of de Mart́ı and
Zenou (2017).

7See Propositions 1.ii, 4.iii in de Mart́ı and Zenou (2017) for results on stable sorting; their
Proposition 6 contains results on inefficiency.
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tendency to link with dissimilar types). This different assumption makes our results144

considerably stronger than de Mart́ı and Zenou (2017) when there are two types: we145

establish that sorting constitutes the unique set of stable networks; we show there146

exists a globally efficient network that is sorted but has connectivity between groups147

and we demonstrate that this network is implementable through a simple policy, see148

Proposition 4. In addition, our results also apply more generally as they are neither149

limited to only five agents of each type, nor to sub-structures of within-type networks150

being either stars or cliques, nor to only two types.151

The essential difference between how we model complementarity here and how152

de Mart́ı and Zenou (2017) model it also implies that we interpret our results dif-153

ferently. First, our results are relevant in cases when we do not expect endogenous154

complementarity (see example above). Second, the modeling of complementarity155

also entails that the source of inefficiency is different. In our setup suboptimality156

stems from misaligned incentives which entail there is a general incompatibility of157

efficiency and stability of as in Jackson and Wolinsky (1996). Thus, as sorting is the158

unique stable outcome, no one wants to volunteer to build the bridge between com-159

munities which increases overall welfare unless there is an outside readjustment of160

the incentives, e.g. by policy as we explore or by allowing different contracts (Bloch161

and Jackson, 2007). On the contrary, in de Mart́ı and Zenou (2017) the network162

with two connected communities, is both efficient and stable. Thus, suboptimality163

is not due to incompatibility of efficiency and stability, but rather that agents ended164

up in one of the pairwise stable networks characterized by low welfare.8165

There is a vast literature on optimal networks under externalities. The field166

has a long tradition and begins with the general formulation under the quadratic167

assignment problem (Koopmans and Beckmann, 1957). The field of matching and168

networks under externalities was revolutionized by Jackson and Wolinsky (1996)169

who demonstrate that there is an incompatibility in networks between stability and170

efficiency; Bloch and Jackson (2007) extend these results to show that the tension is171

preserved when allowing for more coordination and more flexible transfers between172

agents. Although Jackson and Wolinsky (1996) as well as Bloch and Jackson (2007)173

show that the incompatibility between stability and efficiency holds generally, they174

provide very little in terms of what structure inefficient networks can have. Our175

8The results in de Mart́ı and Zenou (2017) do not rule out that there can exist stable networks
(e.g. some amount of connectivity between groups) that are more efficient than a sorted network.
This follows as de Mart́ı and Zenou (2017) have multiplicity in equilibria and they only estab-
lish relative inefficiency between two networks (complete network and perfectly sorted network of
cliques).
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contribution is to provide explicit structure to the incompatibility in the context of176

sorting. This extension may seem small but it has important implications - sorting is177

a fundamental pattern in empirical networks (McPherson et al., 2001) and therefore178

we show that the incompatibility may hold widely.179

The most relevant research on exogenous complementarity in networks is John-180

son and Gilles (2000); Jackson and Rogers (2005); Galeotti et al. (2006); the first181

assumes agents all have a unique type with linking costs proportional to their dis-182

tance, while the two latter use an islands type of model (where agents have same183

type). Johnson and Gilles (2000) shows existence of a pairwise stable equilibrium184

with local connectivity between adjacent types, possibly with local cliques where all185

agents within a given range are connected. Jackson and Rogers (2005) shows that186

clustering and short paths are robust features among both pairwise stable networks187

and efficient networks with full linkage among same type. Galeotti et al. (2006)188

investigate minimally connected networks in a setup with one-sided link formation.9189

There are other strands of literature on homophily in network formation e.g.190

Currarini et al. (2009, 2010) and Bramoullé et al. (2012). Their approach, however,191

is different: we use a one period model with strategic link formation, while they rely192

on matching sequences that are dynamic and stochastic. Currarini et al. (2009, 2010)193

investigate how differences in community sizes play a role in explaining empirical194

phenomena, including homophily. Bramoullé et al. (2012) investigate the conditions195

for long run integration of a network. Other literature has investigated the role of196

homophily in a model combining referral networks and a labor market (Montgomery,197

1991; Galenianos, 2018).198

Paper organization. The paper proceeds as follows: Section 2 introduces the model;199

Section 3 investigates sorting under no externalities; Section 4 analyzes the setting200

with externalities, focusing on sorting and its potential suboptimality, and; Section201

5 concludes with a discussion of assumptions. All proofs are found in Appendix202

Appendix A.203

2. Model204

Let N = {1, .., n} constitute a set of agents. Each agent i ∈ N is endowed with a205

fixed measure of type, xi ∈ X, where X ⊂ R is the set of (realized) types for agents206

in N . Let x̄ = maxX and
¯
x = minX. Define the vector of types X = (x1, x2, ..., xn).207

9Note that one-sided link formation is based on the setup of Bala and Goyal (2000) which only
requires the weaker equilibrium concept, Nash stability, as links do not need mutual acceptance.
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Let the agents’ type be sorted in descending order according to their label such that208

xl ≥ xl+1 for l = 1, .., n− 1.209

Linking and networks. Two agents i, j ∈ N may link if they both accept it. Any of210

the two agents who link may break the link without mutual consent. A link between i211

and j is denoted ij ∈ µ, where the set µ consists of links and is called a network. The212

set of all networks is denoted M = {µ|µ ⊆ µc}, where µc is the complete network in213

which all agents are linked.214

A coalition of agents, t, is a subset of agents (i.e. t ⊆ N) such that t ∈ T , where215

T is the power set of N excluding the empty set. For a given group, t, define X (t)216

as the vector of types in descending order over each of the agents in t. A coalitional217

move is a set of actions implemented by a coalition that moves the network from one218

state to another. A move from µ to µ̃ is feasible for coalition t if added links, µ̃\µ,219

are only formed between members of coalition t and deleted links, µ\µ̃, only contain220

members of coalition t.221

Network measures. The neighborhood, ν, is the set of agents who an agent links to:222

νi(µ) = {j ∈ N : ij ∈ µ}. The number of neighbors is called degree and denoted223

ki(·) for i. A path is a subset of links {i1i2, i2i3, ..., il−1il} ⊆ µ where no agent is224

reached more than once; the length of a path is the number of links in its set. The225

distance between two agents, i, j, in a network is the length of the shortest path226

between them - this is denoted pij : M → N0; when no path exists then the distance227

is infinite.228

Utility. The utility accruing to agent i is denoted ui. An agent’s utility equals229

benefits less costs, expressed mathematically as ui = bi − ci. The aggregate utility230

is denoted U(·). We model costs of linking indirectly through an opportunity cost231

of linking. We do this through a (degree) quota on links, κ, which is the maximum232

number of links for any agent, i.e. for i ∈ N , it holds ki(·) ≤ κ. We say there233

is no linking surplus when all agents have a degree equal to the degree quota, i.e.234

∀i ∈ N : ki = κ. The benefit to agent i is a weighted sum consisting of two elements;235

network and individual value:236

bi(µ) = Σj 6=iwij(µ) · zij. (1)

The network factor wij(µ) is a function of network distance. The individual link237

value is zij, which measures the personal value to i of linking to j - the value is a238

function of the two partners’ types zij = z(xi, xj). The function z is assumed twice239
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differentiable as well as taking positive and bounded values.10 Let the total link value240

be defined as the value of linking for the pair, i.e. Zij = zij + zji.241

In order to derive results, a restriction of payoffs is necessary. The essential242

feature of the total link value for sorting is complementarity in type:11
243

Definition 1. The link value has supermodularity if ∂2

∂x∂y
Z(x, y) > 0. This entails:244

Z(x, x̃) + Z(y, ỹ) > Z(x, y) + Z(x̃, ỹ), x > ỹ, x̃ > y. (2)

The network components are further restricted in the analysis under externalities245

in Section 4.246

The game framework. This paper explores a static setting of one period. Agents’247

information about the payoffs of other agents is complete. Together the players,248

action, utility and information constitute a game.249

We assume that any pair of agents can transfer ‘utility’ between them. Let a250

net-transfer from agent j to agent i be denoted as τij ∈ R such that τij = −τji,251

which implies non-wastefulness of utility. The matrix of net transfers is denoted τ .252

Transfers can be exchanged by any pair of agents. We specifically assume that for253

any pair of agents there is mutual dependence between transfers and their link, if254

they have one. This entails that a transfer cannot be changed unless both agents255

agree, otherwise the non-consenting agent can break the link. Conversely, if the link256

is broken without mutual consent, then the transfers are set to zero. Although this257

seems similar to Bloch and Jackson (2007), the conditionality here is only between258

agents who are linked.259

Stability. We define network stability using coalition moves. A coalition t is blocking260

a network µ with net-transfers τ if there is a feasible coalition move from network µ261

to network µ̃ with τ̃ where all members in t have a higher net-payoff after the move.262

We employ two concepts of stability. The first is strong stability : this is satisfied263

for a network if there exist transfers such that no coalition (of any size) may have264

a feasible move that is profitable for all its members. The second concept, pairwise265

(Nash) stability,12 is similar but has weaker requirements: it holds when there exist266

transfers where it holds that no coalitions of at most two agents may block. A further267

discussion of the stability concepts is found in Section 5.268

10The upper bound rules out an infinite number of links in equilibrium.
11Complementarity between type corresponds to cheaper links between same/similar types used

in the models of Johnson and Gilles (2000); Jackson and Rogers (2005); Galeotti et al. (2006).
12This is also known as bilateral stability, cf. Goyal and Vega-Redondo (2007).

9



Our pairwise definition of stability is stricter than that of Jackson and Wolinsky269

(1996). However, the stricter requirement enables substitution of links (simultaneous270

deletion and formation), which is a necessary requirement for establishing results in271

the matching literature.272

A noteworthy feature is that strong stability implies pairwise stability; thus any273

condition valid for all pairwise stable networks also applies to any strongly stable274

network. In addition, without utility from indirect connections (i.e. no spillovers),275

every pairwise stable network is also strongly stable, see Lemma 1. Note also that276

any strongly stable network requires efficiency (coalition of all agents can implement277

any network). We use the efficiency property of strongly stable networks to derive278

the structure of these networks in Proposition 5.279

3. Analysis: no spillovers280

This brief section analyzes the setting without utility from indirect connections.281

We begin with defining our measure of sorting. The concept of sorting that we282

employ is a generalization of the sorting when there is a single partner, such as in283

Becker’s marriage market. The shape of sorting is such that a high type agent has284

partners which weakly dominate in type when compared partner-by-partner with the285

partners of a lower type agent. Note the comparison is done over the sorted set of286

partners type X . The sorting pattern is mathematically defined as:287

Definition 2. Sorting in type holds in µ if for all pairs i, j such that xi > xj it288

holds that:289

X (νi(µ)/{j})l ≥ X (νj(µ)/{i})l+l∗ , ∀l ∈ {1, .., k∗},

where k∗ = min(ki(µ), kj(µ)) and l∗ = max(kj(µ)− ki(µ), 0).290

Our first result is that sorting in type emerges under the same conditions as in291

Becker (1973) when network externalities are absent:292

Proposition 1. If there is supermodularity and no externalities, then for any pair-293

wise stable network there is sorting in type.294

The proof of this proposition follows by establishing that a pairwise stable net-295

work must be strongly stable without externalities; then we use that strongly stable296

networks are efficient and show that sorting in type must hold under efficiency.13
297

13Note that the current proof relies on comparing partner order of l for i with order l + l∗ for j
in Definition 2. We conjecture that this can be relaxed to comparison partner of order l of i with
order l + l∗ of j.
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4. Analysis: positive spillovers298

We proceed to a more general context where indirect connections matter for299

utility. Whenever we allow for externalities we restrict our attention to two forms of300

linking utility.301

wij(µ) =

{
δpij(µ)−1, constant decay,

1=1(pij(µ)) + δ · 1∈[2,∞)(pij(µ)), hyperbolic decay,
(3)

where 1∈(1,∞)(l) is the Dirac measure/indicator function of whether 1 < l <∞.302

The first and more general setting is where utility from connections decays over303

increasing distance at a constant exponential rate. This corresponds to benefits from304

linking in the ‘connections-model’ from Jackson and Wolinsky (1996). The other case305

is when externalities from indirect connections are discounted equally at any distance306

if there is a connection, i.e. a finite path length. This second case is referred to as307

hyperbolic decay and entails that there is no decay beyond that from distance one308

(linked) to distance two.309

The introduction of externalities to our framework implies that the pairwise util-310

ity no longer depends only on the total link benefits. As a consequence, sorting is not311

guaranteed to be either stable or efficient. The intuition for this is straight forward:312

externalities entail that the total welfare from sorting is internalized for the pair,313

while the total welfare for indirect connections are not internalized. We see this by314

inspecting the utility functions. Suppose that ĝ is a pairwise deviation such that315

agents i, j form a link. Then the pairwise total net utility from deviation can be316

expressed as follows under externalities:317

ui(ĝ) + uj(ĝ)− ui(g)− uj(g) = Zij +
∑

k∈{i,j}, l /∈N\{i,j}

zkl ·
(
δpkl(ĝ) − δpkl(g)

)
(4)

From the analysis in the previous section we found that, in the absence of ex-318

ternalities, sorting prevails. In the above equation this incentive to sort is captured319

by the component Zij. Therefore, we see that the total benefits from sorting are320

preserved for the pair.321

The total benefits to all agents that accrue from agents i, j forming a link are:

U(µ̂)− U(µ) =ui(µ̂) + uj(µ̂)− ui(µ)− uj(µ) +
∑

l /∈N\{i,j}

[ul(µ̂)− ul(µ)]

=ui(µ̂) + uj(µ̂)− ui(µ)− uj(µ) +
∑

l /∈N\{i,j}, l′∈N, l′ 6=l

Zll′ · (wll′(µ̂)− wll′(µ))

(5)
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Inspection of Equation 5 informs us that the pairwise utility of linking does not322

capture the aggregate gains from linking. Moreover, we see that the gains not cap-323

tured correspond to the indirect benefits that others receive from the deviation. This324

implies that there is a disparity between the pairwise incentives and total welfare:325

the pairwise incentives capture the full benefits of sorting but not the full gains from326

lower distances between agents.327

4.1. Finite population328

We begin with the situation where there are a finite number of agents. Before329

starting the analysis of networks under externalities we define some useful concepts.330

