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Altruistic Observational Learning*

Christoph March� and Anthony Ziegelmeyer�

Abstract

We report a laboratory experiment that tests the causal impact of altruism on observational learning

behavior. Once endowed with a private signal, participants submit their guess about the payoff-relevant

state in two parallel sequences. In the observed sequence, guesses are revealed publicly so that par-

ticipants in both sequences can benefit from guesses that are informative. Unobserved guesses, on

the other hand, never reveal any information to others as they remain private. We find that observed

guesses are significantly more informative than unobserved guesses. The strong responses to private

information benefit information aggregation as observational learning behavior is informationally more

efficient in the observed sequence than in standard equilibrium outcomes. Once the incentives to make

the empirically optimal guess are large enough, observed and unobserved behave quite similarly, and

observed guesses are significantly less informative if fewer successors can benefit from the revelation

of private signals. These findings are well in line with the qualitative predictions of an observational

learning model where players have altruistic preferences.

Keywords : altruism, observational learning, experiments, herd behavior, overconfidence.

JEL Classification : C72, C92, D83.

1 Introduction

A substantial amount of evidence has accumulated in recent years indicating that, when they have

limited private information and take public actions, people learn from observing the actions of others.

Observational learning effects have been identified in settings as diverse as markets for experience goods

like restaurant meals (Cai, Chen, and Fang, 2009) or movies (Moretti, 2011), U.S. presidential primaries

(Knight and Schiff, 2010), agricultural technologies (Conley and Udry, 2010) and financial markets (Cipri-

ani and Guarino, 2014). However, the more people act on the public information contained in others’

actions, the less informative their own actions are. Information cascade models offer stylized illustrations

*For valuable comments and discussions we are grateful to Thomas Daske, Dirk Engelmann, Sebastian Krügel, Michael
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of this self-defeating property of observational learning (Banerjee, 1992; Bikhchandani, Hirshleifer, and

Welch, 1992). In these models, as soon as public information supports one action by just enough to

outweigh any one person’s private information, people rationally take uninformative imitative actions,

implying a spectacular failure of information aggregation and significant chances of wrong herds. The

key insight is that, by taking advantage of the public pool of information, rational people fail to exploit

their private information in a socially optimal way.

If, instead of joining the cascade, a person would follow her private signal, and if this deviation would

not be viewed as mere noise by others, her informative action would add to the public pool of information

and benefit her followers. Such contrarian behavior by a number of people would then strongly increase the

probability that actions converge to the truth. Seizing on this logic, several authors assert that dissenters,

who are willing to disagree with the majority’s view and disclose their private views, may be surprisingly

useful citizens. For example, Bernardo and Welch (2001) argue that entrepreneurs enrich society with

extensive exploration of the economic environment as they tend to ignore the herd, and Sunstein (2019)

emphasizes the value of judicial dissents to reduce conformity effects within the federal courts in the

United States. Thus, in a given observational learning setting, people’s willingness to act altruistically

by taking informative actions that are socially beneficial but individually suboptimal should matter

greatly for the efficiency of the social outcomes. The present paper investigates, both theoretically and

experimentally, the extent to which altruism increases the response to private information and whether

it has the potential to improve the efficiency of the observational learning process.

We designed a laboratory experiment to test the causal impact of altruism on observational learning

behavior. As in the seminal information cascade experiment (Anderson and Holt, 1997), one of two

payoff-relevant states is randomly selected, participants are endowed with binary private signals about

the state, they are asked, in sequence, to guess the state, and a monetary reward is paid when the guess is

correct. The key innovation of our design is that guesses are made in two parallel sequences. Guesses in

the observed sequence are revealed publicly whereas guesses in the unobserved sequence remain private.

Hence, participants in both sequences learn from the same history of observed guesses and they may

benefit when these guesses are informative while unobserved guesses never reveal any information to

others. Altruistic participants should therefore respond more strongly to their private signals in the

observed than in the unobserved sequence. We test this prediction by comparing participants’ behavior

in the two sequences.

To clarify how altruism affects observational learning, our theoretical section analyzes an extension of

Bikhchandani et al.’s (1992) canonical game where players have either standard or altruistic preferences.

We begin by showing that sequential equilibria exist where altruistic responses to private information

are stronger than standard ones, which in turn delays the onset of information cascades and enhances

information aggregation. We then analyze the extended game through the lens of logit quantal response

equilibrium. The analysis shows that, even with payoff-responsive decision errors, altruism has the

potential to induce more informative observational learning. The section ends with detailed predictions

of logit quantal response equilibrium in parametrized versions of the game. We illustrate these predictions

by plotting, for each history of public guesses, the probability to contradict the private signal against

the expected correctness of contradicting the signal. While standard probabilities to contradict private

information lie on a S-shaped curve through (0.5, 0.5), their altruistic counterparts lie below the S-shaped

curve, and the distance between altruistic and standard probabilities increases with the level of altruism.

Furthermore, the distance is smaller for later guesses than for guesses made early in the sequence and it
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is negligible when the expected correctness of contradicting private information is either extremely low or

extremely high. The same qualitative predictions hold in parametrized versions of the laboratory game,

and these predictions form our testable hypotheses.

The experimental results confirm the main implications of altruistic observational learning. First, in

the early periods of the sequences, observed guesses are significantly more informative than unobserved

guesses. Indeed, when plotted against (an estimate of) the expected correctness of contradicting private

information, the proportion of guesses that contradict private information is significantly lower in the

observed than in the unobserved sequence. Second, the proportion of observed guesses that contradict

private information lies significantly closer to a S-shaped curve through (0.5, 0.5) in the later than in

the early periods of the sequence meaning that observed guesses are significantly less informative if fewer

successors can benefit from the revelation of private signals. Third, we measure the amount of information

aggregated by observed guesses and we find that they aggregate significantly more information than

standard equilibrium guesses.

Beside altruism, however, other forces may drive stronger than standard responses to private infor-

mation. As pointed out in the literature review below, various observational learning experiments have

documented that participants are reluctant to contradict their private signals and have explained this

behavior in terms of judgment or inferential biases, though in most of these experiments altruism remains

an alternative explanation. Our experiment enables us to properly explore this auxiliary question since

the absence of future informational benefits of guesses in the unobserved sequence implies that deviations

from standard equilibrium predictions cannot be caused by altruistic considerations. We find that the

proportion of unobserved guesses that contradict private information lie significantly below a S-shaped

curve through (0.5, 0.5). Though no one benefits from their informative guesses, unobserved put too

much weight on their private information relative to public information. In particular, they fail to learn

successfully from public guesses by following their private signals more often than not when the monetary

incentives to contradict private information are weakly stronger than the monetary incentives to follow

private information.

Finally, we investigate whether observational learning behavior changes as participants gain experience

playing the laboratory game. In the observed sequence, the reluctance of participants to contradict their

private signals slightly increases and their guesses aggregate significantly more information over time.

By contrast, the proportion of unobserved guesses that contradict private information lie significantly

closer to a S-shaped curve over the course of the experiment. Thus, experience weakens the influence of

judgment or inferential biases on observational learning behavior and altruism is the main reason why

the guesses of experienced participants are more informative than standard guesses.

Related Literature. We review below the literature related to our paper, which helps us to further

clarify its contributions.

First, our theoretical section relates to the few models of observational learning which allow for payoff

interdependence. Smith, Sørensen, and Tian (2017) study the altruistic observational learning model

with a general distribution of private information and an infinite number of players, and their analysis

focuses on the constrained efficient equilibrium.1 They show that with private information of bounded

1Vives (1997) also presents a welfare analysis of observational learning, but in a market setting with Gaussian information.

The author shows that, compared to the rational benchmark, players’ response to private information is stronger and more

public information is accumulated in the socially optimal benchmark.
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strength higher degrees of altruism lead to smaller cascade sets which entails that uninformative actions

are taken less readily. We prove related results in a simple model of observational learning with a finite

sequence of altruistic players who receive symmetric binary private signals. In particular, Proposition 2

shows that equilibria exist in which the onset of information cascades is delayed and the likelihood of a

herd on the less profitable action is reduced.

Ali and Kartik (2012) consider a simple setting of observational learning with collective preferences: a

player’s payoff depends on a binary state of nature and on the profile of actions of any subset of all players,

players may differ in how they care about the choices of others, and each player weakly prefers others to

take the most profitable action.2 They show that an equilibrium exists in which players behave as in the

unique equilibrium of the standard model where payoffs are independent. By focusing on the specific case

of homogeneous altruism in a similar observational learning setting, we provide detailed results about the

impact of forward-looking incentives on players’ response to private information. Additionally, we show

that, even with payoff-responsive decision errors, altruism has the potential to induce more informative

observational learning.

Second, by shedding new light on the drivers of participants’ overweighting of private information, our

experimental results complement the existing evidence on observational learning. Alongside the seminal

work of Anderson and Holt (1997)—henceforth AH—, several experiments on observational learning

report frequent deviations from the standard equilibrium in which participants follow their private signal

but should herd on the guesses of their predecessors (e.g. Nöth and Weber, 2003; Çelen and Kariv,

2004; Goeree, Palfrey, Rogers, and McKelvey, 2007). Also, there is a positive correlation between the

length and strength of laboratory cascades since participants are more likely to make uninformative

imitative guesses after longer cascades (Kübler and Weizsäcker, 2005; Ziegelmeyer, Koessler, Bracht, and

Winter, 2010). Combining data from 13 experiments based on Bikhchandani et al.’s (1992) canonical

game, Weizsäcker (2010) shows that rational expectations together with standard responses to these

expectations cannot account for these behavioral regularities. Altruistic observational learning, however,

is a sound explanation for participants’ overemphasis on private information and its attenuation as

laboratory cascades lengthen.

