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Abstract

A speculator can take advantage of a procurement auction by acquiring items for

sale before the auction. The accumulated market power can then be exercised in the

auction and may lead to a large enough gain to cover the acquisition costs. I show that

speculation always generates a positive expected profit in second-price auctions but

could be unprofitable in first-price auctions. In the case where speculation is profitable

in first-price auctions, it is more profitable in second-price auctions. This comparison in

profitability is driven by different competition patterns in the two auction mechanisms.

In terms of welfare, speculation causes private value destruction and harms efficiency.

Sellers benefit from the acquisition offer made by the speculator. Therefore, speculation

comes at the expense of the auctioneer.
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1 Introduction

1.1 Motivation

In anticipation of a procurement auction, speculators have the incentive to consolidate

the market by acquiring items from different sellers. By doing so, speculators gain market

power and can reduce competition in the procurement auction. Consequently, a speculator’s

expected gain from the procurement auction may be high and more than enough to cover

the acquisition costs.

The speculative incentive offers a compelling explanation for the activities of some private

equity firms around the time of the Federal Communications Commission’s (FCC) Broadcast

Incentive Auction. LucasPoint Networks, NRJ TV, and OTA Broadcasting acquired 48 TV

stations in the pre-auction stage (Doraszelski et al. (2017)). To secure high transaction

prices for the stations they actually sold in the auction, they withheld supply from the

auction when the prices offered were still very high. Shortly after the auction, the firms

resold many stations they refrained from selling in the auction. The resale price of a station

is often much lower than the price at which the station is dropped out, which suggests that

the firms dropped out of bidding at high prices not because they value the stations more,

but due to speculative reasons.

To study the profitability and welfare implications of such a speculation scheme, I

incorporate a speculator and a pre-auction acquisition stage in an independent private

value procurement auction model. To capture the economic insights within a parsimonious

setting, I consider a single-object auction. In the model, the speculator is allowed to make

a take-it-or-leave-it offer to every seller before the auction to buy the items they have for

sale.1

I study speculation in both second-price auctions, which are the single-object analog

to the deferred-acceptance auction design used by the FCC in the incentive auction,2 and

1In the case of contract procurement, the obligation to fulfill the contract is interpreted as an item for
sale.

2To be precise, (reverse) English auctions are the single-object analog to the deferred-acceptance clock
auction used by the FCC in the incentive auction. But for the purpose of this paper, English auctions and
second-price auctions are equivalent.
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first-price auctions, which are adopted commonly in government procurement.

1.2 Overview of the Results

The sellers weigh their prospects in the auction against the speculator’s offer in deciding

whether to sell to the speculator. As will be shown later, sellers who value their items

less tend to accept the speculator’s offer in equilibrium. This may appear to be counter-

intuitive at first glance, since those sellers are more likely to win in a procurement auction

than the sellers with high valuations for their items. But the comparison is misleading, as

low-valuation sellers also have higher net gains than high-valuation sellers if they sell to the

speculator. Notably, in the incentive auction example, Doraszelski et al. (2017) report that

“[f]ew of the 48 TV stations [acquired by the private equity firms] are affiliated with major

networks and many of them are failing or in financial distress.”

After characterizing the equilibrium of the speculation game,3 I show that the

profitability of the speculation scheme hinges on the auction format. In second-price

auctions, the speculator can always obtain a positive expected payoff by optimally choosing

the acquisition price offered to the sellers. In contrast, speculation could be unprofitable in

first-price auctions. Furthermore, the expected profit from speculation is always higher in

second-price auctions than in first-price auctions. To understand the contrast, first note

that the speculator would be a strong bidder as compared with other sellers in the auction

subgame, since he has no private value for the item(s). It has been recognized in the

literature that a strong bidder would often be better off in second-price auctions vis-a-vis

first-price auctions (see, for example, Maskin and Riley (2000)). This result, in turn, can

be traced back to the different competition patterns under the two auction formats. In a

second-price auction, the sellers do not respond to the speculator’s entry in the auction,

they still bid their true values as if no acquisition had happened. However, in a first-price

auction, sellers respond to the speculator’s entry in the auction by bidding more

aggressively. This undermines the speculator’s effort in competition reduction and lessens

3One challenge in characterizing equilibrium in the first-price auction case is to deal with asymmetric
auction subgames in which a speculator bids against some seller(s). I make use of the particular form of
bidder asymmetry to characterize the equilibria in the auction subgames.
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the speculator’s profit. Moreover, aggressive bidding in the subgame results in a better

prospect for sellers if they reject the acquisition offer and proceed to the auction. As a

result, the speculator has to incur higher acquisition costs. Lower gain in competition

reduction and higher acquisition costs account for the difference in speculation profitability

across the two auction formats.

The presence of a speculator has non-trivial welfare implications. Since the speculator

acquires multiple items solely for the purpose of selling one (at a high price) in the auction,

the private values of all but one seller who sell to the speculator are wasted. This implies

that speculation activities would induce efficiency losses. Sellers benefit from the presence

of the speculator as the speculator overcompensates them for their loss of private values and

for skipping the auction. This means that the speculator’s profit comes at the auctioneer’s

expense. Therefore, in the case where speculation is unprofitable in first-price auctions, the

auctioneer would prefer the first-price rule to the second-price rule. In this case, first-price

auctions also outperform second-price auctions in terms of efficiency.

Two extensions to the second-price auction model are considered. The first one studies

the profitability of the speculation scheme in a general setup where sellers’ values are drawn

from different distributions, and the speculator can only make acquisition offers to a subset

of the sellers. Under quite general conditions, the expected profit from speculation is positive

if and only if the speculator can access at least two of the sellers. This is not surprising, since

the speculator can reduce competition in the procurement auction only if he has the chance

to posses more than one item. In the second extension, I consider an enhanced speculation

scheme, in which the speculator auctions off the extra items acquired back to the sellers after

the procurement auction concludes. This fine-tuned approach, if feasible,4 generates even

more expected profit for the speculator.

4For this approach to be feasible, either the items are homogeneous, or the timing allows the speculator to
run the “return and refund” auction before delivering an item to the auctioneer. In the latter case, bidding
in the procurement auction also needs to be for a generic item rather than a specific one. The feasibility of
the approach is discussed in greater detail in Section 6.2.
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1.3 Related Literature

This paper is related to the literature on strategic demand/supply reduction in auctions

(see, for example, Vickrey (1961), Ausubel et al. (2014), and Doraszelski et al. (2017)). In

the procurement context, previous studies typically take the pre-auction ownership

structure of goods as given.5 This paper makes an effort to endogenize the ownership

structure by considering a pre-auction acquisition stage. It is worth highlighting that in

this case, efficiency can no longer be restored by a VCG auction, because it does not

eliminate the speculator’s incentive to accumulate market power. Although the VCG

auction would superficially solve the problem of supply reduction, as the speculator would

supply all the items he owns to the auction.

A growing literature is concerned with speculation in auctions with resale. In this

literature, the speculator seeks to gain market power in the resale stage against other

bidders, rather than in the auction stage and against the auctioneer. Garratt and Tröger

(2006) show that in second-price auctions, there exist multiple equilibria in which the

speculator wins the auction and makes positive profits, whereas speculation is unprofitable

in first-price auctions. Pagnozzi (2010) studies speculation in complete information

multi-object auctions with resale and whether the presence of speculators helps raise the

auctioneer’s revenue. Saral (2012), Pagnozzi and Saral (2019), and Garratt and Georganas

(2021) experimentally study the effects of speculation driven by post-auction resale.