Naturally, we call networks perfectly sorted when the agent of each type only link331

among themselves. A further important distinction is whether the subnetworks for332

each type are connected among agents of the same type. Such connectivity is suffi-333

cient for agents to reap all the gains of utility from indirect connections when sorting334

occurs if there is hyperbolic decay in spillovers. Finally, we want to ensure that there335

is no surplus of links as this would imply wastefulness, which is not in the interest336

of agents as they always benefit from linking. Combining these concepts we can337

introduce our main concept, sorted connectivity of networks:338

Definition 3. A network has perfect sorting if every linked pair of agents have339

the same type.340

Definition 4. A network is type connected if every two agents of the same type341

is connected.342

Definition 5. An agent i has link-surplus in a given network if i’s number of links343

is lower than the degree quota.344

Definition 6. A network is sort-connected if the network (i) is perfectly sorted,345

(ii) is type connected and (iii) no agents have a link surplus in the network.346

We now turn to type self-sufficiency, which requires that there is potential for347

each type to perfectly sort and have no link surplus. This concept is important and348

plays a critical role for the existence of sort-connected networks.349

Definition 7. A type of agents x ∈ X is self-sufficient if nx > κ.350

We briefly investigate the situation when type self-sufficiency does not hold, i.e.351

nx ≤ κ for one or more types x ∈ X. This is seen from the following statement:352

Proposition 2. Suppose there is supermodularity and there is not type self-sufficiency:353
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(i) if n ≤ κ+ 1 then the complete network is the only pairwise stable network and354

the only efficient network;355

(ii) if n > κ+ 1 and there are two types where nx̄ = n
¯
x, then every network where356

every agent has nx̄− 1 same-type links, and κ−nx̄ + 1 cross-type links is stable357

and efficient.358

We move on to examining sorted connectivity in networks. We note that the359

remainder of this subsection is restricted in two ways. First, by confining our analysis360

to the setting where there is self-sufficiency for each type. Second, we exclusively361

focus on the case of hyperbolic decay as it provides for more intuitive and more362

immediate results without restrictions on the network. As noted earlier, a more363

general exposition is found in Supplementary Appendix Appendix B.364

The aim is to show that sort-connected networks are stable when the strength of365

utility from indirect connections is low to moderate. Moreover, when the strength of366

utility from indirect connections is moderate to high, the networks are suboptimal367

despite fulfilling Becker’s complementarity condition, i.e. supermodularity. We will368

see that the suboptimality arises because the network is under-connected relative to369

the efficient network.370

We begin our analysis by presenting an illustration of the situation. We want371

to show that for strength of utility from indirect connections below the threshold,372

δstab, any network with sorted connectivity is also pairwise stable. Moreover, we will373

show that there exist networks with higher aggregate utility when utility exceeds374

another threshold, δopt. In order to motivate and capture the intuition we provide375

simplified results in Example 1. The example is based on hyperbolic decay of network376

externalities, however, it can be easily adapted to constant decay.14 The example is377

graphically represented in Figure 1.378

Example 1. There are six agents; three of high type (1,2,3) and three of low type379

(4,5,6). Moreover, there is supermodularity, degree quota of two (κ=2) and hyperbolic380

decay. Define two networks: a network with sorted connectivity, µ = {12, 13, 23, 45, 46, 56},381

see Figure 1.A; a sort-connected network with bridges (see Definition 8), which we382

denote as µ̃ = {12, 23, 34, 45, 56, 61}, see Figure 1.C. We show in this example that,383

for a range of decay-factors, µ is pairwise stable, yet suboptimal. In this setup there384

is a unique move which is both feasible and payoff relevant.15 This move consists in385

14In an old paper version, Bjerre-Nielsen (2015), we compute the example under constant decay
of spillovers.

15Under pairwise stability at most one link can be formed in a single move. As the value of every
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(A): Segregated network, µ.

Pairwise stable if δ ≤ δstab(Ẑ).

(B): Pairwise move by agent 1,

6 who form a link together and

remove links 13, 46.

(C): Connected network, µ̃.

Efficient if δ ≥ δopt(Ẑ).

Figure 1: Sorted network is stable but inefficient.

The above three networks depict Example 1. The network in (A) is pairwise (Nash) stable for some

parameters and the network in (B) is the only kind of feasible deviation. The network in (C) is an

efficient network.

two agents forming a link across types and both participating agents delete a link.386

Such a move could be agents 1,6 forming a link while deleting their respecetive links387

to agents 3 and 4. We denote this network µ̂ = µ ∪ {16}\{13, 46} and we plot it in388

Figure 1.B. Benefits for agents 1 and 6 from network µ and deviating from it are:389

u1(µ̂) + u6(µ̂) = (1 + δ) · [z(x̄, x̄) + z(
¯
x,

¯
x)] + [1 + 2δ] · [z(x̄,

¯
x) + z(

¯
x, x̄)],

= (1 + δ) · 1
2
· [Z(x̄, x̄) + Z(

¯
x,

¯
x)] + [1 + 2δ] · Z(x̄,

¯
x),

u1(µ) + u6(µ) = 2 · [z(x̄, x̄) + z(
¯
x,

¯
x)] = Z(x̄, x̄) + Z(

¯
x,

¯
x).

We can express the condition that the deviation to µ̂ is not pairwise profitable as:390

u1(µ) + u6(µ) > u1(µ̂) + u6(µ̂). This condition is sufficient for pairwise stability due391

to payoff symmetry in µ and no transfers.392

We now turn to deriving the condition for segregation to be inefficient. The393

aggregate benefits over all agents of the two networks, µ and µ̃, is expressed below in394

the two equations.395

U(µ̃) = (2 + δ) · [Z(x̄, x̄) + Z(
¯
x,

¯
x)] + [2 + 7δ] · Z(x̄,

¯
x),

U(µ) = 3 · [Z(x̄, x̄) + Z(
¯
x,

¯
x)].

link is positive it follows that a move consisting only in deletion of a link always leads to a loss.
Thus, only coalition moves where new links are formed can be valuable. All links to same type
agents are already formed in network µ. Therefore, the only feasible move consists in forming a
link to agents of the other type.
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Sorting is inefficient when: U(µ) < U(µ̃). The two inequalities governing pairwise
stability and inefficiency have the following positive solution:

δstab(Ẑ) = Ẑ

Ẑ+1
,

δopt(Ẑ) = Ẑ

Ẑ+
9
2

,
Ẑ =

Z(x̄,x̄)+Z(
¯
x,

¯
x)

2Z(x̄,
¯
x)

− 1,

where δopt and δstab are thresholds for, respectively, when network µ becomes ineffi-396

cient, and unstable when δ increases.397

The example above demonstrates that sorting can be inefficient when there are398

network effects despite there being complementarity in type, i.e. supermodular link399

values. The inefficiency stems from a novel source - the pairwise formation of links.400

The intuition is that under pairwise deviation the two agents do not internalize the401

total value created for the other agents; number of indirect links between a high and402

a low agent. Note that the above example has a close correspondence to Propositions403

1 and 6 from de Mart́ı and Zenou (2017) and that their results also holds only for404

cliques with very few agents (≤ 5), see literature review.405

We proceed with a generalization of the example above which holds for various406

structures of the subnetworks within types and for multiple types. The aim is to407

extend the above example to a less restrictive setting for sorted connectivity. Below408

is our first general result where we establish sufficient and necessary conditions for409

the existence of networks with sorted connectivity.410

Proposition 3 (Existence). The set of sort-connected networks is non-empty if and411

only if all of the following conditions hold:412

i) there is self-sufficiency for each type;413

ii) more than one partner is allowed.414

iii) either the degree quota is even or there is an even number of agents of each type;415

The conditions in Proposition 3 are listed in order of importance. The essential416

condition is self-sufficiency, which ensures that there are enough links for each type417

to perfectly sort. The second condition of the degree quota exceeding one, is obvious418

as otherwise the problem would reduce to a simple one-to-one matching problem and419

type connectivity would not be possible. The final condition requiring either even420

numbered quota of links or even number of agents for each type is a little subtle. The421

reason is technical; if both of these conditions are not met then the total demand for422

links of the same type is uneven when there is no link surplus but each link takes up423
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a capacity of two and thus must be an even number; the implication is that perfect424

sorting and no link surplus is incompatible when this even number condition is not425

met. We discuss the choice of equilibrium concepts in the discussion found in Section426

5.427

We move on to investigate stability and optimality of the network structure. We428

now generalize the thresholds from Example 1. These thresholds for stability and429

optimality hold for any number of types and number of agents for each type. Note430

that for optimality the value provided below is an upper bound of threshold value.431

δstab = min
x,x̃∈X

(
Ẑx,x̃

Ẑx,x̃+max(nx,nx̃)−|nx−nx̃|·ẑx,x̃

)
, ẑx,x̃ =

z(x, x̃)

Z(x, x̃)
(6)

δ̄opt = min
x,x̃∈X

(
Ẑx,x̃

Ẑx,x̃+ 1
2
nxnx̃

)
, Ẑx,x̃ = Z(x,x)+Z(x̃,x̃)

2Z(x,x̃)
− 1 (7)

Using the first threshold above we can express our main result on the stability432

of sort-connected networks. Note that an alternative version of the above theorem433

under constant decay can be found in Appendix Appendix B in Theorem 3.434

Theorem 1 (Stability). Suppose there is supermodularity, then every sort-connected435

network is pairwise stable if δ ≤ δstab; moreover, if there are only two types and sort-436

connected networks exist, then every pairwise network is also sort-connected.437

We have shown general stability of sort-connected networks. Moreover, when438

there are only two types, our results from Theorem 1 are substantially stronger. We439

establish that sorting is the unique pairwise stable outcome for low to moderate levels440

of externalities (i.e. δ < δstab).441

We emphasize that Theorem 1 and δstab have implications for understanding the442

instability of perfect sorting in networks. For sufficiently high levels of spillover, i.e.443

δ > δstab, it holds that sorted networks are never pairwise stable. The reason is444

that agents of different types can benefit jointly by mutually forming a link and each445

breaking a same type link.446

One can view Theorem 1 as generalizing not only Example 1 but also Propositions447

1.ii and 4.iii from de Mart́ı and Zenou (2017), who require that there are very few448

agents, two types and all agents of a given type link with one another.449

We move on to discussing another main property of sort-connected networks,450

namely optimality, i.e. whether the network structure is efficient. In order to state451

our results we introduce a related network which has efficiency properties for mod-452

erate to high strength of utility from indirect connections.453
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Definition 8. Let a bridged, sort-connected network be a sort-connected network454

where (i) for at least two types exactly one link is broken, (ii) each agent with a broken455

link forms exactly one link to other agents across types who also have a link broken.456

It is important to understand that in our model moving to a bridged, sort-457

connected network require two links to be established across types from a sort-458

connected network. This is a technical condition stemming from the fact that re-459

ducing the number of links among the same type by one frees up the capacity to460

establish a link by two agents; as a consequence it is possible for two links across461

types to be established. Using both of these possible links is important for establish-462

ing efficiency. It will turn out to also be important in the investigation of policy, see463

Proposition 4.464

Theorem 2 (Efficiency). Suppose there is supermodularity, then the thresholds for465

efficiency and stability satisfy δ̄opt < δstab. Any sort-connected network is inefficient466

when δ < δopt where it holds that δopt ≤ δ̄opt. Finally, if there are two types then, sort-467

connected network are efficient when δ ≤ δ̄opt, while bridged, sort-connected networks468

are efficient for δ ≥ δ̄opt.469

The above theorem generalizes Example 1 by showing that under-connected net-470

works with too little linking across sorted groups of agents occur more generally. It471

also extends Proposition 6 from de Mart́ı and Zenou (2017) by removing the restric-472

tion to two types and linking between all same type agents as well as doing away473

with the limitation of having very few agents. Again, with only two types of agents474

the results are considerably stronger. We can show that the threshold for inefficiency475

now governs whether it is the sort-connected network or the bridged, sort-connected476

network that is efficient.477

A visualization of the computed thresholds of externalities when there are two478

types is found in Figure 2. The thresholds are computed for varying population479

size and varying strength of complementarity. These plots can be seen as providing480

comparative statics along these two dimensions. The upper part of the figure keeps481

the population size fixed while lower ones keep the complementarity strength fixed.482

From inspection it is evident that both of the connection thresholds are approxi-483

mately linear in log-log scale. This pattern suggests that both of the thresholds fol-484

low power-laws in the number of agents and strength of complementarity. Note that485

it is also straightforward to mathematically derive these patterns from the threshold486

definitions. Note also that it is possible to do a comparative static in the number of487

types. For example, if we assume that all same type agents get a certain payoff and488

cross type relations get some fraction of that, as in Jackson and Rogers (2005), then489
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increasing the number of islands keeps the gain from pairwise deviation constant,490

but the gains in efficiency increase.491

The remainder of this subsection will sketch a policy intervention that can mit-492

igate the problem of suboptimal sorting by improving welfare through encouraging493

connection. These interventions can be seen more generally as a design problem,494

where the policy maker intervenes to induce a network that produces higher welfare.495

The tool that the policy maker employs is providing incentives to agents for forming496

specific links. Note that two agents of each type may need to be compensated. This497

stems from the fact that when compensating one agent to establish a link across498

types the agent to which it has deleted a link has an incentive to form a new link,499

which will potentially destabilize the sub-networks for each type. We discuss this500

assumption and how it relates to our choice of model in Section 5.501

Define a link-contingent contract as a non-negative transfer, Cij, paid to i for502

linking with another agent j. Denote the vector of link-contingent contract as C. We503

start demonstrating our results on intervention through a continuation of Example 1.504
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Figure 2: Thresholds for connecting.

