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Abstract

A seller chooses a reserve price in a second-price auction to maximize worst-case

expected revenue when she knows only the mean of value distribution and an upper

bound on either values themselves or variance. Values are private and iid. Using

an indirect technique, we prove that it is always optimal to set the reserve price to

the seller’s own valuation. However, the maxmin reserve price may not be unique.

If the number of bidders is sufficiently high, all prices below the seller’s valuation,

including zero, are also optimal. A second-price auction with the reserve equal to

seller’s value (or zero) is an asymptotically optimal mechanism (among all ex post

individually rational mechanisms) as the number of bidders grows without bound.

Keywords: Robust mechanism design; Worst-case objective; Auctions; Moments prob-

lems

JEL codes: D44, D82

1 Introduction

Classic auction theory derives revenue-maximizing reserve prices under the assumption of

known distribution of bidders’ values. One may give two interpretations to this assump-

tion: (i) the probability distribution is objectively known to the seller; (ii) the distribution
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revised version of an earlier working paper Suzdaltsev (2018). I would like to thank (in random order)
Michael Ostrovsky, Andy Skrzypacz, Dmitry Arkhangelsky, Jeremy Bulow, Robert Wilson, Gabriel Car-
roll, Ilya Segal, Evgeny Drynkin, and audience members at 2017 Conference on Economic Design, York,
UK, for helpful comments.
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represents her beliefs. Under any of these interpretations, the usual assumption can be

problematic: (i) may not hold in practice, especially in the case of new goods; and (ii) con-

tradicts empirical evidence showing that humans do not act as Bayesian decision-makers

(Ellsberg, 1961).

In this paper, we propose an analysis of a simple textbook auction environment with

one tweak: assume that the seller, instead of knowing the distribution of bidders’ values,

knows less, and evaluates the residual uncertainty over the distributions using worst-case

criterion. What would be the optimal reserve price?

We assume that bidders’ private valuations are known to be independent draws from

some unknown distribution F . We then consider two specifications of the seller’s infor-

mation: (1) the seller knows the mean of F and an upper bound on values; (2) she knows

the mean of F and an upper bound on its variance. One may justify this approach in

various ways:

• It may be easier for the seller to make an educated guess about two numbers than

about a whole distribution.

• It may be easier for the seller to estimate statistically a small number of parame-

ters than a whole distribution. In particular, nonparametric estimators of density

functions converge more slowly than parametric estimators of the distribution’s mo-

ments.

• As shown by Wolitzky (2016), a model of a seller who knows only the mean of value

distribution and bounds on its support can arise from the seller’s uncertainty about

bidders’ information structures1.

The question of which reserve price is maxmin may be interesting not only from a

normative, but from a positive perspective as well. Empirical literature on reserve prices

in auctions2 yields what Ostrovsky and Schwarz (2016) call a “reserve price puzzle”: the

reserve prices observed in auctions are typically substantially lower than reserve prices

optimal under the estimated distributions of values. The very formulation of the puzzle

suggests that its possible explanation involves postulating that the sellers do not possess

1In particular, bidder’s posterior mean can follow any distribution F with mean m and support in
[0, v] if the prior value distribution is a binary distribution on {0, v} with mean m. To apply this in
our setting where values are known to be iid, we must assume that bidders information structures are
identical.

2See, e.g., McAfee and Vincent (1992); Paarsch (1997); McAfee et al. (2002); Haile and Tamer (2003).
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estimates produced by econometric studies. This lack of distributional information, cou-

pled with a worst-case perspective employed by a seller could intuitively explain the fact

the observed reserve prices are low. Indeed, as a function of the reserve price, the expected

revenue under a fixed distribution is typically relatively flat to the left of the optimum

and declines sharply to the right of the optimum, so the losses when overshooting the

unknown optimal reserve are substantial while the losses when undershooting are minor

(see Figure 1). This suggests that a cautious seller may want to employ a low reserve.

r

R

r∗

Figure 1: A typical plot of expected revenue as a function of reserve price. The revenue
is close to optimal to the left of the optimum and is far from optimal to the right of it.
(The plot shown is for vi ∼ U [0, 1] and n = 3.)

The main results of this paper state exactly this: a seller maximizing the worst-case

expected revenue cannot do better than to set the reserve price to her own valuation,

in contrast to the classical Bayesian setting where the optimal reserve is higher than

the seller’s valuation. This is true in both settings we consider. The “low reserves under

ambiguity” phenomenon is an emerging theme in the literature (see section 1.1 for details);

our setting is, to the best of our knowledge, the first one in which the optimal reserve

price is low for any fixed number of bidders n ≥ 2.

However, the optimal reserve price in our setting may be non-unique. Suppose c is the

seller’s valuation. When the number of bidders is sufficiently high, or c is sufficiently low,

there is a whole interval of optimal prices that includes all prices in [0, c] (and possibly

some higher prices). This is also compatible with empirical evidence: the reserve prices

observed in practice are frequently not just low, but are lower than all plausible seller’s

valuations (Hasker and Sickles, 2010). Explanations for this fact proposed in the literature

include boundedly rational bidders who do not fully understand how participation rate

depends on the reserve price while sorting among competing sellers (Jehiel and Lamy,

2015) and a combination of value interdependence and bidders’ risk aversion (Hu et al.,

2019). Even though all reserve prices below c are weakly dominated by c in our model
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(i.e., they yield a weakly lower revenue than c for any fixed distribution of values), their

worst-case optimality provides an additional (weak) explanation for why such prices may

be observed in practice.

Solving the maxmin problems posed in this paper directly by backward induction is,

to the best of our knowledge, challenging. So we employ an indirect proof technique. In

the first step, using a Lagrangian approach we identify a worst-case distribution F ∗ if the

reserve price is equal to seller’s valuation, r = c (this is easier than for other prices). F ∗

is a binary distribution in the first setting (mean and upper bound on values are known)

but has a continuous part in the second setting (mean and upper bound on variance are

known). We use an analogy of Nature’s problem to a textbook profit maximization prob-

lem by a competitive firm with nonconvex costs to minimize the Lagrangian pointwise.

Denote the worst-case revenue under r = c by R∗. In the second step, for each price r ≥ 0

we identify a specific distribution F̂r such that if the reserve price is r and the distribution

is F̂r, the seller’s revenue is not more than R∗. This implies that r = c is a maxmin price.

Note that the distributions F̂r need not be worst-case for respective prices. They are only

bad enough to discourage the seller from choosing r 6= c, but not necessarily the worst.

We find appropriate to call them threat distributions – those Nature may threaten to use

to harm the seller if she deviates from r = c. This proof technique is similar to one used

by He and Li (2020), who find a maxmin reserve price when a marginal distribution of

values, but not their joint distribution, is known (but, of course, the construction of F̂r

is substantially different, as the set of possible distributions is very different from that in

He and Li (2020)).

Sometimes (when the number of bidders is small or c is high) Nature’s threats are

strong enough so that r = c is the unique maxmin price; when the number of bidders

is larger or c is small, other prices, including zero (as noted above), may be maxmin.

This indifference occurs because in this case the lowest point in support of F ∗ happens

to be strictly higher than c and the worst-case distribution is still F ∗ for all r ≤ c. That

is, it may be so that under the worst-case distribution sale always happens, and always

happens at a price higher than both the seller’s valuation and the reserve price, even when

both are positive. We find this somewhat surprising.

In this paper, we address the question of optimal reserve price, but not a more general

question of optimal mechanism for a fixed n. A technical difficulty that does not allow to

use a strong duality approach, as in, e.g., Suzdaltsev (2020) (see section 1.1), is that the

set of joint distributions of values feasible for Nature is not convex due to the independence

constraint (and these constraints are nonlinear). However, we show that the second-price
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auction without a reserve (or a reserve equal to seller’s valuation) is an asymptotically

maxmin mechanism in a large class as n grows without bound. This follows from the

fact that the revenue guarantee of any individually rational mechanism cannot be higher

than the known mean of value distribution, but the revenue guarantee of the second-price

auction with a maxmin price converges to this mean as n grows. The result does not even

require that bidders play a Bayesian equilibrium. We compare the rates of the convergence

of the maxmin revenue to the mean across different settings to obtain insights about the

relative “strength” of Nature depending on the set of distributions available to it.