Also related to this paper is the bidder collusion literature, which focuses on bidders’

endeavor to reduce prospective competition in the auction. A strand of the bidder collusion

literature studies the bidding ring’s collusive arrangement while assuming that a

non-strategic third-party coordinates the ring members’ bidding and/or sidepayments (see,

for example, Graham and Marshall (1987), Mailath and Zemsky (1991), and McAfee and

McMillan (1992)). Another strand of this literature, forsaking the third-party approach,

considers simple collusive plans proposed by a bidder. Eső and Schummer (2004),

Rachmilevitch (2013), Rachmilevitch (2015), and Troyan (2017) allow a bidder to make a

take-it-or-leave-it bribe to his opponent in exchange for the opponent’s abstain from (or

5In the studies of multi-unit forward auctions, the demand structure of goods is typically taken as given.
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bidding 0 in) the auction. Lu et al. (2021) allow two-option proposals which include a bribe

(for the opponent to abstain) and also a request (for the proposer to abstain). Technical

challenges arise as a bidder’s offer may leak his private information to the opponent. In

response, the authors commonly restrict their attention to second-price auctions with two

collusive bidders.6,7 Since I also consider the case where a strategic player (the speculator)

makes simple proposals in the hope of “gaming the system,” the current paper is more

closely related to the latter strand of the bidder collusion literature. One distinctive feature

of the current paper is that the speculation scheme does not rely on (potential) bidders’

commitment power, whereas the collusive scheme depends crucially on bidders’ ability to

commit to abstain.

The remainder of the paper is organized as follows. Section 2 lays out the model of

a dynamic speculation game. Section 3 characterizes and analyzes the equilibrium in the

second-price auction case. Section 4 contains equilibrium characterization and analysis in

the first-price auction case. Section 5 juxtaposes the results obtained under different auction

formats. Section 6 includes two extensions to the baseline model. Section 7 concludes.

2 Model

An auctioneer seeks to buy an item through a reverse auction, which can be a second-

price sealed bid auction (SPA), or a first-price sealed bid auction (FPA). The reserve price

of the procurement auction is r ∈ (0, 1]. N ≥ 2 risk-neutral sellers, indexed by the set

I := {1, 2, · · · , N}, each has one such item for sale. Sellers’ items need not be homogeneous

as long as they are perfect substitutes for the auctioneer. Seller i’s value for the item is

denoted by vi, which is privately known to the seller.8 The sellers’ values are identically and

independently distributed on [0, 1] according to the CDF F (·). The corresponding PDF is

denoted by f(·). Throughout the paper, I assume that F (0) = 0 < F (v) for all v ∈ (0, 1]. A

6One exception is Rachmilevitch (2013), in which two-bidder first-price auctions are considered.
7In this paper, I consider both first-price auctions and second-price auctions with N ≥ 2 bidders.
8Although the model is phrased for the procurement of goods and commodities, it can be applied in the

case of contract procurement by interpreting the items as contractual obligations and the sellers’ values as
their costs.
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seller’s payoff is normalized to be 0 if no transaction happens.9

A risk-neutral speculator, who has no item for sale and no value for any item, seeks

to extract some surplus from the auction.10 To investigate the profitability and welfare

implications of speculation, I consider the following two-stage game. At the beginning of the

first stage, the speculator makes a take-it-or-leave-it offer to every seller to buy his item at

a price of p.11 Sellers choose simultaneously and individually between selling the item to the

speculator, or rejecting the offer and then participating in the auction. The first stage ends

after the sellers made their decisions.

In the second stage, the auction takes place. When the auction begins, the number of

bidders and whether the speculator participates in the auction are announced to the bidders.

Formally, the public history at the beginning of the auction is given by h = (m,S) ∈

{0, 1, · · · , N} × {0, 1}, where m is the number of sellers in the auction, and S describes the

speculator’s status, with S = 1 standing for “in the auction” and S = 0 for “not in the

auction.” If the speculator failed to buy any item in the first stage, he exits the game with

zero profit. If at least one seller sold his item to the speculator, the speculator participates

in the auction along with all the sellers who still possess an item. After the auction, if the

speculator owns any surplus item(s), he uses the item(s) and derives a value of 0, or sells the

item(s) to a third-party at a price of 0.12,13

I characterize and analyze the perfect Bayesian equilibria (PBE) of the two-stage specu-

lation game in the following sections.

9One can view the private value of a seller as the opportunity cost if the seller chooses to sell the item. If
no transaction occurs, the seller would not incur this opportunity cost and would get a zero payoff. On the
other hand, if the item is sold at a price of p, the opportunity cost is incurred and the payoff to the seller is
p− v.

10That the speculator has a value of 0 for an item is merely a normalization. What matters is that sellers’
private values are surely higher than the speculator’s value (either from using the good, or from reselling
the good to a third-party after the auction). This assumption seems innocuous given that the focus of the
paper is on strategic rent-seeking, rather than value discovery.

11Since the sellers are symmetric, I assume the speculator offers the same price to all of them. In Section 6,
I relax the seller symmetry assumption and consider individualized acquisition offers.

12Put differently, the speculator’s value for the item is determined by his best alternative after the auction,
and I normalize that value to be 0.

13In the incentive auction context, if a TV station is withheld from the auction by a private equity firm,
the private equity firm can continue operating the TV station, or sell the license to other firms.
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3 Speculation in Second-Price Procurement Auctions

I first study the PBE of the SPA-speculation game, holding fixed an arbitrary price offer

p ∈ [0, r].14 Once the equilibrium characterization is obtained, I proceed to investigate the

speculator’s choice of p.

3.1 Equilibrium Characterization

In an auction subgame, bidding truthfully is a weakly dominant strategy for the sellers,

but not for the speculator. If the speculator enters the auction with multiple items, he has

an incentive to strategically reduce the supply and drive up the price. In fact, it is weakly

dominant for the speculator to bid 0 for one of his items and withhold the rest from the

auction. By doing so, the speculator wins the auction for sure. The above analysis reveals

the equilibrium in weakly dominant strategies of the second-price auction subgame. I focus

on this equilibrium and maintain the following assumption throughout the paper.

Assumption 1 (Dominant strategy equilibrium in the SPA) In the SPA subgame,

sellers bid truthfully and the speculator bids 0 for one of his items while withholding the

rest from the auction.

Lemma 1 Under Assumption 1 and holding fixed p ∈ [0, r], in any PBE of the

SPA-speculation game, there exists v∗ ∈ [0, r] such that seller i ∈ I accepts the speculator’s

offer if and only if vi < v∗.

Lemma 1 indicates that sellers with low values tend to accept the speculator’s offer in

equilibrium. Notably, those sellers would have had good chances to win in the procurement

auction but for the speculator’s presence.

With Lemma 1, it only remains to pin down the cutoff v∗ for equilibrium characterization.