Visualization of thresholds for connecting from Theorems 1 and 2. The upper part shows varying

sizes of populations and fixed strength of complementarity. The lower part has varying strength of

complementarity and fixed population sizes. It is assumed that there are two types which have an

identical number of agents.
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Example 1 (continued) Let strength of utility from indirect connections satisfy506

δ < δstab and assume that there is a policy maker who can issue link-contingent507

transfers as follows. We suppose that the policy maker offers conditional transfers508

such that the pairwise net-utility for agents 1,6 and agents 3,4 from forming a link509

satisfies:510

Cij+Cji = − [(1− δ) · (z(x, x) + z(x̃, x̃)) + (1 + 2δ) · z(x, x̃)]+ε, ij ∈ 16, 34, ε > 0

Agents 1,6 and 3,4 have an incentive to form a link and break their existing links (i.e.511

{13, 46}). This implies that a deviation from the sort-connected network µ to the512

bridged, sort-connected network µ̃ is possible; see the networks depicted in Figure 1.513

We round off the example by noting that if δ > δopt, then the deviation to the bridged,514

sort-connected network raises aggregate utility.515

516

We now generalize the insight from the continuation of Example 1 into the follow-517

ing proposition. This proposition holds for an arbitrary number of agents when there518

are two types. We need to define an auxiliary term to describe the interventions:519

Definition 9. Let a network µ̃ be implementable from µ, τ given C if there exist520

a sequence of tuples (µ0, τ0), .., (µl, τl) where µ0 = µ, µl = µ̃, and τl = τ such that:521

for q = 1, .., l from µq−1 to µq is a feasible pairwise move which increases the pair’s522

net-utility most given C, and; µ̃ is pairwise stable given τq and C.523

Proposition 4 (Implementation). Suppose that there are two types, supermodularity524

and δ < δstab. It follows that a policy maker can implement a bridged, sort-connected525

network from any sort-connected network.526

The above result shows it is possible to have agents deviate to implement the527

bridged, sort-connected networks by offering link-contingent contracts. By combining528

the proposition with earlier results on inefficiency, it follows directly that:529

Corollary 1. If conditions for Proposition 4 hold and δ > δ̄opt it follows that imple-530

mentening the bridged, sort-connected network will result in higher welfare.531

The intuition of the corollary is that efficiency can be restored by compensating532

certain agents. Recall that in our model conditionality of transfers exist only between533

agents who are linked. This lack of conditionality for third parties implies that534

agents cannot fully internalize positive spillovers. Therefore, it is not surprising that535

efficiency is restored when allowing a third party, i.e. the policy maker, to transfer536

utility conditional on certain links as has been shown previously (Bloch and Jackson,537

2007). We note that Proposition 4 and Corollary 1 outline a centralized intervention538
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by a policy maker but it could also have been solved decentrally through conditional539

transfer by other agents, as in the framework of Bloch and Jackson (2007).540

We note that the individual compensation paid to agents for connecting to others541

may not be equal. In particular, the payment may also depend on the types. This542

is the case when there is both supermodularity and monotonicity in Z. If these543

conditions hold, then agents may receive compensation that is increasing with their544

type.545

4.2. Infinite population - constant decay in spillovers546

We finalize this section by investigating what pattern of linking is exhibited when547

the count of agents becomes asymptotically infinite. In this large matching market548

we examine asymptotic perfect sorting, i.e. when the measured share of links to549

same-type agents converges to one. We employ the constant decay to measure utility550

from indirect connections as hyperbolic decay yield infinite payoff for any connected551

network with infinite number of agents. Note that we also use a stronger equilibrium552

concept, strong stability, which allows for coordination between coalitions of any size.553

Definition 10. Let asymptotic perfect sorting hold for a sequence of networks554

sets, Mn, if for any network, µ ∈ Mn, where n → ∞, it holds that |{ij ∈ µ : xi =555

xj}|/|µ| ' 1.556

Define asymptotic independence as δ < (κ − 1)−1. For large matching markets557

the sufficient conditions for asymptotic perfect sorting to emerge in strongly stable558

networks are:559

Proposition 5. If there is supermodularity, a degree quota and constant decay with560

asymptotic independence, then there is asymptotic perfect sorting for strongly stable561

networks.562

The result above demonstrates that the availability of many agents for linking563

induces perfect sorting in strongly stable networks. It demonstrates the same pre-564

diction as the conclusion of Becker (1973) for the marriage market model but holds565

in the presence of externalities with constant decay.566

For deriving the result we exploit strong stability which implies that efficiency567

holds. Therefore, it is sufficient to show that asymptotic efficiency requires asymp-568

totic perfect sorting. Although efficiency is a unique property for strong stability569

(and does not hold for weaker concepts) it can be argued that strong stability should570

20



be seen as a refinement with desirable properties which makes it more likely when it571

exists.16
572

We conclude this section by noting that we may interpret the result on sorting573

for infinite populations differently; there is no loss from sorting when there are many574

agents.575

5. Concluding discussion576

We have extended the assortative matching framework to a setting of networks.577

We have shown that in a general context that Becker’s condition for sorting is still578

essential for stability. However, the same condition is insufficient for efficiency (when579

there is a finite population). The context is where types have enough members to580

form a community among themselves. We have sketched a policy that can help581

overcome this issue.582

We have chosen to model costs implicitly via a degree quota in order to have583

comparability with the matching literature. We expect, however, that our results584

should easily translate to the standard connections model of Jackson and Wolinsky585

(1996). In this other setup we expect that the intuition should transfer when limiting586

the number of sub-networks within types to be either cliques or stars, as in de Mart́ı587

and Zenou (2017). One advantage of translating the setup to the linear cost frame-588

work of the standard networks literature would be that the technical assumption of589

either even degree or an even number of agents for each type would not be necessary.590

Under hyperbolic decay one would also get a more natural efficient policy solution591

requiring only a single agent of each type to bridge the gap between their respective592

subnetworks.593

Our analysis is based on other strict assumptions which we now review. We594

begin by noting that search frictions are important and have received attention in595

the literature (Chade et al., 2017) but for the sake of tractability we focus on a596

frictionless model. There are also a number of restrictive assumptions on payoff. The597

most crucial assumptions are payoff separability and fixed structure of externalities.598

Further research could explore how results generalize to less restrictive utility from599

indirect connections captured by the decay parameter, δ. For instance, does there600

exist a set of criteria that are more general than constant or hyperbolic decay for601

which our results hold. It is likely that our results are robust to including utility from602

16In some circumstances the existence of contracts where an agent may subsidize or penalize
another agent’s link formation with alternative agents may imply strong stability even if contracts
were limited to being pairwise specified, cf. Bloch and Jackson (2007).
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network measures, e.g. triadic closure/clustering, that are common in the literature603

within economics on networks. Other critical assumptions are supermodularity and604

perfect transferability. Nevertheless, as mentioned in the introduction, these two605

assumptions can be replaced by monotonicity in individual link values and perfect606

non-transferability, which is also in line with some research on peer effects.17 Finally,607

the model relies on some agents being of different types but it should be possible to608

remove this assumption.18
609

Another caveat with our analysis, and stable networks in general, is that these610

networks may not exist. We have shown some properties of existence under regularity611

conditions of sort-connected networks, see Propositions 3 and 1. However, beyond612

sort-connected networks we do not offer much in the case of externalities. The gross613

substitutes conditions from Kelso and Crawford (1982), which ensure existence of614

stable matchings in related settings, are not satisfied in our setting with external-615

ities.19 Nevertheless, by changing the equilibrium concept we expect that some of616

the lack of existence could be solved. One approach is using farsighted stability,617

as in Chwe (1994); Dutta et al. (2005); Herings et al. (2009). Another approach is618

using some approximative equilibrium concept e.g. cost of stability (the necessary619

payments to induce stability) from Bachrach et al. (2009).620

Appendix A. Proofs621

Lemma 1. In the absence of network externalities then the set of strongly stable622

networks is equivalent to the set of pairwise stable networks.623

Proof. By definition it holds that any strongly stable network is pairwise stable.624

Thus, we need to show that any pairwise network is strongly stable. This claim is625

shown using similar to arguments to Klaus and Walzl (2009)’s Theorem 3.i.626

Let µ with associated contracts τ be a network which is blocked by a coalition. It627

will be shown that for every coalition t ∈ T that blocks, within the coalition there is628

a subset of no more than two members that also wishes to block the network. Let µ̃629

be the alternative network that the blocking coalitions implements through a feasible630

coalition move and τ be the transfers associated with µ̃.631

17Or, more broadly, by generalized increasing in differences from Legros and Newman (2007).
18The more extreme case is where all agents have different types, e.g., they exist in a ring with

local complementarities, similar to Johnson and Gilles (2000) who assume agents’ types are defined
on a line. In this setting it may be that stable networks have the property that agents only link
with the most similar agents and thus fail to connect with those further away.

19The lack of gross substitutes is due to the fact that a change in one active link can imply a
change in the value of other links. This fact will violate gross substitutes.
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It is always possible to partition the set of deleted links µ\µ̃ into two: (i) a632

subset denoted µ̂ where for each link ij that can be deleted where one of the two633

partners can benefit, i.e. it holds that either zij + τij − [ci(µ) − ci(µ\ij)] < 0 or634

zji+ τji− [cj(µ)− ci(µ\ij)] < 0; (ii) a subset denoted µ̆ where for each link ij neither635

of the previous two inequalities are satisfied.636

Suppose that the first partition is non-empty, i.e. µ̂ 6= ∅. However, as deleting637

links can be done by a single agent on its own then the move only takes needs the638

coalition of that agent to delete the link. Thus any part of a coalitional move that639

only involves profitably removing links can be performed in parts by a coalition with640

a single agent - therefore this move is also a pairwise block.641

Thus it remains to be shown that the remaining part of coalitional move also642

can be performed as a pairwise block, i.e. when forming µ̃\µ and deleting µ̆. This643

part of the coalitional move must entail forming links as no links can be deleted644

profitably. The set of formed links µ̃\µ can be partitioned into a number of |µ̃\µ|645

feasible submoves of adding a single link while deleting links by each of the agents i646

and j who form a link. The feasibility for each of the partitioned moves is always true647

when there is a cost function as moves are unrestricted. It is now argued that each648

of the partitioned moves are feasible when there is a degree quota. If the network649

µ ∪ ij is feasible then the move of simply adding the link is feasible. If µ ∪ ij is not650

feasible, then agents i and j can delete at most one link each and if both µ and µ̃651

are feasible then this also feasible as the degree quota is kept.652

For the coalitional move to µ̃ it must be that at least at least one link among653

the implemented links µ̃\µ has a strictly positive value that exceeds the loss from654

deleting at most one link for each of two agents forming the link. This follows as it655

is known that deleting one or more links cannot add any value and thus must have656

weakly negative value and that by definition the total value to the blocking coalition657

must be positive. As every one of the partitioned moves is feasible, it follows that658

for every coalitional move there are two agents who can form link while potentially659

destroying current links and both be better off. In other words, for every coalition660

that blocks, there is a pairwise coalition that blocks.661

Proof of Proposition 1.. Suppose the claim is false. Let q be the lowest index for662

which the condition fail: for all l < q it holds that X (νi(µ)/{j})l ≥ X (νj(µ)/{i})l+l∗663

where l∗ = max(kj(µ)− ki(µ), 0). Thus there are two agents i′, j′ such that:664

xj′ = X (νj(µ))q, j′ ∈ (νj(µ)\(νi(µ) ∪ {i})),
xi′ < X (νj(µ))q, i′ ∈ (νi(µ)\(νj(µ) ∪ {j})).

Recall k∗ = min(ki(µ), kj(µ)). The argument why there must exist an agent i′ in665

νj(µ) but not in (νj(µ)∪{j}) is that |{ι ∈ νi(µ) : xι < xj′}| > |{ι ∈ νj(µ) : xι < xj′}|.666
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This follows as by construction it holds that |{ι ∈ νi(µ) : xι < xj′}| = k∗− q+ 1 and667

|{ι ∈ νj(µ) : xι < xj′}| ≤ k∗ − q.668

The agents are such that xi > xj, xi′ < xj′ as well as ij′, ji′ /∈ µ. However,669

this fact implies that there is a violation of strong stability: agents i, i′, j, j′ can670

deviate by destroying {ij, i′j′} and forming {ij′, i′j} and thus increase payoffs due to671

supermodularity (cf. Equation 2). From Lemma 1 it follows that pairwise stability672

is also violated if strong stability is violated. �673

Proof of Proposition 2:. Condition (i) follows from the fact that it is possible for674

every agent to be linked with one another. Moreover every link adds value. Thus as675

a consequence every link can be formed and will add value both for the pair forming676

and it at the aggregate level; thus the unique pairwise and efficient outcome must677

be the complete network.678

We move on to proving condition (ii). Suppose µ is a network where every agent679

has nx̄ − 1 same-type links and κ− nx̄ + 1 cross-type links.680

Efficiency of µ follows from three facts. Firstly, µ the maximum distance of 2681

between any two agents as all same-type links are active and all agents have at682

least one cross-type link; thus the potential benefits from indirect connections are683

maximized (both for constant and hyperbolic decay). Secondly, the number of same684

type links are maximized for all agents and this will maximize the benefits from685

direct links; thus there must exactly nx̄ − 1 same type links. Finally, there can be686

no link surplus because violation there exist a network where every agent has nx̄− 1687

same-type links and κ − nx̄ + 1 cross-type links and thus has no link surplus; this688

must have strictly higher aggregate utility as every direct link increases utility.689

Stability of µ follows from reviewing the feasible deviations. Let there be no690

transfers between any agents. Firstly, deleting one or more links is profitable as691

it lowers the agents own welfare. Secondly, forming a link requires deletion of one692

or more links by both agents. Deleting more links than one will lower the utility693

this only the deviations with deletion of a single link are relevant to consider - this694

corresponds to substitution of a link. Substituting either a same type link for another695

same type link or a cross type link for another cross type provides no change of utility696

to the pair of agents deviating. Substituting a cross type link for a same type link697

is not feasible. Substituting a same type link for a cross type link will lower the698

utility as the indirect benefits are unchanged but the direct benefits must be lower699

on aggregate due to supermodularity. �700

Lemma 2. For every κ, n such that n > κ and n·κ is even there exists a network µn,κ701

where all agents have exactly κ neighbors. Moreover, if κ ≥ 2 then µn,κ is connected.702
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Proof. Suppose n is even. Let % be the modulus operator. We can construct the703

following networks.704

µ̂n,κ =
{
ij : i ∈ {1, ..., n

2
}, j ∈ {(n

2
+ i% n

2
), ..., (n

2
+ [i+ κ− 1] % n

2
})
}
, κ ≤ n

2
,

µ̃n,κ =

{
µ̂n,κ, κ ≤ n

2
,

µc\µ̂n,n−κ−1, κ > n
2
.

