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Abstract

We study a school choice problem under affirmative action policies where authorities re-

serve a certain fraction of the slots at each school for specific student groups, and where

students have preferences not only over the schools they are matched to but also the type of

slots they receive. Such reservation policies might cause waste in instances of low demand from

some student groups. To propose a solution to this issue, we construct a family of choice func-

tions, dynamic reserves choice functions, for schools that respect within-group fairness and

allow the transfer of otherwise vacant slots from low-demand groups to high-demand groups.

We propose the cumulative offer mechanism (COM) as an allocation rule where each school

uses a dynamic reserves choice function and show that it is stable with respect to schools’

choice functions, is strategy-proof, and respects improvements. Furthermore, we show that

transferring more of the otherwise vacant slots leads to strategy-proof Pareto improvement

under the COM.
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1 Introduction

The theory of two-sided matching and its applications has been studied since the seminal work

of Gale and Shapley (1962). Nevertheless, many real-life matching markets are subject to various

constraints, such as affirmative action in school choice. Economists and policy makers are often

faced with new challenges from such constraints. Admission policies in school choice systems often

use reserves to grant applicants from certain backgrounds higher priority for some available slots.

Reservation in India is such a process of setting aside a certain percentage of slots in government

institutions for members of underrepresented communities, defined primarily by castes and tribes.

We present engineering school admissions in India as an unprecedented matching problem with

affirmative action in which students care about the category through which they are admitted.

In engineering school admissions in India, students from different backgrounds (namely, sched-

uled castes (SC), scheduled tribes (ST), other backward classes (OBC), and general category (GC))1

are treated with different criteria. Schools reserve a certain fraction of their slots for students from

SC, ST, and OBC categories. The remaining slots at each school, which are called general category

(GC) slots, are open to competition. It is optional for SC, ST, and OBC students to declare their

background information. Those who do declare their background information are considered for

the reserved slots in their respective category, as well as for the GC slots. Students who do not

belong to SC, ST, or OBC categories are considered only for GC slots. Students belonging to

SC, ST, and OBC communities who do not reveal their background information are only consid-

ered for GC slots. Aygün and Turhan (2017) documented that students from SC, ST, and OBC

categories have preferences not only for schools but also for the category through which they are

admitted. Hence, students from these communities may prefer not to declare their caste and tribe

information in the application process. Besides this strategic calculation burden on students, the

current admission procedure2 suffers from a crucial market failure: The assignment procedure fails

to transfer some unfilled slots reserved for under-privileged castes and tribes to the use of remaining

students. Hence, it is quite wasteful.

We address real-life applications as follows: There are schools and students to be matched.

Each school initially reserves a certain number of its slots for different privilege groups (or student

types). A given student may possibly match with a given school under more than one type. Each

school has a pre-specified sequence3 in which different sets of slots are considered, and where each

set accepts students in a single privilege type. Different schools might have different orders. Since

a student might have more than one privilege type, the set of students cannot be partitioned into

1Students who do not belong to SC, ST, and OBC categories are called general category (GC) applicants.
2Admission to the Indian Institute of Technologies (IITs) and its matching-theoretical shortcomings are explained

in detail in Aygün and Turhan (2017).
3We will call this sequence a precedence sequence, which is different than the precedence order from Kominers

and Sönmez (2016). Precedence order is a linear order over the set of student types. Precedence sequence, on
the other hand, is more general in the sense that a given student type might appear multiple times. A technical
definition will be given in the model section.
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privilege groups. Each student has a preference over school-privilege type pairs. Students care

not only about which school they are matched to but also about the privilege type under which

they are admitted. Each school has a target distribution of its slots over privilege types, but they

do not consider these target distributions as hard bounds4. If there is less demand from at least

one privilege type, schools are given the opportunity to utilize vacant slots by transferring them

over to other privilege types. Authorities might require a certain capacity transfer scheme so that

each school has a complete plan where they state how they want to redistribute these slots. Thus,

we take capacity transfer schemes exogenously given. The only mild condition imposed on the

capacity transfer scheme is monotonicity,5 which requires that (1) if more slots are left from one

or more sets, the capacity of the sets considered later in the precedence sequence must be weakly

higher, and (2) a school cannot decrease the total capacity in response to increased demand for

some sets of slots.

We design choice functions for schools that allow them to transfer capacities from low-demand

privilege types to high-demand privilege types. Each school respects an exogenously given prece-

dence sequence between different sets of slots when it fills its slots. Each school has a strict priority

ordering (possibly different than the other schools’) over all students. For each school, priority

orderings for different privilege types are straightforwardly derived from the school’s priority or-

dering. There is an associated choice function, which we call a “sub-choice function,” for each set

of slots. In Indian engineering school admissions, sub-choice functions are q-responsive. That is, a

sub-choice function always selects the q-best students with respect to the priority ordering of the

associated privilege type at that school, where q denotes the capacity.

The school starts filling its first set of slots according to its precedence sequence. Given the

initial capacity of the first set of slots and a contract set, the sub-choice function associated with

the first set selects contracts. The school then moves to the second set according to its precedence

sequence. The (dynamic) capacity of the second set is a function of the number of unfilled slots

in the first set. The exogenous capacity transfer function of the school specifies the capacity of

the second set. The set of available contracts for the second set of slots is computed as follows:

If a student has one of her contracts chosen by the first set, then all of her contracts are removed

for the rest of the choice process. Given the set of remaining contracts and the capacity, the

sub-choice function associated with the second set selects contracts. In general, the (dynamic)

capacity of set k is a function of the number of vacant slots of the k − 1 sets that precede it.

The set of contracts available to the set of slots k is computed as follows: If a student has one

of her contracts chosen by one of the k − 1 sets of slots that precede the kth set, then all of her

contracts are removed. Given the set of remaining contracts for the set of slots k and its capacity,

the sub-choice function associated with the set k selects contracts. The (overall) choice of a school

is the union of sub-choices of its sets of slots.

4Hard bounds and soft bounds are analyzed in detail in Hafalır et al. (2013) and Ehlers et al. (2014).
5Westkamp (2013) introduces this monotonicity condition on capacity transfer schemes.
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We propose a remedy for the Indian engineering school admissions problem through a matching

with contracts model that has the ability to utilize vacant slots of certain types for other students.

We have three design objectives: stability, strategy-proofness and respect for improvements. Sta-

bility ensures that (1) no student is matched with an unacceptable school-slot category pair, (2)

schools’ dynamic reserves choices are respected, and (3) no student desires a slot at which she has

a justified claim under the priority and precedence structure. Strategy-proofness guarantees that

students can never game the allocation mechanism via preference manipulation. In our frame-

work, it also relieves students of the strategic manipulation burden, which involves whether or not

students declare their background.6 Respect for improvements7 is an essential property in merito-

cratic systems. In allocation mechanisms that respect improvements, students have no incentive

to lower their standings in schools’ priority rankings.

We propose the cumulative offer mechanism (COM) as an allocation rule. We prove that the

COM is stable with respect to schools’ dynamic reserve choice functions (Theorem 1), is (weakly)

group strategy-proof (Theorem 2), and respects improvements (Theorem 3). The main result of

the paper (Theorem 4) states that when a single school’s choice function becomes “more flexible,”8

while those of the other schools remain unchanged, the outcome of the COM under the former

(weakly) Pareto dominates the outcome under the latter. Theorem 4 is of particular importance

because it describes a strategy-proof Pareto improvement. Finally, we investigate the relationship

between families of dynamic reserves choice rules and Kominers and Sönmez’s (2016) slot-specific

priorities choice rules. We show that for every slot-specific priorities choice rule, there is an outcome

equivalent dynamic reserves choice rule (Theorem 5). Moreover, we give an example of a dynamic

reserves choice rule for which there is no outcome equivalent slot-specific priorities choice rule

(Example 1).

Related Literature

The school choice problem was first introduced by the seminal paper of Abdulkadiroğlu and Sön-

mez (2003). The authors introduced a simple affirmative action policy with type-specific quotas.

Kojima (2012) showed that the minority students who purported to be the beneficiaries might in-

stead be made worse off under this type of affirmative action. To circumvent inefficiencies caused

by majority quotas, Hafalır et al. (2013) offer minority reserves. Westkamp (2013) introduced a

model of matching with complex constraints. His model permits priorities to vary across slots.

In his model, students are considered to be indifferent between different slots of a given school.

6Strategy-proofness ensures that it is a weakly dominant strategy for each student to report their caste and tribe
information.

7See Kominers (2019) for detailed discussion of respect for improvements in matching markets.
8We define “more flexible” criterion to compare two monotonic capacity transfer schemes given a precedence

sequence. We say that a monotonic capacity transfer scheme q̃ is more flexible than monotonic capacity transfer
scheme q if q̃ transfers at least as many otherwise vacant slots as q at every instance. There must also be an instance
where q̃ transfers strictly more otherwise vacant slots than q does.
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However, in our framework, students have strict preferences for type-specific matches with schools.

This crucial aspect differentiates our paper from Westkamp (2013). Moreover, our comparative

statics result on transfer schemes does not have a counterpart in Westkamp (2013).

Kominers and Sönmez (2016) introduce another prominent family of choice functions—slot-

specific priorities choice functions—to implement diversity objectives in many-to-one settings. We

show that dynamic reserves choice rules nest slot-specific priorities choice rules. Moreover, we

provide an example of a dynamic reserves choice rule that cannot be generated by a slot-specific

priorities choice rule.

In a related work, Biró et al. (2010) analyze a college admission model with common and upper

quotas in the context of Hungarian college admissions. They use choice functions for colleges that

allow them to select multiple contracts of the same applicant. They show that a stable assignment

exists. The completions of dynamic reserves choice functions, discussed in Appendix 7.2, satisfy

the properties they impose. Hence, their result also implies the existence of a stable allocation

in our framework. However, our main focus is different as we aim to show strategy-proof Pareto

improvement by making capacity transfer function more flexible.

The matching problem with dynamic reserves choice functions is a special case of the matching

with contracts model of Fleiner (2003)9 and Hatfield and Milgrom (2005).10 The analysis and

results of Hatfield and Kominers (2019) are the technical backbone of our results regarding stable

and strategy-proof mechanism design. We show that every dynamic reserves choice function has

a completion that satisfies the irrelevance of rejected contracts condition of Aygün and Sönmez

(2013), in conjunction with substitutability and the law of aggregate demand.

Hatfield et al. (2017) introduce a model of hospital choice in which each hospital has a set of

divisions and flexible allotment of capacities to those divisions that vary as a function of the set

of contracts available. These authors define choice functions that nest dynamic reserves choice

functions while continuing to obtain stability and strategy-proofness for the COM. Our Theorems

3 and 4 do not have a counterpart in Hatfield et al. (2017).

Our work is also related with the research agenda on matching with constraints that is studied

in a series of papers: Kamada and Kojima (2015), (2017), Kojima et al. (2018), and Goto et al.