Intuitively, if p is too low, no seller would accept the offer. In fact, p must exceed

π0 :=

∫ r

0

[1− F (x)]N−1dx, 15

14Clearly, the speculator would never offer to pay more than r for an item.
15This is the interim expected payoff of a seller with a realized value of 0 in the absence of the speculator.
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to induce a nonzero probability of sellers’ accepting the offer, or equivalently, to induce a

positive cutoff v∗. If r ≥ p > π0, the following indifference condition determines the cutoff

v∗,

p− v∗ =

∫ r

v∗
[1− F (x)]N−1dx, (1)

where the left hand side is the marginal seller’s payoff from accepting the acquisition offer,

and the right hand side is the payoff from participating in the auction.

The PBE is described by Proposition 1, with v∗(p) defined as follows,

v∗(p) :=


0, if p ≤ π0,

the unique solution to (1), if π0 < p ≤ r.

(2)

Proposition 1 Under Assumption 1 and holding fixed p ∈ [0, r], there exists a unique PBE

of the SPA-speculation game. In the equilibrium, seller i ∈ I accepts the speculator’s offer

if and only if vi < v∗(p).

3.2 Analysis of the Equilibrium

Proposition 1 paves the way for investigating the speculator’s choice of p ∈ [0, r]. Since

there is a one-to-one mapping between the price p and the cutoff v∗ (except for the v∗ =

0 case), it is more convenient to think of the speculator’s problem as choosing a profit-

maximizing cutoff level v∗ from [0, r].

For a fixed equilibrium cutoff v∗ ∈ (0, r], the corresponding acquisition price is

p∗(v∗) := v∗ +

∫ r

v∗
[1− F (x)]N−1dx. (3)

The speculator’s expected profit is

Π∗(v∗) :=
N−1∑
m=0

(
N

m

)
[F (v∗)]N−m[1− F (v∗)]my(m, v∗)−NF (v∗)p∗(v∗), (4)
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with the expected payment from an auction subgame against m sellers given by

y(m, v∗) := v∗ +

∫ r

v∗

[
1− F (x)

1− F (v∗)

]m
dx.

The speculator’s expected profit consists of three parts. First, the speculator gains from

supply withholding:16 when the speculator enters the auction with multiple items, he

reduces the competition in the auction by withholding all but one of his items from the

auction. Second, the speculator loses from overcompensating the sellers: when the

speculator purchases an item from a seller, he pays more than the expected payment that

the seller would have received in an auction without speculation.17 Third, the speculator

loses from destroying private values: he has no use for the items he owns after the auction,

but to purchase them before the auction, he must compensate the sellers for their loss of

private values. This decomposition is most clearly seen in the two-seller case. Fix N = 2,

the speculator’s expected profit is

[F (v∗)]2

{
r −

∫ v∗

0

xd

[
F (x)

F (v∗)

]2
}

︸ ︷︷ ︸
gain from supply withholding

− 2

∫ v∗

0

[F (x)]2dx︸ ︷︷ ︸
loss from overcompensating the sellers

−
∫ v∗

0

xd[F (x)]2︸ ︷︷ ︸
loss from destroying private values

.

To see that the first term represents the gain from supply withholding, note that [F (v∗)]2

is the probability that two sellers both accept the acquisition offer, which is the premise of

supply withholding; r is the payment received by the speculator with supply withholding,

and;
∫ v∗

0
xd
[
F (x)
F (v∗)

]2

is the payment would have been made by the auctioneer in the absence

of the speculator. The second term is the increment in the sellers’ expected payoff in the

speculator’s presence, which comes from the speculator’s overcompensation. The third term

is the expected efficiency loss due to private value destruction. This loss is suffered by a

seller, but is passed through to the speculator.

Notably, in the N = 2 case, as v∗ approaches 0, the gain from supply withholding

16To distinguish from the term “supply reduction,” which is typically used in the context of multi-unit auc-
tions, I refer to the speculator’s overbidding in the single-unit procurement auction as “supply withholding.”
Although there is no substantial difference in the meaning of the two terms.

17Consider a seller with realized value v < v∗. The expected payment the seller would have received in
the absence of the speculator is v +

∫ r

v
[1 − F (x)]N−1dx, which is less than p∗(v∗), the price paid by the

speculator.

9



dominates the losses.18 This implies that the speculator can always get a positive expected

profit by choosing v∗ appropriately. Proposition 2 generalizes this result to the N -seller case.

Proposition 2 The speculator can always get a positive expected profit in the

SPA-speculation game.

In fact, as v∗ approaches 0, the major component of the speculator’s profit is the gain from

supply withholding when exactly two sellers accept the acquisition offer. Formally,

lim
v∗→0

Π∗(v∗)

[F (v∗)]2
=

(
N

2

)∫ r

0

[1− F (x)]N−2dx.

To see that the right hand side is the gain from supply withholding when exactly two sellers

accept the acquisition offer, note that
∫ r

0
[1 − F (x)]N−2dx is the limit of expected payment

received by the speculator after supply withholding. The payment would have been made

by the auctioneer in the absence of the speculator does not appear on the right hand side

because it is less than v∗, which approaches 0.

Proposition 2 implies that the speculator would always induce a positive cutoff in the

speculation game. By inspecting the equilibrium outcome, the welfare implications of

speculation are immediately obtained.

Corollary 1 Speculation results in an efficiency loss in the form of private value destruction.

Sellers are better-off in the presence of the speculator, while the auctioneer is worse-off.

It is worth highlighting that the inefficiency is not caused by strategic supply withholding

alone. If, instead of a second-price auction, a VCG auction is used for the procurement,

the speculator would bid truthfully for all of his items.19 There would be no strategic

supply withholding in the auction, yet the equilibrium outcome of the speculation game

would not change. Although VCG auctions can restore efficiency by eliminating strategic

supply/demand reduction in a setting where the ownership structure is fixed, they cannot

eliminate the incentive to become a multi-unit owner in a setting where endogenous changes

to the ownership structure can happen.

18To be precise, the gain is of the magnitude [F (v∗)]2r, whereas the losses are of the magnitude [F (v∗)]2v∗,
which is a higher order infinitesimal.

19For instance, if the speculator had acquired three items, he would bid (0, 0, 0) in the VCG auction. In
contrast, he effectively bids (0,∞,∞) in the second-price auction.
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4 Speculation in First-Price Procurement Auctions

In this section, I consider speculation in first-price auctions. For simplicity, I restrict

attention to symmetric PBE in the FPA-speculation game. That is, sellers are assumed to

use the same strategy in equilibrium. As in the previous section, I first characterize the

equilibrium for any fixed p ∈ [0, r]. Then I proceed to analyze the speculator’s choice of p.

4.1 Equilibrium Characterization

Lemma 2 establishes the cutoff structure in equilibrium.

Lemma 2 Holding fixed p ∈ [0, r], in any symmetric PBE of the FPA-speculation game,

there exists v? ∈ [0, r] such that seller i ∈ I accepts the speculator’s offer if and only if

vi < v?.20

In light of Lemma 2, it is useful to consider the subgame in which the speculator and

m ≥ 1 sellers compete with each other. The speculator has no value for his item,21 while

each seller’s value is independently drawn from [v?, 1], with v? ∈ [0, r], according to the CDF

G(·; v?) := F (·)−F (v?)
1−F (v?)