Indeed, participants are likely to understand that a stronger response to private information is an

altruistic act as participants have collectively (almost) full information. In addition, the monetary cost

for a participant who ignores a short laboratory cascade is rather trivial while the monetary benefits for

her successors are potentially substantial, and there is ample evidence of altruistic behavior in laboratory

games where own costs are low while others’ benefits are large (Andreoni, Harbaugh, and Vesterlund,

2008). But once the amount of information contained in preceding guesses is sufficiently large, a cascade-

breaking and informative guess is rather costly and of little benefits which explains that participants

are more willing to follow longer sequences of identical guesses. Despite its ability to account for the

overweighting-of-private-signals phenomenon, the experimental literature has largely ignored the impli-

cations of altruistic observational learning.3 The reluctance of participants to contradict their private

2Thanks to the richness of the class of preferences considered, Ali and Kartik’s observational learning model encompasses

many applications. For example, each player could be altruistic toward a different set of other players, i.e., the structure of

altruism could be captured by a network. Another leading application is sequential voting with rich motivations for voters

such as expressive-voting preferences or preferences about margins of victory.

3Alevy, Haigh, and List (2007) and Duffy, Hopkins, Kornienko, and Ma (2019) are notable exceptions. In the former

study, the authors find that financial market professionals respond more strongly to private information and make better
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information has been explained as resulting either from a commonly known non-Bayesian updating rule

where the precision of private signals is exaggerated (Goeree et al., 2007) or from participants believing

that others make more mistakes than they actually do (Nöth and Weber, 2003; Kübler and Weizsäcker,

2004). The experimental evidence presented in this paper shows that altruism and cognitive biases are

complementary forces that shape observational learning behavior.4

Two more recent experimental papers have studied observational learning in a continuous action

space where private signals can be perfectly inferred from rational guesses. The standard equilibrium

outcome is therefore informationally efficient which implies that altruistic and standard responses to

private information are equally strong. In Eyster, Rabin, and Weizsäcker’s (2018) single-file treatment,

each private signal is the difference between the number of heads and tails from 100 coin flips, one

participant submits a guess in each period after having observed her private signal and the history

of preceding guesses, and participants are incentivized to guess the sum of their predecessors’ signals

plus their own signal. The authors find that participants’ guesses are largely in line with the standard

equilibrium predictions. In their social learning treatments, Angrisani, Guarino, Jehiel, and Kitagawa

(2018) modify AH’s baseline setting by incentivizing participants to state their beliefs rather than to

guess which of the two states is payoff-relevant. Their experimental results are at odds with the standard

equilibrium predictions as participants tend to assign too much weight to their private signal relative to the

public information contained in others’ beliefs. The authors attribute their findings to the overconfidence

bias according to which participants tend to mistrust the ability of their predecessors to understand their

private signals correctly.

To explain the conflicting results of the two studies, one may argue that participants view the task

of adding up numbers as less challenging than the task of forming conditional probabilities and that

they trust their predecessors to act rationally when completing the former but not the latter task. The

behavior of participants in the unobserved sequence can be interpreted as giving some support to this

explanation. Indeed, unobserved are reluctant to contradict their private information in the first part of

the experiment. However, once participants in both sequences have gained extensive experience with the

use of available public information than do students. Consequently, the professionals are involved in weakly fewer overall

laboratory cascades and significantly fewer cascades on the wrong action. The authors conclude that “. . . data reveal that

the decisions of market professionals are consistent with behaviors that may mitigate informational externalities in market

settings, and thus reduce the severity of price bubbles due to informational cascades.” In the latter study, before guessing

the payoff-relevant state, participants choose between receiving a private signal or observing the history of previous guesses

and participants are found to choose private information more frequently when they have successors than when they act

last. The authors write: “By choosing and acting according to that private information, an individual can help followers

by increasing the informativeness of social information. Such group effects could be one explanation for why subjects were

found to be biased toward private information in standard social learning experiments relative to equilibrium predictions

based on self-interest.”

4In their “majority rule institution” treatment, Hung and Plott (2001) incentivize participants to exhibit altruistic

behavior by rewarding them according to whether a majority of guesses are right or wrong. They find that more information

is revealed in this treatment compared to the usual one where each participant is rewarded according to whether her guess is

right or wrong. Davis (2017) proposes an experimental test of Ali and Kartik’s theoretical result that the standard equilibrium

outcome remains an equilibrium outcome of the observational learning game where players have collective preferences. To

do so, the author modifies participants’ earnings in AH’s baseline setting as follows: the earnings of a participant who makes

a correct guess increase with the number of correct guesses in the sequence whereas the earnings of a participant who makes

an incorrect guess decrease with the number of incorrect guesses in the sequence. Note that this earnings function fails to

induce participants to reveal their private information as long as they believe that such a guess is incorrect. Observational

learning behavior does not significantly differ between the settings with original and modified earnings.
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combination of private and public information, unobserved learn rather successfully from public guesses

in the second part of the experiment.

The rest of the paper is organized as follows. Section 2 presents our theoretical analysis of a simple

model of altruistic observational learning. Section 3 describes our experimental design and procedures,

and it presents the hypotheses to be tested. Section 4 reports on the results of our experiment. Section 5

concludes. The online supplementary material contains a series of appendices with proofs, complementary

theoretical and data analyses, as well as the experimental instructions of our experiment.

2 Theory

We analyze an extension of the specific observational learning game of Bikhchandani et al. (1992)—

henceforth BHW—where players have either standard or altruistic preferences. In the absence of altru-

ism, the equilibrium outcome exhibits a spectacular failure of information aggregation as the onset of

information cascades is almost immediate. This corresponds to BHW’s standard equilibrium outcome.

In the presence of altruism, we show that sequential equilibria exist where players increase their response

to private information which leads to information cascades being delayed and more information being

aggregated. We also establish that logit quantal response equilibria exist where altruism induces more

informative observational learning.

2.1 A Simple Game of Altruistic Observational Learning

The finite set of players is {1, . . . , T} with generic element t. Nature moves first and chooses a payoff-

relevant state θ ∈ Θ = {B,O} according to the common prior p ≡ Pr (θ = B) ∈ (0.5,1).5 Each player is then

endowed with a symmetric binary private signal st ∈ S = {b, o} such that Pr (st = b ∣ θ = B) = Pr (o ∣ O) =

1 − Pr (o ∣ B) = 1 − Pr (b ∣ O) = q ∈ (p,1). Conditional on the state, signals are independently distributed

across players.

Time is discrete and, in period t = 1,2, . . . , T , player t chooses action xt ∈X = {B,O} where B stands

for “guess state B” and O stands for “guess state O”. Before choosing her action, player t observes the

history of previous actions ht = (x1, . . . , xt−1) ∈Ht = {B,O}
t−1 where h1 ≡ ∅ and H ≡ ⋃

T
t=1Ht.

Player t’s preferences depend on the complete profile of actions x = (x1, . . . , xT ) and the state θ, and

they are represented by the von-Neumann Morgenstern utility function

ut (x, θ) = π(xt, θ) + α ∑
τ≠t
π(xτ , θ) (1)

where π(B,B) = π(O,O) = 1, π(B,O) = π(O,B) = 0, 0 ≤ α ≤ 1 captures the level of altruism, and

τ ∈ {1, . . . , T}. If α > 0 then player t values all players guessing the true state correctly. This concern

for socially efficient outcomes implies that altruistic players take into account the informational benefits

of their actions for others. Our functional form of prosocial preferences relates to the (utilitarian) social

welfare function assumed by Smith et al. (2017) in their general welfare analysis of observational learning.

5We abstract from the non-generic case p = 1/2 to avoid the use of tie-breaking rules.
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2.2 Beliefs, Strategies and Equilibrium Concepts

Denote by ⟨T,X,H,Θ, p, S, q,{ut}
T
t=1⟩ the simple game of altruistic observational learning (henceforth

the AOL game). Without loss of generality, player t’s behavior is captured by the behavioral strat-

egy σt ∶ S ×Ht → D (X) where (in a slight abuse of notation) σt (st,ht) denotes the probability that

she chooses action xt = B.6 Call a behavioral strategy pure (completely mixed) if σt (st,ht) ∈ {0,1}

(0 < σt (st,ht) < 1) for each st ∈ S and ht ∈Ht.