The result that a simple auction is asymptotically optimal must be reconciled with

results in Segal (2003) who shows that when agents’ values are independent draws from an

unknown distribution, “bootstrap” schemes that estimate the distribution from bidder’s

reports and set individual prices based on estimates derived from other agents’ reports, can

asymptotically extract the entire full-distributional-information revenue. These schemes

differ substantially from a classic second-price auction. The apparent discrepancy between

the our asymptotic result and Segal’s is due to the fact that optimization criteria are

different: while we employ the maxmin criterion, approximating the full-distributional-

information outcome is about minimizing regret. When Nature chooses a distribution to

minimize revenue itself rather than to maximize losses relative to full information, the

“bootstrap” schemes cannot be significantly superior to the simple auction.

1.1 Related literature

This paper contributes to the growing literature on robust mechanism design. The clos-

est contributions to ours are Carrasco et al. (2018a), He and Li (2020), Koçyiğit et al.

(2020), Suzdaltsev (2020), Che (2019) and Neeman (2003). Carrasco et al. (2018a) study

the problem of selling the good to a single agent by a seller who maximizes worst-case

expected revenue while knowing the first N moments of distribution. They character-

ize the optimal randomized mechanism; also, they find the optimal deterministic posted

price for the single agent for settings (1) and (2) of the present paper.3 He and Li (2020)

characterize the optimal deterministic in a second-price auction when the seller knows

the marginal distribution of values but not their joint distribution. This setting may be

seen as complementary to ours, as we assume that the marginal distribution is unknown,

but a particular correlation structure (independence) is known. He and Li (2020) also

3The optimal deterministic posted price for the case when the seller knows mean and variance of the
value distribution has been found earlier by Azar et al. (2013). In that paper, there is an infinite supply
of the good which essentially reduces the environment to a single-agent one.
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show that a second-price auction with no reserve is asymptotically optimal among all

mechanisms, as in the present paper. Their proof technique is partially similar to ours.

Koçyiğit et al. (2020) find, among other results, the optimal deterministic reserve price

when the seller knows a lower bound for the mean of values, an upper bound for values

and there is no restriction on values’ correlation structure. Suzdaltsev (2020) uses strong

duality to find an optimal deterministic mechanism for a similar set of distributions where

the known means can be heterogeneous. This mechanism happens to be a linear version

of the Myersonian optimal auction. Che (2019) finds an optimal randomized reserve price

in a second-price auction for the same set of distributions. An early precursor to this

literature, Neeman (2003) finds the optimal reserve price in a second-price auction where

the set of distributions is the same as in Koçyiğit et al. (2020), but the criterion is the

worst-case ratio of expected revenue to expected full surplus, rather than expected revenue

itself.

Some of the above papers find that with sufficiently many bidders, the robustly optimal

reserve price is low. In He and Li (2020) and Che (2019), the optimal reserve price

converges to seller’s value as number of bidders goes to infinity; in Koçyiğit et al. (2020)

and Suzdaltsev (2020), the optimal reserve is equal to seller’s value starting from a certain

number of bidders. In contrast, in the present paper it is equal to seller’s value for all

n ≥ 2. In this sense, the present paper’s setting yields the most striking result among the

existing ones.

Other papers seeking robustness to (payoff) type distributions include Carrasco et al.

(2018b), Auster (2018), Bergemann and Schlag (2011), Bergemann and Schlag (2008).

Carroll (2017), Giannakopoulos et al. (2019) and Chen et al. (2019) tackle the problem

of selling multiple goods to a single agent under unknown type distribution. Bose et al.

(2006) and Wolitzky (2016) study mechanism design when agents themselves are maxmin

with respect to the distribution of other agents’ types. Wolitzky (2016) uses a specification

of sets of possible distributions similar to ours: bounds on support and the mean are

known. He gives a microfoundation for this specification which we mentioned earlier.

A separate strand of literature studies mechanisms robust to misspecification of agents’

information structures, rather than the designer’s prior. Brooks and Du (2019) identify

an optimal mechanism in the common value setting, while Du (2018) identifies a simpler

mechanism that asymptotically extracts full surplus. Bergemann et al. (2017) find the

optimal robust reserve price in a first-price auction under possible misspecification of

agents’ information structures. Relatedly, Chung and Ely (2007) and Chen and Li (2018)

consider robustness to type distributions in a “rich” type spaces and identify conditions
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under which there exist maxmin foundations for dominant-strategy mechanisms.

Others kinds of robustness explored in the literature include robustness to technol-

ogy or preferences, robustness to strategic behavior and robustness to interaction among

agents and are surveyed by Carroll (2018).

Finally, this paper is related to the literature seeking to explain low reserve prices

observed in real-life auctions. Levin and Smith (1994) show that it may be optimal

to use a reserve price equal to seller’s valuation under endogenous costly entry while

Levin and Smith (1996) show that unlike the textbook IPV case, the optimal reserve con-

verges to the seller’s valuation when values are private but are only conditionally iid. As

mentioned above, Jehiel and Lamy (2015) and Hu et al. (2019) give explanations for why

observed reserve prices are sometimes lower than the seller’s valuation.

1.2 Organization of the paper

In section 2, we describe the set-up. In section 3, we state and prove the results for

the case of known mean and an upper bound on values; in section 4 we do the same for

the case of known mean and an upper bound on variance. In section 5, we show that

second-price auction without a reserve is an asymptotically optimal mechanism among all

mechanisms and compare rates of convergence of the maxmin revenue to its asymptotic

value (which is simply the mean of value distribution) for different settings. Section 6

concludes.

2 The model

Consider the standard second-price auction with one object for sale and n ≥ 2 bidders

(for an extension to first-price auctions, see section 6). The valuations of the bidders are

iid with some distribution F , but F is not fully known to the seller. We consider two

specifications of seller’s information. In the first one, the seller knows that E(vi) = m > 0

and that vi ∈ [0, v], where v > m. In the second specification, the seller knows that vi ≥ 0,

E(vi) = m > 0 and that V ar(vi) ≤ σ2. The variance constraint is specified as inequality,

rather than equality due to reasons discussed in Carrasco et al. (2018a) – with an equality

constraint for the highest moment, the set of distributions may not be compact; also, the

proof is somewhat easier to state. However, when variance is known exactly, the results

are the same (see section 6).

No further restrictions on F are made. In particular, atoms in F are allowed and
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F is not necessarily regular in Myerson sense. Denote the set of feasible distributions if

only mean and upper bound on values is known by ∆1(m, v) and if both mean and upper

bound on variance are known by ∆2(m, σ
2).

The seller’s own valuation for the object, c, may be higher than bidders’ values. We

assume that c ∈ [0, m). One reason for not normalizing c to zero is that we would like to

distinguish between a reserve price equal to c and zero reserve price. Also, we would like

to allow distributions that put mass below c.

The seller wishes to set a deterministic, public reserve price that maximizes revenue.

Denote the expected revenue (including the seller’s valuation c) if the distribution of

values is F and the reserve price is r by R(F, r). We consider the following problem:

sup
r≥0

inf
F∈∆

R(F, r), (1)

where either ∆ = ∆1(v,m) or ∆ = ∆2(m, σ
2). In other words, the seller wishes to set

a price in such a way that the worst-case guarantee of revenue given her information is

maximal. Denote by R(r) the value of the infimum in (1), i.e. the value of this guarantee.

We call any price r that solves (1) amaxmin reserve price and dthe corresponding expected

revenue R∗ the maxmin revenue.

To present the analysis of the above problem, it will be convenient to us to phrase it as

a zero-sum Stackelberg game between the seller and adversarial Nature in which the seller

moves first by setting a price r and then Nature, upon seeing r, chooses a distribution F

from the choice set ∆.

Denote by F (v) the cdf of the distribution F and by v(i) the ith-highest component

of the vector of valuations v. Then, assuming the bidders play dominant strategies, the

function R(F, r) is given by

R(F, r) = c · P (v(1) ≤ r) + r · P (v(1) > r ∩ v(2) ≤ r) + EF∼F∼···∼F

[

v(2) · 1{v(2)>r}

]

=

r − (r − c)F n(r) +

∫ ∞

r

(

1− nF n−1(v) + (n− 1)F n(v)
)

dv, (2)

where we used an expression relating the cdf of second-order statistic to the cdf of the

parent distribution F and the identity E(X) =
∫ +∞

0
(1−F (v))dv for a nonnegative random

variable X with cdf F .

Expressing the expected revenue in terms of the cdf F (v) allows to simultaneously cover

all distributions regardless of presence of atoms, and also allows to reduce optimization
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over distributions to optimization over functions.

3 Known mean and upper bound on values

3.1 The result

Consider the problem (1) with ∆ = ∆(m, v). Among other results, Carrasco et al. (2018a)

solve this problem for n = 1, i.e., solve the monopolistic pricing problem. They show that

there exists a unique maxmin price that exceeds seller’s costs.