Letting µn,κ = µ̃n,κ is sufficient for n is even. When n is odd we know that κ is705

even and thus we can use the following amended procedure instead:706

ιn,κ(ι) =

{
n−1

2
+ ι, κ ≤ n−1

2
n−1

2
+ (ι+ κ) % n−1

2
, κ > n−1

2

707

µn,κ = µ̃n−1,κ\
{
ij : i ∈ {1, .., κ

2
}, j = ιn,κ(i)

}
∪ {ij : i = n, j ∈ (∪

ι{1,.., κ
2
}{ι, ιn,κ(ι)})}

We now show that if κ ≥ 2 it follows that µ̃n,κ is connected. Assume that n is708

even and suppose κ ≤ n
2
; for any i ∈ N : i < n

2
where i′ = i+ 1 and let j = n

2
+ i+ 1709

where ij, i′j ∈ µ̃n,κ; thus for all i, i′ ∈ {1, .., n
2
} it holds that pii′(µ̃n,κ) < ∞. In710

addition, as for any i ∈ N : i ≤ n
2
, j = n

2
+ i it holds that ij ∈ µ̃n,κ it follows that µ̃n,κ711

is connected. If instead κ > n
2

then by construction ii′ ∈ µ̃n,κ if either max(i, i′) ≤ n
2

712

or min(i, i′) > n
2

as ii′ /∈ µ̂n,n−κ−1. Moreover, for i ∈ N : i < n
2

and j = n
2

+(i+κ) % n
2

713

it holds that ij /∈ µ̂n,n−κ−1; thus ij ∈ µ̃n,κ. Therefore µ̃n,κ must be connected.714

Assume instead that n is odd. By the above argument there are at least two715

connected subnetworks consisting of agents in ∪
ι{1,.., κ

2
}{ι, ιn,κ(ι)} and agents who are716

connected through agent, n, i.e. N\(∪
ι{1,.., κ

2
}{ι, ιn,κ(ι)}). If κ ≤ n−1

2
where i = κ

2
,717

i′ = κ
2

+ 1 and j = n−1
2

+ κ
2

+ 1 then ij, i′j ∈ µ̃n,κ and thus µ̃n,κ is connected. If718

κ > n−1
2

where i = κ
2
, i′ = κ

2
+ 1 and j = n−1

2
+ (ι + κ + 1) % n−1

2
then ij, i′j ∈ µ̃n,κ719

and thus µ̃n,κ is connected.720

Lemma 3. Suppose that minx∈X nx > κ, κ ≥ 2. If ∃i ∈ N such that:721

a) |{i′ ∈ νi(µ) : xi′ = xi}| ≤ nx − 2;722

b) mini′∈Nx\νi(µ) ki′(µ) = κ, and;723

c) maxi′∈Nx\νi(µ) |{i′′ ∈ νi′(µ) : xi′′ 6= x}| = 0;724

then ∃i′, i′′ ∈ µ such that i′, i′′ /∈ νi(µ) and pi′i′′(µ\{i′i′′}) <∞725

Proof. Suppose that for i ∈ N the conditions a)-c) are met but the lemma is not726

true. If i′ ∈ Nx and ii′ /∈ µ then there must exist some i′′ ∈ Nx such that i′i′′ ∈ µ and727
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i′′ /∈ νi(µ) due to conditions a)-c). If pi′i′′(µ\{i′i′′}) <∞ then the proof is terminated728

so we must assume pi′i′′(µ\{i′i′′}) =∞.729

As pi′i′′(µ\{i′i′′}) = ∞ then the network µ\{i′i′′} has two components, µ′, µ′′ ⊆730

µ\({i′i′′}, where in each component µ′ or µ′′ there are at least κ + 1 agents of type731

x (as for any ι ∈ (νi′(µ) ∪ νi′′(µ)) it holds that xι = x).732

Agent i can at most be connected to one of i′, i′′ in µ\({i′i′′}) as otherwise i′, i′′733

would be connected in µ\{i′i′′}. Denote the in subnetwork of {µ′, µ′′} where i is part734

of as µ̃ and define Ñ = {ι ∈ Nx\νi(µ) : ∃ι′ ∈ N : ιι′ ∈ µ̃}.735

Let ι0 ∈ arg maxι∈i′,i′′ pιi and iteratively ιl ∈ νιl−1
(µ), l ∈ N. Moreover, there must736

be a unique path in µ\{i′i′′} between any two agents ι, ι′ ∈ Ñ as otherwise iι, iι′ /∈ µ737

but pιι′(µ̃\{i′i′′}) <∞; by changing the labels we could denote i′ = ι and i′′ = ι′ and738

we would have shown the existence of the desired pair of agents.739

The fact here is a unique path between any two agents in Ñ entails that at level l740

or below there are
∑l

q=0(κ−1)q agents; thus nx ≥
∑l

q=0(κ−1)q. Let l be the minimal741

q such that ∀ ∈ ι ∈ Ñ : piι ≤ q; as nx is finite such a q must exist. In addition, as742

there is a unique path between agents in µ then any agent ι ∈ Ñ : pιι0 = l has only743

one link, and thus its degree is less than κ (as κ ≥ 2). This violates the condition744

that all i′ ∈ N where xi′ = x has ki′ = κ.745

Proof Proposition 3.. The sufficiency of the conditions follows from Lemma 2 which746

can be applied to the subset of agents associated with each type as ∀x ∈ X : nx > κ747

and κ · nx ∈ 2N.748

The necessity of the conditions are straighforward. If either condition i) or iii)749

are violated then perfect sorting is not consistent with no-link surplus. If condition750

ii) is violated then there can be no type connectivity. �751

Proof Theorem 1..752

Networks with sorted connectivity are stable Suppose µ that has sorted753

connectivity. We will demonstrate there are thresholds on δ such that µ has pairwise754

stability. We’re only interested in the minimal thresholds such that for all values of755

externalities below those then stability holds. Thus it is sufficient to evaluate the756

deviations from the network where the net gains are highest.757

The losses from breaking a link ij ∈ µ can be shown to have bounded from below758

such that: ≥ δ · (1 − Z(x, x)). Suppose that nx = κ + 1, x ∈ X then {ij ∈ µ :759

xi = x, xi′ = x} is a clique (i.e. any i, i′ of type x are linked). This entails that760

pii′(µ\{ii′}) = 2 and thus pii′(µ\{ii′}) <∞. Suppose instead that nx > κ+ 1, x ∈ X761

then by Lemma 3 there exists some i, i′, both of type x such that pii′(µ\{ii′}) <∞.762
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Thus when evaluating losses at the threshold we can assume that when deleting some763

link ij that i, j are connected in µ\{ij}. Although the length of the shortest paths764

may increase, there will still be an indirect connection and therefore no loss of utility765

for anyone but the two agents who lose their link. Therefore we assume throughout766

that when evaluating thresholds if ii′ is deleted in a sort-connected network then767

only agents i, i′, who must be of same type, will each lose (1 − δ) · z(x, x) while no768

other agents incur a loss.769

Suppose two agents i, j of distinct types respectively x, x̃ deviate by forming a770

link and delete a link each from µ. The total loss for i and j for deleting a link each771

is:772

(1− δ) · [z(x, x) + z(x̃, x̃)] = (1− δ) · (Ẑx,x̃ + 1) · Z(x, x̃).

The benefit gained for agent i for establishing a link to j is [1 + (nx̃ − 1) · (1 −773

δ)] · z(x, x̃). Thus the total benefits gained for i and j from pairwise deviation can774

be bounded as follows:775

[1 + (nx − 1) · δ] · z(x, x̃) + [1 + (nx̃ − 1) · δ] · z(x̃, x),

= 〈1 + [max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ − 1] · δ〉 · Z(x, x̃).

where ẑx,x̃ =
z(arg minx,x̃ nx, arg maxx,x̃ nx)

Z(x,x̃)
.776

We can derive the threshold for pairwise stability, see definition of Ẑ from Eq.777

(7). :778

(1− δ) · (Ẑx,x̃ + 1) · Z(x, x̃) = 〈1 + [max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ − 1] · δ〉 · Z(x, x̃),

(1− δ) · (Ẑx,x̃ + 1) = 〈1 + [max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ − 1] · δ〉 ,

Ẑx,x̃ =
[
max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ + Ẑx,x̃

]
· δ,

δ =
Ẑx,x̃

max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ + Ẑx,x̃
. (A.1)

Thus we can establish a lower bound for δstab (i.e. the upper bound in δ for779

pairwise stability of µ) by taking the minimum of right-hand-side in Equation A.1;780

thus it follows that: δstab = minx,x̃∈X

(
Ẑx,x̃

max(nx,nx̃)−|nx−nx̃|·ẑx,x̃+Ẑx,x̃

)
. �781

Pairwise stable networks have sorted connectivity when there are two782

types We need to show that every pairwise stable network is sort-connected. As783

there are only two types it holds that X = {x, x}. The outline of the proof is the784
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we show the conditions in the following order; we begin with perfect sorting, then785

no link surplus, and finally type connectedness.786

787

Perfect sorting We begin by supposing that µ is not perfectly sorted. We will788

construct a sequence of feasible deviations and show that they are profitable. As this789

part of the proof has considerable length it will be split into multiple sub-parts with790

a label that makes it easier to navigate.791

792

Sequence of deviations The sequence of feasible deviations will consist of splitting793

up links between agents of different type and matching at even steps agents of type794

x and at odd steps agents of type x̃.795

We first define sequences of agents and of deviations as steps q = 1, 2, .., l where796

l is the number of steps. At each step we define the types as xq = x, x̃q = x̃ if q is797

even else vice versa.798

Let the sequence of agent pairs, i0j0, i1j1, ... be defined as follows. Let agents799

i0, j0 ∈ N be such that xi 6= xj and ij ∈ µ; such i0, j0 must exist if µ is not perfectly800

sorted. Without loss of generality let xi0 = x and xj0 = x̃ where x, x̃ ∈ X. At step801

q ∈ N let ιq = iq−1 if q is even else denote ιq = jq−1. Also let ηq ∈ {iq−1, jq−1} : ηq 6= ιq.802

The advantage of this notation it is easier to define which links are formed between803

same type agents. Note that by construction we have that ι1 = i0 and η1 = j0 as804

well as xιq = xq and xηq = xq.805

Using the sequence of agent pairs we construct the sequence of deviations as806

follows.807

• At every step q = 1, .., l a link is ιqηq (=iqjq) is broken. We assume that broken808

links are elements of the original set, i.e. ιqηq ∈ µ and can only be broken once809

ιqηq /∈ ∪q−1
m=1{ιmηm}.810

• At every step q = 1, .., l a link is formed ιqι
′
q /∈ µ. This corresponds to iqiq−1 /∈ µ811

if q is odd and jqjq−1 /∈ µ if q is even. We assume that formed links are not812

part of the original set µ and can only be formed once ιqι
′
q /∈ ∪

q−1
m=1{ιmι′m}..813

• Combining the broken and formed links we get the coalitional move relative to
µ:

∆µq =µ ∪ {ιqι′q}\{ιqηq, ι′qη′q}, q = 1, .., l − 1 (A.2)

∆µl =

{
µ ∪ {ιlι′l}\{ιlηl, ι′lη′l}, kιl(µ) = κ

µ ∪ {ιlι′l}\{ιlηl}, kι′l(µ) < κ
(A.3)
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We note that the above sequence exists as we can always pick l = 1 and the814

assumption of having a broken link and link formed are satisfied by assumption.815

816

Feasible partners We have defined the sequences of agents and deviations. We817

now restrict the set of partners at each step q for agent ιq for q = 1, .., l:818

Nq = {ι ∈ N : xι = xq}
N̂q = {ι ∈ Nq\{ιq} : ιιq /∈ µ}

A property of N̂q is that N̂q 6= ∅; this follows as minx̂∈X nx̂ ≥ κ+ 1. We will now819

show that our restrictions on partner set has implications at each step q = 1, .., l:820

• Let ι′q ∈ N̂q; this implies that Eq. (A.4) holds. This follows as a violation of821

Eq. (A.4) would imply that some agent ι′′q of type xq would connected only822

through ηq; thus ιq could link with ι′′q instead of ι′q and thus ιq can keep all its823

connections to agents who it was already connected to via ηq.824

|{ι ∈ N : xι = xq ∧ pιιq(µ) <∞ ∧ pιιq(µ ∪ {ιqι′q}\{ηqιq}) =∞}| = 0 (A.4)

• Suppose that Equation A.5 is violated for for q ∈ {1, .., l}. This is equivalent to825

it holds for any ι′q ∈ N̂q where η′q ∈ νι′q(µ) that there is some other ι′′q ∈ N̂q such826

that pι′qι′′q (∆µq) =∞. Let ι
(1)
q = ι′q. As Equation A.5 must hold for any ι′q ∈ N̂q827

we can reproduce the argument iteratively and thus for ι
(m)
q ∈ N̂q, q ∈ N there828

is some η
(m)
q ∈ ν

ι
(m)
q

(µ) such that for some ι
(m+1)
q ∈ N̂q\{ι(1)

q , .., ι
(m)
q } it holds829

that p
ι
(1)
q ι

(m+1)
q

(∆µq) = ∞. However, as n < ∞ it follows that there for some830

q ∈ N that N̂q\{ι(1)
q , .., ι

(m)
q } = ∅. Thus let instead ι′q = ι

(m)
q ; for any η′q ∈ νι′q(µ)831

there is no ι′′q ∈ N̂q such that pι′qι′′q (µ) = ∞. This contradicts that Equation832

A.5 is violated for agent ι′q = ι
(m)
q .833

|{ι ∈ N : xι = xq ∧ pιι′q(µ) <∞ ∧ pιι′q(∆µq) =∞}| = 0 (A.5)

• Suppose Eq. (A.4) and (A.5) hold. We can demonstrate a variation of Eq.834

(A.4) where pιιq(∆µq) <∞, i.e. the ι and ιq are connected despite the deletion835

of η′qι
′
q, see Eq. (A.6) below. The argument why Eq. (A.6) holds is as follows.836