Player t forms her probability estimate of the payoff-relevant state, her belief, by updating the common

prior p with her private and public information (signal st and history ht) in a Bayesian way. Let player

t’s belief be given by the mapping µt ∶ S ×Ht → D (Θ) and let µt (st,ht) denote the probability player

t assigns to state B at history ht given signal st. Given her signal st, history ht, and the strategies

σ−t = (σ1, . . . , σt−1, σt+1, . . . , σT ) of the other players, player t’s expected utility of choosing action xt is

given by

Ut (xt ∣ st,ht,σ−t) = ∑
θ∈Θ

µt (θ ∣ st,ht) ∗ [π(xt, θ) + α ∑
τ<t
π(xτ , θ) + αCt (xt ∣ ht, θ,σ−t)] (2)

where

Ct (xt ∣ ht, θ,σ−t) = ∑
(xt+1,...,xT )

⎡
⎢
⎢
⎢
⎣
∏
τ>t

∑
sτ ∈S

Pr (sτ ∣ θ)στ (xτ ∣ sτ ,hτ)
⎤
⎥
⎥
⎥
⎦
∑
τ>t
π(xτ , θ)

with hτ ⊇ (ht, xt) for each τ > t. Ct (xt ∣ ht, θ,σ−t) is player t’s continuation value of action xt at history

ht and state θ given strategies σ−t. Lemma A1 in Appendix A shows that continuation values can be

defined recursively.

Since they care directly about the actions of other players, altruistic players are strategically motivated

to be forward-looking. Forward-looking incentives render the complete characterization of all equilibria of

the AOL game infeasible. However, the objective of our analysis is merely to show that, in the presence of

altruism, the onset of cascades might be delayed and more information might be aggregated. To achieve

this objective, we impose several restrictions on off-path beliefs. As a first restriction, we rely on the

sequential equilibrium concept (Kreps and Wilson, 1982) to solve the AOL game, rather than on the

perfect Bayesian equilibrium concept.7

Definition 1. A sequential equilibrium of the AOL game is a strategy profile σ∗ and a system of beliefs

µ∗ such that

(i) strategies are sequentially rational, i.e., for each t, st, and ht,

σ∗t (st,ht) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if Ut (B ∣ st,ht,σ
∗
−t) > Ut (O ∣ st,ht,σ

∗
−t)

0 if Ut (B ∣ st,ht,σ
∗
−t) < Ut (O ∣ st,ht,σ

∗
−t)

; and

(ii) beliefs are consistent, i.e., (σ∗,µ∗) = lim
n→∞

(σ(n),µ(n)) where, for each n, σ(n) is a profile of com-

pletely mixed behavioral strategies and µ(n) is derived from σ(n) by Bayes rule:

µ
(n)
t (st,ht) =

⎡
⎢
⎢
⎢
⎢
⎣

1 +
1 − p

p

Pr (st ∣ O)

Pr (st ∣ B)
∏
τ<t

∑sτ ∈S Pr (sτ ∣ O) σ
(n)
τ (xτ ∣ sτ ,hτ)

∑sτ ∈S Pr (sτ ∣ B) σ
(n)
τ (xτ ∣ sτ ,hτ)

⎤
⎥
⎥
⎥
⎥
⎦

−1

for each t, st, and ht where hτ ⊂ ht for each τ < t.

6For a given (finite) set M , D (M) denotes the set of probability distributions over M .

7Sequential equilibrium beliefs satisfy 1−q
q

µt(st,ht)
1−µt(st,ht) ≤

µt(st,(ht,xt))
1−µt(st,(ht,xt)) ≤

q
1−q

µt(st,ht)
1−µt(st,ht) for each t < T , ht, xt and st.
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The AOL game involves an informational externality as actions partially convey private signals, which

might give rise to informational cascades. Given history ht, player t cascades on her predecessor’s action

if she acts uninformatively and imitates the action of her predecessor, i.e., σt (b,ht) = σt (o,ht) = xt−1

(player t acts informatively if σt (b,ht) ≠ σt (o,ht)). An informational cascade emerges after some history

ht if every player τ ≥ t cascades on xt−1. Finally, a herd on action xt−1 emerges after some history ht if

every player τ ≥ t chooses action xt−1.

Further restrictions on off-path beliefs and monotonic equilibria

We pin down off-path beliefs further by focusing on two special cases. First, with error off-path beliefs

players treat all actions off the equilibrium path as uninformative about the state. Hence, player t’s belief

given signal st at the off-path-history ht is equal to the belief of player τ < t given signal sτ = st at the

maximal subhistory hτ ⊂ ht that is on the equilibrium path. Second, with signal revealing off-path beliefs

players treat off the equilibrium path action B (resp. action O) as revealing signal b (resp. signal o).

Accordingly, player t’s belief given signal st at the off-path-history ht satisfies µt (st,ht) / [1 − µt (st,ht)] =

µτ (st,hτ) / [1 − µτ (st,hτ)] ⋅ (q/ (1 − q))
nB−nO where hτ ⊂ ht is the maximal subhistory of ht that is on

the equilibrium path and nB (resp. nO) is the number of times action B (resp. action O) is chosen

by the subset of players {τ, . . . , t − 1}. Whenever it applies, the off-path beliefs specification is assumed

commonly known.

By restricting the analysis to pure strategies and either error or signal revealing off-path beliefs, we

are able to capture the behavior of players by the simplified strategies σ̂t (st,∆t) where ∆t ∈ Z denotes

the difference between the number of b and o signals that player t infers from history ht (see Lemma A3

in Appendix A). For the sake of clarity, our main analysis focuses on monotonic equilibria where players

adopt such simplified strategies and which require that: i) strategies are weakly increasing in ∆; and

ii) the information cascade set weakly grows over time (no information cascade emerges as long as the

public belief, the probability estimate of the state conditional on the current history, lies in an interval

around one-half; the complement of that interval is called the information cascade set).

Definition 2. An equilibrium σ̂∗ is monotonic if and only if

(i) for each t = 2, . . . , T , each ∆t ∈ {2 − t, . . . , t − 1} and each st ∈ S, σ̂∗t (st,∆t) ≥ σ̂
∗
t (st,∆t − 1); and

(ii) for each t < T and each ∆t ∈ {1 − t, . . . , t − 1}, σ̂∗t (b,∆t) ≥ σ̂
∗
t+1 (b,∆t) and σ̂∗t (o,∆t) ≤ σ̂

∗
t+1 (o,∆t).

The following properties hold in every monotonic equilibrium (see Lemma A4 in Appendix A): (i) players

are weakly more likely to choose action B with signal b than with signal o; (ii) players act informatively

whenever ∆ ∈ {−1,0}; (iii) for each t = 1, . . . , T , σ̂∗t (b,∆t) = 0 only if ∆t ≤ −2 and σ̂∗t (o,∆t) = 1 only

if ∆t ≥ 1; (iv) if players cascade on action B when having inferred difference ∆ then they also cascade

on action B when the difference is ∆ + 1; and similarly (v) if players cascade on action O when having

inferred difference ∆ then they also cascade on action O when the difference is ∆ − 1.

2.3 Onset of Cascades and Information Aggregation in Monotonic Equilibria

There are multiple equilibrium outcomes in the AOL game. In the absence of altruism (α = 0), the

equilibrium outcome involves the spectacular failure of information aggregation as players cascade on

action B (resp. action O) as soon as there is an imbalance of one B action (resp. two O actions) in

8



the history of previous actions. We refer to the informationally inefficient equilibrium outcome as the

standard equilibrium outcome. In the presence of altruism (0 < α ≤ 1), equilibrium outcomes exist where

cascades are delayed and the informativeness of public information is enhanced.

2.3.1 Immediate Cascades and Poor Information Aggregation

Ali and Kartik (2012) extend BHW’s specific observational learning game by considering state-dependent

signal precisions {qB, qO} such that qB + qO > 1 and a general class of utility functions where each player

has a type which identifies the strength of her preference for others to guess the true state correctly.

They term this kind of payoff interdependence collective preferences. Ali and Kartik prove that the

standard equilibrium outcome remains an equilibrium outcome of the game where players have collective

preferences and the error off-path beliefs specification is assumed. Appendix A.1 shows that their game

encompasses the AOL game which enables us to state the following proposition.

Proposition 1 (Ali and Kartik, 2012). For any 0 < α ≤ 1 there exists a monotonic equilibrium σ̂∗ which

for each 1 ≤ t ≤ T and each ∆t ∈ Z satisfies

(σ̂∗t (b,∆t) , σ̂
∗
t (o,∆t)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1,1) if ∆t ≥ 1

(1,0) if − 1 ≤ ∆t ≤ 0

(0,0) if ∆t ≤ −2

.

The equilibrium characterization of Ali and Kartik (2012) establishes that the core insights from standard

economic models of observational learning, such as the swift onset of information cascades and their

inherent fragility, can be relevant even when players are motivated by efficiency concerns.

2.3.2 Delayed Cascades and Improved Information Aggregation

For sufficiently long sequences of players, Proposition 2 characterizes a set of monotonic equilibria where

compared to the standard equilibrium the onset of information cascades is delayed and more public

information is accumulated.

Proposition 2. Assume that the sequence of players is long enough so that the lower bound 0 < α (p, q) < 1

exists.8 For each α > α(p, q) there exists a monotonic equilibrium σ̂∗ which for each 1 ≤ t ≤ T and each

1 − t ≤ ∆t ≤ t − 1 satisfies

(σ̂∗t (b,∆t) , σ̂
∗
t (o,∆t)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1,1) if ∆t ≥ ∆t

(1,0) if ∆t + 1 ≤ ∆t ≤ ∆t − 1

(0,0) if ∆t ≤ ∆t

with ∆t ≥ 1 and ∆t ≤ −2 for each 1 ≤ t ≤ T , and either ∆t ≥ 2 or both ∆t ≥ 2 and ∆t ≤ −3 for some t < T .