In contrast, a main result of this paper is when there are at least two bidders, a reserve

price equal to seller’s opportunity costs c is maxmin.

Theorem 1 (Main result I). Suppose the seller knows the mean of value distribution m

and an upper bound on values v. Then, the set of prices r∗ solving problem (1) includes

the seller’s valuation c.

3.2 The proof

In this section, we provide the proof of theorem 1. The plan of attack, as outlined

in the introduction, consists of two steps. In the first step, we identify the worst-case

distribution F ∗ when r = c using a Lagrangian method. In the second step, for any r ≥ 0

we specify a distribution F̂r such that R(F̂r, r) ≤ R(F ∗, c), without making any claim that

F̂r is worst-case. This approach allows to circumvent the need to solve for a worst-case

distribution for each r. Identifying a worst-case distribution for r = c is much simpler

than for other prices because the term −(r − c)F n(r) in (2) disappears when r = c, so

that the expected revenue depends on F only though an integral. In the previous version

of this paper, (Suzdaltsev, 2018), we do identify worst-case distributions for each r ≥ 0

but this requires, at a point, tedious second-order analysis and works only for the case of

a bound on values, but not a bound on variance.
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3.2.1 First step

Suppose r = c. Then, Nature’s problem, as a problem of choosing a function F (v), may

be written as

min
F (·)

(

c+

∫ v

c

(

1− nF n−1(v) + (n− 1)F n(v)
)

dv

)

(3)

s.t.

∫ v

0

(1− F (v))dv = m (4)

F (v) ∈ [0, 1] for all v ∈ [0, v] (5)

F (v) is nondecreasing (6)

F (v) is right-continuous (7)

The constraint (4) is the mean constraint, while the constraints (5)-(7) are necessary and

sufficient to ensure that the function F (·) chosen by Nature is a cdf. The constraint (7) is

not an issue; the monotonicity constraint may a priori be an issue, but, fortunately, turns

out not to be.

To solve the problem (3)-(7), we first prove that it is without loss of generality to look

at distributions putting no mass below c. This allows to make the integration bounds in

the objective (3) and the constraint (4) the same.

Lemma 1. For every feasible cdf F in problem (3)-(7), there exists a feasible cdf F̃ putting

no mass below c such that the expected revenue (3) is weakly lower under F̃ than under

F .

Proof of lemma 1: Take a feasible cdf F . Define β := (m − c)/
∫∞

c
(1 − F (v))dv.

Because F is feasible, β ∈ (0, 1]. Then consider

F̃ (v) :=







0, v < c

βF (v) + (1− β), v ≥ c.

By construction,
∫∞

0
(1 − F̃ (v))dv = m so F̃ is feasible and puts no mass below c. The

revenue is weakly lower under F̃ than under F because F̃ (v) ≥ F (v) for all v ≥ c and the

integrand in (3) is decreasing in F . �

The intuition behind lemma 1 is straightforward. Suppose there is some probability

mass strictly below r = c. By transferring it all to r = c Nature will not change the

expected revenue, but will increase the mean of the distribution. Then it can restore the
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mean by redistributing mass within the set {v : v ≥ c} towards lower values which will

reduce the revenue.

In light of lemma 1, the mean constraint can be now rewritten as

∫ v

c

(1− F (v))dv = m− c (8)

This allows to proceed to forming a Lagrangian.

Define the Lagrangian by

L(F, λ) :=
∫ v

c

(

1− nF n−1(v) + (n− 1)F n(v) + λ(1− F (v))
)

dv (9)

In what follows, we will minimize the Lagrangian pointwise. The validity of the La-

grangian approach rests on the following lemma:

Lemma 2. Suppose F0 is a cdf that minimizes the Lagrangian among all cdfs for some

λ ∈ R and satisfies (8). Then, F0 solves the problem (3).

Proof: Take F0 and any other cdf F̃ satisfying (8) (which is without loss of generality

by lemma 1). Because F0 minimizes the Lagrangian, we have

L(F0, λ) ≤ L(F̃ , λ).

Because both F0 and F̃ satisfy (8),

−λ
∫ v

c

(1− F0(v))dv = −λ
∫ v

c

(1− F̃ (v))dv.

Summing the above relations, one gets that R(F0, c) ≤ R(F̃ , c), as desired. �

Call the integrand in (9) H(F, λ)4. The first-order condition for the minimization of

H with respect to F is

λ = n(n− 1)F n−2(F − 1). (10)

If n = 2, this equation has the unique solution, so the optimal F is a constant which

corresponds to a binary distribution on {c, v}. For n ≥ 3, however, H(F, λ) is not convex

4The notation stems from the fact that the integrand is equal to the Hamiltonian of the corresponding
optimal control problem. The Minimum Principle (as applied to the relaxed problem) guarantees the
existence of the Lagrange multiplier λ such that the optimal F minimizes the Lagrangian pointwise.
However, in the formal proof we construct the multiplier explicitly and therefore do not have to rely on
Minimum Principle.
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in F . In fact, for n ≥ 3, Nature’s problem is isomorphic to a textbook profit maximization

problem of a competitive firm with U-shaped marginal and average costs functions that

chooses its “output” F given the “price” λ. (The corresponding “total cost function”

is TC(F ) = (n − 1)F n − nF n−1.) If the price is below the minimum of average costs

(minAC), the optimal output is zero; if the price is above minAC, the optimal output

is given by the minimum of the larger solution to (10) and 1; and if the price is exactly

equal to minAC, both zero output and the output minimizing the AC are optimal.

Define q∗n := 1− 1
(n−1)2

. This is the “output” minimizing “average costs”. Define also

z(y) := yn−1 − yn−2.

The “supply curve” stemming from the pointwise minimization of the Lagrangian (max-

imization of H) is stated in the following lemma (we omit its proof):

Lemma 3.

arg max
F∈[0,1]

H(F, λ) =



















{0}, λ < λ∗;

{0, q∗n} , λ = λ∗;

{min{ȳ(λ), 1}}, λ > λ∗,

(11)

where ȳ(λ) is the larger solution to (10) and

λ∗ = min
y∈[0,1]

[

(n− 1)yn − nyn−1

y

]

= n(n− 1)z(q∗n). (12)

λ∗ is “minAC” (see Figure 2 for the case n = 3).

]

F

λ

“MC”

“AC”
λ∗

q∗3 = 0.75

Figure 2: The pointwise minimization of the Lagrangian for n = 3 (the argmin correspon-
dence is in red).
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Fortunately, a value of λ can always be found such that F (v) maximizes H(F, λ) for all

v ∈ [c, v] and the mean constraint is satisfied. This leads to the identification of worst-case

distributions. Define

v∗ :=







0, n = 2;

max
{

m− v−m
(n−1)2−1

, 0
}

n ≥ 3.

Denote by δa,b a binary distribution with support {a, b} and mean m. Note that if

v∗ > 0, the distribution δv∗,v puts a probability of q∗n on v∗.

Proposition 1. Suppose r = c. Then the distribution δmax{v∗,c},v solves problem (3)-(7).

Proof of proposition 1: Suppose c > v∗. This is equivalent to (n − 1)2 < v−c
m−c

.

The binary distribution on {c, v} is described by a cdf F ∗(v) = v−m
v−c

for all v ∈ [c, v).

Denote p = v−m
v−c

. Consider λ0 = n(n−1)z(p). Because (n−1)2 < v−c
m−c

, p > q∗n so λ0 > λ∗.

Thus, by lemma 3, F ∗ minimizes the Lagrangian for λ = λ0. By lemma 2, F ∗ solves the

problem (3)-(7).

Now suppose c ≤ v∗, i.e. (n − 1)2 ≥ v−c
m−c

. The binary distribution on {v∗, v} is such

that its cdf F ∗ takes values 0 and q∗n on [c, v). Consider λ0 = λ∗. Thus, by lemma 3, F ∗

minimizes the Lagrangian for λ = λ0. By lemma 2, F ∗ solves the problem (3)-(7). �

It is instructive to consider a specific numeric example. Note that if c = 0, Nature’s

problem for r = c is one of finding a distribution minimizing the expectation of second-

order statistic in a sample given the known mean and upper bound.

Example 1. Suppose n = 3, v = 1 and m = 1/2, and r = c = 0. Then, under the

worst-case distribution the valuation of each bidder is equal to 1/3 with probability 3/4

and is equal to 1 with probability 1/4. The worst-case expected revenue is equal to 7/16.

As noted in the introduction, the fact that the support of the worst-case distribution

may be bounded away from c is a reason for why the maxmin reserve price may not be

unique.