(2017). In these papers, constraints are imposed on subsets of institutions as a joint restriction,

as opposed to at each individual institution. Our main results distinguish our work from these

papers. We discuss the relationship between our stability notion and that of Kamada and Kojima

(2017) in Section 3.

Another related paper is Echenique and Yenmez (2015). Dynamic reserves choice functions

might seem similar to the family of choice functions the authors analyze: choice rules generated

9Fleiner’s results cover these of Hatfield and Milgrom (2005) regarding stability. However, Fleiner (2003) does
not analyze incentives.

10Echenique (2012) has shown that under the substitutes condition, which is thoroughly assumed in Hatfield and

Milgrom (2005), the matching with contracts model can be embedded within the Kelso and Crawford (1982) labor
market model. Kelso and Crawford (1982) built on the analysis of Crawford and Knoer (1981).
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by reserves. However, dynamic reserves choice functions choose contracts whereas choice rules

generated by reserves choose students.

Two recent papers, Sönmez and Yenmez (2019a,b), study affirmative action in India from a

matching-theoretical perspective. The authors consider both vertical and horizontal reservations11

while we consider only vertical reservations for simplicity. Even though they consider more general

reserve structure than ours, the authors consider agents’ preferences only over institutions and

do not take agents’ preferences over vertical categories they are admitted under into account.

Moreover, they assume away capacity transfers between vertical categories. Therefore, their model

does not contain our model and vice versa.

2 Model

There is a finite set of students I = {i1, ..., in}, a finite set of schools S = {s1, ..., sm}, and a

finite set of student privileges (types)12 T = {t1, ..., tp}. We call Ti ⊆ T the set of privileges

that student i can claim and T = (Ti)i∈I the profile of types that students can claim. We define

Xi = {i}×S×Ti as the set of all contracts associated with student i ∈ I. We let X = ∪
i∈I
Xi be the

set of all contracts. Each contract x ∈ X is between a student i(x) and a school s(x) and specifies

a privilege t(x) ∈ Ti(x). There may be many contracts for each student-school pair. We extend

the notations i(·), s(·) and t(·) to the set of contracts for any Y ⊆ X by setting i(Y ) ≡ ∪
y∈Y

{i(y)},

s(Y ) ≡ ∪
y∈Y

{s(y)} and t(Y ) ≡ ∪
y∈Y

{t(y)}. For Y ⊆ X, we denote Yi ≡ {y ∈ Y | i(y) = i};

analogously, we denote Ys ≡ {y ∈ Y | s(y) = s} and Yt ≡ {y ∈ Y | t(y) = t}.

Each student i ∈ I has a (linear) preference order P i over contracts in Xi = {x ∈ X |

i(x) = i} and an outside option ∅ which represents remaining unmatched. A contract x ∈ Xi is

acceptable for i (with respect to P i) if xP i∅. We use the convention that ∅P ix if x ∈ X \ Xi.

We say that the contracts x ∈ X for which ∅P ix are unacceptable to i . The at-least-as-well

relation Ri is obtained from P i as follows: xRix
′

if and only if either xP ix
′

or x = x
′

. Let P i

denote the set of all preferences over Xi ∪ {∅}. A preference profile of students is denoted by

P = (P i1, ..., P in) ∈ ×i∈IP
i. A preference profile of all students except student il is denoted by

P−il = (P i1, ..., P il−1, P il+1, ..., P in) ∈ ×i 6=ilP
i.

Students have unit demand, that is, they choose at most one contract from a set of contract

offers. We assume that students always choose the best available contract, so that the choice C i(Y )

of a student i ∈ I from contract set Y ⊆ X is the P i-maximal element of Y (or the outside option

if ∅P iy for all y ∈ Y ).13

11Caste-based reservations for SC, ST, and OBC categories are called vertical reservations, also referred to as social
reservations. Horizontal reservations, also referred to as special reservations, are intended for other disadvantaged
groups of citizens, such as disabled persons, and women. Horizontal reservations are implemented within each
vertical category. See Sönmez and Yenmez (2019a,b) for details.

12We use the terms “type” and “privilege” interchangeably.
13To simplify our notation, the individual contracts are treated as interchangeable with singleton contract sets.
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For each school s ∈ S, qs denotes the physical capacity of school s ∈ S. We call q = (qs1..., qsm)

the vector of school capacities. Each school s ∈ S has a priority order πs, which is a linear order

over I ∪ {∅}.14 Let Π = (πs1, ..., πsm) denote the priority profile of schools. For each school s ∈ S,

the priority ordering for students who can claim the privilege t ∈ T , denoted by πs
t , is obtained

from πs as follows:

• for i, j ∈ I such that t ∈ Ti \ Tj , iπ
s∅, and jπs∅, iπs

t ∅π
s
t j,

15

• for any other i, j ∈ I, iπs
t j if and only if iπsj.

An allocation Y ⊆ X is a set of contracts such that each student appears in at most one contract

and no school appears in more contracts than its capacity allows. Let X denote the set of all

allocations. Given a student i and an allocation Y , we refer to the pair (s(x), t(x)) such that

i(x) = i as the assignment of student i under allocation Y . We extend student preferences over

contracts to preferences over outcomes in the natural way. We say that an allocation Y ⊆ X

Pareto dominates allocation Z ⊆ X if YiR
iZi for all i ∈ I and YiP

iZi for at least one i ∈ I.

2.1 Dynamic Reserves Choice Functions

Each school s ∈ S has multi-unit demand, and is endowed with a choice function Cs(·) that

describes how s would choose from any offered set of contracts. Throughout the paper, we assume

that for all Y ⊆ X and for all s ∈ S, the choice function Cs(·):

1. only selects contracts to which s is a party, i.e., Cs(Y ) ⊆ Ys, and

2. selects at most one contract with any given student.

For any Y ⊆ X and s ∈ S, we denote Rs(Y ) ≡ Y \ Cs(Y ) as the set of contracts that s rejects

from Y .

We now introduce a model of dynamic reserves choice functions in which each school s ∈ S has

λs groups of slots. School s fills its groups of slots according to a precedence sequence,16 which is

a surjective function f s : {1, ..., λs} −→ T . The interpretation of f s is that school s fills the first

group of slots with f s(1)-type students, the second group of slots with f s(2)-type students, and

so on. School s ∈ S has a target distribution of its slots across different types (qt1s , ..., q
tp
s ), which

means that it has qt1s slots to be reserved for privilege t1, q
t2
s slots to be reserved for privilege t2,

14This priority order is often determined by performance on an admission exam, by a random lottery, or dictated
by law. In engineering school admissions in India, each school ranks students according to test scores. Different
schools might have different test score rankings because they use different weighted averages of math, physics,
chemistry, and biology scores depending on the school. It is important to note that students whose test scores are
under a certain threshold are deemed as unacceptable for each school.

15∅πs
t j means student j is unacceptable for privilege t at school s.

16We take precedence sequences to be exogenously given. However, Dur et al. (2018) show that precedence
sequences might have significant effects on distributional objectives in the context of Boston’s school choice system.
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and so on. To satisfy its target reserve structure, school s fills its slots according to the initially

set capacities for each group of slots (q1s, q
2
s, ..., q

λs
s ) such that

∑
j∈(fs)−1(t)

qjs = qts for all t ∈ T . If the

target distribution cannot be achieved because too few students from one or more privileges apply,

then school s use an exogenously given capacity transfer scheme that specifies how its capacity is

to be redistributed. Technically, a capacity transfer scheme is defined as follows:

Definition 1. Given a precedence sequence f s and a capacity of the first group of slots q1s, a

capacity transfer scheme of school s is a sequence of capacity functions qs = (q1s, (q
k
s )

λs

k=2),

where qks : Zk−1
+ −→ Z+ such that qks (0, ..., 0) = qks for all k ∈ {2, ..., λs}.

We impose a mild condition, à la Westkamp (2013), on capacity transfer functions.

Definition 2. A capacity transfer scheme qs is monotonic if, for all j ∈ {2, ..., λs} and all pairs

of sequences (rl, r̃l) such that r̃l ≥ rl for all l ≤ j − 1,

• qjs(r̃1, ..., r̃j−1) ≥ qjs(r1, ..., rj−1), and

•
j∑

m=2

[qms (r̃1, ..., r̃m−1)− qms (r1, ..., rm−1)] ≤
j−1∑
m=1

[r̃m − rm].

Monotonicity of capacity transfer schemes requires that (1) whenever weakly more slots are left

unfilled in every groups of slots preceding the jth group of slots, weakly more slots should be

available for the jth group, and (2) a school cannot decrease its total capacity in response to

increased demand for some groups of slots.

Sub-choice functions

For each group of slots at school s ∈ S, there is an associated sub-choice function cs : 2X × Z+ ×

T −→ 2X . Given a set of contracts Y ⊆ X, a nonnegative integer κ ∈ Z+, and a privilege t ∈ T ,

cs(Y, κ, t) denotes the set of chosen contracts that name privilege t up to the capacity κ from the

set of contracts Y . We require sub-choice functions to be q-responsive given the ranking πs
t .

Definition 3. 17A sub-choice function cs(·, κ, t) of a group of slots at school s for privilege type t

is q-responsive if there exists a strict priority ordering πs
t on the set of contracts naming privilege

type t and a positive integer κ, such that for any Y ⊆ (Xs ∩Xt),

cs(Y, κ, t) =
κ
∪
i=1

{y∗i }

where y∗i is defined as y∗1 = max
πs
t

Y and, for 2 ≤ i ≤ κ, y∗i = max
πs
t

Y \ {y∗1, ..., y
∗
i−1} .

17We adapt this definition from Chambers and Yenmez (2017).
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In other words, a sub-choice function is q-responsive18 if there is a strict priority ordering over

students who have privilege t for which the sub-choice function always selects the highest-ranked

available students in privilege t up to the capacity.

Remark 1. Since our main real-life application is engineering school admissions in India, we shall

assume that at each school s ∈ S, and for each group of slots reserved for privilege t ∈ T , the

associated sub-choice function cs(·, ·, t) is q-responsive and obtained from πs
t .

Overall choice functions

The overall choice function of school s, Cs(·, f s, qs) : 2X −→ 2X , runs its sub-choice functions

in an orderly fashion given the precedence sequence f s and capacity transfer scheme qs. Given a

set of contracts Y ⊆ X, Cs(Y, f s, qs) denotes the set of chosen contracts from the set of contracts

Y and is determined as follows:

• Given q1s and Y = Y 0 ⊆ X, let Y1 ≡ cs1(Y
0, q1s, f

s(1)) be the set of chosen contracts with

privilege f s(1) from Y 0. Let r1 = q1s− | Y1 | be the number of vacant slots. Define Ỹ1 ≡

{y ∈ Y 0 | i(y) ∈ i(Y1)} as the set of all contracts of students whose contracts are chosen

by sub-choice function cs1(·, q
1
s, f

s(1)). If a contract of a student is chosen, then all of the

contracts naming that student shall be removed from the set of available contracts for the

rest of the procedure. The set of remaining contracts is then Y 1 = Y 0 \ Ỹ1.