. The auction subgame is labeled as Γ :=
〈
r,m,G(·; v?)

〉
.

I restrict attention to equilibrium in undominated strategies and maintain Assumption 2

throughout the rest of the paper.

Assumption 2 (Undominated bidding in the FPA) In the FPA subgame, bidders

never bid below their values.

Lemma 3 reveals information on the speculator’s and the sellers’ equilibrium payoffs in

the first-price auction subgame. This result will help set up the sellers’ indifference condition

and characterize the PBE of the speculation game.

Lemma 3 Under Assumption 2, the following statements hold in any symmetric BNE of

the FPA subgame Γ =
〈
r,m,G(·; v?)

〉
.

20More precisely, there exists a F -measure 0 set E such that seller i accepts the speculator’s offer if and
only if vi ∈ [0, v?) \ E .

21The speculator may own many items, but he will withhold all but one from the auction.
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(i) The equilibrium payoff of the speculator (in the subgame Γ) is

b(m, v?) := max
r≥b≥v?

b[1−G(b; v?)]m.

(ii) The interim equilibrium payoff of a seller with value v? is b(m, v?)− v?.

Lemma 3 is obtained on the condition that one such equilibrium exists. The issue of

equilibrium existence is addressed by Lemma 4, which provides the characterization of a

symmetric BNE.

Lemma 4 A symmetric BNE (in which the bidders never bid below their valuations) of the

FPA subgame Γ =
〈
r,m,G(·; v?)

〉
is given as follows.

(i) The sellers bid according to

β(v;m, v?) =


b(m, v?)/[1−G(v; v?)]m, if v? ≤ v ≤ b̄(m, v?),

v, if v > b̄(m, v?),

where

b̄(m, v?) := min

{
arg max

r≥b≥v?
b[1−G(b; v?)]m

}
.

(ii) The speculator mixes over [b(m, v?), b̄(m, v?)] according to the CDF

Ψ(b) = 1− exp

{
−
∫ β−1(b;m,v?)

v?

[β(x;m, v?) + (m− 1)x]

[β(x;m, v?)− x][1−G(x; v?)]
dG(x; v?)

}
.

For the marginal seller to be indifferent between accepting the acquisition offer and

participating in the procurement auction, the following must hold,

p−v? =

∫ r

v?
[1−F (x)]N−1dx+

N−2∑
m=0

(
N − 1

m

)
[1−F (v?)]m[F (v?)]N−1−m[b(m+1, v?)−v?]. (5)

Clearly, the left hand side is the seller’s payoff from accepting the speculator’s offer. The

right hand side is the seller’s expected payoff from the auction subgames, as indicated by

Lemma 3.
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A one-to-one mapping between p ∈ [π0, r] and v? ∈ [0, r] is defined implicitly by the

indifference condition (5). I denote the mapping from v? ∈ [0, r] to p ∈ [π0, r] by p?(v?).

Specifically,

p?(v?) := v? +

∫ r

v?
[1− F (x)]N−1dx

+
N−2∑
m=0

(
N − 1

m

)
[1− F (v?)]m[F (v?)]N−1−m[b(m+ 1, v?)− v?].22

(6)

The indifference condition (5) suggests that if p ≤ π0, no seller will accept the acquisition

offer in equilibrium. I include this case in the definition of v?(p), the inverse of p?(v?).

Specifically,

v?(p) :=


0, if p ≤ π0,

the unique solution for v? to (5), if π0 < p ≤ r.

Proposition 3 provides an equilibrium characterization for the speculation game.

Proposition 3 Under Assumption 2 and holding fixed p ∈ [0, r], the following statements

hold in the FPA-speculation game.

(i) In any symmetric PBE, seller i ∈ I accepts the speculator’s offer if and only if vi <

v?(p).

(ii) The cutoff acceptance strategy and the bidding strategies in Lemma 4 (with v? replaced

by v?(p)) constitute a symmetric PBE.23

4.2 Analysis of the Equilibrium

Again, thanks to the one-to-one mapping between p ∈ (π0, r] and v? ∈ (0, r], the specu-

lator’s problem of choosing p can be reformulated as choosing v?. By Lemma 3 and Propo-

22It can be verified that p?(v?) is strictly increasing in v? ∈ [0, r], with p?(0) = π0 and p?(r) = r. As a
result, the one-to-one mapping between p ∈ [π0, r] and v? ∈ [0, r] is well-defined. See Appendix A for details.

23If all the sellers sold their items to the speculator, the speculator bids r in the procurement auction; if
all the sellers rejected the acquisition offer, they bid as in a standard FPA model with symmetric bidders.
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sition 3, in any symmetric PBE of the speculation game, for a given cutoff level v? ∈ [0, r],

the speculator’s expected profit is given by

Π?(v?) :=
N−1∑
m=1

(
N

m

)
[1− F (v?)]m[F (v?)]N−mb(m, v?) + [F (v?)]Nr −N [F (v?)]p?(v?). (7)

The following result on the profitability of speculation is readily available.

Proposition 4 Speculation could be unprofitable in first-price auctions.

The proof of Proposition 4, as well as a comparative statics analysis on the profitability of

speculation, is given by Example 1.

Example 1 Fix N = 2 and let F (v) = vη, with η > 0. Since sellers are more likely to have

high valuations (and be less competitive in the procurement auction) with a larger η, η can

be thought of as a measure of sellers’ competitiveness. Figure 1 shows how the profitability of

speculation in first-price auctions changes with the reserve price r, and the competitiveness

parameter η.

Figure 1: Profitability of speculation in FPAs, with N = 2 and F (v) = vη.

For a fixed η, speculation is profitable if r is high enough and unprofitable otherwise.

Since the speculator’s profit comes from the auctioneer, it is not surprising that a higher

willingness-to-pay of the auctioneer leaves more room for speculation.
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For a fixed r, speculation is profitable if η is small enough and unprofitable otherwise.

A small η implies that a seller is more likely to have a low valuation, so the seller would be

willing to accept the acquisition offer at a low price. In the meantime, a small η means that

other sellers are likely to have low valuations, so the competition in the procurement auction

would be fierce. This further reduces the seller’s willingness-to-accept for the acquisition

offer. As a result, the speculator benefits from sellers’ competitiveness.

5 A Comparison of the Two Auction Formats

In this section, I compare speculation under the two auction formats and identify the

driving force underlying the difference.

5.1 Profitability Ranking

In the previous sections, it is shown that speculation tends to be successful in second-

price auctions but could be unprofitable in first-price auctions. Proposition 5 complements

the result by quantitatively comparing the expected profit from speculation under the two

auction formats.

Proposition 5 Speculation is strictly more profitable in second-price auctions than in first-

price auctions.

The proof of Proposition 5 is kept here in the main text since it is informative about the

underpinning of the result.

Proof. Consider the same equilibrium cutoff v† ∈ (0, r) under the two auction formats. The

speculator’s expected profit is higher under the second-price rule than under the first-price

rule—i.e., Π∗(v†) > Π?(v†)—for the following two reasons.