3.2.2 Second step

In this step, for every r we construct a feasible distribution F̂r such that R(F̂r, r) ≤ R(c)

for all r. This implies the result of theorem 1. The distributions F̂r are not necessarily

worst-case given a reserve r. They may be thought of as threat distributions : distributions

that Nature threatens to use were the seller to deviate from r = c.
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r

R

c mv∗

A

r

R

c mv∗

A

Figure 3: Proof idea. The curves are graphs of R(F̂r, r). The graph of the worst-case
revenue function R(r) must lie everywhere weakly below the depicted curve by Step 2
and must pass through point A by Step 1. n = 3; v = 1, m = 1/2. In the left picture,
c = 0.4 > 1/3 = v∗; cmust be the unique maxmin price. On the right, c = 0.2 < 1/3 = v∗;
c may not be uniquely optimal.

The construction depends on whether c > v∗ or c ≤ v∗.

Case 1. c > v∗. The construction of F̂r is separate for r ∈ [0, v∗), r ∈ [v∗, c),

r ∈ [c,m), r ≥ m. Define threat distributions F̂r by

F̂r :=































δv∗,v, r ∈ [0, v∗);

δr+,v, r ∈ [v∗, c);

δr,v, r ∈ [c,m);

δm, r ≥ m,

where r+ is a point arbitrarily close to r to the right of it. (Formally, in this case we

consider a sequence of distributions F̂ k
r , each of those binary on {r + 1/k, v}.)

Proposition 2. Suppose c > v∗. Then, R(F̂r, r) < R(c) for all r 6= c and R(F̂r, r) = R(c)

for r = c.

Proof: The fact that R(F̂r, r) = R(c) for r = c is obvious since F̂c is a worst-case

distribution for r = c, as identified by proposition 1.

Consider r ∈ [c,m). Denote by p(r) = v−m
v−r

the probability assigned by F̂r to r. Then,

by (2),

R(F̂r, r) = r − (r − c)pn(r) + (v − r)(1− npn−1(r) + (n− 1)pn(r)).
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Thus, the full derivative of revenue is

dR(F̂r, r)

dr
= npn−1 − npn − npn−1p′ + (v − r)n(n− 1)z(p)p′.

Since p′(v − r) = p, this simplifies to

n(n− 2)pz(p)− npn−1p′ · (r − c).

Because p′ > 0 ,dR(F̂r ,r)
dr

< 0 except when r = c and n = 2. Thus, R(F̂r, r) is strictly

decreasing on [c,m), which implies the result.

For r ≥ m, R(F̂r, r) = c, but c = lim
r→m−

R(F̂r, r). Thus, c < R(c).

Consider now r ∈ [v∗, c). Denote by δr,v the binary distribution on {r, v}. R(δr+,v, r)

differs from R(δr,v, r) only by term (r − c)pn, because there is a sale if v(1) = r+ but not

if v(1) = r. Thus, when r ∈ [v∗, c), we get

dR(F̂r, r)

dr
= n(n− 2)pz(p)− npn−1p′ · (r− c) + [(r − c)pn]′ = pn−1((n− 1)2p− n(n− 2)).

For r > v∗, p(r) > q∗n, and for r = v∗, p(r) = q∗n. Thus, the above derivative is zero at

r = v∗ and positive at r ∈ (v∗, c). Thus, R(F̂r, r) is strictly increasing on [v∗, c), which

implies the result.

Finally, because R(F̂r, r) < R(c) for r = v∗, this is true for r < v∗ as well. �

Case 2. c ≤ v∗. Define threat distributions F̂r by

F̂r :=



















δv∗,v, r ∈ [0, v∗);

δr,v, r ∈ [v∗, m);

δm, r ≥ m,

Proposition 3. Suppose c ≤ v∗. Then, R(F̂r, r) ≤ R(c) for all r 6= c and R(F̂r, r) = R(c)

for r = c.

Proof: For r ∈ [0, v∗), R(F̂r, r) = R(c), because F̂r = F ∗ and the reserve price does

not affect the auction. For r ∈ [v∗, m), by the same reasoning as above, R(F̂r, r) is strictly

decreasing. Finally, R(F̂v∗ , v
∗) ≤ R(c) because R(F̂v∗ , v

∗) is the revenue under F ∗ when

the good is not sold when all values are equal to v∗ while R(c) is the revenue under F ∗

when the good is sold for v∗ when all values are equal to v∗. �
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Now, because by propositions 2 and 3, R(F̂r, r) ≤ R(c) for all r and because distribu-

tions F̂r are feasible to Nature, we conclude that R(r) ≤ R(F̂r, r) ≤ R(c) for all r, which

finishes the proof of theorem 1.

3.3 Uniqueness

Theorem 1 establishes that c is a maxmin reserve price. But are there other maxmin

prices?

Proposition 4. Suppose the seller knows the mean of value distribution m and an upper

bound on values v. Then:

1. If v∗ < c (equivalently, (n− 1)2 < v−c
m−c

), c is the unique maxmin reserve price;

2. If v∗ ≥ c (equivalently, (n − 1)2 ≥ v−c
m−c

), all prices r ∈ [0, c] are maxmin reserve

prices.

Proof: Part 1 follows directly from proposition 2. To prove part 2, we show that

F ∗, the distribution identified by proposition 1, part 2, is a worst-case distribution not

only for r = c, but for all r ∈ [0, c) as well. Indeed, if r < c, the expected revenue may be

written as

R(F, r) = r − c+ (c− r)F n(r) +R(F, c).

F ∗ minimizes R(F, c), but it also minimizes (c−r)F n(r) because c−r > 0 and F ∗(r) = 0,

as r < c ≤ v∗. Thus, it minimizes the sum of these two terms. �

As discussed in the introduction, proposition 4, part 2, might weakly explain why

sometimes reserve prices lower than seller’s valuation are observed in real-life auctions.

By using the qualifier “weakly” we emphasize the caveat that all prices below c are weakly

dominated by c (yield weakly lower revenue for any fixed distribution) and thus might be

refined away despite being worst-case optimal.

Note, however, that proposition 4, part 2, does not say that prices r ∈ [0, c] are the

only maxmin prices. Indeed, in the previous version of this paper (Suzdaltsev, 2018) we

show that when the maxmin price is not unique, the set of maxmin prices may also include

some prices higher than c. As noted above, the full characterization of the set of maxmin

prices by backward induction requires subtler analysis that is beyond the scope of this

paper.
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4 Known mean and upper bound on variance

4.1 The result

In this section, we consider the problem (1) for ∆ = ∆2(m, σ
2), that is, consider a situation

in which seller knows the mean and an upper bound for variance of value distribution.

Again, it has been shown that if n = 1, there exists a unique maxmin price that exceeds

seller’s costs (see Azar and Micali (2013) and Carrasco et al. (2018a)). In contrast, we

show that if n ≥ 2, the seller can do no better than to set the reserve price to her own

valuation.

Theorem 2 (Main result II). Suppose the seller knows the mean of value distribution

m and an upper bound on its variance σ2. Then, the set of prices r∗ solving problem (1)

includes the seller’s valuation c.

4.2 The proof

The plan of proof is exactly the same as in the section 3.

4.2.1 First step

Suppose r = c. As compared with (3), Nature’s problem now involves one more constraint.

To write it in an integral form, note that, for a nonnegative random variable v with cdf

F (·), E(v2) =
∫∞

0
(1 − F (

√
s))ds =

∫∞

0
2v(1 − F (v))dv. Hence, the additional constraint

is
∫∞

0
2v(1− F (v))dv ≤ m2 + σ2.

Thus, the new Nature’s problem is:

min
F (·)

(

c+

∫ ∞

c

(

1− nF n−1(v) + (n− 1)F n(v)
)

dv

)

(13)

s.t.

∫ ∞

0

(1− F (v))dv = m (14)

∫ ∞

0

2v(1− F (v))dv ≤ m2 + σ2 (15)

F (v) ∈ [0, 1] for all v ∈ [0,∞) (16)

F (v) is nondecreasing, right-continuous (17)

lim
v→∞

F (v) = 1 (18)
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Together, constraints (14) and (15) ensure that the mean of F (·) is equal to m, and its

variance is no more than σ2. The constraints (17), (18) ensure that F (·) is a cdf.

Again, before proceeding to a Lagrangian, we show that Nature can restrict itself to

distributions putting no mass below c.

Lemma 4. For every feasible cdf F in problem (13)-(18), there exists a feasible cdf F̃

putting no mass below c such that the expected revenue (13) is weakly lower under F̃ than

under F .