• In general, let Yk = csk(Y
k−1, qks , f

s(k)) be the set of chosen contracts with privilege f s(k)

from the set of available contracts Y k−1 , where qks = qks (r1, ..., rk−1) is the dynamic capacity

of group of slots k as a function of the vector of the number of unfilled slots (r1, ..., rk−1).

Let rk = qks− | Yk | be the number of vacant slots. Define Ỹk = {y ∈ Y k−1 | i(y) ∈ i(Yk)}.

The set of remaining contracts is then Y k = Y k−1 \ Ỹk.

• Given Y = Y 0 ⊆ X and the capacity of the first group of slots q1s , we define the overall choice

function of school s as Cs(Y, f s, qs) = cs1(Y
0, q1s, f

s(1))∪ (
λs

∪
k=2

csk(Y
k−1, qks (r1, ..., rk−1), f

s(k))).

The primitives of the overall choices for each school s ∈ S are the precedence sequence f s, the capac-

ity transfer scheme qs, and the priority order πs. Since an overall choice is computed by using these

primitives, it is not one of the primitives in our model. The list (I, S,T, X, P,Π, (f s, qs, π
s)s∈S)

denotes a problem.

18These types of sub-choice functions are often used in real-life applications. For example, in the cadet branch
matching processes in the USMA and ROTC, each sub-choice function is induced from a strict ranking of students
according to test scores. See Sönmez and Switzer (2013) and Sönmez (2013) for further details.
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3 Stability Concept

Stability has emerged as the key to a successful matching market design. We follow the Gale and

Shapley (1962) tradition in focusing on outcomes that are stable. In the matching with contracts

framework, Hatfield and Milgrom (2005) define stability as follows: An outcome Y ⊆ X is stable

if

1. YiR
i∅ for all i ∈ I,

2. Cs(Y ) = Ys for all s ∈ S, and

3. there does not exist a school s ∈ S and a blocking set Z 6= Cs(Y ) such that Zs ⊆ Cs(Y ∪Z)

and Zi = C i(Y ∪ Z) for all i∈ i(Z).

If the first requirement (individual rationality for students) fails, then there is a student who

prefers to reject a contract that involves her (or, equivalently, there is a student who is given an

unacceptable contract). In our context, the second condition (individual rationality for schools)

requires that the schools’ choice functions are respected. If the third condition (unblockedness)

fails, then there is an alternative set of contracts that a school and students associated with a

contract in that set strictly prefers.

Remark 2. Our stability notion is related to the weak stability notion of Kamada and Kojima

(2017). The authors define the feasibility constraint as a map φ : Z|H|
+ −→ {0, 1}, such that

φ(w) ≥ φ(w
′

) whenever w ≤ w
′

. Their interpretation is that each coordinate in w corresponds to

a hospital and the number in that coordinate represents the number of doctors matched to that

hospital. φ(w) = 1 means that w is feasible and φ(w) = 0 means it is not. They say that matching

µ is feasible if and only if φ(w(µ)) = 1, where w(µ) := (| µh |)h∈H is a vector of nonnegative integers

indexed by hospitals whose coordinates corresponding to h are | µh |. Capacity transfer functions

in our setting can be represented by the feasibility constraint map from their paper. Condition 2

in our stability definition takes into account not only dynamic capacities of groups of seats in each

school but also their precedence sequences. It is a feasibility condition. Westkamp (2013) defines

a similar condition in his “procedural stability” definition in a simpler matching model without

contracts.

4 The Cumulative Offer Mechanism and its Properties under

Dynamic Reserves Choice Functions

A direct mechanism is a mechanism where the strategy space is the set of preferences P for each

student i ∈ I, i.e., a function ψ : Pn −→ X that selects an allocation for each preference profile.

We propose the COM as our allocation function. Given the student preferences and schools’ overall
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choice functions, the outcome of the COM is computed by the cumulative offer algorithm. This

is the generalization of the agent-proposing deferred acceptance algorithm of Gale and Shapley

(1962). We now introduce the cumulative offer process (COP)19 for matching with contracts.

Here, we provide an intuitive description of this algorithm; we give a more technical description in

Appendix 7.1.

Definition 4. In the COP, students propose contracts to schools in a sequence of steps l = 1, 2 . . .

:

Step 1 : Some student i1 ∈ I proposes his most-preferred contract, x1 ∈ Xi1 . School s (x1)

holds x1 if x1 ∈ Cs(x1) ({x1}), and rejects x1 otherwise. Set A2
s(x1) = {x1}, and set A2

s′ = ∅ for each

s′ 6= s (x1); these are the sets of contracts available to schools at the beginning of Step 2.

Step 2 : Some student i2 ∈ I, for whom no school currently holds a contract, proposes his

most-preferred contact that has not yet been rejected, x2 ∈ Xi2 . School s (x2) holds the contract

in Cs(x2)
(
A2

s(x2) ∪ {x2}
)

and rejects all other contracts in A2
s(x2)∪{x

2}; schools s′ 6= s (x2) continue

to hold all contracts they held at the end of Step 1. Set A3
s(x2) = A2

s(x2) ∪ {x2}, and set A3
s′ = A2

s′

for each s′ 6= s (x2).

Step l : Some student il ∈ I, for whom no school currently holds a contract, proposes his

most-preferred contact that has not yet been rejected, xl ∈ Xil. School s
(
xl
)

holds the contract in

Cs(xl)
(
Al

s(xl)
∪
{
xl
})

and rejects all other contracts in Al

s(xl)
∪
{
xl
}
; schools s′ 6= s

(
xl
)

continue

to hold all contracts they held at the end of Step l−1. Set Al+1

s(xl)
= Al

s(xl)
∪
{
xl
}
, and set Al+1

s′ = Al
s′

for each s′ 6= s
(
xl
)
.

If at any time no student is able to propose a new contract—that is, if all students for whom

no contracts are on hold have proposed all contract they find acceptable—then the algorithm

terminates. The outcome of the COP is the set of contracts held by schools at the end of the last

step before termination.

In the COP, students propose contracts sequentially. Schools accumulate offers, choosing at

each step (according to their choice functions) a set of contracts to hold from the set of all previous

offers. The process terminates when no student wishes to propose a contract.

Given a preference profile of students P = (Pi)i∈I and a profile of choice functions for schools

C = (Cs)s∈S, let Φ (P,C) denote the outcome of the COM. Let Φi (P,C) denote the assignment

of student i ∈ I and Φs (P,C) denote the assignment of school s ∈ S.

Remark 3. We do not explicitly specify the order in which students make proposals. Hirata and

Kasuya (2014) show that in the matching with contracts model, the outcome of the COP is order-

independent if the overall choice function of every school satisfies the bilateral substitutability

(BLS) and the irrelevance of rejected contracts (IRC) conditions. Dynamic reserves choice functions

satisfy BLS and IRC. Hence, the order-independence of the COP holds.

19See Hatfield and Milgrom (2005) for more details.
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A mechanism ϕ is stable if for every preference profile P ∈ P |I| the outcome ϕ (P ) is stable with

respect to the schools’ overall choice functions. Since the COP gives a stable outcome for every

input if each school’s capacity transfer scheme is monotonic, the COM is a stable mechanism.

Theorem 1. The cumulative offer mechanism is stable with respect to dynamic reserves choice

functions.

Proof. See Appendix 7.3.

To analyze the incentive properties of the COM when schools use dynamic reserves choice func-

tions, we first define standard strategy-proofness and (weak) group strategy-proofness in relation

to a direct mechanism.

Definition 5. A direct mechanism ϕ is said to be strategy-proof if there does not exist a

preference profile P , a student i ∈ I, and preferences P ′
i of student i such that

ϕi (P
′
i , P−i)Piϕi (P ) .

That is, no matter which student we consider, no matter what her true preferences Pi are,

no matter what other preferences P−i other students report (true or not), and no matter which

potential “misrepresentation” P ′
i student i considers, a truthful preference revelation is in her best

interest. Hence, students can never benefit from gaming the mechanism ϕ.

Definition 6. A direct mechanism ϕ is said to be weakly group strategy-proof if there is no

preference profile P , a subset of students I ′ ⊆ I, and a preference profile (Pi)i∈I′ of students in I ′

such that

ϕi

(
(P ′

i )i∈I′ , (Pj)j∈I\I′
)
Piϕi (P )

for all i ∈ I ′.

That is, no subset of students can jointly misreport their preferences to receive a strictly

preferred outcome for every member of the coalition.

Hatfield and Kominers (2019) show that if schools’ choice functions have substitutable comple-

tions so that these completions satisfy the LAD, then the COP becomes weakly group strategy-

proof.

Theorem 2. Suppose that each school uses a dynamic reserves choice function. Then, the cumu-

lative offer mechanism is weakly group strategy-proof.

Proof. See Appendix 7.3.
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Respect for Unambiguous Improvements

We say that priority profile Π is an unambiguous improvement over priority profile Π for student

i ∈ I if, for all schools s ∈ S, the following conditions hold:

1. For all x ∈ Xi and y ∈
(
XI\{i} ∪ {∅}

)
, if xπsy then xπsy.

2. For all y, z ∈ XI\{i}, yπ
sz if and only if yπsz.

That is, Π is an unambiguous improvement over priority profile Π for student i if Π is obtained

from Π by increasing the priority of some of i’s contracts while leaving the relative priority of other

students’ contracts unchanged.

Definition 7. A mechanism ϕ respects unambiguous improvements for i ∈ I if for any

preference profile P ∈ ×i∈IP
i

ϕi(P ; Π)R
iϕi(P ; Π)

whenever Π is an unambiguous improvement over Π for i. We say that ϕ respects unambiguous

improvements if it respects unambiguous improvements for each student i ∈ I.

Respect for improvements is essential in settings like ours where it implies that students never

want to intentionally decrease their test scores and, in turn, their rankings. Similarly, it is also

important in cadet-branch matching where cadets can influence their priority rankings directly.

Sönmez (2013) argues that cadets take perverse steps to lower their priorities because the mech-

anism used by the Reserve Officer Training Corps (ROTC) to match its cadets to branches fails

the respecting improvements property.

Theorem 3. The cumulative offer mechanism with respect to dynamic reserves choice functions

respects unambiguous improvements.

Proof. See Appendix 7.3.

5 Comparative Statics on Monotonic Capacity Transfer Schemes

In this section, we first define a comparison criteria between two monotone capacity transfer

schemes. Consider a school s ∈ S with a given precedence sequence f s and target distribution

qs = (q1s, ..., q
λs
s ). Let qs and q̃s be two monotone capacity transfer schemes: given a vector of

unused slots from group of slots 1 to j − 1, (r1, ..., rj−1) ∈ Zj−1
+ , the dynamic capacity of the jth

group under capacity transfer schemes qs and q̃s are qjs = qjs(r1, ..., rj−1) and q̃js = q̃js(r1, ..., rj−1),

respectively, for all j ≥ 2 and, q1s = q̃1s = q1s.