First, the corresponding acquisition price is higher in the first-price auction case, since

sellers have better prospects in the first-price auction subgames. In particular, in an auction

subgame with the speculator’s participation, a seller never wins under the second-price rule
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but could win under the first-price rule. Formally,

p?(v†)− p∗(v†) =
N−2∑
m=0

(
N − 1

m

)
[1− F (v†)]m[F (v†)]N−1−m[b(m+ 1, v†)− v†],

where the right hand side represents the extra expected payoff a type-v† seller can get in

first-price auction subgames.

Second, the speculator is better-paid in a second-price auction subgame than in a first-

price auction subgame. If the speculator is competing against 1 ≤ m ≤ N − 1 sellers in

an auction subgame summarized by Γ =
〈
r,m,G(·; v†)

〉
, the speculator’s expected payoff is

y(m, v†) under the second-price rule and is b(m, v†) under the first-price rule. Lemma 6 in

Appendix A shows that y(m, v†) > b(m, v†) for v† ∈ (0, r).

As a result, it is easy to see that Π∗(v†) > Π?(v†) for all v† ∈ (0, r) by comparing

equations (4) and (7). An immediate implication is maxv†∈[0,r] Π∗(v†) ≥ maxv†∈[0,r] Π?(v†).

If Π?(v†) is not maximized by 0 or r, the inequality is strict. If Π?(v†) is maximized by 0,

the right hand side of the inequality is 0. By Proposition 2, the left hand side is positive, so

the inequality is strict. Finally, Π?(v†) cannot be maximized by r, since

Π?(r) =
{

1− [1− F (r)]N −NF (r)
}
r < 0.

In summary, maxv†∈[0,r] Π∗(v†) > maxv†∈[0,r] Π?(v†). This concludes the proof.

The proof of Proposition 5 builds on the difference in the auction outcomes under the two

formats, which can be traced back to the difference in competition patterns. Specifically, in

second-price auctions, sellers do not respond to the presence of a strong competitor, namely,

the speculator: they still bid truthfully in equilibrium. However, in first-price auctions,

as will be shown below, sellers respond to the presence of a strong competitor by bidding

more aggressively. This helps the sellers win the procurement auction sometimes, even if

their values are surely above the speculator’s. Therefore, sellers have better prospects in

first-price auctions, whereas the speculator’s expected payoff is lower.

To see how sellers respond to the speculator’s presence in first-price auction subgames,

first consider the following hypothetical benchmark. Suppose that in any first-price auction

subgame Γ =
〈
r,m,G(·; v?)

〉
with 1 ≤ m ≤ N − 1, sellers bid as if the speculator was just

another seller. That is, the speculator also drew his value from [v?, 1] according to G(·; v?).
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In this case, sellers’ bidding strategy is given by

β̃(v;m, v?) =


v +

∫ r
v

[1−G(x; v?)]mdx
/

[1−G(v; v?)]m, if v? ≤ v ≤ r,

v, if v > r.

This is a suitable benchmark, since it hypothetically achieves revenue equivalence across

the two auction formats. Specifically, the allocative outcome, the speculator’s expected

profit, the auctioneer’s expected surplus and the sellers’ expected payoffs would be the same

under the two formats.24

In contrast with the benchmark, sellers bid against a stronger competitor in reality. They

respond by bidding more aggressively as indicated by Lemma 5.

Lemma 5 In a FPA subgame, sellers bid more aggressively when they compete against the

speculator than when they compete against another seller. Formally, β(v;m, v?) < β̃(v;m, v?)

for all v ∈ [v?, r).

As is shown in the previous analysis, sellers’ aggressive bidding undermines the profitability

of speculation in first-price auctions. Difference in sellers’ responses accounts for the result

in Proposition 5 and also the contrast between Proposition 2 and Proposition 4.

5.2 Welfare Comparison

With speculation, the revenue equivalence between first-price auctions and second-price

auctions breaks down. In this case, welfare raking is generally ambiguous. In particular,

although speculation is more profitable in second-price auctions, it does not necessarily lead

to more efficiency loss. First-price auctions could be less efficient, as the profit-maximizing

cutoff level could be higher therein. Even with the same cutoff level, a first-price auction is

less efficient than a second-price auction, since it includes an additional source of inefficiency

other than the destruction of private values: the allocative inefficiency in asymmetric auction

subgames.

24Notice that the speculator would bid β̃(v?;m, v?) and always win the procurement auction in the hypo-
thetical benchmark.
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Since an explicit expression for the profit-maximizing cutoff level is unavailable under

the two formats, a general welfare ranking result cannot be obtained. Nevertheless, when

speculation is not profitable in first-price auctions, the welfare ranking is given by the

following corollary.

Corollary 2 In the presence of a speculator, provided that Π?(v?) < 0 for all v? ∈ (0, r],

FPA is better for the auctioneer and efficiency but worse for the sellers than SPA.

6 Extensions to the Second-Price Auction Model

Two extensions to the second-price auction model are presented in this section. First, I

consider a more general setting and reexamine the profitability of speculation. Specifically,

I relax the assumption that sellers draw their values from the same distribution. In the

meantime, I consider the case where the speculator can only make offers to a subset of

the sellers. This limited access assumption is relevant when the speculator wishes to keep

speculation discreet by operating on a limited scale, or when the speculator is subject to a

budget constraint.

Formally, the baseline model is modified as follows for this section. For all i ∈ I, seller

i’s value vi is drawn from [0,1] according to the CDF Fi(·). The corresponding PDF is fi(·).

Again, I assume Fi(0) = 0 < Fi(v) for all v ∈ (0, 1]. The speculator can make (potentially

different) acquisition offers only to a subset of the sellers, denoted by A.

Second, I study an enhanced speculation approach which is fine-tuned to address the loss

from private value destruction. While I focus mainly on the second-price auction case, a result

regarding enhanced speculation in first-price auctions is included to facilitate comparison.

6.1 Speculation with Limited Access to Asymmetric Sellers

In this part, I reexamine the profitability of speculation in second-price auctions.

In light of the analysis of the baseline case, I consider price offers that will lead to a

vector of acceptance/rejection cutoffs v∗ := (v∗j )j∈A, with v∗j ∈ [0, r].25 That is, seller j ∈ A
25Clearly, v∗j > r (which implies that pj > r) is suboptimal for the speculator.
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accepts the speculator’s offer if and only if vj < v∗j . Define

p∗j(v
∗) := v∗j +

∫ r

v∗j

∏
i∈I\A

[1− Fi(x)]
∏

s∈A\{j}

[
1− F (max{x, v∗s})

]
dx. (8)

Proposition 6 gives the equilibrium characterization in this case.

Proposition 6 Suppose that the speculator offers pj = p∗j(v
∗) to seller j ∈ A, with v∗j ∈

[0, r]. Then a PBE of the SPA-speculation game is described as follows. Seller j ∈ A accepts

the speculator’s offer if and only if vj < v∗j . In the procurement auction, sellers bid truthfully

and the speculator engages in strategic supply withholding.

Note that the speculator’s profit originates from his ability to reduce potential

competition in the auction. If the speculator cannot reduce the competition in a

meaningful way, either because the speculator can make acquisition offer to only one seller,

or because some sellers outside the speculator’s reach are very competitive, speculation

would not be profitable. Condition 1 addresses the two possibilities.