Suppose ∃ι ∈ N : pιιq(µ ∪ {ιqι′q}\{ιqηq}) <∞ and pιιq(∆µq) =∞ and xι = xq.837

If pιqι′q(µ) < ∞ then as it also holds that pιqι′q(∆µq) < ∞ it follows that838
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pιι′q(µ) < ∞ and pιι′q(∆µq) = ∞ which violates Eq. (A.5). Thus it must839

be that pιqι′q(µ) = ∞. Suppose instead pιqι′q(µ) = ∞. Then it must be that840

pιη′q(µ) <∞ and thus pιι′q(µ) <∞ as ι′qη
′
q ∈ µ which violates that pιqι′′q (µ) =∞.841

|{ι ∈ N : xι = xq ∧ pιιq(µ) <∞ ∧ pιιq(∆µq) =∞}| = 0 (A.6)

Gains from deviation We now move on to describing the gains to individuals from842

deviating. We assume initial transfers satisfy:843

−τi0j0 > (1− δ) · z(x̃, x̃)− [1 + (nx̃ − 1) · δ] · z(x̃, x). (A.7)

The above inequality must hold for either type x or x̃ as we substitute labels for844

i, j as well as x, x̃ due to Υ > 0.845

By inserting i, j for ι, η we yield the following expression:846

l−1∑
q=l′

∆Uq =
l−2∑
q=l′

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uιl′ (∆µl′)− uιl′ (µ) (A.8)

Suppose that at every q ∈ N : q < l it holds that ι′q /∈ νιq(µ), xι′l = xl and let847

η′l ∈ νι′l(µ). ) and let:848

∆Uq = uιq(∆µq)− uιq(µ) + uι′q(∆µq)− uι′q(µ) (A.9)

∆Ûq = uiq(∆µq+1q:even)− uiq(µ) + ujq(∆µq+1q:odd)− ujq(µ) (A.10)

We define the auxiliary term Υ below which is useful for bounding the gains from849

deviation. As δ < δstab it follows from Equation A.1 that Υ > 0.850

Υ = (1−δ)·[z(x̄, x̄)+z(
¯
x,

¯
x)]−[1+(n

¯
x−1)·δ]·z(

¯
x, x̄)−[1+(nx̄−1)·δ]·z(x̄,

¯
x). (A.11)

Gains for ιl: As Eq. (A.4) holds it follows that net gains for ιq from deleting the851

link with ηq while forming a link together with ι′q can be bounded: the upper bound852

of losses is when a connection is lost to all agents of type x̃q: [1+(nq−1)·δ]·z(xq, xq);853

the lower bound of gains is (1−δ) ·z(xq, x̃q) as the distance between ιqι
′
q is shortened854

to 1.855

uιq(µ ∪ {ιqι′q}\{ιqηq})− uιq(µ) ≥ (1− δ) · z(xq, xq)− [1 + (nq − 1) · δ] · z(xq, x̃q)(A.12)

Analogue to the derivation of Ineq. (A.12) the net gains are bounded when Eqs.856

(A.5) and (A.6) are satisfied:857

min
ι∈{ιq ,ι′q}

[uι(∆µq)− uι(µ)] ≥ (1− δ) · z(xq, xq)− [1 + (nq − 1) · δ] · z(xq, x̃q), (A.13)
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The first and foremost implication of Ineq. (A.13) and the fact that xiq 6= xjq is858

that:859

uiq(∆µq+1odd(q))− uiq(µ) + ujq(∆µq+1even(q))− ujq(µ) ≥ Υ. (A.14)

Another implication of Ineq. (A.7) when combined with Ineq. (A.13) is that:860

uι1(∆µ1)− uι1(µ)− τι1η1 ≥ (1− δ) · z(x, x)− [1 + (nx − 1) · δ] · z(x, x̃)− τi0j0
uι1(∆µ1)− uι1(µ)− τι1η1 ≥ Υ (A.15)

Furthermore, we can restrict transfers as follows. In order for ∆µq not to be a861

profitable pairwise deviation it must hold that:862

uιq(µ) + uι′q(µ) + τι′qη′q + τιqηq ≥ uιq(∆µq) + uι′q(∆µq)

τι′qη′q ≥ ∆Uq + τηqιq

We can rewrite the above inequality using that ι′q−1 = ηq, η
′
q−1 = ιq and thus863

τι′q−1η
′
q−1

= τηqιq . We also substitute in Equation A.9 and assume the above inequality864

holds for any q < l:865

τι′l−1η
′
l−1
≥ ∆Ul−1 + τι′l−2η

′
l−2

τι′l−1η
′
l−1
≥

l−1∑
q=l′

∆Uq + τι′
l′−1

η′
l′−1

(A.16)

As τηlιl = τι′l−1η
′
l−1

and −τιlηl = τηlιl it follows that using Equation A.8:866

−τιlηl ≥
l−1∑
q=1

∆Uq + τι′
l′−1

η′
l′−1

=
l−2∑
q=1

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uι1(∆µ1)− uι1(µ) + τι′0η′0

=
l−2∑
q=1

∆Ûq + uηl(∆µl−1)− uηl(µ) + uι1(∆µ1)− uι1(µ)− τι1η1 (A.17)

Gains for partners of ιl: link surplus We will now examine and find bounds on867

the benefits of deviating when we assume that kι′l(µ) < κ. As Eq. (A.4) holds it868

follows that869

uι′l(µ ∪ {ιlι
′
l}\{ιlηl})− uι′l(µ) ≥ (1− δ) · z(xl, xl),
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and thus uι′l(µ ∪ {ιlι
′
l}\{ιlηl}) > 0.870

uιl(∆µl)− uιl(µ)− τιlηl ,

≥ uιl(∆µl)− uιl(µ) + uηl(∆µl−1)− uηl(µ) +
l−2∑
q=1

∆Ûq + uι1(∆µ1)− uι1(µ)− τι1η1 ,

≥
l−1∑
q=1

∆Ûq + uι1(∆µ1)− uι1(µ)− τι1η1 . (A.18)

We now apply Ineqs. (A.14) and (A.15) to the above expression which implies871

that the gains for ιl from deviating are bounded below by l · Υ. As we have that872

Υ > 0 it follows that:873

uιl(µ ∪ {ιlι′l}\{ιlηl})− uιl(µ)− τιlηl > 0 (A.19)

Combining that both ιl, ι
′
l have incentive to deviate it follows their joint deviation874

is profitable which violates pairwise stability. Thus it must be that kι′l(µ) = κ.875

876

Gains for partners of ιl: dropping same type partner with no loss of connectivity
Suppose there exists ι′l ∈ N̂l, ι

′′
l ∈ N̂l\{ι′l} such that ι′lι

′′
l ∈ µ, pι′lι′′l (µ\{ιlηl, ι′lι′′l }) <

∞ and τι′lι′′l ≤ 0. This entails that uι′l(∆µ̂l) − uι′l(µ) ≥ 0 where ∆µ̂l = µ ∪
{ιlι′l}\{ιlηl, ι′lι′′l }. This follows from uι′l(∆µ̂l) − uι′l(µ) = uι′l(∆µ̂l) − uι′l(µ ∩ ∆µ̂l) −
[uι′l(µ ∩∆µ̂l)− uι′l(µ)] and uι′l(∆µ̂l)− uι′l(µ ∩∆µ̂l) ≥ 1− z(x, x) and uι′l(µ ∩∆µ̂l)−
uι′l(µ) = 1− z(x, x). As τι′lι′′l ≤ 0 it follows that that utility for ι′l is:

uι′l(∆µ̂l)− uι′l(µ)− τι′lι′′l ≥ 0.

And utility for ιl can bounded be as follows using Inequality A.12 for uιl(∆µ̂l)−877

uιl(µ) as Equation A.4 holds :878

uιl(∆µ̂l)− uιl(µ)− τιlηl
= uιl(∆µ̂l)− uιl(µ) + τηlιl

≥
l−1∑
q=1

∆Uq + uιl(∆µ̂l)− uιl(µ) + τj0i0

=
l−2∑
q=1

∆Ûq + uιl(∆µ̂l)− uιl(µ) + uηl(∆µl−1)− uηl(µ) + ui0(∆µ1)− ui0(µ)− τi0j0

≥ l ·Υ
> 0 (A.20)
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The above inequalities entails that ιl, ι
′
l can deviate profitably pairwise; this is a879

violation of pairwise stability and thus cannot be true. Thus there exists no ι′lι
′′
l ∈ µ880

such that ι′l ∈ N̂l, ι
′′
l ∈ N̂l\{ι′l} as well as pι′lι′′l (µ\{ιlηl, ι′lι′′l }) <∞ and τι′lι′′l ≤ 0.881

882

Gains for partners of ιl: only same type partners. Suppose that ∀ι′l ∈ N̂l : @η′l ∈883

νι′l(µ\ ∪
l
q=1 {ιqηq}) : xη′l 6= xl. This entails that ∀ι′l ∈ N̂l : @η′l ∈ νι′l(µ) : xη′l 6= xl884

as kι′l(µ\ ∪
l
q=1 {ιqηq}) = kι′l(µ). By Lemma 3 it follows there exists ι′l, ι

′′
l ∈ N̂l\νi(µ)885

such that pι′lι′′l (µ\{ι′lι′′l }) < ∞, ι′lι
′′
l ∈ µ and τι′lι′′l ≤ 0 which by the arguments above886

cannot be true. Therefore there has to exist some ι′l ∈ N̂l for which there is an agent887

η′l ∈ νι′l(µ\ ∪
l
q=1 {ιqηq}) where it holds that xη′l 6= xl.888

889

Gains for partners of ιl: link is already broken. We shown above that there must890

exist some partner η′q of different type than ι′q such that ι′qη
′
q ∈ µ. However, there891

can only be a finite number of such links. Therefore, after a number of broken links892

there will be only be duplicate links left, i.e. ι′l, η
′
l ∈ (µ ∩ ∪lq=1{ιqηq}). That is for893

some l′ < l it holds that either ιl, ηl = ιl′ , ηl′ if l − l′ is even or ιl, ηl = ηl′ , ιl′ if l − l′894

is odd.895

If l − l′ is odd, then τι′
l′−1

η′
l′−1

= −τι′l−1η
′
l−1

and therefore we can reduce the In-896

equality A.16:897

0 ≥
l−1∑
q=l′

[uιq(∆µq)− uιq(µ) + uι′q(∆µq)− uι′q(µ)] + 2τι′
l′−1

η′
l′−1

=
l−2∑
q=l′

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uιl′ (∆µl′)− uιl′ (µ) + 2τι′
l′−1

η′
l′−1

=
l−2∑
q=l′

∆Ûq + 2 ·
〈
uη′

l′−1
(∆µl′)− uη′

l′−1
(µ) + τι′

l′−1
η′
l′−1

〉

=
l−2∑
q=l′

∆Ûq + 2 ·

〈
uη′

l′−1
(∆µl′)− uη′

l′−1
(µ) +

l′−1∑
q=1

∆Uq + τι′0η′0

〉

=
l−2∑
q=l′

∆Ûq + 2 ·
l′−1∑
q=1

∆Ûq + 2 · [uι1(∆µ1)− uι1(µ)− τι1η1 ]

≥ (l + l′) ·Υ
> 0,

thus there must be a feasible pairwise deviation for some agent pair ιl, ι
′
l where898
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q ∈ [[1, l]].899

If l − l′ is even then τι′l−1η
′
l−1

= τι′
l′−1

ηl′−1
; thus Inequality A.16 for no pairwise900

deviation becomes: 0 ≥
∑l−1

q=l′ ∆Uq. This can in turn be rewritten as follows:901

0 ≥
l−2∑
q=l′

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uιl′ (∆µl′)− uιl′ (µ)

Using that ιq = η′q−1 and η′l′−1 = η′l−1 we get: 0 ≥
∑l−1

q=l′ ∆Ûq. Recall that for all902

q ∈ N : q < l it holds that ∆Ûq ≥ Υ where Υ > 0. Thus there must be a feasible903

pairwise deviation.904

We have now shown that the network µ has perfect sorting.905

906

No link surplus Suppose that µ has link surplus. This would entail that ∃i ∈ N :907

ki(µ) < κ. As nx > κ it must be that ∃i′ ∈ N : xi′ = xi, ii
′ /∈ µ. Suppose that908

ki′ < κ then
∑

ι∈{i,i′}[uι(µ∪ {ii′})− uι(µ)] > 0 and thus ii′ can be formed profitably909

pairwise. Moreover, as ki′(µ) = κ it follows that ∃i′′ ∈ νi′ : ii′′ /∈ µ, xi′′ = xi. By910

Lemma 3 it follows there exists ι, ι′ ∈ Ñ\νi(µ) such that pιι′(µ\{ιι′}) < ∞, ιι′ ∈ µ911

and τιι′ ≤ 0. This entails that uι(µ)− uι(µ\{ιι′}) + τιι′ ≤ (1− δ)z(x, x). Moreover,912

as
∑

j∈{i,ι}[uj(µ ∪ {iι}\{ιι′})− uj(µ\{ιι′})] ≥ (1− δ) · Z(x, x) it holds that:913 ∑
j∈{i,ι}

[uj(µ ∪ {iι}\{ιι′})− uj(µ)]− τιι′ ≥ (1− δ) · z(x, x)

.914

Thus i, ι can deviate profitably pairwise which contradicts pairwise Nash stabil-915

ity. Therefore it must be that that µ has no link-surplus.916

917

Type connected Suppose that µ is not type connected. As µ we have established918

perfect sorting and no-link surplus there exist i, i′, j, j′ ∈ N : xi = xi′ = xj = xj′ and919

ij, i′j′ ∈ µ and pii′(µ) = ∞. Without loss of generality we assume that τij, τi′j′ ≤ 0920

(otherwise we could simply switch identities some i’s and j’s). This entails:921

min
ι∈{i,i′}

[uι(µ\{ij, i′j′})− uι(µ)] + τij + τi′j′ ≤ 2(1− δ) · z(x, x)

Also we have that:922

min
ι∈{i,i′}

[uι(µ ∪ {ii′}\{ij, i′j′})− uι(µ\{ij, i′j′})] ≥ (κ+ 1) · (1− δ) · z(x, x)

This entails that
∑

ι∈{i,i′}[uι(µ∪ {ii′}\{ij, i′j′})− uι(µ)]− τij − τi′j′ ≥ κ · (1− δ) ·923

Z(x, x); thus i, i′ can deviate profitably. Thus we have established each of the three924

properties are necessary for pairwise stability. �925
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Proof of Theorem 2.926