Let qs and q̃s be two monotone capacity transfer schemes that are compatible with the prece-

dence sequence f s and target capacity vector qs of school s ∈ S. We say that the monotone

capacity transfer scheme q̃s is more flexible than the monotone capacity transfer scheme qs if

13



1. there exists l ∈ {2, ..., λs} and (r̂1, ..., r̂l−1) ∈ Zl−1
+ such that q̃ls(r̂1, ..., r̂l−1) > qls(r̂1, ..., r̂l−1),

and

2. for all j ∈ {2, ..., λs} and (r1, ..., rj−1) ∈ Zj−1
+ , if j 6= l or (r1, ..., rj−1) 6= (r̂, ..., r̂l−1), then

q̃js(r1, ..., rj−1) ≥ qjs(r1, ..., rj−1).

The definition states that one monotonic capacity transfer scheme is more flexible than another

if it transfers at least as many vacant slots as the other at every instance (i.e., the vectors of the

number of unused slots). There must also be an instance where the first one transfers strictly more

vacant slots than the second one to the next group of slots according to the precedence sequence.

Also, both of the monotonic capacity transfer schemes take the capacity of the first group of slots

with respect to the precedence sequence equal to its target capacity. Holding all else constant,

when the capacity transfer scheme becomes more flexible, it defines a particular choice function

expansion.20

Expanding the overall choice function of a single school leads to Pareto improvement for stu-

dents under the COM.21

Theorem 4. Let C = (Cs1, ..., Csm) be the profile of schools’ overall choice functions. Fix a school

s ∈ S. Suppose that C̃s takes a capacity transfer scheme that is more flexible than that of Cs,

holding all else constant. Then, the outcome of the cumulative offer mechanism with respect to

(C̃s, C−s) weakly Pareto dominates the outcome of the cumulative offer mechanism with respect to

C.

Proof. See Appendix 7.3.

Theorem 4 is of particular importance because it indicates that increasing the transferability

of capacity from low-demand to high-demand groups leads to strategy-proof Pareto improvement

with the cumulative offer algorithm. This result provides a normative foundation for recommending

a more flexible interpretation of type-specific quotas. This result establishes that to maximize

students’ welfare, schools’ choice functions should be expanded as much as possible.

It is important to note that when more than one school’s capacity transfer scheme become more

flexible, a simple iteration of Theorem 4, one school at a time, ensures (weak) Pareto improvement.

Therefore, a more flexible capacity transfer profile of schools implies that the COM with the new

capacity transfer scheme (weakly) Pareto improves the original transfer scheme.

20The type of choice function expansion here is different than the one Chambers and Yenmez (2017) define.
Their notion of expansion is in the sense of set inclusion while ours is not. They say that a choice function C

′

is an
expansion of another choice function C if for every offer set Y , C(Y ) ⊆ C

′

(Y ). According to the expansion via a
more flexible capacity transfer scheme, when a choice function C expands to C

′

it is possible to have C(Y ) * C
′

(Y )
for some Y .

21This result does not contradict the findings of Alva and Manjunath (2019), because increasing flexibility of the
capacity transfers changes the choice functions, and therefore the set of contracts that are feasible in their context.
Theorem 4 achieves the improvement by considering a dominating mechanism that is infeasible under the original
transfer scheme.
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6 Relationship Between Slot-specific Priorities and Dynamic

Reserves Choice Rules

In this section, we investigate the relationship between the families of slot-specific priorities choice

rules and dynamic reserves choice rules. To do so, we first describe slot-specific priorities choice

rules.

Each school s ∈ S has a set of slots Bs. Each slot can be assigned at most one contract in Xs.

Slots b ∈ Bs have linear priority orders πb over contracts in Xs. Each slot b ranks a null contract ∅b

that represents remaining unassigned. Schools s ∈ S may be assigned as many as | Bs | contracts

from an offer set Y ⊆ X—one for each slot in Bs— but may hold no more than one contract with a

given student. The slots in Bs are ordered according to a linear order of precedence ⊲s. We denote

Bs ≡ {b1, ..., bqs} with | Bs |= qs. The interpretation of ⊲s is that if bl ⊲
s bl+1, then—whenever

possible—school s fills slot bl before filling slot bl+1. Formally, the choice Cs(Y ) of a school s ∈ S

from contract set Y ⊆ X is defined as follows:

• First, slot b1 is assigned the contract y1 that is πb1-maximal among contracts in Y .

• Then, slot b2 is assigned the contract y2 that is πb2-maximal among contracts in the set

Y \ Yi(y1) of contracts in Y with agents other than i(y1).

• This process continues in sequence, with each slot bl being assigned to the contract yl that

is πbl-maximal among contracts in the set Y \ Yi({y1,...,yl−1}).

If no contract is assigned to a slot bl ∈ Bs in the computation of Cs(Y ), then bl is assigned the

null contract ∅bl.

We first give an example of a dynamic reserves choice rule that cannot be generated by a

slot-specific priorities choice rule.

Example 1. Consider I = {i, j, k, l}, S = {s} with qs = 2, and Θ = {t1, t2, t3}. Student i only has

type t1 and a single contract x1. Student j only has type t2 and a single contract y2. Student k has

types t2 and t3, and two contracts related to these types z2 and z3, respectively. Finally, student

l has types t1 and t3, and two contracts related to these types w1 and w3, respectively. The set

of contracts for this problem is X = {x1, y2, z2, z3, w1, w3}. Students are ordered with respect to

their exam scores from highest to lowest as follows: i− j − k − l.

The school reserves the first seat for type t1, and the second seat for type t2. If either the first

seat or the second seat cannot be filled with the students they are reserved for, they are filled with

a type t3 student(s). The precedence order is such that the first seat is filled first with a type t1

student if possible, and then the second seat is filled with a type t2 student, if possible. If any of

these seats cannot be filled with the intended student types, all of the vacant seats are filled with

type t3 students at the very end, if possible.
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We can represent the distributional objective described above by capacity-transfers as follows:

Initially qt1 = qt2 = 1 and qt3 = 0. The dynamic capacity of the third seat is given by qt3 = r1+ r2,

where r1, r2 ∈ {0, 1}. Some of the choice situations under the capacity-transfer described above

are given below:

Y C(Y )

{x1, y2, z2, z3, w1, w3} {x1, y2}

{y2, z2, z3} {y2, z3}

{x1, z2, z3} {x1, z2}

{y2, w1, w3} {y2, w1}

{x1, w1, w3} {x1, w3}

{z2, z3} {z2}

{w1, w3} {w1}

In order to implement the choices above with slot-specific priorities, we need to find a strict

ranking of the contracts inX for both of the slots. Note that {x1, y2} is chosen from {x1, y2, z2, z3, w1, w2}.

Then, x1 must be chosen for one of the slots and y2 must be chosen for the other. There are two

cases to consider.

Case 1: x1 is chosen from slot 1 and y2 is chosen from slot 2. Then, x1 is the highest priority

contract in slot 1. We have C({x1, z2, z3}) = {x1, z2}. Then, z2 must have higher priority than

z3 in the strict priority ranking of slot 2 because x1 will be chosen from the first slot. Notice

that both z2 and z3 must have lower priority than y2 in the strict ranking of slot 2. Also, since

C({y2, z2, z3}) = {y2, z3}, then it must be the case that z3 has higher priority than z2 in the strict

priority of the first slot. Notice that z3 cannot be chosen from the second slot as z2 has higher

priority. However, C({z2, z3}) = {z2}. This is a contradiction.

Case 2: y2 is chosen from slot 1 and x1 is chosen from slot 2. Then, y2 has the highest priority

in slot 1. We have C({y2, w1, w3}) = {y2, w1}. Therefore, in the ranking of slot 2, w1 must have

higher priority than w3. Also, since C({x1, w1, w3}) = {x1, w3}, it follows that in the ranking of

slot 1 w3 must have higher priority than w1. This is because w3 cannot be chosen from slot 2 as

it has a lower priority than w1 there. However, C({w1, w3}) = {w1}. This is a contradiction.

Hence, we cannot find a strict rankings of the contracts in X for these two slots that generate

the dynamic reserves choice rule defined above.

Our last result states that the family of dynamic reserves choice rules nests the family of

slot-specific priorities choice rules.

Theorem 5. Every slot-specific priorities choice rule can be generated by a dynamic reserves choice

rule.
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Proof. See Appendix 7.3.

7 Conclusion

This paper studies a school choice problem with distributional objectives where students care about

both the school they are matched with as well as the category through which they are admitted.

Each school can be thought of as union of different groups of slots, where each group is associated

with exactly one category. Schools have target distributions over their groups of slots in the form of

reserves. If these reserves are considered to be hard bounds, then some slots will remain empty in

instances where demand for particular categories is less than their target capacities. To overcome

this problem and to increase efficiency, we design a family of dynamic reserves choice functions.

We do so by allowing monotonic capacity transfers across groups of slots when one or more of the

groups is not able to fill to its target capacity. The capacity transfer scheme is exogenously given

for each school and governs the dynamic capacities of groups, each of which has a q-responsive

sub-choice function. The overall choice function of a school can be thought of as the union of

choices with these sub-choice functions of its groups.

We offer the COM with respect to dynamic reserves choice functions as an allocation rule.

We show that the COM is stable and strategy-proof in our framework. Moreover, the COM re-

spects improvements. We introduce a comparison criteria between two monotonic capacity transfer

schemes. If a monotone capacity transfer scheme transfers at least as many vacancies in every con-

tingency compared to another monotone capacity transfer scheme, we say that the first is more

flexible than the second. We show that when capacity transfer scheme of a school becomes more

flexible, while other school choice functions remain unchanged, the outcome of the COM under

the modified profile of choice functions Pareto dominates the outcome of the COM under the orig-

inal profile. This result is the main message of our paper, as it describes a strategy-proof Pareto

improvement by making capacity transfers more flexible.

8 APPENDICES

8.1 Formal Description of the Cumulative Offer Process

Cumulative Offer Process (COP): Consider the outcome the COM as denoted by ΦΓ (P,C).

For any preference profile P of students, profile of choice functions of schools C, and an ordering

Γ of the elements of X, the outcome is determined by the COP with respect to Γ, P and C as

follows:

Step 0: Initialize the set of contracts available to the schools as A0 = ∅.
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Step t ≥ 1: Consider the set

U t ≡
{
x ∈ X \ At−1 : i(x) /∈ i

(
CS(At−1)

)
and ∄z ∈

(
Xi(x) \A

t−1
)
∪ {∅} such that zP i(x)x

}
.