Moreover, ∆t ≤ ∆t+1 and ∆t ≥ ∆t+1 for each 1 ≤ t < T with strict inequality for some t < T , i.e., the

cascade set weakly grows over time.

In non-standard equilibria, players act informatively only if ∣∆ ∣ is sufficiently small and sufficiently many

successors can benefit from the revelation of their private information. For example, early players in the

sequence reveal their private information when facing ∆ ∈ {−2,−1,0,1} as long as several other players

8The restriction on T is weak. For instance, T = 5 is sufficient as long as p < 0.74 or q < 0.87, and T = 6 is sufficient as

long as p < 0.81 or q < 0.94. See Appendix A.4 for details.
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succeed them. On the other hand, players cascade if ∣∆ ∣ is large or if they act late in the sequence.

By inducing players to rely more on their private information when choosing their actions, altruistic

observational learning accumulates more public information and it enhances the expected correctness

of subsequent players’ guesses. Said differently, the onset of information cascades is delayed and the

likelihood of a herd on the ex-post wrong action is reduced. For non-negligible levels of altruism, such

equilibrium play is intuitively more plausible as informative actions reflect players’ concern for socially

efficient outcomes.

Since our main objective has been to show that altruism may delay the onset of cascades and aggregate

more information, we focused on monotonic equilibria. As expected, the combination of forward-looking

incentives and information externalities implies the existence of many non-monotonic equilibria in the

AOL game. Appendix B exhibits some of these additional equilibria and offers evidence on how rapidly

the number of equilibria grows with the level of altruism.

2.4 Quantal Response Altruistic Observational Learning

We complement our previous theoretical analysis by investigating the behavioral implications of the

homogeneous Logit Quantal Response Equilibrium (LQRE) in the AOL game. The motivation for this

complementary investigation is twofold. First, there is no off-path behavior in LQRE as smoothed best

responses ensure that all paths are reached with positive probability. We can therefore dispense with

assuming specific off-path beliefs. Second, and most important, payoff-responsive decision errors alter the

predictions of rational observational learning in a way similar to that of altruism. Indeed, the standard

LQRE predicts that a herd-breaking action happens more frequently if the player received a private signal

contradicting the herd choices and the herd is short which implies a positive relationship between the

length and strength of herds as well as full information aggregation in the limit (Goeree, Palfrey, and

Rogers, 2006). Thus, there is a legitimate concern that altruism has negligible influence on the response

to private information and information aggregation in the presence of payoff-responsive decision errors.

Our next proposition shows that this concern is unwarranted.

Let µ∅t be shorthand for the public belief µt (∅,ht) ∈ (0,1) with ht ∈ Ht and 1 ≤ t ≤ T , let σQt (st, µ
∅
t )

denote player t’s LQRE probability to choose action B given signal st ∈ S and µ∅t , and let σQ0 =

(σQ0

1 , . . . , σQ0

T ) denote the standard LQRE. In the next proposition we compare the action probabilities

in σQ0 with the action probabilities in LQRE which are “monotonic-within-periods” for strictly positive

levels of altruism. In a monotonic-within-periods LQRE the action probabilities satisfy the following two

properties: i) σQt (b, µ∅t ) > σ
Q
t (o, µ∅t ) for each µ∅t ∈ (0,1); and ii) ∂σQt (st, µ

∅
t ) /∂µ

∅
t > 0 for each st ∈ S

and each µ∅t ∈ (0,1). As clarified in Appendix C, large levels of altruism have to be assumed away to

guarantee the existence of a monotonic-within-periods LQRE.9

Proposition 3. For strictly positive but not excessively large levels of altruism, there exists a monotonic-

within-periods LQRE σQ such that, for each 1 ≤ t < T , σQt (b, µ∅t ) > σQ0
t (b, µ∅t ) if µ∅t ∈ [µ,1/2) and

σQt (o, µ∅t ) < σ
Q0
t (o, µ∅t ) if µ∅t ∈ (1/2, µ] where 0 < µ < 1 − q and 1 > µ > q.

9Extensive numerical computations show that a monotonic-within-periods LQRE may fail to exist when the level of

altruism exceeds one-half. The longer the sequence of players T and the higher the signal quality q the more likely is the

restriction α < 0.5 to be binding. Intuitively, if the second component of the utility function weights much larger than the

first component—players mainly care that others guess the true state correctly—then the (almost) unique purpose of actions

is to reveal private signals and the two properties of a monotonic-within-periods LQRE may not hold.
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Proposition 3 shows that a LQRE exists where informative actions are more likely than in the standard

LQRE if the public belief is not too distant from one-half. We therefore confirm that altruism has the

potential to induce more informative observational learning even in the presence of payoff-responsive

decision errors. Still, our characterization of the LQRE is only partial since we do not provide a closed-

form expression of the interval [µ,µ] for which informative actions are more likely in the presence of

altruism. In particular, a characterization of the size of the interval across periods is unavailable though,

obviously, σQT (sT , µ
∅
T ) = σ

Q0

T (sT , µ
∅
T ) for each sT ∈ S and each µ∅T ∈ (0,1). Note that if decision errors are

negligible then 0 < µ ≤ (1 − q)2
/ (q2 + (1 − q)2

) and 1 > µ ≥ q2/ (q2 + (1 − q)2
) which implies that altruism

increases the probability of informative actions when players face herds of size ≤ 2.

To illustrate how the level of altruism impacts LQRE play in the AOL game, we plot LQRE responses

to the value of contradicting private information in parametrized versions of the game. The value of

contradicting private information, denoted by vcpi, is the probability of guessing correctly the true state

when the guess contradicts the private signal. Thus, in guessing situation (st,ht), vcpi is Pr (θ = B ∣ o,ht)

and Pr (θ = O ∣ b,ht) for st = o and st = b, respectively. Players’ responses to vcpi are captured by their

probabilities to contradict private information. For example, in guessing situation (o,ht) with public

belief µ∅t , player t’s response is σQt (o, µ∅t ) and σQ0
t (o, µ∅t ) for α > 0 and α = 0, respectively. LQRE

predictions are numerically computed for p = 0.505, q = 0.7, T ∈ {7,12}, α ∈ {0,1/8,1/4} and logit

precision parameter λ = 5 (Appendix C.3 outlines the algorithm used to derive these predictions). The

upper and lower panel of Figure 1 plots the LQRE responses to vcpi for T = 7 and T = 12, respectively.

We distinguish between the early periods (t ≤ 3) and the later periods (t ≥ 4) of the games. White, light

and dark grey bubbles coincide with the guessing situations of the parametrized games where altruism is

absent (α = 0), weak (α = 1/8) and strong (α = 1/4), respectively, and the size of a bubble is proportional

to the likelihood with which the situation occurs. To aid visualization, we superimpose fitted curves from

weighted linear regressions with a cubic polynomial in the value of contradicting private information.

Since standard LQRE responses are better responses to vcpi, white bubbles lie on a S-shaped curve

through (0.5, 0.5). Clearly, this observation applies in each panel of Figure 1 as standard LQRE probabil-

ities to contradict private information are identical in the two games (in later periods there are more white

bubbles in the lower than in the upper panel because games with longer sequences of players induce more

guessing situations). Second, we observe that the grey fitted curves are located below the S-shaped curve

through (0.5, 0.5) which indicates that LQRE probabilities to contradict private information decrease in

the presence of altruism. The stronger is altruism the more pronounced is the reduction as the dark grey

curve (α = 1/4) lies below the light grey curve (α = 1/8). Third, the impact of altruism is smaller in later

than in early periods and it becomes negligible for extreme values of contradicting private information.

Thus, Figure 1 illustrates that altruistic LQRE actions are distinctly more informative than standard

LQRE actions unless few successors can benefit from the revelation of private signals or vcpi is extreme.

This holds true even in the case of weak altruism. Indeed, in the early periods of the lower panel, the light

grey curve is clearly below the dashed curve when vcpi ∈ [0.3,0.55]. Fourth, Figure 1 illustrates that the

stronger is altruism the more information is aggregated. For example, in guessing situation (o, (B,B))

of the lower panel, vcpi is 0.537, 0.592 and 0.650 when α = 0, 1/8 and 1/4, respectively. We obtain the

same qualitative results in parametrized versions of the AOL game where q ∈ {0.6,0.8} and λ ∈ {2.5,7.5}

(in the extreme case where T = 7, q = 0.6 and λ = 2.5 the impact of altruism is hardly noticeable; details

are available from the authors upon request).
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Figure 1: LQRE Responses to vcpi in Early and Later Periods

(p = 0.505, q = 0.7, T ∈ {7,12}, α ∈ {0,1/8,1/4}, λ = 5)

3 Experimental Design, Procedures and Hypotheses

We designed a laboratory experiment to test the qualitative predictions laid out in the previous section.

By comparing the behavior of participants whose actions are revealed publicly to the behavior of par-

ticipants whose actions are concealed from others, we are able to test the causal impact of altruism on

observational learning behavior. Below, we first describe the design and procedures of our experiment

and then we present the hypotheses to be tested.