Inefficiency of sort-connected networks We aim to prove that there exists927

a threshold δopt such that if δ > δopt then there exists a network which has higher928

aggregate utility than any network with sorted connectivity.929

Suppose µ is sort-connected and let µ̂ be a bridged, sort-connected network such930

that only two distinct types x, x̃ have links across. Denote two agents of type x931

who link across types as i, i′ and those of type x̃ who link as j, j′. This entails that932

µ̂ = µ ∪ {ij, i′j′}\{ii′, jj′}. It follows that the loss in aggregate utility is captured933

by Eq. (A.21). The gain in aggregate utility follows Eq. (A.22). The aggregate934

net-gain in utility is captured by Eq. (A.23).935

U(µ\{ii′, jj′})− U(µ) =− (1− δ)[Z(x, x) + Z(x̃, x̃)] (A.21)

U(µ̂)− U(µ\{ii′, jj′}) =[δ · (nxnx̃ − 2) + 2] · Z(x, x̃) (A.22)

U(µ̂)− U(µ) =− (1− δ)[Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃)] + δnxnx̃ · Z(x, x̃)
(A.23)

The derivative of Eq. (A.23) wrt. δ is Z(x, x)+Z(x̃, x̃)−2Z(x, x̃)+nxnx̃ ·Z(x, x̃)936

Due to supermodularity it holds that Z(x, x) + Z(x̃, x̃) − 2Z(x, x̃) > 0. Therefore,937

U(µ̂)−U(µ) is monotone increasing in δ. Moreover, U(µ̂)−U(µ) = nxnx̃Z(x, x̃) > 0938

when δ = 1 and (µ̂)−U(µ) = −[Z(x, x)+Z(x̃, x̃)−2Z(x, x̃)] < 0 when δ = 0. As both939

aggregate losses and gains are continuous in δ it follows by the intermediate value940

theorem that that there exist a threshold δopt such that if δ > δopt then U(µ̂) > U(µ).941

For any two types we can compute a threshold δoptx,x̃ where gains equal losses as942

below. We use definition of Ẑ from Eq. (7).943

(nx · nx̃) · Z(x, x̃) · δ = 2(1− δ) · (Ẑx,x̃) · Z(x, x̃),

(Ẑx,x̃ + 1
2
nx · nx̃) · δ = Ẑx,x̃,

δ =
Ẑx,x̃

Ẑx,x̃ + 1
2
nx · nx̃

. (A.24)

For each pair of types we can compare with the threshold for stability δstabx,x̃ from944

Eq. (A.1).945
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δstabx,x̃ >δoptx,x̃(
Ẑx,x̃

Ẑx,x̃+max(nx,nx̃)−|nx−nx̃|·ẑx,x̃

)
>

Ẑx,x̃

Ẑx,x̃ + 1
2
nx · nx̃

1

2
nx · nx̃ >max(nx, nx̃)− |nx − nx̃| · ẑx,x̃

1

2
nx · nx̃ + |nx − nx̃| · ẑx,x̃ >max(nx, nx̃)

As it holds both that ẑx,x̃ > 0 and that nx·nx̃ > maxnx, nx̃ (because minnx, nx̃ >=946

2) it follows that δoptx,x̃ < δstabx,x̃ . As a consequence it must be that minx 6=x̃ δ
opt
x,x̃ <947

minx 6=x̃ δ
stab
x,x̃ . In other words, this implies that the dominance hold globally for the948

threshold δ̄opt < δstab. As we only evaluated bridged, sort-connected networks where949

two types link across there may exist lower thresholds for optimality δopt ≤ δ̄opt. By950

construction it holds that δopt < δstab.951

Efficiency of networks Our next aim is to show the following properties when952

there are only two types: (i) δopt = δ̄opt; (ii) for δ ≤ δopt it holds that any sort-953

connected network is efficient; and (iii) for δ ≥ δopt any bridged, sort-connected954

network is efficient.955

Property (i). As there are only two types it follows that the only kind of bridged,956

sort-connected network is one where two agents of each of the two types break a957

link and form new links across. The threshold for optimality for this bridged, sort-958

connected can be computed from Eq. (A.24).959

In order to prove properties (ii) and (iii) we want to show there are only two960

classes of networks which can be efficient: the sort-connected and the bridged, sort-961

connected. We begin by noting that utility under hyperbolic decay (from Equation962

3) can be expressed as:963

wij(µ) = (1− δ)1=1(pij(µ)) + δ · 1∈[1,∞)(pij(µ)). (A.25)

Thus total utility from the network has the following form:964

U(µ) =
∑
i∈N

∑
j∈N,j 6=i

[
(1− δ) · 1=1(pij(µ)) + δ · 1∈[1,∞)(pij(µ))

]
· z(xi, xj). (A.26)

The form for aggregate utility in Equation A.26 has the advantage that it is easier965

to perform optimization on. From inspection we see that if a network is connected966
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then indirect term in the weights, δ · 1∈[1,∞)(pij(µ)), is one for all edges, and as a967

consequence the aggregate utility attains its maximal value.968

We first restrict ourselves to look at perfectly sorted networks. If it holds that each969

subnetwork µx ⊆ µ consisting of all links within a given type is connected then the970

argument made above, that the aggregate utility from indirect links (i.e. stemming971

from δ · 1∈[1,∞)(pij(µx)) = 1 for xi = xj, i 6= j in Equation A.26), is maximized972

(conditional on perfect sorting). Finally, it must be that each subnetwork has no973

link surplus. This follows as there exists a subnetwork µ̃x with no link surplus which974

is connected from Lemma 2. Thus any link surplus would imply inefficiency of µx975

as it would hold that the number of links between type x would be lower than976

the possible, i.e.
∑

ij∈µ̃x 1=1(pij(µ̃x)) >
∑

ij∈µx 1=1(pij(µx)), and thus provide lower977

welfare by Equation A.26. As any network with sorted connectivity obtains exactly978

the same utility we know that this set constitutes the set of networks with highest979

aggregate utility among networks with perfect sorting. We know from Proposition 3980

that the set of networks with sorted connectivity is non-empty. We have thus shown981

that the set of networks with sorted connectivity are efficient among perfectly sorted982

networks.983

We proceeed with analyzing efficient networks among those without perfect sort-984

ing. Assume that a network µ is not perfectly sorted. Suppose further that µ is con-985

nected. Then the total utility from indirect links is maximized as 1∈[1,∞)(pij(µ)) = 1986

for every i 6= j. The utility accruing from (direct) links stems from the term987

1=1(pij(µ)) in Equation A.26. Due to supermodularity the utility from (direct) link-988

ing will be maximized if there is perfect sorting, however, this is not feasible as we989

require links across the two types. The minimal required links across types are two990

for every type. This follows as at least one link across types is required and thus the991

number of same type links must be at least one lower. Therefore, the highest attain-992

able number of links within same type is nxκ
2
−1 with two links across. Having nxκ

2
−1993

same type links and two cross-type links as well as type connectivity correspond ex-994

actly to the definition of bridged, sort-connected networks. Any other network which995

is not perfectly sorted can also at most have nxκ
2
−1 same type links. This implies that996

the bridged, sort-connected has maximal benefits possible from direct (links) subject997

to being perfectly sorted. Due to being connected it also has the maximum num-998

ber of indirect benefits. It remains to show that the set of bridged, sort-connected999

networks is non-empty; we can construct a bridged, sort-connected network from a1000

sort-connected network as µ̂ = µ̂∪{ij, i′j′}\{ii′, jj′} where xi = xi′ , xj = xj′ , xi 6= xj1001

and µ is sort-connected. We verify the that by construction µ̂ the has the feature of1002

being connected (as the subnetworks for each type are connected if we choose each1003

subnetwork using Lemma 2) and there are exactly nxκ
2
− 1 links of same type links1004
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for each type. Thus, we have determined that the bridged, sort-connected network1005

must maximize aggregate utility among networks that are not-perfectly sorted.1006

We have established there are only two networks which can be efficient. We know1007

from Eq. (A.24) that if δ < δopt then the payoff from sort-connected network exceeds1008

the payoff from bridged, sort-connected networks and vice versa. Therefore, when1009

δ ≤ δopt then the sort-connected network is efficient, however, when δ ≥ δopt then1010

the bridged, sort-connected network is efficient. �1011

Proof Proposition 4.. Let µ ∈ M̂ and δ < δstab. By construction there exists a1012

network µ̃ which has higher aggregate utility. Let the two pairs of agents ii′, jj′ be1013

agents such that µ̃ = µ ∪ {ij, i′j′}\{ii′, jj′} and xi = xi′ = x and xj = xj′ = x.1014

Specify a link-contingent contract to i, j where µ̂ = µ ∪ {ij}\{ii′, jj′} such that:1015

∀ιι′ ∈ {ij, i′j′} : Cιι′ + Cι′ι ≥ 1
2 [Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃)], (A.27)

∀ιι′ /∈ {ij, ji, i′j′, j′i′} : Cιι′ = 0. (A.28)

By Theorem 1 we know that µ is pairwise stable. Pairwise stability implies that1016

1
2
[Z(x, x) + Z(x̃, x̃) − 2Z(x, x̃)] > ui(µ) − ui(µ̂) + uj(µ) − uj(µ̂) as deviation is not1017

profitable. Using this fact together with Inequality A.27 it follows that:1018

Cij + Cji > ui(µ)− bi(µ̂) + uj(µ)− uj(µ̂).

The above inequality entails agents i, j are a blocking coalition that can gain by1019

deviating to µ̂; this blocking move is also the only profitable move for i, j due to1020

pairwise stability of µ and Equation A.28.1021

In network µ̂ agents i′, j′ have an incentive to form a link with one another as1022

both have surplus link capacity (i.e. degree below the quota) and forming a link is1023

profitable from Inequality A.27. Moreover, we show in the following that this move1024

is the one that ensures the highest aggregate net benefits to i′, j′.1025

We begin with showing that linking across types to other agents of type x, x̃ is1026

not profitable. Suppose i′ links across types to another agent j′′ ∈ {ι 6= j′ : xι = xj′}.1027

First, note the pairwise deviation from µ to form i′j′′ is unprofitable (due to pairwise1028

stability), thus it less profitable than forming i′j′ from µ (which is profitable by1029

Inequality A.27). Second, the net-increase in value of the pairwise deviation to form1030

i′j′ over i′j′′ increases from µ to µ̂ - this is true as j′ loses the link with i from µ while1031

j′′ has an unchanged number - thus j′ will have a weakly lower opportunity cost of1032

deleting links in µ̂. The same argument can be applied to j′ for i′′ ∈ {ι 6= i′ : xι = xi′}.1033

We turn to showing that linking to other agents of same type (staying sorted)1034

is not more profitable as well. Suppose i′ and j′ link to same types as themselves1035
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respectively, i.e. i′′ ∈ {ι 6= i′ : xι = xi′} and j′′ ∈ {ι 6= j′ : xι = xj′}. Suppose ii′′ ∈ µ1036

then no feasible pairwise moves to same type can exist in µ̂ as the move can only1037

involve deleting links; same is true if jj′′ ∈ µ. Thus instead we use ii′′, jj′′ /∈ µ. It1038

must be that any pairwise deviation forming either ii′′ or jj′′ from µ is unprofitable1039

(as µ is pairwise stable); this implies that for any ι ∈ νi′′(µ̂) and ι′ ∈ νj′′(µ̂) it holds1040

that:1041

ui′(µ̂ ∪ {i′i′′}\{i′′ι})− ui′(µ̂) + ui′′(µ̂ ∪ {i′i′′}\{i′′ι})− ui′′(µ̂)− τi′′ι ≤ z(x, x),(A.29)

uj′(µ̂ ∪ {j′j′′}\{j′′ι′})− uj′(µ̂) + uj′′(µ̂ ∪ {j′j′′}\{j′′ι′})− uj′′(µ̂)− τj′′ι′ ≤ z(x̃, x̃).(A.30)

As ui′(µ̃)− ui′(µ̂) + uj′(µ̃)− uj′(µ̂) = z(x, x̃) + z(x̃, x) it follows that1042

ui′(µ̃)− ui′(µ̂) + uj′(µ̃)− uj′(µ̂) + Ci′j′ + Cj′i′ > z(x, x) + z(x̃, x̃).

The above inequality implies together with Inequalities A.29 and A.30 that the1043

total gains for i′ and j′ exceeds the total value that could be generated from alter-1044

native deviations. Thus there are two pairwise moves from µ to µ̂ and from µ̂ to µ̃1045

which both provide strictly higher utility to the deviating agents.1046

Pairwise stability follows from three arguments. First, all deviations among1047

agents where only links in µ̃ ∩ µ are deleted will provide at most the same value1048

in µ̃ that the deviations did in µ - this follows as these agents all have the same links1049

and in µ̃ all agents are connected in µ̃ and thus only direct links matter. This upper1050

limit too gains from deviations implies none of these moves can be profitable as they1051

were unprofitable form µ. Second, deviations that involve deletion of links in µ̃\µ1052

are shown above to provide strictly higher value than any other deviations - thus1053

deviating from µ̃ must also provide strictly lower value. �1054

Proof of Proposition 5.. Under asymptotic independence it follows that average per1055

agent utility for type x under asymptotic perfect sorting converges to (using a geo-1056

metric series):1057

(κ− 1) δ

1− (κ− 1) δ
z(x, x)

Let ωxx̃ = κ · E[δpij |xi = x, xj = x̃]. Suppose that for two types, x, x̃ there is not1058

perfect sorting, and in particular there is some mixing between them, i.e. ωxx̃ > 0;1059

the average per agent utility is:1060 [
(κ− 1) δ

1− (κ− 1) δ
− ωx

]
· z(x, x) + ωx · z(x, x̃).
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Each agent will almost surely have κ links as it is assumed that each link adds1061

positive value and there are asymptotic infinite agents (only a finite number can then1062

not fulfill the degree quota).1063

As we have a finite set of types we can assume then for large populations there1064

is a subset of types, X̂ ⊆ X, where for every type x ∈ X̂ it holds that there is an1065

asymptotic strictly positive share of the total number of agents of that type, i.e.,1066

limn→∞(|{i ∈ Nn}xi=x|/n) > 0. If there is only one such type, i.e. |X̂| = 1, then1067

asymptotic perfect sorting follows by assumption as the asymptotic number of links1068

is κ.1069

For any two types x, x̃ ∈ X̂ which are mixing their average utility is:1070

(κ− 1) δ

1− (κ− 1) δ

[
nx · z(x, x) + nx̃ · z(x̃, x̃)

nx + nx̃

]
− 1

2
·
[
nx · ωxx̃
nx + nx̃

]
· [Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃)].