If U t is empty, then the algorithm terminates and the outcome is given by CS(At−1).22 Other-

wise, letting yt be the highest-ranked element of U t according to Γ, we say that yt is proposed and

set At = At−1 ∪ {yt} and proceed to step t+ 1.

A COP begins with no contracts available to the schools (i.e., A0 = ∅). Then, at each step t,

we construct U t, the set of contracts that (1) have not yet been proposed, (2) are not associated to

students with contracts chosen by schools from the currently available set of contracts, and (3) are

both acceptable and the most-preferred by their associated students among all contracts not yet

proposed. If U t is empty, then every student i either has some associated contract chosen by some

school, i.e., i ∈ i
(
CS(At−1)

)
, or has no acceptable contracts left to propose, and so the COP ends.

Otherwise, the contract in U t that is highest-ranked according to Γ is proposed by its associated

student, and the process proceeds to the next step. Note that at some step this process must end

as the number of contracts is finite.

Letting T denote the last step of the COP, we call AT the set of contracts observed in the COP

with respect to Γ, P , and C.

8.2 Substitutable Completion of Dynamic Reserves Choice Functions

Definition 8. A choice function Cs(·) satisfies the irrelevance of rejected contracts (IRC)

condition if for all Y ⊂ X, for all z ∈ X \ Y , and z /∈ Cs (Y ∪ {z}) =⇒ Cs (Y ) = Cs (Y ∪ {z}).

Hatfield and Milgrom (2005) introduce the substitutability condition, which generalizes the

earlier gross substitutes condition of Kelso and Crawford (1982).

Definition 9. A choice function Cs(·) satisfies substitutability if for all z, z′ ∈ X, and Y ⊆ X,

z /∈ Cs (Y ∪ {z}) =⇒ z /∈ Cs (Y ∪ {z, z′}).

Definition 10. A choice function Cs (·) satisfies the law of aggregate demand (LAD) if Y ⊆

Y ′ =⇒| Cs (Y ) | ≤ | Cs (Y ′) |.

The following definitions are from Hatfield and Kominers (2019). A completion of a many-to-

one choice function Cs(·) of school s ∈ S is a choice function C
s
(·), such that for all Y ⊆ X, either

C
s
(Y ) = Cs(Y ) or there exists a distinct z, z

′

∈ C
s
(Y ) such that i(z) = i(z

′

). If a choice function

Cs(·) has a completion that satisfies the substitutability and IRC condition, then we say that Cs(·)

is substitutably completable. If every choice function in a profile C = (Cs(·))s∈S is substitutably

completable, then we say that C is substitutably completable.

22We denote by CS(Y ) ≡ ∪s∈SC
s(Y ) the set of contracts chosen by the set of schools from a set of contracts

Y ⊆ X .
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Let Cs(·, f s, qs) be a dynamic reserve choice function given the precedence sequence f s and

the capacity transfer scheme qs. We define a related choice function C
s
(·, f s, qs). Given a set of

contracts Y ⊆ X, C
s
(Y, f s, qs) denotes the set of chosen contracts from set Y and is determined

as follows:

• Given q1s and Y = Y 0 ⊆ X, let Y1 ≡ cs1(Y
0, q1s, f

s(1)) be the set of chosen contracts with

privilege f s(1) from Y 0. Let r1 = q1s− | Y1 | be the number of vacant slots. The set of

remaining contracts is then Y 1 = Y 0 \ Y1.

• In general, let Yk = csk(Y
k−1, qks , f

s(k)) be the set of chosen contracts with privilege f s(k)

from the set of available contracts Y k−1 , where qks = qks (r1, ..., rk−1) is the dynamic capacity

of group of slots k as a function of the vector of the number of unfilled slots (r1, ..., rk−1).

Let rk = qks− | Yk | be the number of vacant slots. The set of remaining contracts is then

Y k = Y k−1 \ Yk−1.

• Given Y = Y 0 ⊆ X and the capacity of the first group of slots q1s , we define C
s
(Y, f s, qs) =

cs1(Y
0, q1s, f

s(1)) ∪ (
λs

∪
k=2

csk(Y
k−1, qks (r1, ..., rk−1), f

s(k))).

The difference between Cs(·) and C
s
(·) is as follows: In the computation of Cs(·), if a contract of

a student is chosen by some group of slots then his/her other contracts are removed for the rest of

the choice procedure. However, in the computation of C
s
(·) this is not the case. According to the

choice procedure C
s
(·), if a contract of a student is chosen, say, by group of slots k, then his/her

other contracts will still be available for the following groups of slots.

The following proposition shows that C
s
(·) defined above is the completion of the dynamic

reserves choice function Cs(·).

Proposition 1. C
s
(·) is a completion of Cs(·).

Proof. Let f s and qs be the precedence sequence and capacity transfer scheme of school s ∈ S,

respectively. Take an offer set Y = Y 0 ⊆ X and assume there is no pair of contracts z, z
′

∈ Y 0

such that i(z) = i(z
′

) and z, z
′

∈ C
s
(Y, f s, qs). We want to show that

C
s
(Y, f s, qs) = Cs(Y, f s, qs).

Let Yj be the set of contracts chosen by group of slots j and let Y j be the set of contracts

that remains in the choice procedure after group j selects according to dynamic reserve choice

function C(·). Similarly, let Y j be the set of contracts chosen by group of slots j and let Y
j

be the set of contracts that remains in the choice procedure after group j selects according to

the completion C(·). Notice that Y 0 = Y
0
. Let rj and rj be the number of vacant slots in

group of slots j in the choice procedures Cs(Y, f s, qs) and C
s
(Y, f s, qs), respectively. Also, let
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qjs(r1, ..., rj−1) and qjs(r1, ..., rj−1) denote the dynamic capacities of group of slots j under choice

procedures Cs(Y, f s, qs) and C
s
(Y, f s, qs), respectively.

Given q̄1s and Y 0 = Y
0
, we have Y 1 = cs1(Y

0, q̄1s , f
s(1)) = Y1 by the construction of C

s
.

Moreover, r1 = r1 and q2s(r1) = q2s(r1).

Suppose that for all j ∈ {2, ..., k−1} we have Yj = Y j . We need to show that it holds for group

of slots k, i.e., Yk = Y k. Since the chosen set is the same in every group from 1 to k−1 under C(·)

and C(·), the number of remaining slots in each group is the same as well. Then, the dynamic

capacity of the group of slots k are the same under choice procedures Cs(Y, f s, qs) and C
s
(Y, f s, qs),

i.e., qks (r1, ..., rk−1) = qks(r1, ..., rk−1). Since there are no two contracts of an agent chosen by

C
s
(Y, f s, qs), one can deduce that all of the remaining contracts of agents, whose contracts were

chosen by previous sub-choice functions, are rejected by csk(Y
k−1

, qks(r1, ..., rk−1), f
s(k)). Therefore,

the IRC of the sub-choice function implies that

csk(Y
k−1

, qks(r1, ..., rk−1), f
s(k)) = csk(Y

k−1, qks (r1, ..., rk−1), f
s(k)).

Hence, we have Y k = Yk, rk = rk, and qk+1
s (r1, ..., rk) = qk+1

s (r1, ..., rk).

Since in each group of slots the same sets of contracts are chosen by the dynamic reserve choice

function and its completion, the result follows.

Proposition 2. C
s
(·) satisfies the IRC.

Proof. For any Y ⊆ X such that Y 6= C
s
(Y, f s, qs), let x be one of the rejected contracts, i.e.,

x ∈ Y \ C
s
(Y, f s, qs). To show that the IRC is satisfied, we need to prove that

C
s
(Y, f s, qs) = C

s
(Y \ {x}, f s, qs).

Let Ỹ = Y \ {x}. Let (Y j, r̄j, Y
j
) be the sequence of the set of chosen contracts, the number

of vacant slots, and the remaining set of contracts for group j = 1, ..., λs from Y under C(·).

Similarly, let (Ỹj, r̃j, Ỹ
j) be the sequence of the set of chosen contracts, the number of vacant slots,

and the remaining set of contracts for group j = 1, ..., λs from Ỹ under C(·).

For the first group of slots, since the sub-choice functions satisfy the IRC, we have Y 1 = Ỹ1.

Moreover, r̄1 = r̃1 and Y
1
\ {x} = Ỹ 1. By induction, for each j = 2, ..., k − 1, assume that

Y j = Ỹj, r̄j = r̃j, and Y
j
\ {x} = Ỹ j.

We need to show that the above equalities hold for j = k. Since , x /∈ C
s
(Y, f s, qs) and the

sub-choice functions satisfy the IRC condition we have

csk(Y
k−1

, qks (r1, ..., rk−1), f
s(k)) = csk(Ỹ

k−1, qks (r̃1, ..., r̃k−1), f
s(k)).
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The same set of contracts is chosen for group k in the choice processes beginning with Y and

Y ∪ {x}, respectively. By our inductive assumption that r̄j = r̃j for each j = 2, ..., k − 1, the

dynamic capacity of group k is the same under both choice processes. The number of remaining

slots is the same as well, i.e., r̄k = r̃k. Finally, we know that x is chosen from the set Ỹ k−1 ∪ {x},

then we have

Y
k
= Ỹ k ∪ {x}.

Since for all j ∈ {1, ..., λs}, Y j = Ỹj, we have C
s
(Y, f s, qs) = C

s
(Ỹ , f s, qs). Hence, C

s
(·, f s, qs)

satisfies the IRC.

Proposition 3. C
s
(·) satisfies the substitutability.

Proof. Consider an offer set Y ⊆ X such that Y 6= C
s
(Y, f s, qs). Let x be one of the rejected

contracts, i.e., x ∈ Y \ C
s
(Y, f s, qs), and let z be an arbitrary contract in X \ Y . To show

substitutability, we need to show that

x /∈ C
s
(Y ∪ {z}, f s, qs).

Consider Ỹ = Y ∪ {z}. Let (Yj, rj, Y
j) be the sequence of the set chosen contracts, the number of

vacant slots, and the set of remaining contracts for group of slots j = 1, ..., λs from Y under C(·).

Similarly, let (Ỹj, r̃j, Ỹ
j) be the sequence of the set chosen contracts, the number of vacant slots,

and the set of remaining contracts for group of slots j = 1, ..., λs from Ỹ under C(·). There are

two cases to consider:

Case 1 z ∈ Ỹ \ C
s
(Ỹ , f s, qs).

In this case, the IRC of C
s

implies C
s
(Ỹ , f s, qs) = C

s
(Y, f s, qs). Therefore, x /∈ C

s
(Ỹ , f s, qs).

Case 2 z ∈ C
s
(Ỹ , f s, qs).

Let j be the group of slots such that z ∈ Ỹj. By the IRC of sub-choice functions, x /∈ Ỹj = Yj,

for all j
′

= 1, ..., j − 1. Moreover, Ỹ j
′

−1 = Y j
′

−1 ∪ {z} and r̃j′ = rj′ , for all j
′

= 1, ..., j − 1.