Proof of lemma 4: The proof is the same as the proof of lemma 1. The only

difference is that one has to show that F̃ , as constructed in the proof of lemma 1, satisfies

the variance constraint (15). But this is true because F is a mean-preserving spread of

F̃ , as
∫ v

0
F (v)dv ≥

∫ v

0
F̃ (v)dv and their means are the same. �

Lemma 4 allows to rewrite mean and variance constraints as (8) and

∫ ∞

c

2v(1− F (v))dv ≤ m2 + σ2 − c2. (19)

Define the Lagrangian by

L(F, λ1, λ2) =
∫ ∞

c

(

1 + λ1 + 2tλ2 − nF n−1(v) + (n− 1)F n(v)− (λ1 + 2λ2v)F (v)
)

dv

(20)

The sufficiency of the pointwise minimization of the Lagrangian is now slightly subtler

as now we have an inequality constraint. It can be ensured if λ2 has the right sign and a

candidate worst-case distribution F0 satisfies (19) with equality.

Lemma 5. If F0 is any cdf such that (1) F0 minimizes the Lagrangian among all cdfs for

some λ2 ≥ 0, λ1 of any sign; (2) F0 satisfies (8) and satisfies (19) with equality, then F0

solves the problem (13)-(18).

Proof: Take any cdf F̃ satisfying constraints (8)-(19). We shall prove that R(F0, c) ≤
R(F̃ , c) for any F0 satisfying conditions in the lemma. Because F0 minimizes the La-

grangian,

L(F0, λ1, λ2) ≤ L(F̃ , λ1, λ2).

Because both F0 and F̃ satisfy (8),

−λ1
∫ ∞

c

(1− F0(v))dv = −λ1
∫ ∞

c

(1− F̃ (v))dv.
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Because F0 satisfies (19) with equality, F̃ satisfies (19), and λ2 ≥ 0,

−λ2
∫ ∞

c

2v(1− F0(v))dv = −λ2(m2 + σ2 − c2) ≤ −λ2
∫ ∞

c

2v(1− F̃ (v))dv.

Summing up the above relations, one gets

∫ ∞

c

(

1− nF n−1
0 (v) + (n− 1)F n

0 (v)
)

dv ≤
∫ ∞

c

(

1− nF̃ n−1(v) + (n− 1)F̃ n(v)
)

dv,

or R(F0, c) ≤ R(F̃ , c). �

Recall that z(y) = yn−1 − yn−2 and define

φ(q) :=

∫ 1

q
(z(y)− z(q))2dy

(

∫ 1

q
(z(y)− z(q))dy

)2 (21)

for q ∈ (0, 1).

Recall from section 3 that q∗n = 1− 1
(n−1)2

. Now define

v∗∗ := max

{

m− σ
√

φ(q∗n)− 1
, 0

}

. (22)

Analogously to section 3, v∗∗ will be shown to be the lowest point in support of the

worst-case distribution if c = r = 0.

We now introduce the family of distributions that plays a major role in both steps of

the proof of theorem 2. The shape of the distribution is dictated by the minimization of

Lagrangian when r = c. Given a parameter ρ ∈ [v∗∗, m) define a cdf Gρ(·) as follows:

Gρ(v) = 0 for v < ρ; Gρ(ρ) ≡ q(ρ) and

G−1
ρ (q) =

n(n− 1)z(q)− λ1(ρ)

2λ2(ρ)
(23)

for q ∈ [q(ρ), 1] where λ1(ρ), λ2(ρ) are parameters attuned in such a way that mean and

variance constraints hold as equalities.

Equivalently, for every v ≥ ρ, Gρ(v) = min{ȳ(λ1(ρ) + 2λ2(ρ)v), 1} where ȳ(λ) is the

larger solution to (10) (as in (11)). For n = 2, Gρ is linear for v ≥ ρ, so the continuous

part of the distribution is uniform.

To proceed, one must first check that Gρ are well-defined.

19



v

G
1

q∗3 = 3
4

v∗∗

Figure 4: A graph of a typical cdf from the Gρ family for n = 3. In the picture, ρ = v∗∗,
so the depicted cdf is worst-case if r = c < v∗∗.

Lemma 6. Gρ is well-defined, i.e. for each ρ ∈ [v∗∗, m), there exists a unique triple

(λ1(ρ), λ2(ρ), q(ρ)), λ1(ρ) < 0, λ2(ρ) > 0, q(ρ) ∈ [q∗n, 1) such that Gρ has mean m and

variance σ2.

The proofs of lemma 6 and subsequent lemmata is relegated to the Appendix. The

analysis is enabled by the fact that one can write the mean and variance constraints

(14),(15) as closed-form functions of λ1, λ2 and q, even though there is generally no closed-

form solution for Gρ. This is possible since the respective integrals may be rewritten as

integrals of the quantile function G−1(q).

Note that if v∗∗ > 0, Gv∗∗(v
∗∗) ≡ q(v∗∗) = q∗n. We now establish the worst-case

distribution if r = c.

Proposition 5. Suppose r = c. Then, the distribution Gmax{v∗∗,c} solves the problem

(13)-(18).

Proof of proposition 5: By lemma 5, it suffices to prove that Gmax{v∗∗,c} minimizes

the Lagrangian pointwise.

Suppose first that c < v∗∗ so v∗∗ > 0. Then Gv∗∗(v
∗∗) = q∗n. Take λ1 and λ2 as

coming from the definition of Gv∗∗ (numbers that make Gv∗∗ satisfy the mean and variance

constraints as equalities). We have λ1 + 2λ2v
∗∗ = n(n − 1)z(q∗n). Then it follows from

lemma 3 (with λ1 + 2λ2v playing the role of λ) that Gv∗∗ minimizes the Lagrangian

pointwise under the multipliers λ1 and λ2.

Now suppose c ≥ v∗∗. Take λ1 and λ2 as coming from the definition of Gc. Then

it again follows from lemma 3 that Gc minimizes the Lagrangian pointwise under the

multipliers λ1 and λ2. �
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4.2.2 Second step

r

R

mc

A

r

R

v∗∗

A

mc

Figure 5: Proof idea. The curves are graphs of R(F̂r, r). The graph of the worst-case
revenue function R(r) must lie everywhere weakly below the depicted curve by Step 2
and must pass through the point A by Step 1. m = σ2 = 1; c = 0; n = 2 (left), n = 3
(right). If n = 2, σ/m = 1 corresponds to “high” variance, and r∗ = 0 has to be the
unique maxmin price. If n = 3, σ/m = 1 corresponds to “low” variance, and r∗ = 0 might
not be the unqiue maxmin price.

Analogously to section 3, for every r we construct a feasible distribution F̂r such that

R(F̂r, r) ≤ R(c) for all r. This implies theorem 2.

As in section 3, the construction of threat distributions F̂r depends on whether c > v∗∗

or c ≤ v∗∗; equivalently, whether variance σ2 is high or low.

Case 1 (High Variance). c > v∗∗. Define threat distributions F̂r by

F̂r :=































Gv∗∗ , r ∈ [0, v∗∗);

Gr+, r ∈ [v∗∗, c);

Gr, r ∈ [c,m);

δm, r ≥ m,

Gv∗∗ is the same as the worst-case distribution F ∗ when r = c = 0.

Recall that q(r) ≡ Gr(r), the size of the atom of Gr at r, and λ1(r), λ2(r) are param-

eters of Gr (see (23)). In the next lemma, we derive closed-form expression for R(F̂r, r)

in terms of λ1(r), λ2(r), q(r) is available, even though there is no closed-form solution for

(λ1(r), λ2(r), q(r)) themselves.
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Lemma 7. For r ≥ v∗∗,

R(Gr, r) = |λ1(r)|(m− q(r)r)−2λ2(r)(m
2+σ2− q(r)r2)−nz(q(r))rq(r)+ c · qn(r). (24)

Next, we show that the full derivative dR(Gr ,r)
dr

also admits a tractable expression. (If Gr

were worst-case distributions, this derivative would be computable by a suitable version

of envelope theorem; but they are not.)

Lemma 8. For r ≥ v∗∗,

dR(Gr, r)

dr
= n(n− 2)qz − nqn−1q′(r − c).

Now we are ready to state the key proposition. Recall that q(r) satisfies φ(q(r)) =

1+ σ2

(m−r)2
. Because φ′(q) > 0 (shown in the proof of lemma 6) and d(σ2/(m−r)2)/dr > 0,

by implicit function theorem q(r) is a differentiable function with q′(r) > 0.