3.1 General Features of the Design

We implement a parameterized version of the observational learning setting described in Section 2.1, but

with the essential modification that there are two parallel sequences of participants. Each repetition of

the laboratory game begins with the random selection of one of two options and the selected option is

not disclosed to participants until all decisions have been made. The two options are labeled ‘blue’ and

‘orange’ with the blue option having a 11/20 probability to be selected and the orange option having a

9/20 probability to be selected. Participants obtain independent private signals that reveal information

about which of the two options has been randomly selected. Specifically, if the blue option has been

randomly selected then each participant receives a blue signal with probability 2/3 and an orange signal
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with probability 1/3, while if the orange option has been randomly selected then each participant receives

an orange signal with probability 2/3 and a blue signal with probability 1/3. Then, in each of the two

sequences, participants are asked to guess which of the two options has been randomly selected at the

beginning of the repetition and they are incentivized to guess correctly.

There are respectively 7 and 8 participants in the observed and unobserved sequence, and each repe-

tition consists of 8 periods. Once all guesses have been submitted in a given period (but the last one),

the guess of one observed is made public knowledge and this participant stops guessing. Guesses of

unobserved remain private. Participants are randomly allocated to either the observed or the unobserved

sequence at the beginning of the experimental session and they keep the same role during the entire

session.

3.2 The Progress of a Session

Each experimental session is partitioned into three parts. In the practice part participants become

familiar with the game during three of its repetitions and each participant submits only one guess per

repetition. In the two non-practice parts many more guesses are collected in each of the six repetitions

of the game since participants submit guesses in several situations distinguished only by the history

of previous guesses they observe. Following Cipriani and Guarino (2009), this design feature allows

participants to gain extensive experience with the combination of private and public information.

Practice part. In the first part of a session the procedures closely follow those used by AH in their

baseline experiment except for the two parallel sequences of participants and the fact that guesses are

collected and transmitted through computer terminals. Participants draw their private signals from a

physical urn (with replacement) and they are randomly assigned to guessing periods. Each participant

obtains a single draw from an urn which contains 14 balls indicative of the selected option and 7 balls

indicative of the unselected option. Thus, if the blue (respectively orange) option has been randomly

selected then the urn contains 14 blue balls and 7 orange balls (respectively 14 orange balls and 7 blue

balls). In each of the first seven periods one observed and one unobserved simultaneously guess an option.

The guess submitted in the observed sequence is then displayed on all participants’ computer screens at

the beginning of the next period. In the last period only the remaining unobserved submits a guess.

From the second period on, participants may condition their guesses on the observed guesses submitted

in previous periods. Each participant receives 1 Euro for a correct guess and nothing otherwise.

Non-practice parts. Repetitions in the last two parts of a session are identical to those in the

practice part except that participants draw private signals from virtual urns displayed on their computer

screens and submit multiple guesses. Concretely, each unobserved submits 8 guesses and each observed

submits between 1 and 7 guesses. In the first period, all 15 participants guess one of the two options. The

guess of one observed is then randomly selected to be made public at the beginning of the next period

and this participant stops guessing. In the second period, each of the 14 remaining participants submits

a guess. Again, the guess of one observed is randomly selected to be made public at the beginning of

the next period and this participant stops guessing. This process continues until the last period where

each of the unobserved submits a guess. For each participant, only one randomly selected guess is paid

in each repetition (a correct guess is rewarded 1 Euro whereas an incorrect guess is not rewarded). Each

observed is paid only for the last guess she submits, i.e., the guess which is made public. Each unobserved

is randomly assigned to a period at the end of the repetition and paid for the guess made in that period.

Exactly one unobserved is assigned to any given period.
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Feedback screens. Due to the use of a strategy method-like procedure, the feedback that participants

receive at the end of each repetition in the non-practice parts differs from the feedback they receive in

the practice part. Each participant is reminded of her draw, her guessing period, the guess she made,

the sequence of observed guesses, and she is informed about the selected option, the composition of the

urn used and her earnings in the practice part. Feedback screens in the non-practice parts are identical

to those in the practice part except that each participant is reminded only of the payoff-relevant guess

she made and of the sequence of observed guesses which were made public. Note that a participant is

never informed of the draws made by the other participants.

3.3 Experimental Procedures

Experimental sessions took place at the laboratory for experimental research in economics of the Technical

University of Munich (experimenTUM ) in July 2016. Students from the Technical University of Munich

and the Ludwig-Maximilians University of Munich were invited using the ORSEE recruitment system

(Greiner, 2015). We conducted nine sessions with sixteen participants in each session. One participant

was randomly selected to serve as the laboratory assistant and the remaining participants were randomly

assigned to computer terminals. The experiment was programmed in zTree (Fischbacher, 2007).

Each session started with short demonstrations of the option-selection procedure to small groups of

participants. An experimenter shuffled a deck of 20 cards – 11 cards with a blue front and 9 cards with

an orange front – and laid the cards face down on a table. The assistant then picked 1 card out of the

20 cards, and the front color of the picked card determined the randomly selected option.10 After the

demonstrations, paper instructions for the practice part were distributed and participants were given

time to read them at their own pace. Instructions were then read aloud and finally participants learned

about their role (observed or unobserved).

Once the three repetitions of the practice part were over, paper instructions for (non-practice) part 1

were distributed and participants were given time to read them at their own pace. A summary of the in-

structions was then read aloud. The paper instructions were followed by a short on-screen-demonstration

of the draws from the virtual urns. Again, one of the experimenters summarized aloud the main points

of the demonstration. After that, the six repetitions of part 1 were run.

Part 1 was followed by a short break. Participants were offered soft drinks and water, and a paper

questionnaire was distributed asking for gender, month and year of birth, academic major, mother tongue,

and citizenship. Short paper instructions for (non-practice) part 2 were then distributed and the six

repetitions of part 2 were conducted. Finally, participants privately retrieved their earnings.

In each session we collected 45 guesses from the three repetitions of the practice part and 552 guesses

from the six repetitions of each following part. We collected a total of 3,213 observed and 7,128 unobserved

guesses. On average, a participant in the role of observed earned 12.92 Euro whereas a participant in

the role of unobserved earned 13.21 Euro, including a show-up fee of 3 Euro. A session lasted for about

85 minutes. In all parts of a session, participants only interacted through the computers and no other

communication was permitted. Appendix E contains a translated version of the experimental instructions.

10The laboratory assistant randomly selected the option in each repetition of the game. The assistant also helped with

the drawing of signal realizations from the physical urns in the practice part and she monitored the progress of the session

on her own computer terminal.
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3.4 Hypotheses

In our experiment, observed and unobserved face the same cognitive challenge of combining private and

public information. They learn from the same history of public guesses after having been endowed

with a private signal of identical quality. However, the possibility for participants in both sequences to

benefit from informative guesses may induce observed to increase their response to private information.

Unobserved guesses, on the other hand, never reveal any information to others. Since the only concern

of unobserved is to guess the selected option correctly, they should act like non-altruistic players.

We derive our hypotheses about the impact of altruism on observational learning behavior from LQRE

predictions in parametrized versions of the laboratory game. Allowing for decision errors in the considered

benchmarks is appropriate as participants’ behavior is inherently error prone and the standard LQRE

fairly captures systematic deviations from Nash equilibrium in information cascade experiments, most no-

tably the correlation between the length and strength of herds (Kübler and Weizsäcker, 2005; Ziegelmeyer

et al., 2010). To account for the full range of behavioral predictions, we rely on LQRE responses to vcpi—

the latter being simply the probability to receive e1 when the guess contradicts the private signal. LQRE

predictions are numerically computed for α = 0 in the unobserved sequence, α ∈ {1/8,1/4} in the observed

sequence, and λ = 5.11 Based on these predictions, we construct plots of LQRE responses to vcpi in the

early and later periods of the two sequences. These plots resemble those of Figure 1 that illustrate the

predictions of LQRE in the AOL game. There is, however, a distinctive feature of the laboratory game

to consider, namely that an informative public guess is potentially beneficial to successors in the observed

sequence as well as to unobserved. Arguably, observed may value the welfare of their successors more

strongly than they value the welfare of unobserved as they could identify more strongly with the former

than with the latter.12 We therefore compute two sets of predictions in the observed sequence where the

ratio between the levels of altruism towards unobserved and observed is respectively 1/2 and 1. Below,

our hypotheses describe the shapes of LQRE responses to vcpi in the two sequences (in the interests of

brevity, the plots of these responses are relegated to Appendix C.4).

The first hypothesis is that participants in the unobserved sequence better respond to vcpi.

Hypothesis 1. In the early and later periods of the sequence, unobserved responses to vcpi lie on a

S-shaped curve through (0.5, 0.5).

For conciseness, we simply refer to the S-shaped curve on which the unobserved responses to vcpi lie

as the unobserved S-shaped curve. The second hypothesis is that altruism causes guesses in the early

periods of the observed sequence to be more informative than standard LQRE guesses.

Hypothesis 2. In the early periods of the sequence, observed responses to vcpi lie below the unobserved

S-shaped curve. The closer is vcpi to the lower or upper limit of its range, the smaller is the distance

between these responses and the curve.

We expect a larger distance between the observed responses to vcpi and the unobserved S-shaped

11Clearly, p = 0.55, q = 2/3, and there are respectively 7 and 8 players in the observed and unobserved sequence. The

chosen value for the logit precision parameter is reasonably close to the values estimated in information cascade experiments.