First note that the dynamic capacity of group j is the same under choice procedures beginning

with Y = Y 0 and Y ∪ {z} = Ỹ 0, respectively. This is because the number of unused slots from

groups 1 to j− 1 are the same under the two choice procedures. We know that z is chosen exactly

at group j in the process beginning with Ỹ 0. There are two cases here:

(a) The dynamic capacity of group j is exhausted in the process beginning with Y 0. In this

case, by choosing z from Ỹ 0 another contract, we say that say y ∈ Ỹ 0 is rejected even though y

was chosen at group j in the process beginning with Y 0.
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(b) The dynamic capacity of group j is not exhausted in the choice process beginning with Y 0.

In this case, z is chosen at group j in the process beginning with Ỹ 0 without rejecting any contract

that was chosen in the process beginning with Y 0 at group j.

In the case of (a),

| csj(Y
j−1, qjs(r1, ..., rj−1), f

s(j)) |= qjs(r1, ..., rj−1)

and

z ∈ csj(Ỹ
j−1, qjs(r1, ..., rj−1), f

s(j))

implies that there exists a contract y such that

y ∈ csj(Y
j−1, qjs(r1, ..., rj−1), f

s(j)) \ csj(Ỹ
j−1, qjs(r̃1, ..., r̃j−1), f

s(j)).

This implies that Ỹ j = Y j ∪ {y}. Since the capacity of group j is exhausted under both choice

processes, the number of vacant slots for group j will be 0 in both choice processes. Thus, the

capacity will be the same for group j + 1 under both.

Notice that

x /∈ Yj =⇒ x /∈ Ỹj

because

csj(Y
j−1, qjs(r1, ..., rj−1), f

s(j)) ∪ {z} \ {y} = csj(Ỹ
j−1, qjs(r̃1, ..., r̃j−1), f

s(j)).

In case (b), we have

| csj(Y
j−1, qjs(r1, ..., rj−1), f

s(j)) |< qjs(r1, ..., rj−1).

Hence, rj > 0. Then, since the sub-choice functions are responsive, we have

csj(Ỹ
j−1, qjs(r̃1, ..., r̃j−1), f

s(j)) = {z} ∪ csj(Y
j−1, qjs(r1, ..., rj−1), f

s(j)).

Therefore,

x /∈ Yj =⇒ x /∈ Ỹj .

We also have rj = r̃j+1. Moreover, the set of remaining contracts under both choice processes will

be the same, i.e., Ỹ j = Y j . The facts rj′ = r̃j′ for all j
′

= 1, ..., j − 1 and rj = r̃j + 1 implies—by

the monotonicity of capacity transfer schemes—that either

qj+1
s (r1, ..., rj) = qj+1

s (r̃1, ..., r̃j)

22



or

qj+1
s (r1, ..., rj) = 1 + qj+1

s (r̃1, ..., r̃j)

hold.

Suppose now that for all γ = j, ..., k − 1 we have that either

[
Ỹ γ = Y γ ∪ {ỹ} for some ỹ and qγ+1

s (r̃1, ..., r̃γ) = qγ+1
s (r1, ..., rγ)

]

or [
Ỹ γ = Y γ and qγ+1

s (r̃1, ..., r̃γ) ≤ qγ+1
s (r1, ..., rγ) ≤ 1 + qγ+1

s (r̃1, ..., r̃γ)
]
.

We have already shown that it holds for γ = j and we will now show that it also holds for

γ = k.

We will first analyze the former case. By inductive assumption, we have Ỹ k−1 = Y k−1 ∪ {ỹ}

for some contract ỹ. If ỹ is not chosen from the set Ỹ k−1 then exactly the same set of contracts

will be chosen from Y k−1 and Ỹ k−1 since the capacities of group k are the same under both choice

processes and the sub-choice function satisfies the IRC condition. Then, we will have Ỹ k = Y k∪{ỹ}.

Moreover, since the number of vacant slots at group k will be the same under both processes, we

will have qk+1
s (r1, ..., rj) = qk+1

s (r̃1, ..., r̃j). If ỹ is chosen from the set Ỹ k−1, we have two sub-cases,

depending on if the dynamic capacity of group k is exhausted under the choice process beginning

with Y 0. If it is not exhausted, then we will have

csk(Ỹ
k−1, qks (r̃1, ..., r̃k−1), f

s(k)) = {ỹ} ∪ csk(Y
k−1, qks (r1, ..., rk−1), f

s(k)),

which implies that Ỹ k = Y k. Moreover, we will have rk = r̃k + 1. The monotonicity of capacity

transfer scheme implies that

qk+1
s (r̃1, ..., r̃k) ≤ qk+1

s (r1, ..., rk) ≤ 1 + qk+1
s (r̃1, ..., r̃k).

The first inequality follows from the fact that r̃i ≤ ri for all i = 1, ..., k. The second inequality

follows from the second condition of the monotonicity of the capacity transfer schemes.

On the other hand, if the dynamic capacity of group k is exhausted in the choice procedure

beginning with Y 0, then choosing ỹ from the set Ỹ k−1 implies that there exists a contract y that is

chosen from Y k−1 but rejected from Ỹ k−1. Then, we will have Ỹ k = Y k ∪ {y} since the sub-choice

function is q-responsive and group k’s capacities are the same under both choice processes. In this

case, we will have rk = r̃k = 0. Since r̃i ≤ ri for all i = 1, ..., k, we will have qk+1
s (r̃1, ..., r̃k) ≤

qk+1
s (r1, ..., rk) from the first condition of the monotonicity of the capacity transfer scheme. Since

qks (r̃1, ..., r̃k−1) = qks (r1, ..., rk−1) and r̃k = rk, we will have qk+1
s (r̃1, ..., r̃k) ≥ qk+1

s (r1, ..., rk) by the

second condition of the monotonicity of capacity transfer schemes.23

23In the second condition of the monotonicity of the capacity transfer schemes, if the number of vacant slots is
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We will now analyze the latter case in which we have Ỹ k−1 = Y k−1 and either qks (r1, ..., rk−1) =

qks (r̃1, ..., r̃k−1) or qks (r1, ..., rk−1) = 1 + qks (r̃1, ..., r̃k−1).

If qks (r1, ..., rk−1) = qks (r̃1, ..., r̃k−1), then given that Ỹ k−1 = Y k−1, we will have Ỹ k = Y k. This

also implies rk = r̃k. Moreover, we obtain qk+1
s (r1, ..., rk) = qk+1

s (r̃1, ..., r̃k) by the monotonic-

ity of capacity transfer scheme. Note that r̃i ≤ ri for all i = 1, ..., k implies qk+1
s (r1, ..., rk) ≥

qk+1
s (r̃1, ..., r̃k) by the first condition of the monotonicity of capacity transfers. The second condi-

tion of the monotonicity of capacity transfers implies qk+1
s (r1, ..., rk) ≤ qk+1

s (r̃1, ..., r̃k).

If qks (r1, ..., rk−1) = 1 + qks (r̃1, ..., r̃k−1), then given Ỹ k−1 = Y k−1, we have two sub-cases here.

Sub-case 1. If

csk(Ỹ
k−1, qks (r̃1, ..., r̃k−1), f

s(k)) = csk(Y
k−1, qks (r1, ..., rk−1), f

s(k)),

then we will have Ỹ k = Y k. Also, the monotonicity of capacity transfer scheme implies that

qk+1
s (r̃1, ..., r̃k) ≤ qk+1

s (r1, ..., rk) ≤ 1 + qk+1
s (r̃1, ..., r̃k).

Sub-case 2. If

csk(Ỹ
k−1, qks (r̃1, ..., r̃k−1), f

s(k)) ∪ {y∗} = csk(Y
k−1, qks (r1, ..., rk−1), f

s(k))

for some y∗, then we will have Ỹ k = Y k∪{y∗}. Moreover, the monotonicity of capacity transfer

schemes in this case implies that

qk+1
s (r1, ..., rk) = qk+1

s (r̃1, ..., r̃k).

This is because given r̃i ≤ ri for all i = 1, ..., k the first condition of the monotonicity of the capacity

transfers implies that qk+1
s (r1, ..., rk) ≥ qk+1

s (r̃1, ..., r̃k). On the other hand, the second condition of

the monotonicity of the capacity transfers implies that qk+1
s (r1, ..., rk) ≤ qk+1

s (r̃1, ..., r̃k).

Since x /∈ Yk, we will have x /∈ Ỹk for all k = 1, ..., λs. Thus, we can conclude that x /∈

C
s
(Y ∪ {z}, f s, qs), which tells us that the completion C

s
satisfies the substitutability condition.

Proposition 4. C
s
(·) satisfies the LAD.

written as the dynamic capacity of the group minus the number of chosen contracts then we will have the following:
the dynamic capacity of the group k+1 in the choice process beginning with Y minus the dynamic capacity of the
group k+1 in the choice process beginning with Y ∪ {z} = Ỹ 0 must be less than or equal to the summation of the
difference of the number of chosen contracts from group 1 to group k, which is 0 in this specific case.
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Proof. Consider two sets of contracts Y and Ỹ such that Y ⊆ Ỹ ⊆ X. Let f s and qs be the

precedence sequence and the capacity transfer scheme of school s ∈ S. We want to show that

| C
s
(Y, fs, qs) |≤| C

s
(Ỹ , f s, qs) | .

Let (Yj, rj, Y
j) be the sequences of sets of chosen contracts, numbers of vacant slots and sets

of remaining contracts for groups j = 1, ..., λs under choice processes beginning with Y = Y 0.

Similarly, let (Ỹj, r̃j, Ỹ
j) be the sequences of sets of chosen contracts, numbers of vacant slots and

sets of remaining contracts for groups j = 1, ..., λs under choice processes beginning with Ỹ 0 = Ỹ .

For the first group with capacity q1s, since the sub-choice function is q-responsive (and thus

implies the LAD), we have

| Y1 |=| cs1(Y
0, q1s, f

s(1)) |≤| cs1(Ỹ
0, q1s, f

s(1)) |=| Ỹ1 | .

Then, it implies that r1 = q1s− | Y1 |≥ r̃1 = q1s− | Ỹ1 |. Moreover, we have Y 1 ⊆ Ỹ 1. To see this,

consider a y ∈ Y 1. It means that y /∈ Y1. If y is not chosen from a smaller set Y 0, then it cannot

be chosen from a larger set Ỹ 0 because sub-choice function is q-responsive (hence, substitutable).

Suppose that r̃j ≤ rj and Y j ⊆ Ỹ j hold for all j = 1, ..., k − 1. We need to show that both of

them hold for group k.