Proposition 6. Suppose c > v∗∗. Then, R(F̂r, r) < R(c) for all r 6= c and R(F̂r, r) = R(c)

for r = c.

Proof: The fact that R(F̂r, r) = R(c) for r = c is obvious since F̂c is a worst-case

distribution for r = c, as identified by proposition 5.

As z < 0, q′ > 0, by (35) we have R′ < 0 for r ≥ c unless n = 2 and r = c in which case

R′ = 0. Thus, R(F̂r, r) is strictly decreasing on [c,m) and R(F̂r, r) < R(c) for r ∈ (c,m).

For r ≥ m, R(F̂r, r) = c, but c = lim
r→m−

R(F̂r, r). Thus, c < R(c).

Consider now r ∈ [v∗∗, c). R(F̂r, r) = R(Gr+ , r) differs from R(Gr, r) only by term

(r − c)qn(r) since there is a sale if v(1) = r+ but not if v(1) = r. Thus, when r ∈ [v∗∗, c),

we get

dR(F̂r, r)

dr
= n(n− 2)qz − nqn−1q′ · (r − c) + [(r − c)qn]′ = qn−1((n− 1)2q − n(n− 2)).

For r > v∗∗, q(r) > q∗n, and for r = v∗∗, q(r) = q∗n. Thus, the above derivative is zero at

r = v∗∗ and positive at r ∈ (v∗∗, c). Thus, R(F̂r, r) is strictly increasing on [v∗∗, c), which

implies that R(F̂r, r) < R(c) for r ∈ [v∗∗, c).

Finally, because R(F̂r, r) < R(c) for r = v∗∗, this is true for r < v∗∗ as well. �
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Case 2 (Low Variance). c ≤ v∗∗. Define threat distributions F̂r by

F̂r :=



















Gv∗∗ , r ∈ [0, v∗∗);

Gr, r ∈ [v∗∗, m);

δm, r ≥ m,

The proof that R(F̂r, r) ≤ R(c) is exactly the same as the proof of proposition 3, with

v∗ replaced by v∗∗.

Now, because by the above analysis R(F̂r, r) ≤ R(c) for all r and because distributions

F̂r are feasible to Nature, we conclude that R(r) ≤ R(F̂r, r) ≤ R(c) for all r, which finishes

the proof of theorem 2.

4.3 Uniqueness

Analogously to proposition 4, we establish the following:

Proposition 7. Suppose the seller knows the mean of value distribution m and an upper

bound on variance σ2. Then:

1. (High variance case.) If v∗∗ < c, c is the unique maxmin reserve price;

2. (Low variance case.) If v∗∗ ≥ c, all prices r ∈ [0, c] are maxmin reserve prices.

The proof of proposition 7 is identical to the proof of proposition 4. Note that the

condition c ≤ v∗∗ can be alternatively viewed as variance is small enough or the number of

bidders is high enough. As in section 3, part 2 of proposition 7 might weakly explain why

reserve price substantially lower than c are observed in practice. Unlike the case in section

3, in the case of known bound on variance we are not aware of the full characterization

of the set of maxmin reserve prices.

4.4 Example: n = 2

In case of two bidders, closed-form expressions for threat distributions F̂r are available.

As z(q) = q − 1 for n = 2, by (23), G−1(q) is a linear function wherever it is defined and

thus distributions Gr are mixtures of an atom at r with a uniform distribution. The same

applies to the worst-case distribution F ∗ when r = c.

For n = 2, v∗∗ = max{m−
√
3σ, 0}. m−

√
3σ is simply the lowest point in the support

of a uniform distribution with mean m and variance σ2.
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Suppose m −
√
3σ ≥ 0, so v∗∗ = m −

√
3σ. There are two cases: c ≤ m −

√
3σ and

c > m −
√
3σ. In the first case, which corresponds to either low seller’s valuation or low

variance, the worst-case distribution for r = c is simply uniform on [m−
√
3σ,m+

√
3σ]

and the maxmin revenue is

R∗
2 = m−

√
3

3
σ. (25)

Nature’s threats work as follows. For all r ∈ [0, m −
√
3σ], Nature can use this

uniform distribution and induce the same revenue (and this distribution is still worst-case

for r ∈ [0, c] as shown in the proof of proposition 7). For r ∈ (m−
√
3σ,m), Nature may

use a distribution Gr that has an atom of

q(r) =
σ2 − (m− r)2/3

σ2 + (m− r)2

on r and is uniform on (r, b(r)] where

b(r) =
1

2
(3m− r) +

3

2

σ2

m− r
.

Note that b(r) grows without bound when r → m; the fact that there is no upper bound

on values is important. For r ≥ m, Nature puts all mass on m.

If c > m−
√
3σ (either high seller’s valuation or high variance), the worst-case distri-

bution for r = c is Gc itself. For r ∈ [0, m−
√
3σ], Nature may use uniform distribution

on [m−
√
3σ,m+

√
3σ], for r ∈ (m−

√
3σ, c) it may use Gr+ , while for r ∈ (c,m) it again

may use Gr.

When n = 2, we can illustrate the fact that threat distributions F̂r are generally not

worst-case distributions. For instance, suppose c = 0, m = σ2 = 1, n = 2 (Figure 5, left)

and r = 0.5. Then F̂r is is such that vi is distributed uniformly on [0.5, 4.25] with prob.
4
15

and equal to 0.5 with prob. 11
15
. Expected revenue under F̂r is 0.32. However, if Nature

uses a distribution which is a mixture of δ0.5 and uniform distribution on [2.5, b] (where b

and the size of the atom are pinned down by moments constraints), the expected revenue

is approximately 0.2767 < 0.32. Numerically, all worst-case distributions have similar

gaps in support and are intractable analytically even for n = 2.

4.5 A formula for maxmin revenue

It may be shown that in the low variance case the formula for maxmin revenue has the

same simple form as in (25). Indeed, in the low variance case all prices in [0, c] are maxmin,
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and the maxmin revenue is equal to that under the price v∗∗, as if there were sale when

v(1) = r. Thus, replacing c with r, plugging r = v∗∗ in (24), and then getting rid of λ1

and λ2 using (30)-(32), one gets that

R∗
n = m− γnσ, (26)

where γn depends only on n (in the proof of proposition 8 we give a formula for γn in

terms of φ(q∗n)). Thus, the worst-case revenue is simply the mean minus a penalty linear

in the standard deviation. However, the values of the penalties γn are rather unexpected.

For instance 5,

R∗
3 = m−

√
470

80
σ ≈ m− 0.271σ

R∗
4 = m−

√
21604695

25515
σ ≈ m− 0.182σ

R∗
5 = m−

√
8995616791

688128
σ ≈ m− 0.138σ.

Note that the maxmin revenue is strictly decreasing in variance. This is expected for

n = 2 when the second order statistic is the minimal value, whose expectation is naturally

below m and so higher variance reduces it. For higher n, the expectation of the second

order statistic can be well above m and so larger variance may naturally increase rather

than decrease it. The resolution to this paradox is that Nature chooses highly skewed

distributions such that Ev(2) is below Evi = m for any n. We expect the solution to be

substantially different, with variance constraint not binding, when Nature is allowed to

choose only from symmetric distributions for n ≥ 3.

5 Large number of bidders

5.1 Asymptotically optimal mechanism

Throughout the paper so far, we have considered only the issue of optimal reserve price but

not the issue of optimal mechanism. This more general question seems to be challenging.

One reason for that is that when the distribution F is unknown, one cannot assess whether

a given direct mechanism is Bayesian-incentive compatible or not. (However, one can still

ask what is a worst-case F for a given mechanism, having in mind the effect of F on

5Taking σ/m ≤
√
4.7 is enough for variance to be “low” if c = 0.

25



the potentially non-truthful equilibrium strategies.) But even if one assumes dominant-

strategy incentive-compatibility of a direct mechanism a priori (a notion independent of

F ), Nature’s optimization problem, as seen as a problem of choosing a joint distribution of

values, is not a convex problem due to the stochastic independence constraint (a mixture

of two product distributions is not in general a product distributions). This precludes the

use of strong duality – a simplification trick used by, e.g., Suzdaltsev (2020).

However, it is possible to establish that the second-price auction with a maxmin reserve

price (e.g. r∗ = c) is an asymptotically maxmin mechanism among all ex post individually

rational mechanisms when the number of bidders is large.

The argument rests only on the fact that by ex post individual rationality, the revenue

of a mechanism is not higher than the social surplus, maxi vi. In fact, we do not even need

to assume that the bidders play a Bayesian equilibrium. All we need is that a mechanism

and solution concept are such that the bidders always get a nonnegative payoff.