Condition 1 There exists {k, k′} ⊆ A, such that for all i ∈ I \ A,

lim
v→0

[vFi(v)/Fk(v)] = 0 and lim
v→0

[vFi(v)/Fk′(v)] = 0.

It is clear that Condition 1 rules out the case that A is a singleton. Condition 1 also requires

the sellers outside the speculator’s reach are not too competitive as compared with some

sellers in the speculator’s reach. Specifically, Condition 1 ensures the values of the sellers in

I \ A do not concentrate at the lower end much more than the values of some sellers in A

do. This requirement does not appear to be too strong, and it is trivially met if sellers are

symmetric.

Proposition 2 can be generalized to the current setting as follows.

Proposition 2′ If Condition 1 is satisfied, speculation in the second-price procurement

auction is profitable.
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6.2 Enhanced Speculation

In this part, I consider an enhanced speculation scheme fined-tuned to address the issue

of private value destruction. To that end, I assume that after the procurement auction, the

speculator can auction off his surplus items back to the sellers who accepted the acquisition

offer. The speculator’s auction is referred to as the “return and refund” auction.

If sellers’ items are heterogenous, they will not compete with each other in the return

and refund auction, which undermines the speculator’s incentive to carry out one. As the

purpose of the analysis is to understand whether and by how much the enhanced speculation

scheme can improve the speculator’s profit, I assume in this part (Section 6.2) only that the

items are homogeneous. Another way to have competition in the return and refund auction

is that upon winning the procurement auction, the speculator can conduct the return and

refund auction before delivering an item to the auctioneer. In this case, the bidding in the

procurement auction must be for a generic item, rather than a specific one.26

The three-stage SPA-enhanced-speculation game is described as follows. The first two

stages are the same as described in Section 2. In the third stage that happens after the

procurement auction, the speculator conducts an auction to sell back his surplus items and

get some refunds from the sellers who accepted the acquisition offer. I assume that the

speculator’s return and refund auction takes the form of a VCG auction. Specifically, if the

speculator has K ≥ 1 item(s) for sale after the procurement auction, the return and refund

auction is a (K + 1)-st price auction.27,28

The limited access and seller asymmetry specifications are maintained in this part.

26For example, if bidders bid for a road pavement contract by promising to finish the job without specifying
the identity of the contractor they will use, the bidding is considered to be generic.

27It is clear that this enhanced speculation model has a forward auction counterpart, in which the specu-
lator can promise to sell to more than one potential buyers before a forward auction. After the auction, the
speculator conducts another auction to buy back some promises.

28The forward auction counterpart of the baseline setting (where return and refund is not feasible) is
described as follows. N ≥ 2 buyers, whose values are independently drawn from [0, 1], seek to purchase an
item in an upcoming auction. In the meantime, an outside market sells an unlimited amount of this item at
a price of 1. A speculator may offer to sell to the potential buyers at a price of p before the auction starts.
More precisely, the speculator offers each potential buyer a future contract. If a buyer accepts, the buyer
pays p and the speculator promises to deliver the item after the auction concludes. Buyers who agree to buy
from the speculator (rationally) abstain from the auction and the speculator participates in the auction if
any contract is signed. After the auction concludes, the speculator delivers the item(s) won in the auction
and/or bought from the outside market as promised.
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Again, I consider a set of prices that can induce a vector of acceptance/rejection cutoffs in

equilibrium. For any vector v∗ ≡ (v∗j )j∈A with v∗j ∈ [0, r],29 define

p̄∗j(v
∗) :=

∫ v∗j

0

∏
s∈A\{j}

[
1− F (min{x, v∗s})

]
dx+∫ r

v∗j

∏
i∈I\A

[1− Fi(x)]
∏

s∈A\{j}

[
1− F (max{x, v∗s})

]
dx.

(9)

Proposition 7 provides equilibrium characterization for the enhanced speculation game.

Proposition 7 In the three-stage SPA-enhanced-speculation game, suppose that the

speculator offers pj = p̄∗j(v
∗) to seller j ∈ A, with v∗j ∈ [0, r]. Then a PBE of the

speculation game is described as follows. Seller j ∈ A accepts the speculator’s offer if and

only if vj < v∗j . Sellers bid truthfully in the procurement auction or in the return and refund

auction. The speculator engages in strategic supply withholding in the procurement auction.

From the speculator’s perspective, the enhanced speculation scheme has two advantages

over the simple speculation scheme. First, holding fixed a vector of acceptance/rejection

cutoffs v∗, the compensation to the sellers is lower under the enhanced speculation approach

as the sellers have an opportunity to win their item back.30 Second, the speculator can get

some revenue from the return and refund auction. Corollary 3 ensues as a result.

Corollary 3 The enhanced speculation approach can generate more profit for the speculator

(than the simple speculation approach).

Corollary 4 demonstrates the full potential of the enhanced speculation scheme in second-

price auctions. If the speculator is capable of reaching every seller and organizing the return

and refund auction, he is in a position to “take over” the procurement auction from the

auctioneer.

Corollary 4 If A = I, the speculator can “knock out” every seller and achieve the following

outcome by setting v∗i = r for all i ∈ I: It is as if the speculator conducts a second-price

29It can be shown that v∗j > r is suboptimal for the speculator.
30It is easy to see that p∗j (v∗)− p̄∗j (v∗) =

∫ v∗
j

0

{
1−

∏
s∈A\{j}

[
1− F (min{x, v∗s})

]}
dx > 0.
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auction with a reserve price of r to buy an item from the sellers, and then sells the item to

the auctioneer at a price of r.

As a comparison, fix A = I and consider enhanced speculation in first-price auctions.

Proposition 8 shows that complete knockout is generally not feasible. This suggests that

enhanced speculation is also more profitable in second-price auctions.

Proposition 8 If F (r) < 1, complete knockout does not work in FPAs even if the speculator

can conduct a VCG auction to return and refund the extra items.31

7 Conclusion

This paper studies speculation in procurement auctions by the means of market power

accumulation in the pre-auction stage and supply withholding in the auction stage. The PBE

of a dynamic speculation game is characterized in both the case of second-price auctions and

the case of first-price auctions. Speculation tends to be successful in second-price auctions

but not so much in first-price auctions, because sellers respond differently in bidding to the

speculator under the two formats.

In particular, first-price auctions can prevent speculation in some cases. Since speculation

harms efficiency and inflates the procurement cost, in those cases, first-price auctions would

outperform second-price auctions.

31If F (r) = 1, the speculator can threat to bid 0 if any seller rejects his offer. Then a complete knockout
can be supported as a weak PBE. If F (r) < 1, because rejection happens with a positive probability on the
equilibrium path, the threat would violate sequential rationality.
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Appendix A Proofs

Proof of Lemma 1

Proof. I prove the lemma in two steps. In step 1, I show that for each seller i ∈ I, there

exists v∗i ∈ [0, r] such that seller i takes the speculator’s offer if and only if vi < v∗i . I then

show in step 2 that v∗i s are the same across i ∈ I.

Step 1. Given that all the other sellers and the speculator play their equilibrium strategies,

consider seller i’s problem. It is useful to note that if seller i accepts the speculator’s offer,

his payoff is

πAi (vi) = p− vi.

Suppose first that all the other sellers reject the speculator’s offer with probability 1. Then

if seller i rejects the offer, he competes in a second-price auction against all the other sellers.