Given that r̃j ≤ rj for all j = 1, ..., k − 1, the first condition of the monotonicity implies that

qks (r1, ..., rk−1) ≥ qks (r̃1, ..., r̃k−1). The second condition of the monotonicity puts an upper bound

for the difference between qks (r1, ..., rk−1) and qks (r̃1, ..., r̃k−1). For group k

| Yk | − | Ỹk |≤| Yk | − | csk(Y
k−1, qks (r̃1, ..., r̃k−1, f

s(k)) |

because

| Ỹk |=| csk(Ỹ
k−1, qks (r̃1, ..., r̃k−1), f

s(k)) |≥| csk(Y
k−1, qks (r̃1, ..., r̃k−1), f

s(k)) |

by the q-responsiveness of the sub-choice function. We then have

| Yk | − | csk(Y
k−1, qks (r̃1, ..., r̃k−1, f

s(k)) |≤ qks (r1, ..., rk−1)− qks (r̃1, ..., r̃k−1).

This follows from q-responsiveness because | Yk | − | csk(Y
k−1, qks (r̃1, ..., r̃k−1, f

s(k)) | is the dif-

ference between the number of chosen contracts when the capacity is (weakly) increased from

qks (r̃1, ..., r̃k−1) to qks (r1, ..., rk−1). Hence, the difference | Yk | − | csk(Y
k−1, qks (r̃1, ..., r̃k−1, f

s(k)) |

cannot exceed the increase in the capacity which is qks (r1, ..., rk−1)−q
k
s (r̃1, ..., r̃k−1). Therefore, now

we have

| Yk | − | Ỹk |≤ qks (r1, ..., rk−1)− qks (r̃1, ..., r̃k−1).
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Rearranging gives us

qks (r̃1, ..., r̃k−1)− | Ỹk |≤ qks (r1, ..., rk−1)− | Yk |,

which is r̃k ≤ rk.

Given that Y k−1 ⊆ Ỹ k−1 and qks (r1, ..., rk−1) ≥ qks (r̃1, ..., r̃k−1), we will have Y k ⊆ Ỹ k. For an

explanation, consider a contract x ∈ Y k. That means that x ∈ Y k−1 but x is not chosen from Y k−1

when the capacity is qks (r1, ..., rk−1), i.e., x /∈ csk(Y
k−1, qks (r1, ..., rk−1), f

s(x)). When the capacity is

reduced to qks (r̃1, ..., r̃k−1) and the set Y k−1 is expanded to Ỹ k−1, x cannot be chosen because the

sub-choice function is q-responsive. Hence, it must be the case that x ∈ Ỹ k.

Now let ηj = rj − r̃j. As we just proved above, ηj ≥ 0 for all j = 1, ..., λs. Plugging rj =

qjs(r1, ..., rj−1)− | Yj | and r̃j = qks (r̃1, ..., r̃k−1)− | Ỹj | in ηj = rj − r̃j gives us

| Ỹj |= qjs(r1, ..., rj−1)− qjs(r̃1, ..., r̃j−1)+ | Y j | +ηj .

Summing both the right and left hand sides for j = 1, ..., λs yields

λs∑

j=1

| Ỹj |=
λs∑

j=1

| Yj | +
λs∑

j=2

[
qjs(r1, ..., rj−1)− qjs(r̃1, ..., r̃j−1)

]
+

λs∑

j=1

ηj .

Since each ηj ≥ 0, we have

λs∑

j=1

| Ỹj |≥
λs∑

j=1

| Yj | +
λs∑

j=2

[
qjs(r1, ..., rj−1)− qjs(r̃1, ..., r̃j−1)

]
.

Also, we know that qjs(r1, ..., rj−1) ≥ qjs(r̃1, ..., r̃j−1) for all j = 2, ..., λs by the first condition of the

monotonicity of the capacity transfer scheme as, ri ≥ r̃i for all i = 1, ..., j − 1 (Notice that for

j = 1, the capacity is fixed to q1s under both processes.) Therefore, we have

λs∑

j=1

| Ỹj |≥
λs∑

j=1

| Yj |,

which means | C
s
(Y, f s, qs) |≤| C

s
(Ỹ , f s, qs) |.

8.3 Proofs of Theorems

Proof of Theorem 1

In Proposition 1 we showed that each dynamic reserve choice function has a completion. Propo-

sitions 2 and 3 show that the completion satisfies the IRC and substitutability conditions, respec-

tively. Then, by Theorem 2 of Hatfield and Kominers (2019), there exists a stable outcome with

respect to the profile of schools’ choice functions.
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Proof of Theorem 2

In Proposition 4 we showed that the substitutable completion satisfies the LAD. Then, by the

Theorem 3 of Hatfield and Kominers (2019), the COM is (weakly) group strategy-proof for stu-

dents.

Proof of Theorem 3

Assume, toward a contradiction, that the COM does not respect unambiguous improvements.

Then, there exists a student i ∈ I, a preference profile of students P ∈ ×i∈IP
i, and priority

profiles Π and Π such that Π is an unambiguous improvement over Π for student i and

ϕi(P ; Π)P
iϕi(P ; Π).

Let ϕi(P ; Π) = x and ϕi(P ; Π) = x. Consider a preference P̃ i of student i according to which the

only acceptable contract is x, i.e., P̃ i : x−∅i. Let P̃ = (P̃ i, P−i). We will first prove the following

claim:

Claim: ϕi(P̃ ; Π) = x =⇒ ϕi(P̃ ; Π) = x.

Proof of the Claim: Consider the outcome of the COM under priority profile Π given the

preference profile of students P̃ . Recall that the order in which students make offers has no impact

on the outcome of the COP. We can thus completely ignore student i and run the COP until it

stops. Let Y be the resulting set of contracts. At this point, student i makes an offer for his only

contract x. This might create a chain of rejections, but it does not reach student i. So, his contract

x is chosen by s(x) by, say, the group k with respect to the precedence sequence f s(x) of school

s(x). Now consider the COP under priority profile Π. Again, we completely ignore student i and

run the COP until it stops. The same outcome Y is obtained, because the only difference between

the two COPs is student i’s position in the priority rankings. At this point, student i makes an

offer for his only contract x. If x is chosen by the same group k, then the same rejection chain (if

there was one in the COP under the priority profile Π) will occur and it does not reach student i;

otherwise, we would have a contradiction with the case under priority profile Π. The only other

possibility is the following: since student i’s ranking is now (weakly) better under πs(x) compared

to πs(x), his contract x might be chosen by group l < k. Then, it must be the case that rl = 0

in the COP under both priority profiles Π and Π. Therefore, by selecting x, the group l must

reject some other contract. Let us call this contract y. If no contract of student i(y) = j is chosen

between groups l and k, then, by the q-responsiveness of sub-choice functions, the groups’ chosen

sets between l and k under both priority profiles are the same. Hence, the number of remaining

slots would be the same. In this case, y is chosen in the group k. Thus, if a rejection chain starts,
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it will not reach student i; otherwise, we could have a contradiction due to the fact that x was

chosen at the end of the COP under priority profile Π. A different contract of student j cannot

be chosen between groups l and k; otherwise, the observable substitutability24 of dynamic reserves

choice function of school s(x) would be violated. Therefore, if any contract of student j is chosen

by these groups between l and k, it must be y. If y is chosen by a group that precedes k, then it

must replace a contract—we call it z. By the same reasoning, no other contract of student i(z)

can be chosen before group k; otherwise, we would violate the observable substitutability of the

dynamic reserve choice function of school s(x). Proceeding in this fashion leads the same contract

in group k to be rejected and initiates the same rejection chain that occurs under priority profile

Π. Since the same rejection chain does not reach student i under priority profile Π, it will not

reach student i under priority profile Π, which ends our proof for the claim.

Since ϕi(P ; Π) = x and ϕi(P ; Π) = x such that xP ix, if student i misreports and submits P̃ i

under priority profile Π , then she can successfully manipulate the COM. This is a contradiction

because we have already established that the COM is strategy-proof.

Proof of Theorem 4

Consider school s ∈ S with a precedence sequence f s and a target capacity vector (q1s, ..., q
λs
s ). Let

q̃s and qs be two capacity transfer schemes that are compatible with the precedence sequence f s

and the target capacity vector (q1s, ..., q
λs
s ). Suppose that the following two conditions hold:

• there exists l ∈ {2, ..., λs} and (r̂1, ..., r̂l−1) ∈ Zl−1
+ , such that q̃ls(r̂1, ..., r̂l−1) = 1+qls(r̂1, ..., r̂l−1),

and

• for all j ∈ {2, ..., λs} and (r1, ..., rj−1) ∈ Zj−1
+ , if j 6= l or (r1, ..., rj−1) 6= (r̂1, ..., r̂l−1), then

q̃js(r1, ..., rj−1) = qjs(r1, ..., rj−1).

Let C̃s and Cs be dynamic reserves choice functions C̃s(·, f s, q̃s) and Cs(·, f s, qs), respectively. Let

C̃ =
(
C̃s, C−s

)
and C = (Cs, C−s). Let the outcomes of the cumulative offer algorithm at

(
P, C̃

)

and (P,C) be Z̃ and Z, respectively. If Z̃ = Z, then there is nothing to prove because it means

the capacity flexibility of school s does not bite.

Suppose that Z̃ 6= Z. That is, the capacity flexibility of school s bites, which means that there

is a student who was rejected under Cs who is no longer rejected under C̃s. We now define an

improvement chains algorithm that starts with outcome Z. Since the capacity flexibility bites, the

vector (r̂1, ..., r̂l−1) must occur in the choice procedure of school s.

24Dynamic reserves choice functions satisfy observable substitutability condition of Hatfield et al. (2019). We
refer readers to Hatfield et al. (2019) for the definitions of observable offer processes and observable substitutability.
Since dynamic reserves choice functions have substitutable completion that satisfies the size monotonicity, it satisfies
observable substitutability.
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Step 1: Consider students who prefer (s, f s(l)) to their assignments under Z, i.e.,

Ĩ
(s,fs(l))
1 = {i ∈ I | (s, f s(l))P iZi}.

We choose πs-maximal student in Ĩ
(s,fs(l))
1 (if any), call her ĩ1, and assign her x̃1 = (̃i1, s, f

s(l)).

Update the outcome to Z̃1 = Z ∪ {x̃1} \ z1 where z1 is the contract student ĩ1 receives under Z.

If (s(z1), t(z1)) = ∅, then the improvement process ends and we have Z̃ = Z̃1 = Z ∪ {x̃1}.

Otherwise, we move to Step 2 because by assigning ĩ1 to (s, f s(l)) we create a vacancy in school

s(z1) within the privilege t(z1).

If Ĩ
(s,fs(l))
1 = ∅, then the number of vacant slots at the last group accepting students in type

f s(l) will increase by one. When the capacity transfer scheme of school s does not transfer this

extra vacancy to any other group following the last group in type f s(l) in the computation of

Cs(Zs, f
s, q̃s), the improvement chain process ends and we have Z̃ = Z. If the extra slot is trans-

ferred to the group l
′

that follows the last group in type f s(l) in the computation of Cs(Zs, f
s, q̃s),

then we consider students who prefer (s, f s(l
′

)) over their assignments under Z, i.e.,

I
(s,fs(l

′

))
1 = {i ∈ I | (s, f s(l

′

))P iZi}.