Formally, let a mechanism be a tuple M = (S1, . . . , Sn,x(s), t(s)) where, as usual, Si

is the set of strategies of bidder i, and the functions x(s), t(s), with the usual codomains,

specify a (possibly randomized) allocation and a vector of transfers for each strategy profile

s. Let M be the set of all mechanisms. Let measurable outcome functions x(v), t(v) map

a vector of values v to an allocation and a vector of transfers. Let O be the set of all

outcome functions. A solution concept is a correspondence SC : M×∆ ⇒ O. That is, a

solution concept maps a mechanism M ∈ M and a value distribution F ∈ ∆ to a set of

outcome functions deemed possible. This set can depend on the distribution, as for the

Bayesian equilibrium solution concept. There can also be multiple “equilibrium” outcome

functions. Given a correspondence SC, the seller restricts attention only to mechanisms

M such that SC(M,F ) 6= ∅ for all F ∈ ∆.

We say that a mechanism M0 is robustly ex post individually rational under a solution

concept SC and set of distributions ∆ iff, for all F ∈ ∆, all outcome functions (x(·), t(·)) ∈
SC(M0, F ), all vectors of values v, and all i, vixi(v)− ti(v) ≥ 0. The qualifier “robustly”

refers to the fact the inequality holds for the outcome functions, that may depend on F ,

regardless of F .

For example, the first-price auction is robustly ex post IR under Bayesian equilibrium

as winning bidders never pay more than their values, and losers pay nothing. The English

auction is robustly ex post IR under the weak solution concept used by Haile and Tamer

(2003) who only assume that bidders never bid more than their values and never allow an

opponent to win at a price they are willing to beat (and under stronger concepts as well).

The schemes in Segal (2003) are robustly ex post IR under undominated strategies.
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Now, let Rn(M,F, o) be the expected revenue with n bidders under mechanism M ,

distribution F and outcome functions o ∈ SC(M,F ). Let Rn(M) be the n-bidder revenue

guarantee of a mechanism with unknown distribution F and “equilibrium” outcome o ∈
SC(M,F ), i.e.

R(M) := inf
F∈∆

inf
o∈SC(M,F )

R(M,F, o).

The worst case over “equilibrium” outcomes is taken because if the set of “equilibria”

depends on F and F is unknown, the seller cannot suggest an equilibrium to play.

Denote by SPA(r∗) the second-price auction with a maxmin reserve price and let

(xDS(v), tDS(v)) be the usual outcome functions if bidders play dominant strategies (bid

their values) in the SPA.

Then, a simple SPA with a maxmin deterministic reserve price (e.g., r∗ = c) is also

an asymptotically maxmin mechanism among all robustly ex post individually rational

mechanisms provided dominant strategies are played in the SPA.

Proposition 8. Suppose ∆ = ∆(m, v) or ∆ = ∆(m, σ2). Suppose the solution concept

SC0 is such that SC0(SPA(r
∗), F ) = {(xDS(v), tDS(v))} for all F ∈ ∆. Then, for any

mechanism M0 that is robustly ex post individually rational under SC0 and ∆ and for any

ε > 0, there exists N such that for all n > N , Rn(SPA(r
∗)) > Rn(M0)− ε.

Proof: The revenue of any robustly ex post individually rational mechanism M is

not more than the social surplus,
∑

i ti ≤ maxi vi; thus, the worst-case expected revenue

is not more than the worst-case expected surplus. However, the latter is not more than

m because Nature can always choose F = δm. (This argument is similar to the one used

in Koçyiğit et al. (2020) and He and Li (2020).) Thus, Rn(M) ≤ m.

It remains to show than Rn(SPA(r
∗)) converges to m as n → ∞. For ∆ = ∆(m, v),

we have for all sufficiently high n

R∗
n = m− αn(v −m),

where

αn =
n

n− 1

(

1− 1

(n− 1)2

)n−2

− 1.

The fact that αn converges to zero stems from the fact that
(

1− 1
(n−1)2

)n−2

∼ exp(−1/n)

as n→ ∞.
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For ∆ = ∆(m, σ2), we have for all sufficiently high n

R∗
n = m− γnσ,

where it follows from (24) and (30) (in the Appendix) that

γn = αn

√

(n− 1)2ψ(q∗n)− 1, (27)

where ψ(q) = φ(q)(1 − q) (see the proof of lemma 6). As ψ is bounded, to prove that

γn → 0 one has to prove that nαn → 0 as n→ ∞. In fact, one may show that

lim
n→∞

n2αn =
1

2
. (28)

Indeed,

n2αn ∼ n2n(exp(−1/n)− 1) + 1

n− 1
.

Then the result follows from a second-order expansion of exp(−1/n). �

Proposition 8 implies that neither a randomized reserve price nor a “bootstrap” auc-

tion in which each bidder faces individual reserve computed based on an estimate of

F inferred from other bidders’ reported values (a family of mechanisms investigated by

Segal (2003)) is significantly better than a simple second-price auction when the seller

is concerned about the worst-case performance of a mechanism, possesses only minimal

statistical information and the number of bidders is sufficiently large. As discussed in

the introduction, Segal’s schemes approximate the full-distributional-information revenue

well, but this is a criterion different from the worst-case performance.

Note that if the seller knows more than the first two moments, say, three moments of

the distribution, then the bound infF EF∼···∼F maxi vi ≤ m may not hold, i.e. the worst-

case expected social surplus may be strictly higher than m. In other words, this proof

technique fails. It is an open question of whether an SPA with a deterministic maxmin

reserve price is an asymptotically maxmin mechanism when more moments are known.

Another limitation of the above result is that it effectively rules out directly eliciting

information about F from the bidders (if they have it). More precisely, the setting above

does allow asking about F (strategy sets Si can be any) but the set ∆ of distributions

feasible to Nature does not depend on bidders’ reports. An interesting direction of further

research is to consider a model with a “rich” type space (i.e., types encoding both payoff

and belief information) and a partially known payoff type distribution such that Nature
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can choose only a payoff type distribution satisfying some prior constraints and also

being “close” to some types’ elicitable beliefs. See Luz (2013) and Chen and Li (2018) for

revenue maximization with rich type spaces.

5.2 Comparing rates of convergence

How does the seller’s maxmin revenue compare in the two settings we have considered in

this paper? The revenue obviously depends on the particular values of the upper bounds.

However, noting that in both cases revenue converges to the mean m as the number of

bidders tends to infinity we can still get a meaningful comparison by comparing the rates

of convergence. This will compare the “strength” of Nature in two cases. We also bring

into the picture the case of correlated private values, studied by Koçyiğit et al. (2020)

and Suzdaltsev (2020) (maxmin reserve price is again c in this case for all n sufficiently

large).

According to results in Koçyiğit et al. (2020) and Suzdaltsev (2020), when mean m

and upper bound on values v are known, and values can be arbitrarily correlated,

Rn(r
∗) = m− v −m

n− 1
(29)

for all n sufficiently large.

Thus, from (27), (28) and (29) we make the following

Observation.

• When mean m and upper bound on values v are known, and values are iid,

m−R∗
n = Θ

(

1

n2

)

as n→ ∞;

• When mean m and upper bound on variance σ2 are known and values are iid,

m−R∗
n = Θ

(

1

n

)

as n→ ∞;

• When meanm and upper bound on values v are known, and values can be arbitrarily
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correlated,

m−R∗
n = Θ

(

1

n

)

as n→ ∞.

Thus, starting with the first setting in which mean m and upper bound on values v

are known and values are iid, replacing an upper bound on values with an upper bound

on variance has a similar (adverse) effect on revenue as allowing arbitrary correlation in

values. This suggests that an upper bound on values is a much more stringent constraint

on Nature than an upper bound on variance. This is perhaps not surprising in hindsight:

a bound on values implies a bound on variance, but not vice versa.

6 Conclusion

In this paper, we showed that a seller who (1) faces multiple bidders and conducts a

second-price auction with a reserve price; (2) possesses only basic information about

value distribution; (3) employs a worst-case perspective can do no better than to set the

reserve price to her own valuation. This result adds to an emerging theme in the current

robustness literature: an auctioneer’s worst-case perspective is associated with low reserve

prices. The result may also help explain empirical observations of low reserve prices.

One may think of several extensions of the present results.

• First-price auctions. We presented an analysis for a second-price auction. A

problem with extending results for first-price auctions by revenue-equivalence is

that to ensure that a classic pure-strategy Bayesian equilibrium exists, one must

constrain Nature to use atomless distributions only, but the worst-case and threat

distributions we used throughout the paper do contain atoms. However, the analysis

still goes through as these special distributions can be approximated by a sequence

of continuous distributions such that the value of revenue is the same in the limit.