It is straightforward to see that his payoff is

πRi (vi) =

∫ r

vi

[1− F (x)]N−1
1{x≤r}dx.

32

Therefore,

∂[πAi (vi)− πRi (vi)]

∂vi
=


−{1− [1− F (vi)]

N−1} < 0, if 0 < vi ≤ r,

−1 < 0, if vi > r.

This implies that πAi (vi)− πRi (vi) strictly decreases with vi, which further implies that there

exists a desired cutoff v∗i .

Next, suppose that the probability of at least one other seller taking the speculator’s

offer, denoted by Q, is positive. If seller i rejects the offer, his payoff is 0 if at least one other

seller accepts the offer, which happens with probability Q. If no seller accepts the offer, or

32The payoff calculation here follows from a standard payoff equivalence argument. Since in the direct
mechanism seller i’s winning probability is [1− F (vi)]

N−1
1{vi≤r}, and his payoff is 0 if his value is realized

to be r, seller i’s interim expected payoff can be obtained by integrating the winning probability from vi to
r.
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equivalently, after the public history (N, 0), seller i’s payoff is

πRi (vi;N, 0) =

∫ r

vi

WP i(x;N, 0)dx,

where WP i(x;N, 0) stands for the winning probability of seller i with a realized value x.

Then seller i’s interim expected payoff is

πRi (vi) = (1−Q)

∫ r

vi

WP i(x;N, 0)dx,

which implies that

∂[πAi (vi)− πRi (vi)]

∂vi
= −[1− (1−Q)WP i(vi;N, 0)] < 0.

Again, because πAi (vi)− πRi (vi) strictly decreases with vi, there exists a desired cutoff v∗i . In

particular, the following holds true for the cutoff v∗i ,

πAi (v∗i ) ≤ πRi (v∗i ), and πAi (v∗i ) = πRi (v∗i ) if v∗i > 0. (10)

Step 2. Without loss of generality, suppose that v∗1 ≤ v∗2 ≤ . . . ≤ v∗N . Assume by contra-

diction that v∗` < v∗`+1 for some 1 ≤ ` < N . Note that for each i ∈ I, given vi ≥ v∗i , seller i’s

winning probability is

WP i(vi) = [1− F (vi)]
s−1

N∏
t=s+1

[1− F (v∗t )]1{vi≤r}, if v∗s ≤ vi < v∗s+1.

Consider seller ` with value v∗` . If he rejects the acquisition offer, his expected payoff from

the auction is

πR` (v∗` ) =

∫ r

v∗`

WP`(x)dx.

It follows from (10) that

p− v∗` ≤ πR` (v∗` ) =

∫ v∗`+1

v∗`

[1− F (x)]`−1

N∏
t=`+1

[1− F (v∗t )]1{v`≤r}dx+

∫ r

v∗`+1

WP`(x)dx. (11)
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Since

[1− F (x)]`−1

N∏
t=`+1

[1− F (v∗t )]1{v`≤r} ≤ 1− F (v∗`+1) < 1,

(11) implies that

p− v∗` < v∗`+1 − v∗` +

∫ r

v∗`+1

WP`(x)dx. (12)

Because v∗`+1 > 0, one can see that

p− v∗`+1 =

∫ r

v∗`+1

WP`+1(x)dx =

∫ r

v∗`+1

WP`(x)dx, (13)

where the the first equality follows from (10) and the second equality is due to the fact that

WP`(x) =WP`+1(x) for x ≥ v∗`+1. It is easy to see that a contradiction arises between (12)

and (13). This completes the proof.

Proof of Proposition 1

Proof. By Lemma 1, it suffices to show that the equilibrium cutoff is unique and is given

by v∗(p).

If seller i rejects the speculator’s offer, it is weakly dominant for him to bid truthfully

in the procurement auction. Given that other sellers follow the equilibrium strategy, the

winning probability of seller i is

WP i(vi) =


[1− F (v∗)]N−1

1{vi≤r}, if vi < v∗,

[1− F (vi)]
N−1

1{vi≤r}, if vi ≥ v∗.

Then (10) in the proof of Proposition 1 can be rewritten as follows,

p− v∗ ≤
∫ r

v∗
[1− F (x)]N−1

1{x≤r}dx, and p− v∗ =

∫ r

v∗
[1− F (x)]N−1

1{x≤r}dx if v∗ > 0.

This immediately implies that v∗ = v∗(p).

Proof of Proposition 2
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Proof. Note that Π∗(v∗) can be rewritten as follows.

Π∗(v∗) =
N−2∑
m=0

(
N

m

)
[F (v∗)]N−m[1− F (v∗)]m

{
v∗ +

∫ r

v∗

[
1− F (x)

1− F (v∗)

]m
dx

}
−NF (v∗)

{
1− [1− F (v∗)]N−1

}
v∗.

As v∗ → 0, the only non-zero term of limv∗→0
Π∗(v∗)

[F (v∗)]2
is

lim
v∗→0

(
N

N − 2

)
[1− F (v∗)]N−2

∫ r

v∗

[
1− F (x)

1− F (v∗)

]N−2

dx =

(
N

2

)∫ r

0

[1− F (x)]N−2dx > 0.

Since Π∗(v∗)
[F (v∗)]2

is continuous in v∗ ∈ [0, r], limv∗→0
Π∗(v∗)

[F (v∗)]2
> 0 implies that Π∗(v∗) > 0 for

small enough v∗ > 0. Consequently, the speculator’s expected profit is maxv∗∈[0,r] Π∗(v∗) > 0.

This concludes the proof.

Proof of Lemma 2

Proof. Let α(v) denote the probability that a type-v seller accepts the speculator’s offer

in equilibrium. Define v := inf{v ∈ [0, 1] : ∃ε > 0 such that α(v′) < 1 for all v′ ∈ Uε(v) :=

(v, v + ε)}. By construction, α(v) = 1 for all v < v except for a set with F -measure 0. It is

clear that v ≤ p ≤ r.

It suffices to show that α(v) = 0 for all v > v. Consider seller i with vi > v. If seller i

accepts the speculator’s offer, his payoff is

$A(vi) = p− vi.

If seller i rejects the speculator’s offer, the interim expected payoff to seller i can be estab-

lished as follows by a standard payoff equivalence argument,

$R(vi) = $R(v)−
N−1∑
m=1

Pr[h = (m, 1)]

∫ vi

v
WP?(x;m, 1)dx−Pr[h = (N, 0)]

∫ vi

v
WP?(x;N, 0)dx,

where WP?(x;h) is the winning probability of seller i with value x after a history h, given

that all the other bidders in the auction use their equilibrium bidding strategies and seller i
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best-responds to the other bidders’ equilibrium bidding. Note that

∂$R(vi)

∂vi
= −

N−1∑
m=1

Pr[h = (m, 1)]WP?(vi;m, 1)− Pr[h = (N, 0)]WP?(vi;N, 0) ≥ −1.