As there is supermodularity it follows that Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃) > 0 and1071

thus mixing must decrease utility. The same argument can be applied by mixing1072

between multiple types. �1073

Appendix B. Supplementary appendix: finite poulation and constant de-1074

cay in spillovers1075

This appendix extends the analysis of sorted networks with finite number of1076

agents to a setting where decay is constant. We prove properties of stability and ef-1077

ficiency for a sub-class of sort-connected networks under constant decay. Specifically1078

we show that certain network with sorted connectivity are pairwise stable for low to1079

moderate spillovers. We also show that these network are suboptimal for moderate1080

to high spillovers.1081

The appendix is split into two sub-appendices, Appendix B.1 which contains the1082

main results and Appendix B.2 which only contains auxiliary results.1083

Appendix B.1. Suboptimal sorting in local trees1084

We begin by describing the sub-class of sort-connected networks. Informally put,1085

the sub-class has the added requirement that networks are not only connected within1086

each type, but also resembles a certain tree structure. We define a tree as a network1087

where every pair of agents are connected by a unique path. The structure of each1088

subnetwork is such that from the perspective of every agent (i.e. the ego-network)1089

each subnetwork appears as a tree locally. That is, the network becomes a tree if1090

we remove all links for the agents furthest away from the considered agent which are1091
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not on their shortest path(s) to the considered agent. Therefore the networks have1092

a local tree structure but not a global one.1093

The formal definition of local trees is described below. The definition employs1094

the network diameter which is the maximum distance between any two agents, i.e.1095

m(µ) = supi,j∈N pij(µ).1096

Definition 11. A network µ is a local tree when each agent i has κ links where:1097

• for each other agent j 6= i at distance pij(µ) ≤ mn,κ − 2 there are κ − 1 links1098

between agent j and j′ such that j′ is one step further away, i.e. pij(µ) =1099

pij′(µ)− 1;1100

• the network diameter m(µ) = mn,κ,1101

mn,κ = arg min
m
{m : Σm

l=1(κ(κ− 1)l−1) + 1 ≥ n}. (B.1)

The structure of local trees entails that each agent has κ · (κ − 1)p−1 agents at1102

distance p < m, where m = mn,κ. At distance p = m there are n−
∑m−1

l=1 κ ·(κ−1)l−1
1103

(all remaining agents). This structure implies that every agent’s utility is maximized1104

subject to the constraint of all agents having at most κ links;20 a side effect is that1105

utility before transfers is symmetric.1106

A necessary condition for local trees to exist is that there is no link surplus, i.e.1107

degree quota is binding (∀i ∈ N : ki = κ). Note this binding condition is only1108

possible when n · κ is even.1109

When a local tree network fulfills n =
∑m

l=1 κ · (κ− 1)l−1 then it is an exact local1110

tree. See the next sub-appendix for an elaborate treatment of structure of exactly1111

local trees. Two subclasses of exact local trees which are worth mentioning. The1112

first is a network known as a cycle or a ring. The cycle is characterized by having1113

a minimal possible degree quota (κ = 2) among local trees and a maximal diameter1114

(m =
⌈
n−1

2

⌉
). The second is a clique where all agents are linked, i.e. the complete1115

network. Cliques have maximal degree quotas (κ = n − 1) and minimal diameters1116

(m = 1). Both subclasses has a network which exists for any n. Note that in Example1117

1 each of the two components is both a cycle and a clique. Note that there exist1118

non-trivial networks beyond the cycle and the clique.21
1119

20The maximization of utility follows from the observation that each agent has at most κ links,
so at distance p there can be at most κ · (κ− 1)p−1 agents.

21An example is {i1i2, i1i3, i1i4, i2i5, i2i6, i3i7, i3i8, i4i9, i4i10, i5i7, i5i9, i6i8, i6i10, i7i9, i8i10} when
n = 10, κ = 3 and N = {i1, i2, .., i10}.
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In order to derive our results it is necessary to restrict ourselves to a subset of1120

local trees. The subset are those local trees where the deletion of links leads to equal1121

losses to both of agents whose link is deleted; thus we refer to these local trees as1122

having symmetric losses:1123

Definition 12. A local tree µ has symmetric losses when at every distance p =1124

1, ..,m it holds that |{i ∈ N : pιi(µ\{ιι′}) = p}| = |{i ∈ N : pι′i(µ\{ιι′}) = p}|.1125

Whether or not symmetric losses is a generic property for all local trees is an open1126

question. However, in simulations that we perform it holds all network configurations1127

which are local trees up to size n = 10 have symmetric losses (see result below and1128

proof for exhibition of examples). In addition, for size up to n = 16 it has been1129

shown to hold for any networks examined in the simulation.1130

A generalization of stable but suboptimal sorting under constant decay is ex-1131

pressed below. While allowing for constant decay rather than hyperbolic it the set1132

of networks are further restricted.1133

Theorem 3. Suppose there is supermodularity, a degree quota κ and each type has1134

equal number of agents. It follows that any network which is sort-connected and1135

consist of symmetric local trees is also: (i) pairwise stable if δ < δstab; and, (ii)1136

inefficient if δ > δopt. The thresholds satisfy δopt, δstab ∈ (0, 1) where δopt < δstab1137

Proof. We show properties (i) and (ii) together. Let µ be a network which is perfectly1138

sorted into |X| components, one for each type. Each component is a local tree with1139

n/|X| agents. Let there be no transfers between any agents.1140

As each subnetwork for a given type is a local tree it is stable against deviations by1141

agents of the same type - this follows as local trees provides maximal possible benefits1142

among feasible structures of the subnetwork for all agents in the subnetwork. Thus1143

only two agents of different types may have a profitable deviation which is feasible.1144

Let ι, j be agents of respectively types x and x̃. These two agents can deviate by1145

each deleting a link to ι′ and j′ respectively while jointly forming a link. The new1146

network resulting from deletion is denoted µ̂ = µ\{ιι′, jj′}. The move resulting from1147

deletion and forming a link is denoted µ̆ = µ̂ ∪ {ιj}. An alternative network is µ̃,1148

the type-bridged network of µ, where the links ιι′, jj′ are removed while the links1149

ιj, ι′, j′ have been formed; thus µ̃ = µ̂ ∪ {ιj, ι′j′}.1150

Define the gross loss of benefits for i as ui(µ̂) − ui(µ) while the gross gains are1151

ui(µ̃)−ui(µ̂). There must exist a threshold of externalities δstab ∈ (0, 1) where µ is no1152

longer pairwise stable as cost of deviation monotonically decreases and approaches1153

zero as δ → 1 while gains are monotonically increasing. The monotonicity of losses is1154

a consequence of the fact that gross loss consists of shortest paths from µ, where ιι′ is1155
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included in the shortest path, which have longer length in µ̂ and thus are discounted1156

more. Therefore the gross loss is mitigated by a higher δ as the longer shortest paths1157

are punished less. The monotonicity of gains follows as the gains consist of new1158

shortest paths to agents of type x̃ through ιj and j′ι′ the value of these increases for1159

higher δ.1160

Exploiting the that Fact 1 and 2 from Appendix Appendix B.2 hold for local1161

trees it follows that for any other agent i of type x (i.e. i is in N\{ι, ι′} and xi = x):1162

ui(µ̃)− ui(µ) > δmin(piι(µ̃),piι′ (µ̃))[uι(µ̆)− uι(µ)].

Aggregating for all agents this implies:1163

U(µ̃)− U(µ) > [uι(µ̆)− uι(µ)] ·
∑
xi=x

δmin(piι(µ̃),piι′ (µ̃)) + [uj(µ̆)− uj(µ)] ·
∑
x′i=x̃

δmin(pij(µ),pij′ (µ)).

where m = mn,κ. The inequality above implies the following: if U(µ̃)−U(µ) = 01164

then uι(µ̆) − uι(µ) + uj(µ̆) − uj(µ) < 0; U(µ̃) − U(µ) > 0 when uι(µ̆) − uι(µ) +1165

uj(µ̆) − uj(µ) = 0. It can also be argued that there must exist a threshold, δopt,1166

such that when δ = δopt then U(µ̃)− U(µ) = 0 and that δopt < δstab. This follows as1167

U(µ̃)−U(µ) < 0 for δ = 0 and U(µ̃)−U(µ) > 0 when uι(µ̃)−uι(µ)+uj(µ̃)−uj(µ) = 01168

as well as continuity of U(µ̃)− U(µ) in δ.1169

This entails that for δ > δopt then µ̃ provide higher aggregate payoff. Moreover1170

we showed previously that for δ < δstab then µ is pairwise (Nash) stable. Thus we1171

have proven properties (i) and (ii).1172

1173

For constant decay the thresholds governing when sorting is respectively subop-1174

timal and stable, i.e. δopt, δstab, can be determined explicitly by solving polynomial1175

equations for every deviation. Moreover, for exact local trees there is a unique solu-1176

tion. In Figure B.3 the two thresholds from Theorem 3, δopt(Ẑ), δstab(Ẑ).1177

The plots in Figure B.3 are made for variations of exact local trees. The upper1178

plots corresponds to cliques with various sizes. The lower plot have fixed degree quota1179

(κ=100) and the threshold is simulated using pattern in utility that is demonstrated1180

in Appendix Appendix B.2. The plots show the scope for inefficiency, i.e. the1181

gap between δopt(Ẑ), δstab(Ẑ), increases with the number of agents involved. This1182

makes sense intuitively as the two agents forming the link will fail to account for an1183

increasing number of indirect connections between the two groups. As the number of1184

indirect connections increases at with the squared with total number of agents then1185

larger populations will lead to larger gaps of inefficiency.1186
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Figure B.3: Visualization of thresholds for connecting from Theorem 3.

The upper diagrams correspond to cliques and the lower ones to exact local trees (where thresholds

stem from Equations B.4, B.5, B.10, B.11).

Appendix B.2. Local trees1187

This sub-appendix provides auxiliary results for deriving the generalization of1188

suboptimal sorting. We begin our focus on exact local trees and subsequently more1189

generally in local tree networks, see Definition 11 in the previous sub-appendix.1190

We will examine a generic network µ which is perfectly sorted and assume that1191

the subset of links for each type is a component that can be classified as either a local1192

tree or an exact local tree. Let networks µx and µx̃ be the components associated1193

with respectively types x, x̃ ∈ X. We will focus on three particular moves:1194

• Pairwise deletion of a link : Suppose two links ιι′, jj′ ∈ µ are deleted and agents1195

ι and j have respectively type x and x̃; thus the two links are not from the1196

same component. Let the new network that results from removal of the links1197

be denoted µ̂ = µ\{ιι′, jj′}.1198

• Pairwise formation of a link across types : This move presumes that both agents1199

are also deleting a link. We denote this as a move where agents ι and j form1200

a link: µ̆ = µ̂ ∪ {ιj}.1201

• Double pairwise formation of a link across types : When two links are formed1202

across types in µ this corresponds to a non-pairwise deviation as it requires1203
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four coalition members. We denote this as a move where both agents ι and j1204

as well as ι′ and j′ form a link: µ̃ = µ̂ ∪ {ιj, ι′j′}.1205

Finally let i denote a generic agent of type x. Let the shortest path in µ from1206

i to either ι or ι′ be denoted p̂i where p̂i = min(piι(µ̂), piι′(µ̂)). When p̂i = 0 then1207

either i = ι or i = ι′.1208

Basic properties. We exploit that µ is a local tree (see Definition 11). Throughout1209

the remainder of the paper let m = mn,κ (see Equation B.1). We express each agent’s1210

number of paths of length p as a function of the number of agents and the degree1211

quota:1212

#p
i (µ) = κ(κ−1)p−1−1=m(p)·∆#(n, κ), ∆#(n, κ) =

m∑
l=1

(κ·(κ−1)l−1)−n, (B.2)

where 1=m(p) is the Dirac measure of whether p = m. Using the local tree1213

structure we can express utility without transfers of each agent:1214

ui(µ) =
m∑
l=1

#l
i(µ) · δl · z(x, x).

Exact local trees1215

Recall exact local trees are local trees where ∆#(n, κ) = 0. We will argue that1216

this entails that exact local trees have the essential property that for every pair of1217

agents there is a unique shortest path of at most length m and the number of paths1218

for every agent is prescribed by Equation B.2. This can be deducted as follows.1219

Note first that the fact that the number of walks with at most length m starting1220

in a given agent i cannot exceed
∑m

p=1 #p
i (·). Recall also that local trees has the1221

property that all agents are reached within distance m. Moreover exact local trees1222

has the property that for any agent i it holds that n− 1 =
∑m

p=1 #p
i (µ); thus every1223

shortest path with distances less than or equal to m must be a unique path between1224

the two particular agents.1225

The uniqueness and countability of paths can be used to infer the losses when1226

links are either removed or added to an exact local tree.1227

Exact local trees - loss from deletion. In order to examine the impact of deletion of1228

a link it is sufficient to analyze what happens to one component of types. This is1229

sufficient as other components as the conclusions are valid for all.1230

The deletion of link ιι′ implies that any pair of agents i, i′ whose (unique) shortest1231

path in µ includes the link ιι′ will have a new shortest routing path. For exact local1232
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trees we can exactly determine the length of the new path. Let i be the agent1233

whose distance to ι is least and let i′ be the agent whose distance to ι′ is least, i.e.1234

piι(µ) < piι′(µ) and pi′ι′(µ) < pi′ι(µ).1235

First when link ιι′ is deleted we can show there is no shortest path between i and1236

i′ in µ̂ with length below 2m − p̂i − p̂i′ ; that is there is no ii′ whose shortest path1237

in µ includes ιι′ such that pii′(µ̂) < 2m− p̂i − p̂i′ . Suppose this was not true. Then1238

there would exist an agent j who (1) is on the new shortest path between i and i′1239

in µ̂ and (2) whose shortest path to agents ι and ι′ does not include the link ιι′ and1240

(3) such that1241

pji(µ̂) + pji′(µ̂) < 2m− p̂i − p̂i′ ,
pji(µ̂) + pji′(µ̂) < 2m−min(piι(µ), piι′(µ))−min(pi′ι(µ), pi′ι′(µ)).