12Chen and Li (2009) measure the effects of induced group identity on social preferences. They report that participants

are significantly more likely to choose social-welfare-maximizing actions when matched with an ingroup member.
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curve the more altruistic participants are or the more strongly observed identify with unobserved. The

third hypothesis is that participants are less likely to submit informative guesses in the later than in the

early periods of the observed sequence.

Hypothesis 3. Observed responses to vcpi lie closer to the unobserved S-shaped curve in the later than

in the early periods of the sequence.

As the three hypotheses make clear, our experiment mainly aims at ascertaining whether guesses are

more informative when successors can reap these informational benefits than when they cannot and,

if so, whether increases in participants’ responses to private information are qualitatively captured by

altruistic observational learning. However, we did not design the experiment to estimate participants’

level of altruism or to determine the extent to which observed identify with successors in their sequence

compared to successors in the unobserved sequence.

4 Results

First, we summarize the aggregate properties of our data. Second, we test the qualitative predictions of

altruistic observational learning and we investigate whether participants’ behavior changes as the session

progresses. Third, we examine the informational efficiency of observational learning behavior. Note that

our data analysis excludes the few guesses submitted during the practice part.

4.1 Descriptive Statistics

We first report the histories of public guesses in the different decision periods—that is, the histories of

observed guesses that have been publicly revealed up to the (beginning of the) relevant period. Then, we

assess the influence of public guesses on participants’ propensity to contradict their private information.

Table 1 shows the distribution of public histories in each period inferred from the 108 repetitions of

the laboratory game. To ease presentation, we shorten the notation of histories—e.g., histories BBBB

and OOOB are shortened to 4B and 3OB—and from period 5 on we only report histories which occur

at least 3 times.

Period B O
2 55% 45%

Period 2B BO OB 2O
3 33% 22% 18% 27%

Period 3B 2BO BOB B2O O2B OBO 2OB 3O
4 25% 8% 12% 10% 9% 9% 3% 24%

Period 4B 2BOB 2B2O BO2B BOBO B3O O3B O2BO OBOB OB2O 4O
5 24% 4% 4% 8% 4% 8% 5% 4% 6% 3% 22%

Period 5B 2BO2B BO3B BOBOB B4O O4B O2BOB OBO2B 4OB 5O
6 24% 4% 8% 4% 8% 5% 3% 5% 3% 19%

Period 6B 2BO3B BO4B B5O O5B OBO3B 4OBO 6O
7 22% 4% 7% 7% 5% 4% 3% 19%

Period 7B 2BO4B BO5B B6O O6B OBO4B 7O
8 20% 3% 7% 7% 5% 4% 19%

Table 1. Distributions of Public Histories
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We observe that many histories start with BO (slightly more than a fifth of the histories materialized

in period 3 or later) and that some other histories start either with BBO or OOB (together, slightly

more than one tenth of the histories materialized in period 4 or later). These off-the-Nash-equilibrium-

path guesses imply that empirical histories are more diverse than predicted. In particular, Bayesian

rationality predicts that 75% of the final histories are full cascades, i.e., 7B or 7O, and that about 20% of

final histories are either O6B or OB5O. The predicted distribution of final histories differs significantly

from the empirical one (Chi-square test; p-value < 0.01) which has only 39% of its final histories that

are full laboratory cascades. Note that these results are perfectly in line with those of past cascade

experiments.

We now compare participants’ propensity to contradict private information in the two sequences.

In a given period, the information set of a participant is the couple (private signal, public guesses in

preceding periods). As a convention, we denote the size of the majority of public guesses by sm =

#blue−#orange where #blue (#orange) is the number of blue (orange) guesses in the public history and

sm ∈ {−(t−1), . . . , t−1} at the beginning of period t ∈ {1, . . . ,8}. We refer to the majority of public guesses

as a contrary majority (resp. favoring majority) in cases where the participant’s private signal and the

majority of public guesses are conflicting (resp. concordant) pieces of information. Thus, participants

face a contrary majority either when endowed with a blue signal and sm < 0 or when endowed with an

orange signal and sm > 0. On the other hand, participants face a favoring majority either when endowed

with a blue signal and sm > 0 or when endowed with an orange signal and sm < 0. If sm = 0, there is

no majority in the history of public guesses. Table 2 reports the percentage of guesses that contradict

private information by the signal of each role and for various majorities of public guesses. We show the

percentages of guesses that contradict private information across the two non-practice parts as well as

separately for each part. Note that observed and unobserved face majorities of size at most 6 and 7.

We don’t differentiate between favoring majorities since the percentages of guesses contradicting private

information hardly change with the size of the favoring majority neither do we differentiate between large

contrary majorities as fewer data are available for contrary majorities of size 5 or more.

Several observations can be made from Table 2. First, almost all guesses follow private information

at favoring and no majorities, even more so in the observed than in the unobserved sequence. Second,

the propensity to contradict private information increases (almost) systematically with the size of the

contrary majority and few guesses follow private information once the public evidence is conclusive enough

(contrary majorities of size 4 or more). Third, guesses account to some extent for the asymmetric prior

as participants contradict more frequently their orange than their blue signals at contrary majorities of

size 1 and the difference vanishes at larger contrary majorities. These three observations illustrate that

participants have some success at learning from public guesses. Still, a fourth observation is that the

propensity to contradict private information is low at contrary majorities of size 1 with an orange signal

and it remains modest at contrary majorities of size 2 with either a blue or an orange signal. More

importantly, unobserved tend to contradict their private information more often than observed at these

short contrary majorities. Observations 1 and 4 therefore indicate that responses to private information

are stronger in the observed than in the unobserved sequence unless participants face large contrary

majorities. Finally, the behavioral differences between the two sequences tend to be more pronounced in

the second than in the first non-practice part.
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Both parts Part 1 Part 2
Type of Observed Unobserved Observed Unobserved Observed Unobserved

the majority b o b o b o b o b o b o

Favoring majority 02% 04% 05% 06% 03% 04% 07% 07% 00% 04% 04% 04%
(of any size) (551) (492) (1,604) (1,372) (291) (252) (733) (704) (260) (240) (871) (668)

No majority 03% 06% 05% 11% 04% 10% 04% 12% 02% 03% 06% 10%
(524) (528) (688) (768) (273) (245) (323) (381) (251) (283) (365) (387)

1 14% 26% 25% 38% 11% 30% 17% 36% 16% 24% 31% 40%
Contrary (185) (247) (307) (446) (90) (108) (133) (227) (095) (139) (174) (219)

2 64% 64% 73% 68% 67% 71% 67% 78% 62% 59% 77% 56%
majority (086) (120) (180) (247) (039) (052) (069) (128) (047) (068) (111) (119)

3 84% 91% 87% 83% 82% 95% 84% 89% 86% 86% 90% 76%
of (062) (074) (183) (216) (034) (037) (082) (122) (028) (037) (101) (094)

4 88% 90% 95% 89% 80% 93% 93% 89% 100% 85% 97% 88%
size (043) (048) (133) (167) (025) (028) (075) (109) (018) (020) (058) (058)

≥ 5 100% 85% 92% 93% 100% 87% 89% 93% 100% 82% 96% 92%
(024) (040) (265) (336) (015) (023) (137) (233) (009) (017) (128) (103)

Note: In each cell, the first row reports the percentage of guesses that contradict private information, either the blue

signal b or the orange signal o, and the second row reports in brackets the number of guesses.

Table 2. Percentages of Guesses that Contradict Private Information

4.2 Responses to the Empirical Value of Contradicting Private Information

To test our three behavioral hypotheses, we analyze observed and unobserved responses to the empirical

value of contradicting private information, which is an estimate of vcpi obtained using the procedure

introduced in Weizsäcker (2010) and refined by Ziegelmeyer, March, and Krügel (2013). For each guessing

situation, the empirical value of contradicting private information, denoted by vĉUpi, is the probability

to receive e1 when the guess contradicts the private signal estimated across all observations with the

same history and private signal. As the number of occurrences of the guessing situation increases in the

dataset, the empirical value of contradicting private information approaches vcpi (Appendix D.1 details

the derivation of vĉUpi). For example, averaged across histories with no majority–including the empty

history in period 1, vĉUpi equals 0.286 and 0.384 when the signal is respectively blue and orange. Also,

as expected, it increases when histories induce contrary majorities: Averaged across observations where

the size of the contrary majority is 1 (2), vĉUpi equals 0.441 and 0.533 (0.592 and 0.615) when the signal

is respectively blue and orange.

Figure 2 plots the proportions of observed and unobserved guesses that contradict private information

against vĉUpi where the latter is estimated separately in parts 1 and 2 as the number of occurrences of a

given situation differs in the two parts. The left and right panel shows participants’ responses to vĉUpi

respectively in early periods (periods 1-3) and in later periods (up to period 7 for observed and up to

period 8 for unobserved).13 The abscissae of bubbles are given by levels of vĉUpi and the size of a bubble

reflects the number of occurrences of the situation. The ordinates of gray and white bubbles are given

13In the alternative decomposition where the early periods comprise period 4, later periods contain only 10% of the

observations compared to almost 30% in the current decomposition.
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by the proportions of contradictions for observed and unobserved, respectively. Moreover, each bubble

corresponds to a guessing situation which occurs at least 10 times as vĉUpi is likely to be far away from

vcpi for rarely occurring situations. There are 101 distinct guessing situations depicted in Figure 2 for a

total of 6,222 individual observations.