For example, it can be done by replacing each atom with uniform distributions on

an interval below it and then tweaking the overall distribution a little in such a way

that Nature’s constraints hold. Thus, in a first-price auction the seller can still do

no better than to set a reserve equal to her own valuation.

• Exactly known variance. We stated the results in section 4 for the case of a

known upper bound on variance. However, if the variance is known exactly, the

results still hold. First, even though if variance is known exactly the set of feasible
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distributions is not compact (as noted by Carrasco et al. (2018a)), the infimum

in Nature’s problem is well-defined. Second, for r < m all worst-case and threat

distributions we consider are such that the variance constraint binds. Third, for r ≥
m instead ofm one can consider a sequence of distributions Gm−1/k defined in section

4. Along this sequence, the probability of no sale converges to one and moments

constraints are satisfied with equality. As for the asymptotic result (proposition 8),

the key inequality necessary for the proof, infF EF∼···∼F maxi vi ≤ m, still holds,

as under the sequence of binary distributions Fk with the lowest point in support

m− 1/k and a required mean m and variance σ2, EFk∼···∼Fk
maxi vi converges to m.

• Higher moments. When the seller knows F exactly (i.e. an infinite number of

moments of F ), any optimal reserve price is strictly above c. We showed that when

the seller knows up to two moments, an optimal price is c. It is interesting to ask

what is the minimal number K such that set of optimal prices is bounded away

from c if the seller knows no fewer than K moments. Is it true that K = 3? Does

the asymptotic optimality result in section 5 carry over to the case where the seller

has more information?

• Eliciting information about F from the bidders. One may extend the model

to “rich” type spaces and constrain Nature to choose a distribution “close” to some

types’ beliefs, as discussed in section 5.
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Appendix

Proof of lemma 6: Fortunately, one can write constraints (14),(15) as closed-form

functions of λ1, λ2 and q, even though there is no closed-form solution for Gρ. This is

possible since the respective integrals may be rewritten as integrals of the quantile function

G−1(q). Indeed, one gets the following system of three equations with three unknowns

(λ1, λ2, q):

q(ρ)ρ+

∫ 1

q(ρ)

n(n− 1)z(q)− λ1(ρ)

2λ2(ρ)
dq = m

q(r)ρ2 +

∫ 1

q(ρ)

[

n(n− 1)z(q)− λ1(ρ)

2λ2(ρ)

]2

dq = m2 + σ2.

λ1(ρ) + 2λ2(ρ)ρ = n(n− 1)z(q(ρ)). (30)
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(The first two equations stem from the mean and variance constraints (14),(15) while

the third is (23), written for q = q(ρ).) Getting rid of λ1(ρ), one simplifies the first two

equations to

n(n− 1)

∫ 1

q(ρ)

(z(q)− z(q(ρ)))dq = 2λ2(ρ)(m− ρ) (31)

(n(n− 1))2
∫ 1

q(ρ)

(z(q)− z(q(ρ)))2dq = (2λ2(ρ))
2((m− ρ)2 + σ2). (32)

Equations (31)-(32) may be collapsed to

φ(q(ρ)) = 1 +
σ2

(m− ρ)2
, (33)

where φ(q) is as defined in (21). We now show that for every ρ ∈ [v∗∗, m) equation (33)

admits a unique solution q(ρ) ∈ [q∗n, 1). To this end, we prove that φ′(q) > 0 for q ∈ [q∗n, 1)

and that lim
q→1

φ(q) = +∞.

First, by direct computation, φ′(q) is proportional to

z′(q) ·





∫ 1

q
(z(y)− z(q))2dy

1− q
−
(∫ 1

q
(z(y)− z(q))dy

1− q

)2


 .

z′(q) > 0 for q ≥ q∗n and the expression in parentheses is positive because it equals the

variance of random variable z(Y )−z(q) where random variable Y is distributed uniformly

on [q, 1]. Thus, φ′(q) > 0.

Now, φ(q) = ψ(q)/(1 − q) where ψ(q) is the ratio of mean of square to the square of

mean of random variable z(Y )− z(q). Thus, ψ(q) > 1 for all q < 1, so lim
q→1

φ(q) = +∞.

It follows from the definition of v∗∗ that for every ρ ∈ [v∗∗, m), φ(q∗n) ≤ 1 + σ2

(m−ρ)2
; we

also have lim
q→1

φ(q) = +∞ > 1+ σ2

(m−ρ)2
. Because φ(q) is continuous and strictly increasing,

there exists a unique q(ρ) ∈ [q∗n, 1) solving (33).

The uniqueness and signs of λ1(ρ), λ2(ρ) follow from (31) and (30). �

Proof of lemma 7: Note that Gr has an atom at r and a density gr for v > r.

Because there is no sale when v(1) = r,

R(Gr, r) = E(v(2)1{v(2)>r}) + r · n(1− q(r))qn−1(r) + cqn(r) =

=

∫ ∞

r

v · n(n− 1)(Gn−2
r (v)−Gn−1

r (v))gr(v)dv − nz(q(r))rq(r) + cqn(r). (34)
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From (23), one deduces that gr(v) =
2λ2(r)

n(n−1)z′(Gr(v))
. Thus,

E(v(2)1{v(2)>r}) =

∫ ∞

r

2λ2(r)v
−z(Gr(v))

z′(Gr(v))
dv.

Plugging v = G−1
r (q) and using (23) again, one gets

E(v(2)1{v(2)>r}) = −
∫ 1

q(r)

n(n− 1)z(q)
n(n− 1)z(q)− λ1(r)

2λ2(r)
dq.

Mean and variance constraints read as

q(r)r +

∫ 1

q(r)

n(n− 1)z(q)− λ1(r)

2λ2(r)
dq = m

q(r)r2 +

∫ 1

q(r)

[

n(n− 1)z(q)− λ1(r)

2λ2(r)

]2

dq = m2 + σ2.

Then, the fact that E(v(2)1{v(2)>r}) = −λ1(r)(m − q(r)r) − 2λ2(r)(m
2 + σ2 − q(r)r2)

stems directly from the last three equations. The formula for revenue then follows. �

Proof of lemma 8: Now consider the derivative of R̃(r) := E(v(2)1{v(2)>r}) =

−λ1(r)(m − q(r)r) − 2λ2(r)(m
2 + σ2 − q(r)r2). We omit arguments of functions for

brevity. From (30), we get that

R̃ = 2λ2r(r −m)− 2λ2((m− r)2 + σ2)− n(n− 1)zm+ n(n− 1)qrz.

R̃′ = [2λ2(r−m)]′r + 2λ2(m− r)− 2λ′2((m− r)2 + σ2)− n(n− 1)z′q′m+ n(n− 1)(qrz)′.

Using both (31) and the differentiated version of (31), one gets

R̃′ = n(n− 1)((qr)′z − (m− r)z′q′) + n(n− 1)

∫ 1

q

(z(x)− z(q))dx− 2λ′2((m− r)2 + σ2).

However, differentiating (32) one gets

λ′2((m− r)2 + σ2) = −n2(n− 1)2
q′z′

∫ 1

q
(z(x)− z(q))dx

4λ2
+ λ2(m− r),
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which, using (31) again, is equivalent to

2λ′2((m− r)2 + σ2) = n(n− 1)

[

−q′z′(m− r) +

∫ 1

q

(z(x)− z(q))dx

]

.

Thus,

R̃′ = n(n− 1)(qr)′z.

Because R = R̃ − nzqr + cqn, we get

R′ = n(n− 1)(qr)′z − nqrz′q′ − n(qr)′z = n(n− 2)(qr)′z − nqrz′q′ + nqn−1q′c.

Since qz′ = (n− 2)z + qn−1, after simplifications we finally get

R′ = n(n− 2)qz − nqn−1q′(r − c). (35)

�

37


	1 Introduction
	1.1 Related literature
	1.2 Organization of the paper

	2 The model
	3 Known mean and upper bound on values
	3.1 The result
	3.2 The proof
	3.2.1 First step
	3.2.2 Second step

	3.3 Uniqueness

	4 Known mean and upper bound on variance
	4.1 The result
	4.2 The proof
	4.2.1 First step
	4.2.2 Second step

	4.3 Uniqueness
	4.4 Example: n=2
	4.5 A formula for maxmin revenue

	5 Large number of bidders
	5.1 Asymptotically optimal mechanism
	5.2 Comparing rates of convergence

	6 Conclusion