As by construction piι(µ) < piι′(µ) and pi′ι′(µ) < pi′ι(µ) then the expression above1242

is equivalent to: pji(µ̂)+pji′(µ̂) < 2m−piι(µ)−pi′ι′(µ). As the shortest path between1243

i and ι as well as between i′ and ι′ are unchanged from µ to µ̂ it follows that we can1244

further rewrite into:1245

pji(µ̂) + pji′(µ̂) < 2m− piι(µ̂)− pi′ι′(µ̂)

However, the above statement implies that in network µ that either ι or ι′ has1246

two paths with lengths of at most m but this violates the definition of exact local1247

trees.1248

We can now show that when link ιι′ is deleted the new shortest path between i1249

and i′ in µ̂ has a length of exactly 2m− p̂i− p̂i′ . This is shown by demonstrating there1250

is an agent j such that pji(µ̂) = m − p̂i and pji′(µ̂) = m − p̂i′ . This can be shown1251

follows. Suppose that pji(µ̂) = m− p̂i. We will demonstrate that pji′(µ̂) = m− p̂i′ .1252

As pji(µ̂) = m − p̂i it follows that pjι(µ̂) = m. From the definition of exact local1253

trees there must exist a path of length less than m between j and ι′ in network µ.1254

As argued in the paragraph above neither of these paths can be strictly shorter than1255

m and consequently they must both be exactly m.1256

The number of shortest paths of length p which become altered for agent i is1257

(κ − 1)p−p̂i−1 for p = p̂i, ..,m − 2,m − 1. This can be demonstrated as follows. If1258

agent piι(µ) = m and piι′(µ) = m then no shortest paths are altered; this is clear as1259

agent i as none of the unique shortest paths includes ιι′ as they have at most length1260

m. If instead piι(µ) = m− 1 then the unique shortest path from i to ι′ includes ιι′ is1261

the last link; this implies a new shortest path if ιι′ is deleted. Thus if piι(µ) = m− 11262

then one shortest path of length m is lost. When piι(µ) = m − 2 then one path of1263
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length m− 1 is lost by the same argument; moreover κ− 1 paths that has ιι′ as the1264

second last link. By induction this can be done at higher order and thus for shorter1265

distances. Using the number of rerouted paths shown above we can establish the1266

total number of shortest paths in network µ̂ for agent i that has a length of p:1267

#p
i (µ̂) =

{
κ(κ− 1)p−1 − 1>p̂i(p) · (κ− 1)p−p̂i−1, p ≤ m

(κ− 1)2m−p̂i−p, p ∈ (m, 2m− p̂i].
(B.3)

By combining the count of shortest paths rerouted with their new length we can1268

generalize the loss for any agent from the deletion of link ιι′ when all agents are1269

homogeneous of type x:1270

ui(µ)− ui(µ̂) =

m−p̂i∑
l=1

[
(κ− 1)l−1 ·

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
· z(x, x). (B.4)

We can aggregate the losses across homogeneous agents of type x and we arrive1271

at the following expression:1272

U(µ)− U(µ̂) =
m∑
l=1

[
2l · (κ− 1)l−1 ·

(
δl−1 − δ2m−(l−1)

)]
· z(x, x). (B.5)

Exact local trees - gains from linking across types. We move on to establishing the1273

gains of establishing a link in a perfectly sorted network where each component is1274

an exact local tree.1275

The gains to agents ι and j of forming a link ιj are direct benefits and the new1276

indirect connections that are accessed through the link ιj. For agent ι the benefits1277

from forming a link with j can be computed with Equation B.3 where the input length1278

is added one (as ιj is added to the shortest path). Recall µ̆ = µ ∪ {ιj}\{ιι′, jj′}.1279

uι(µ̆)− uι(µ) =

[
m∑
l=0

(κ− 1)l · δl +
m−1∑
l=0

(κ− 1)l · δ2m−l

]
· z(x, x̃). (B.6)

The above expression is relevant for evaluating the pairwise gains as it captures1280

individual benefits for a pairwise formation of a link by ι and j. However, we are also1281

interested in the sub-connected network as it allows to assess the efficiency. Suppose1282

instead now that ι′ and j′ also form a link; thus ιj, ι′j′ are formed while ιι′, jj′ are1283

deleted. Let µ̃ = µ ∪ {ιj, ι′j′}\{ιι′, jj′}.1284
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Let i be an agent of type x and let p̂i still denote the least distance to either ι or1285

ι′. We can calculate the benefits for i when ιj, ι′j′ are formed. The benefits are the1286

indirect connections to agents of type x̃ with whom agent i has no connections in µ.1287

The aim is to count the number of paths of a given length.1288

For a given agent i′ of the other type x̃ it must hold that the shortest path in µ̃1289

between i, i′ either contains the link ιj or the link ι′j′, and thus the distance can be1290

computed as follows:1291

pii′(µ̃) = min[pij(µ̃) + pi′j(µ̃), pij′(µ̃) + pi′j′(µ̃)] (B.7)

We further restrict the above expression. We can use that i and i′ of type x̃1292

can be at most 2m + 1 away from each other. This follows from the fact that1293

piι(µ̃) + piι′(µ̃) = 2m and pi′j(µ̃) + pi′j′(µ̃) = 2m. As piι(µ̃) + piι′(µ̃) = 2m and1294

ιj, ι′j′ ∈ µ̃ then it must be that pij + pij′ = 2m + 2. These facts together entail we1295

can rewrite Equation B.7:1296

pii′(µ̃) = min[pij(µ̃) + pi′j(µ̃), pij′(µ̃) + pi′j′(µ̃)]

= min[pij(µ̃) + pi′j(µ̃), 4m+ 2− pij(µ̃)− pi′j(µ̃)]. (B.8)

From the above expression it follows that pii′ ≤ 2m + 1 as the expression is1297

maximized for pij + pi′j = 2m+ 1.1298

The number of shortest paths from i through ιj to agents of the other type x̃ can1299

be found using Equation B.3 for agent ι adding extra distance 1 + p̂i:
22

1300

• for distance p ∈ {1 + p̂i, ...,m+ 1 + p̂i} there are (κ− 1)p−1−p̂i agents;1301

• for distance p ∈ {m+ 2 + p̂i, ..., 2m+ 1} there are (κ− 1)2m+1−(p−1−p̂i).1302

The shortest paths from i not routed through ι but instead through ι′ are those1303

where p+ 1 + p̂i > 2m+ 1; from Equation B.8 we know the new shortest path length1304

is 4m+ 2− p− 1− p̂i. The number of shortest paths through ι′ in network µ̃ will be1305

(κ − 1)2m+1−(p−1−p̂i) and the new length 4m + 2 − p − 1 − p̂i. These facts together1306

imply:1307

#p
i (µ̃)−#p

i (µ̂) =


(κ− 1)p−1−p̂i , p ∈ {p̂i + 1, ..,m+ 1 + p̂i},
(κ− 1)2m+1−p−p̂i , p ∈ {m+ p̂i + 2, .., 2m+ 1},
(κ− 1)p+p̂i−2m−1, p ∈ {2m+ 1− p̂i, .., 2m}.

(B.9)

22Shortest paths from i must contain both ιj and every link in the shortest path from i to j.
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From the number of paths above we can derive the change in utility from when1308

ιj, ι′j′ are added to the network for a given agent i of type x.1309

ui(µ̃)− ui(µ̂) =


∑m

l=0(κ− 1)l · δl+p̂i

+
∑m−1

l=p̂i
(κ− 1)l · δ2m−l+p̂i

+
∑p̂i−1

l=0 (κ− 1)l · δ2m+l−p̂i

 · z(x, x̃). (B.10)

By aggregating over all agents of type the gain in benefits by forming ιj, ι′j′ is as1310

follows:1311

U(µ̃)−U(µ̂) =

m∑
p=0

[ 1<m(p) · 2 · (κ− 1)p+

1=m(p) · (n− 2 ·
∑m−1

l=1 (κ− 1)l)

]
·


∑m

l=0(κ− 1)l · δl+p

+
∑m−1

l=p (κ− 1)l · δ2m−l+p

+
∑p−1

l=0 (κ− 1)l · δ2m+l−p

·Z(x, x̃).

(B.11)

Local trees1312

We can use the analysis above on exact local trees to bound the gains and1313

losses for (non-exact) local trees. Recall that exact local trees has the property1314

that ∆#(n, κ) = 0 and for non-exact local trees ∆#(n, κ) > 0. Thus the difference1315

between exact and non-exact local trees is that for a given agent the number of1316

connected other agents at exactly distance m is lower for non-exact local trees.1317

Using the analysis of exact local trees we can compute the bounds on loss of1318

utility for a given agent in the local when a link is deleted - this is done by reusing1319

Equation B.3 as follows.1320

We can discount the number of agents initially at distance m by ∆#(n, κ). More-1321

over, the new distance between agents i and i′ after deletion of the link ιι′ is at least1322

min(pii′ , 2m−2− p̂i− p̂i′) at most 2m− p̂i− p̂i′ .23 From these two facts we can derive1323

the bound in loss of utility when ιι′ is deleted. The upper bound of loss (in terms of1324

magnitude) is found when new shortest paths have most distance, i.e. 2m− p̂i− p̂i′ ;1325

the lower bound is found when new distance is least, i.e. min(pii′ , 2m− 2− p̂i− p̂i′):1326

23The upper bound follows from the fact that for any two agents i and i′ in the local tree there
is still always an agent j at distances pij = m − p̂i and pi′j = m − p̂i′ . The lower bound can
be established by repeating an argument used for exact local trees. If the new distance between
two agents i and i′ after deletion of ιι′ had been less than min(pii′(µ), 2m− 2− p̂i − p̂i′) then the
following would be true. There would be multiple shortest paths of length less than or equal to
m− 1 between either (ι and j) or (ι′ and j). This would violate the property of local trees that all
shortest paths of length ≤ m− 1 are unique.
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ui(µ)− ui(µ̂) ≤
m−p̂i∑
l=1

[
max(0, (κ− 1)l−1 − 1=m(l) ·∆#(n, κ))

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
· z(x, x),(B.12)

ui(µ)− ui(µ̂) ≥
m̃∑
l=1

[
(κ− 1)l−1 ·

(
δl−1+p̂i − δ2m−(l+1)−p̂i

)]
· z(x, x), m̃ = min(m− 1,m− p̂i).(B.13)

Fact 1. If µ is perfectly sorted and consists of |X| components that each constitute1327

a local tree with n/|X| agents, then for any agent i of type x where p̂i > 0:1328

ui(µ̂)− ui(µ) > δp̂i · [uι(µ̂)− uι(µ)], p̂i = min(piι(µ̂), piι′(µ̂)). (B.14)

Proof. Inequality B.14 can be rewritten into: δp̂i · [uι(µ)−uι(µ̂)]− [ui(µ)−ui(µ̂)] > 0.1329

This inequality is equivalent to the expression below (derived by substituting in1330

Inequality B.13 for agent ι and Inequality B.12 for agent i):1331

δp̂i ·
m−1∑
l=1

[
(κ− 1)l−1 ·

(
δl−1 − δ2m−(l+1)

)]
−

m−p̂i∑
l=1

[
(κ− 1)l−1

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
> 0,

m−p̂i∑
l=1

[
(κ− 1)l−1 ·

(
δ2m−(l+1)−p̂i − δ2m−(l+1)+p̂i

)]
+

m−1∑
l=m−p̂i+1

[
(κ− 1)l−1

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
> 0.

As it holds that 2m− (l+ 1)− p̂i < 2m− (l+ 1) + p̂i and it holds that l−1 + p̂i <1332

2m− (l− 1)− p̂i (equivalent to l < m+ 1− p̂i) the above inequality is satisfied.1333

We can also derive bounds on the gains from connecting across types for local1334

trees. We will not do this explicitly but instead use Definition 12 on symmetric losses1335

in local trees. This allows to express our next result:1336

Fact 2. For the perfectly sorted network µ which consists of |X| network components1337

which each constitute a local tree of n/|X| agents that has symmetric losses then it1338

holds that for agents i, ι of type x and p̂i > 01339

ui(µ̃)− ui(µ̂) ≥ δp̂i · [uι(µ̆)− uι(µ̂)], p̂i = min(piι(µ̂), piι′(µ̂)). (B.15)

Proof. It holds that uι(µ̃)− uι(µ̂) ≥ uι(µ̆)− uι(µ̂) as µ̃ ⊆ µ̆ (thus all shortest paths1340

in µ̃ cannot have a length that exceeds that in µ̆). Therefore it suffices to show:1341

ui(µ̃)− ui(µ̂) ≥ δp̂i · [uι(µ̃)− uι(µ̂)]. (B.16)

As the local tree has symmetric losses it follows that uι(µ̃)−uι(µ̂) = uι′(µ̃)−uι′(µ̂);1342

this follows from the fact that they both gain an equal number of new shortest paths1343
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through j, j′, this follows as as j, j′ have same number of paths after deletion of jj′1344

due to symmetric losses. This entails that without loss of generality we can assume1345

that piι = p̂i as otherwise we could substitute ι with ι′ and conduct the analysis1346

again.1347

For ι and some agent i′ of type x̃ it holds that pii′(µ̃) ≤ pιi′(µ̃) + p̂i. This follows1348

as there exists a path between i, ι and ι, i′ with respectively lengths pιi′(µ̃) and p̂i;1349

thus pii′(µ̃) ≤ pιi′(µ̃) + p̂i. This implies the following inequality must hold:1350 ∑
xi′=x̃

δpii′ (µ̃) ≥ δpιi(µ̃) ·
∑
xi′=x̃

δpιi′ (µ̃).

As uι(µ̃)−uι(µ̂) =
∑

xi=x̃

∏pιi′ (µ̃)
l=1 δrl ·z(x, x̃) and ui(µ̃)−ui(µ̂) =

∑
xi=x̃

∏pii′ (µ̃)
l=1 δrl ·1351

z(x, x̃) it follows that Inequality B.16 holds which proves our fact.1352
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