Figure 2 also superimposes fitted curves from a weighted linear regression that includes a cubic poly-

nomial in vĉUpi fully interacted with indicator variables for unobserved and early periods. To correct

for the fact that vĉUpi imperfectly measures vcpi, we follow the split-sample instrumental variable (IV)

method described in Weizsäcker (2010) which obtains an instrument by partitioning the dataset in two

subsamples. The gray and dotted black curve is the fitted curve for observed and unobserved, respectively.

Appendix D describes the split-sample IV method, it reports the regression results, and it also contains

robustness checks with different subsets of data. In all instances we find the same qualitative results.
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Figure 2: Participants’ Responses to vĉUpi in Early and Later Periods

In the remainder of this subsection, we first analyze observed and unobserved responses to vĉUpi in

early and later periods of the two sequences. We then explore whether there are behavioral changes in

our experiment by investigating whether these responses differ in the two non-practice parts.

Responses to the empirical value of contradicting private information in early periods

In situations where private information happens to support the empirically optimal guess unobserved

largely follow their signal. Averaged across observations where vĉUpi ≤ 0.5, the proportion of unobserved

guesses that are optimal is 0.929. In the more challenging situations where they should contradict

their private information, however, unobserved are much less likely to guess optimally. Averaged across

observations where vĉUpi > 0.5, the proportion of unobserved guesses that are optimal is only 0.542.14

14Incentives to act optimally are stronger in the left than in the right half of the panel as vĉUpi ∈]0.1,0.7[. Nevertheless,

the proportion of unobserved guesses that are optimal in the left half hardly changes when considering the same incentive

levels as in the right half: Across observations where 0.3 ≤ vĉUpi ≤ 0.5, the average proportion of unobserved guesses in line
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Compared to standard LQRE predictions, unobserved responses to vĉUpi are too strong when the

latter is slightly smaller than one-half and they are too weak when vĉUpi is slightly larger than one-

half. Averaged across period 2-observations where unobserved face a contrary majority of size 1, the

proportion of contradictions is 0.159 and 0.382 at vĉUpi = 0.459 and 0.541 with a blue and an orange

signal, respectively. The fitted curve for unobserved goes through (0.5, 0.269) and (0.585, 0.5), and

we reject our first hypothesis as the vertical distance between the dotted black curve and (0.5, 0.5) is

strongly significant (two-tailed p-value = 6.41×10−6).15 Of particular importance is the harmful reluctance

of unobserved to contradict their private information when the monetary incentives to follow others are

weakly stronger than the monetary incentives to follow the private signal (0.50 < vĉUpi ≤ 0.55). Mistrust

in the ability of observed to understand their private signals correctly (Angrisani et al., 2018) or biases

in statistical reasoning (Goeree et al., 2007) may cause unobserved to learn unsuccessfully from others in

these situations.

Still, once the monetary incentives to herd are strong enough, unobserved largely contradict their

private information. Averaged across period 3-observations where unobserved face a contrary majority

of size 2, the proportion of contradictions is 0.690 and 0.711 at vĉUpi = 0.599 and 0.655 with a blue and

an orange signal, respectively.

Result 1. In the early periods of the sequence, unobserved responses to vĉUpi lie significantly below a

S-shaped curve through (0.5, 0.5), contrary to the standard LQRE predictions. In particular, unobserved

follow their private signal more often than not in situations where it is empirically optimal to contradict

private information and the monetary incentives to do so are weak (0.50 < vĉUpi ≤ 0.55).

Result 1 implies that, contrary to what our second hypothesis states, showing that observed guesses in

early periods deviate significantly from standard LQRE guesses is no conclusive evidence that altruism

significantly impacts observational learning behavior. To validate this prediction, we need to establish

that, in the early periods of the two sequences, observed guesses are significantly more informative than

unobserved guesses.

The left panel of Figure 2 shows that the fitted curve for observed lies below the one for unobserved over

the entire range of vĉUpi. The gray curve goes through (0.5, 0.155) and (0.621, 0.5), and the proportion of

observed contradictions is respectively 0.038, 0.093 and 0.379 when averaged across observations where

vĉUpi ∈ ]0.1,0.4], ]0.4,0.5] and ]0.5,0.7[. Since the vertical distance between the dotted black curve and

the gray curve at vĉUpi = 0.5 is strongly significant (one-tailed p-value = 0.009), we conclude that observed

guesses are significantly more informative than unobserved guesses in early periods. Also in line with

altruistic LQRE predictions, we find that observed guess more similarly to unobserved when vĉUpi is closer

to the lower or upper limit of its range. Indeed, the difference between the proportions of unobserved and

observed contradictions is respectively 0.024 and 0.035 when vĉUpi ∈ ]0.1,0.3] and ]0.3,0.5]. Likewise, the

difference between the proportions of unobserved and observed contradictions is respectively 0.179 and

0.110 when vĉUpi ∈ [0.5,0.6[ and [0.6,0.7[.

with private information is 0.897.

15Our regressions use robust standard errors that are (conservatively) clustered at the session level, and we apply a

finite-cluster correction when computing the p-values of our hypothesis tests. See Appendix D for details.
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Result 2. In line with the altruistic LQRE predictions, observed responses to vĉUpi lie significantly below

those of unobserved in early periods, and the distance between these responses is smaller when vĉUpi is

closer to the lower or upper limit of its range.

Responses to the empirical value of contradicting private information in later periods

The right panel of Figure 2 shows that unobserved responses to vĉUpi are comparable to those predicted

by standard LQRE in later periods of the sequence. Indeed, the proportion of unobserved contradictions

is respectively 0.046, 0.349, 0.684 and 0.920 when averaged across observations where vĉUpi ∈ [0,0.4[,

[0.4,0.5[, [0.5,0.6[ and [0.6,0.8]. We find that the vertical distance between the dotted black curve and

(0.5, 0.5) does not differ significantly from zero (two-tailed p-value = 0.504).16

As predicted by altruistic LQRE, observed guesses are less informative in later than in early periods.

The gray curve goes through (0.5, 0.341) and (0.549, 0.5), and the proportion of observed contradictions

is respectively 0.013, 0.276 and 0.793 when averaged across observations where vĉUpi ∈ [0,0.4[, [0.4,0.5[

and [0.5,0.8]. We reject the null hypothesis that the vertical distance between (0.5, 0.5) and the fitted

curve for observed is the same in early and later periods (one-tailed p-value = 0.013).

Result 3. In line with the altruistic LQRE predictions, observed responses to vĉUpi lie significantly closer

to a S-shaped curve through (0.5, 0.5) in the later than in the early periods of the sequence.

4.2.1 Behavioral Dynamics

Thanks to its two non-practice parts, our experiment allows us to study whether observational learning

behavior changes as participants gain experience with the guessing task. Of particular interest is the

harmful reluctance of unobserved to contradict their private signals when the monetary incentives to do

so are weakly stronger than the monetary incentives to follow private signals (0.50 < vĉUpi ≤ 0.55). We

therefore investigate whether unobserved responses to vĉUpi become more consistent with those predicted

by standard LQRE as the session progresses. Additionally, we explore whether altruistic observational

learning persists among participants well experienced with its payoff consequences by comparing observed

responses to vĉUpi in parts 1 and 2.

Figure 3 plots the proportions of observed and unobserved contradictions against vĉUpi separately for

the first and the second non-practice part. We superimpose fitted curves from a weighted linear regression

that includes a cubic polynomial in vĉUpi fully interacted with indicator variables for unobserved and part

2. As in Figure 2, each bubble corresponds to a guessing situation which occurs at least 10 times and the

regression uses the split-sample IV method to correct for the fact that vĉUpi imperfectly measures vcpi.

Unobserved adjust markedly their behavior as they gain experience with the guessing task. Indeed,

over time, their responses to vĉUpi ∈ [0.45,0.50[ weaken (the average proportion of contradictions is

respectively 0.214 and 0.373 in part 1 and 2) while their responses to vĉUpi ∈ ]0.50,0.55] strengthen (the

average proportion of contradictions is respectively 0.355 and 0.424 in part 1 and 2). However, averaged

across observations where vĉUpi ∈ [0,0.45[ and ]0.55,0.8], the proportions of unobserved contradictions are

very similar in the two parts (0.063 and 0.861 in part 1 versus 0.064 and 0.849 in part 2). Consequently,

16Among the levels of vĉUpi, the one derived for guessing situation (o, (B,O,B,O,B,O)) is clearly an outlier. We estimate

that there is no value of contradicting private information in this situation (vĉUpi = 0) while in 4 of the 13 occurrences of the

situation unobserved contradict their orange signal when facing the no majority.
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Figure 3: Participants’ Responses to vĉUpi in Each Part

the fitted curve for unobserved is more comparable to a S-shaped curve through (0.5, 0.5) in part 2 than

in part 1: The dotted black curve for unobserved goes through (0.5, 0.212) and (0.591, 0.5) in the left

panel, and it goes through (0.5, 0.394) and (0.541, 0.5) in the right panel. Since the vertical distance

between the dotted black curve and (0.5, 0.5) is significantly smaller in part 2 than in part 1 (two-tailed

p-value = 0.004), we conclude that unobserved guesses are significantly more consistent with standard

LQRE guesses in the second than in the first non-practice part.