We choose πs-maximal student in I
(s,fs(l

′

))
1 (if there is any), call her ĩ1, and assign her x̃1 =

(̃i1, s, f
s(l

′

)). Update the outcome to Z̃1 = Z ∪ {x̃1} \ z1 where z1 is the contract ĩ1 receives under

Z.

If (s(z1), t(z1)) = ∅, then the improvement process ends and we have Z̃ = Z̃1 = Z ∪ {x̃1}.

Otherwise, we move to Step 2. Because assigning ĩ1 to (s, f s(l
′

)) creates a vacancy in school s(z1)

within the privilege t(z1).

If Ĩ
(s,fs(l

′

))
1 = ∅, then the number of vacant slots at the last group that accepts students in type

f s(l
′

) will increase by one. If the capacity transfer scheme of school s does not transfer this extra

vacancy to any other group following the last group that accepts students of type f s(l
′

) in the

computation of Cs(Zs, f
s, q̃s), then the improvement chain process ends and we have Z̃ = Z. If

the extra slot is transferred to the group l
′′

that follows the last group that accepts students in

type f s(l
′

) in the computation of Cs(Zs, f
s, q̃s), then we consider students who prefer (s, f s(l

′′

))

over their assignments under Z, and so on.

Since school s has finitely many groups, Step 1 ends in finitely many iterations. If no extra

student is assigned to school s by the end of Step 1, then the improvement chains algorithm ends

and we have Z̃ = Z. If an extra student is assigned to school s by the end of Step 1, then we move

on to Step 2.

Step t>1: Consider students who prefer (s(zt−1), t(zt−1)) to their assignments under Z̃t−1, i.e.,

Ĩ
(s(zt−1),t(zt−1))
t = {i ∈ I | (s(zt−1), t(zt−1))P

i(Z̃t−1)i}.
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We choose πs(zt−1)-maximal student in Ĩ
(s(zt−1),t(zt−1))
t , call her ĩt, and assign her x̃t = (̃it, s(zt−1), t(zt−1)).

Update the outcome to Z̃t = Z̃t−1∪{x̃t}\zt where zt is the contract student ĩt receives under Z̃t−1.

If (s(zt−1), t(zt−1)) = ∅, then the improvement algorithm ends and we have Z̃ = Z̃t = Z̃t−1 ∪

{x̃t}. Otherwise, we move to Step t+1. Because assigning ĩt to (s(zt−1), t(zt−1)) creates a vacancy

in school s(zt) within type t(zt).

If Ĩ
(s(zt−1),t(zt−1))
t = ∅, then the number of vacant slots at the last group that accepts students

in type f s(zt−1) will increase by one. If the capacity transfer scheme of school s(zt−1) does not

transfer this extra capacity to any other group following the last group that accepts students

in type t(zt−1) in the computation of Cs(zt−1)((Z̃t−1)s(zt−1), f
s(zt−1), qs(zt−1)), then the improvement

chains process ends and we have Z̃ = Z̃t−1. If the extra slot is transferred to the group of

slot m that follows the last group that accepts students in type t(zt−1) in the computation of

Cs(zt−1)((Z̃t−1)s(zt−1), f
s(zt−1), qs(zt−1)), then we consider students who prefer (s(zt−1), f

s(zt−1)(m))

over their assignments under Z̃t−1, i.e.,

Ĩ
(s(zt−1),f

s(zt−1)(m))
t = {i ∈ I | (s(zt−1), f

s(zt−1)(m))P i(Z̃t−1)i}.

We choose πs(zt−1)-maximal student in Ĩ
(s(zt−1),f

s(zt−1)(m))
t , call her ĩt, and assign her x̃t = (̃it, s(zt−1), f

s(zt−1)(m)).

Update the outcome to Z̃t = Z̃t−1∪{x̃t}\zt where zt is the contract student ĩt receives under Z̃t−1.

If (s(zt−1), f
s(zt−1)(m)) = ∅, then the improvement algorithm ends and we have Z̃ = Z̃t =

Z̃t−1∪{x̃t}. Otherwise, we move to Step t+1. Because assigning ĩt to (s(zt−1), f
s(zt−1)(m)) creates

a vacancy in school s(zt) within type t(zt).

If Ĩ
(s(zt−1),t(zt−1))
t = ∅, then the number of vacant slots at the last group that accepts students

in type f s(zt−1) will increase by one. If the capacity transfer scheme of school s(zt−1) does not

transfer this extra capacity to any other group following the last group that accepts students in

type f s(zt−1)(m) in the computation of Cs(zt−1)((Z̃t−1)s(zt−1), f
s(zt−1), qs(zt−1)), then the improvement

chains process ends and we have Z̃ = Z̃t−1. If the extra slot is transferred to the group of slot

m
′

that follows the last group that accepts students in type f s(zt−1)(m) in the computation of

Cs(zt−1)((Z̃t−1)s(zt−1), f
s(zt−1), qs(zt−1)), then we consider students who prefer (s(zt−1), f

s(zt−1)(m
′

))

over their assignments under Z̃t−1, and so on.

Since school s(zt−1) has finitely many groups , Step t ends in finitely many iterations. If no

extra student is assigned to school s(zt−1) by the end of Step t, then the improvement chains

algorithm ends and we have Z̃ = Z̃t−1. If an extra student is assigned to school s(zt−1) by the end

of Step t, then we move on to Step t+ 1.

This process ends in finitely many iterations because there are finitely many contracts and

when we move to the next step it means a student is made strictly better off. Also, notice that no

student is worse off during the execution of the improvement chains algorithm. The improvement

algorithm, by construction, starts with the outcome Φ(P,C) and ends at Φ(P, C̃). Hence, we have

Φi(P, C̃)R
iΦi(P,C) for all i ∈ I.
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We define the sequence of capacity transfer schemes and dynamic reserve choice functions

for school s ∈ S: ((qs)
1, (qs)

2, ...) and (Cs(Y, f s, (qs)
1), Cs(Y, f s, (qs)

2), ...). Let the sequence

Φ(P,C1), Φ(P,C2),... denote the outcomes of the COPs at profiles (P, (Cs(·, f s, (qs)
1), C−s)) and

(P, (Cs(·, f s, (qs)
2), C−s)),..., respectively. Hence, by construction, we have Φi(P,C

a+1)RiΦi(P,C
a)

for all i ∈ I and a ≥ 1. By the transitivity of weak preferences, we have Φi(P, C̃)R
iΦ(P,C) for all

i ∈ I.

Proof of Theorem 5

Our proof is constructive. We first define an associated type space. Let X be the set of all

contracts. We define a distinct “type” for each contract in X. Let g : X → T = {τ1, ..., τ|X|} be

a bijective function. The interpretation of the g function is that the artificial type of a contract

x ∈ X is g(x) ∈ {τ1, ..., τ|X|}. Therefore, each contract in X is associated with a distinct (artificial)

type.

Consider a slot bl ∈ Bs with priority order πbl. Let | πbl | denote the number of contracts that

the slot bl finds acceptable, i.e., ranks higher than the null contract which corresponds to remaining

unassigned. Let x1l , x
2
l ,...,x

|πbl |
l be the acceptable contracts for slot bl such that

x1l π
blx2l π

bl · · ·πblx
|πbl |
l .

For the slot bl in school s in the true market, we create a sequence of slots—| πbl | many slots— in

the associated market, i.e., {b1l , ...b
|πbl |
l }. The initial capacity of b1l is 1, i.e., qb1

l
= 1, and the initial

capacities of b2l , b
3
l , ..., b

|πbl |
l are 0, i.e., qbk

l
= 0 for all k = 2, ..., | πbl |. Define rbk

l
such that rbk

l
= 0

if slot bkl is filled and rbk
l
= 1 if slot bkl remains vacant. The dynamic capacity of the slot bkl , for all

k = 2, ..., | πbl |, is defined as qbk
l
(rb1

l
, ..., rbk−1

l
) = rbk−1

l
. That is, if the slot bk−1

l remains vacant, then

the capacity of the slot bkl becomes 1. Note that if a slot bk−1
l is filled, then the dynamic capacity

of slots that come after bk−1
l become 0.

Each slot bkl is associated with a sub-choice rule cs
bk
l

(·, qbk
l
, ·) that is defined as follows: The

sub-choice rule cs
bk
l

(·, qbk
l
, ·) can only considers contracts with artificial type g−1(xkl ), therefore only

the contract xkl . Given a set of contracts Y ⊆ X,

cs
bk
l

(Y, qbk
l
, g−1(xkl )) =





{xkl }

∅

if xkl ∈ Y and qbk
l
= 1,

otherwise
.

Note that cs
bk
l

is a q-responsive choice function. We now describe a dynamic reserves choice rule

C̃s(·) that is outcome equivalent to the slot-specific choice rule Cs(·). Let Y ⊆ X be a set of

contracts.

Step 1 Consider slots {b11, b
2
1, ..., b

|πb1 |
1 } in this step.
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Step 1.1 Apply the sub-choice function cs
b11

. If a contract is chosen, then end Step 1, and

move to Step 2 due to the capacity transfer rule described above. Otherwise, move to Step 1.2.

Step 1.2 Apply the sub-choice function cs
b21

. If a contract is chosen, then end Step 1, and

move to Step 2 due to the capacity transfer rule described above. Otherwise, move to Step 1.3.

This process continues in sequence. If a contract chosen in Step 1, then all of the contracts

associated with the student whose contract is chosen is removed for the rest of the procedure. Let

y1 be the chosen contract in this step. Then, the set of remaining contracts is Y \ Yi(y1).

Step n ≥ 2 Consider slots {b1n, b
2
n, ..., b

|πbn |
n } in this step.

Step n.1 Apply the sub-choice function cs
b1n

. If a contract is chosen, then end Step n, and

move to Step (n + 1) due to the capacity transfer rule described above. Otherwise, move to Step

n.2.

Step n.2 Apply the sub-choice function cs
b2n

. If a contract is chosen, then end Step n, and

move to Step (n + 1) due to the capacity transfer rule described above. Otherwise, move to Step

n.3.

This process continues in sequence. If a contract chosen in Step n, then all of the contracts

associated with the student whose contract is chosen is removed for the rest of the procedure. Let

yn be the chosen contract in this step. Then, the set of remaining contracts is Y \ Yi(y1,...,yn).

By construction, for any given set of contracts Y ⊆ X, for each slot bl in the process of the

slot-specific priorities choice function Cs(·) and Step l of the dynamic reserves choice function C̃s(·)

the set of available contracts, and hence, the chosen contract are the same. Therefore, these two

choice functions select the same set of contracts, i.e., Cs(Y ) = C̃s(Y ). This ends our proof.
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