Observed also adjust their behavior as the session progresses, though to a lower extent than unobserved

and in the opposite direction. Indeed, observed slightly increase their responses to private information as

they gain experience with the laboratory game. When averaged across observations where vĉUpi ∈ [0,0.4[,

[0.4,0.5[, [0.5,0.6[ and [0.6,0.8], the proportion of observed contradictions is respectively 0.047, 0.153,

0.434 and 0.779 in part 1, and it is respectively 0.020, 0.147, 0.270 and 0.750 in part 2. Still, the gray curve

hardly differs in the two panels, and we cannot reject the null hypothesis that the vertical distance be-

tween the fitted curve for observed and (0.5, 0.5) is the same in the two parts (two-tailed p-value = 0.596).

Result 4. Unobserved guesses are significantly more consistent with standard LQRE guesses in the

second than in the first non-practice part. Observed guesses are slightly more informative in the second

than in the first non-practice part, though the difference is not statistically significant.

Note that repeated game considerations do not provide a convincing explanation for the prevalence of

information-revealing guesses in the observed sequence as the latter are more likely in part 2 than in part

1. For further insight on this matter, we ran a probit regression on the probability for the observed guess

to be informative where the independent variable is a dummy variable which equals 0 for early rounds

(rounds 1-3) and 1 for later rounds (rounds 4-6). We find that the probability of an informative guess

is higher in later than in early rounds, which confirms that the behavior of observed is not driven by
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repeated game considerations (we obtain the same finding in the regression restricted to the observations

with vĉUpi ∈ [0.5,0.6[; details are available from the authors upon request).

4.3 Information Aggregation

In this subsection we investigate whether, as predicted by altruistic observational learning, the strong

responses to private information in the observed sequence benefit information aggregation. We assess

the informational efficiency of observational learning behavior by comparing the amount of information

aggregated in large majorities of observed guesses to the amount of information aggregated in standard

equilibrium majorities. Also, since observed guesses become more informative as the session progresses,

we examine whether large majorities aggregate more information in the second that in the first non-

practice part.

The empirical value of contradicting private information is a natural measure of the information

aggregated by a sequence of guesses. The more information guesses aggregate the lower the levels of vĉUpi

at large favoring majorities and the higher the levels of vĉUpi at large contrary majorities. For example,

when averaged over the blue and orange signals, a sequence of guesses contains no valuable information

if vĉUpi = 1/3, a favoring majority aggregates one (resp. two) private signal(s) if vĉUpi = 1/5 (resp. 1/9),

and a contrary majority aggregates one (resp. two) private signal(s) if vĉUpi = 1/2 (resp. 2/3).

We regress vĉUpi on an indicator variable for part 2 fully interacted with indicator variables for the type

of majority. We distinguish between large favoring majorities, moderate majorities, and large contrary

majorities where the size of a large majority belongs to {3,4,5,6}. For conciseness, the two signals are

bundled together. We use an OLS specification with robust standard errors clustered at the session level

and we include every guessing situation which occurs at least 10 times in the observed sequence. Table 3

shows the predicted levels of vĉUpi by non-practice part and type of majorities. Appendix D.3 reports the

regression results as well as robustness checks where the analysis is restricted to subsamples with a more

precise measurement of vĉUpi and where the size of a large majority belongs to {4,5,6}. In all instances

we find the same qualitative results.

Part 1 Part 2

Large Favoring Majorities 0.129 0.104
(0.118, 0.140) (0.093, 0.115)

Moderate Majorities 0.336 0.350
(0.327, 0.345) (0.331, 0.370)

Large Contrary Majorities 0.637 0.693
(0.624, 0.650) (0.664, 0.722)

Note: Every guessing situation which occurs at least 10 times in the observed sequence

is included for a total of 2,541 individual observations. 95% robust confidence interval

in brackets, clustered at the session level and constructed using the delta method.

Table 3. Predicted Levels of vĉUpi in the Observed Sequence

The regression results confirm the predictions of altruistic observational learning. First, in the standard

equilibrium outcome, vcpi = 51/89 ≈ 0.573 at any contrary majority of size larger than 2 and vcpi =

19/121 ≈ 0.157 at any favoring majority of size larger than 2. Table 3 shows that in each non-practice part
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large majorities of observed guesses aggregate significantly more information than any equilibrium history.

Furthermore, large majorities of observed guesses in part 2 aggregate significantly more information than

any standard LQRE history since vcpi ∈ [0.124,0.639] for every equilibrium history and every λ ≥ 0 in

our laboratory game.

Second, the amount of information aggregated in large majorities increases as the session progresses.

At large favoring majorities the predicted level of vĉUpi is respectively 0.129 and 0.104 in part 1 and 2.

The difference in the predicted levels of vĉUpi between the two parts is strongly significant (one-tailed

p-value = 0.004). At large contrary majorities the predicted level of vĉUpi is respectively 0.637 and 0.693

in part 1 and 2. Once more, the difference in the predicted levels of vĉUpi between the two parts is

strongly significant (one-tailed p-value = 0.001). On the other hand, the predicted levels of vĉUpi do not

differ significantly between the two parts at moderate majorities. These predicted levels indicate that

moderate majorities contain, on average, no valuable information, which is to be expected given that

they comprise no majorities and about the same number of short contrary and favoring majorities.

Result 5. Observational learning behavior is informationally more efficient in the observed sequence

than in standard equilibrium outcomes. Furthermore, observed guesses aggregate significantly more

information in the second than in the first non-practice part.

5 Conclusion

The experimental evidence presented in this paper enriches our understanding of how people learn from

the actions of others. We compare the behavior of participants who repeatedly play an observational

learning game in two parallel sequences. In the observed sequence, the actions of participants are revealed

publicly. In the unobserved sequence, however, the actions of participants remain private. Our results

provide three new insights on the drivers of herding behavior.

First and foremost, we show that responses to private information are significantly stronger in the

observed than in the unobserved sequence. Actions are therefore more informative when successors

can reap these informational benefits than when they cannot. Still, observed and unobserved behave

quite similarly once the incentives to take the empirically optimal action are large enough, and observed

actions are significantly less informative if fewer successors can benefit from the revelation of private

signals. These findings are well in line with the qualitative predictions of an observational learning model

where players have altruistic preferences. As our theoretical section illustrates, even in the presence of

payoff-responsive decision errors, altruistic observational learning has the potential to accurately describe

participants’ behavior in the observed sequence.

Second, we find that observed do no take less informative actions as they gain experience playing

the laboratory game. On the contrary, responses to private information slightly increase over time in

the observed sequence, though not significantly so. This finding corroborates the observation made in

previous information cascade studies that behavioral changes over the course of the experiment are at most

weak (Weizsäcker, 2010, footnote 13), and it casts doubt on the ability of repeated game considerations

to convincingly explain the prevalence of these information-revealing actions. Based on our estimate

of the value of actions, we also find that, as predicted by altruistic observational learning, the strong

responses to private information benefit information aggregation. Indeed, observational learning behavior

is informationally more efficient in the observed sequence than in standard equilibrium outcomes and
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observed guesses aggregate significantly more information as the experimental session progresses.

Third, we show that unobserved fail to learn successfully from public actions. In particular, they

follow their private signals more often than not when the monetary incentives to contradict private

information are weakly stronger than the monetary incentives to follow private information. Thus, even

when successors cannot benefit from informative actions, participants put too much weight on their private

information relative to public information. Angrisani et al. (2018) observe the same suboptimal pattern in

a continuous action space experiment where the standard equilibrium outcome is informationally efficient.

The authors carefully test the ability of information redundancy neglect and overconfidence to capture

participants’ behavior, and their results are supportive of the overconfidence bias. Experimental evidence

therefore suggests that altruism and overconfidence are two major forces that shape observational learning

behavior. That said, we also find that experience weakens the influence of overconfidence on observational

learning behavior as unobserved become significantly less reluctant to contradict their private information

over the course of the experiment. This is the first evidence of strong changes in observational learning

behavior over time, and it indicates that altruism shapes the behavior of experienced participants more

heavily than overconfidence in our binary action space experiment.

Our findings are important from two perspectives. First, to properly assess the impact of cognitive

biases on observational learning behavior, experimentalists need to “turn off” altruism. This can be

achieved by implementing a responsive observational learning setting where rational actions perfectly

reveal beliefs (Ali, 2018) or by concealing participants’ actions from others. For example, in March and

Ziegelmeyer (2018), we allow for multiple signal qualities in the unobserved sequence, and we find that,

alongside overconfidence, informational misinferences and non-Bayesian updating undermine participants’

success in learning from public actions. Second, future informational benefits of actions are a contextual

factor which favors the aggregation of information and heightens efficiency levels relative to rational

herding. Concerned by the underinvestment in public information of rational herders, economists have

designed mechanisms which release additional public information or incentivize people to reveal their

private information (Smith et al., 2017). Our results suggest that cheaper interventions which simply

emphasize to people the value of signaling information to their successors might already improve economic

welfare.
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