By the definition of v, one can see that α(vi) < 1 for vi ∈ Uε(v). Therefore, Pr[h = (N, 0)] > 0

andWP?(vi;N, 0) < 1 for vi ∈ Uε(v). This implies that ∂$R(vi)
∂vi

> −1 for vi ∈ Uε(v). Further,

$R(vi) = $R(v) +

∫ vi

v

∂$R(x)

∂x
dx > $R(v)− (vi − v). (14)

Since the speculator’s offer is rejected with positive probability when a seller’s value is in

Uε(v), we know that

$R(v) ≥ $A(v) = p− v.

Plugging this into (14) yields that $R(vi) > p− vi = $A(vi), which implies that α(vi) = 0.

This completes the proof.

Proof of Lemma 3

Proof. Suppose that the sellers’ equilibrium bidding strategy is given by β(v;m, v?) for

v ∈ [v?, 1]. Define the distribution of a seller’s equilibrium bid as H(b) := Pr[β(v;m, v?) ≤ b].

Denote the speculator’s lowest and highest equilibrium bid by b and b̄, respectively.33 Clearly,

v? ≤ b ≤ b̄ ≤ r. I first establish the following facts.

Claim 1 H(b) has no mass point at b for an arbitrary b ≤ b̄.

Proof. Suppose to the contrary that Pr[β(v;m, v?) = b′] > 0 for some b′ ≤ b̄. Then there

exists v′ < b′ such that β(v′;m, v?) = b′. A type-v′ seller would have an incentive to deviate

to bidding b′ − ε for some small ε > 0 to significantly improve his winning probability.

Claim 2 H(b̄) = G(b̄; v?).

33More precisely, b̄ := inf{b′ ≥ 0 : Pr[the speculator’s bid in equilibrium ≤ b′] = 1}, and b := sup{b′ ≥ 0 :
Pr[the speculator’s bid in equilibrium ≥ b′] = 1}.
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Proof. It suffices to show that β(v;m, v?) < b̄ for all v < b̄. Suppose to the contrary that

β(v′;m, v?) ≥ b̄ for some v′ < b̄. Then a type-v′ seller loses for sure. He can profitably

deviate to bidding b̄− ε for some small ε > 0.

Claim 3 β(v;m, v?) is strictly increasing in v ∈ (v?, b̄).

Proof. Suppose v? < v′ < v′′ < b̄. The no-deviation condition of the two types are

[β(v′;m, v?)− v′]WP(β(v′;m, v?)) ≥ [β(v′′;m, v?)− v′]WP(β(v′′;m, v?)),

[β(v′′;m, v?)− v′′]WP(β(v′′;m, v?)) ≥ [β(v′;m, v?)− v′′]WP(β(v′;m, v?)),

where WP(b) stands for the winning probability of bidding b given that other players use

their equilibrium bidding strategies. Adding up the two no-deviation conditions yields the

following,

(v′′ − v′)[WP(β(v′;m, v?))−WP(β(v′′;m, v?))] ≥ 0,

which implies that WP(β(v′;m, v?)) ≥ WP(β(v′′;m, v?)) and thus

β(v′;m, v?) ≤ β(v′′;m, v?). Since H(b) has no mass point at b for an arbitrary b ≤ b̄ and

β(v;m, v?) < b̄ for v < b̄, β(v;m, v?) is strictly increasing in v ∈ (v?, b̄).

Claim 4 β(v?;m, v?) = b and thus H(b) = 0.

Proof. If β(v?;m, v?) > b, the speculator can profitably deviate from bidding b to bidding

β(v?;m, v?), so β(v?;m, v?) ≤ b. Suppose by contradiction that β(v?;m, v?) < b. Then there

exists v̂ > v? such that β(v̂;m, v?) = b. Note that for v ≤ v̂, the speculator’s payoff from

bidding β(v;m, v?) is [1−G(v; v?)]mβ(v;m, v?). I show next that [1−G(v; v?)]mβ(v;m, v?)

is decreasing in v ∈ [v?, v̂], which implies that the speculator can profitably deviate from

bidding b to bidding β(v?;m, v?).

By the payoff equivalence theorem, for v ∈ [v?, v̂],

(b− v̂)[1−G(v̂; v?)]m−1 +

∫ v̂

v

[1−G(x; v?)]m−1dx = [1−G(v; v?)]m−1[β(v;m, v?)− v].

Therefore,
d
{

[1−G(v; v?)]m−1β(v;m, v?)
}

dv
= v

d[1−G(v; v?)]m−1

dv
< 0.
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This implies that [1 − G(v; v?)]m−1β(v;m, v?) decreases in v ∈ [v?, v̂]. Clearly,

[1−G(v; v?)]mβ(v;m, v?) decreases in v ∈ [v?, v̂].

I then proceed to prove the lemma. Note that bidding b is optimal for the speculator. By

Claim 4, the speculator’s payoff from bidding b is b, as he wins the auction with probability

1. Therefore, for all b ∈ [v?, r], it holds that

b ≥ b× Pr[The speculator wins with a bid of b]

≥ b× Pr[The speculator wins with a bid of b and without a tie]

= b
{

1− Pr[β(v;m, v?) ≤ b]
}m

≥ b[1−G(b; v?)]m,

(15)

where the first inequality follows from the optimality of bidding b, and the last inequality

follows from β(v;m, v?) ≤ v. By Claim 1 and Claim 2, the speculator’s payoff from bidding

b̄ is b̄[1−G(b̄; v?)]m. Due to the optimality of bidding b̄ and (15), it holds that

b̄[1−G(b̄; v?)]m = b ≥ b[1−G(b; v?)]m for all b ∈ [v?, r].

This implies that b = maxr≥b≥v? b[1−G(b; v?)]m ≡ b(m, v?). Consequently, the speculator’s

equilibrium payoff is b(m, v?).

Finally, consider the interim equilibrium payoff of a type-v? seller. If the speculator bids

b with probability 0, by Claim 4 the seller’s interim equilibrium payoff is b(m, v?) − v?. If

the speculator bids b with a positive probability, then b = v?. Otherwise the type-v? seller

would have an incentive to deviate to bidding b − ε for some small ε > 0. Plugging b = v?

into (15) yields that

v? ≥ b[1−G(b; v?)]m for all b ∈ [v?, r].

As a result, b(m, v?) = v?. Then it is clear that the interim equilibrium payoff of the seller

is 0 = b(m, v?)− v?. This completes the proof.

Proof of Lemma 4

Proof. First, consider the speculator’s problem, holding fixed the sellers’ equilibrium bid-
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ding. The speculator’s expected payoff from bidding b ∈ [0, r] is
b, if b ≤ b(m, v?),

b{Pr[β(v;m, v?) > b]}m, if b(m, v?) < b ≤ r,

0, if r < b.

Clearly, the speculator would not deviate to bidding b < b(m, v?). Note that

b{Pr[β(v;m, v?) > b]}m =


b(m, v?), if b ≤ b̄(m, v?),

b[1−G(b; v?)]m, if b̄(m, v?) < b ≤ r.

By the definition of b(m, v?), b(m, v?) ≥ b[1−G(b; v?)]m for all b ∈ [v?, r], so the speculator

would not deviate to bidding b > b̄(m, v?). Bidding anything in between b(m, v?) and b̄(m, v?)

is optimal for the speculator.

Next, consider the problem of seller i ∈ I, holding fixed all the other sellers’ equilibrium

bidding and the speculator’s. If vi ≥ b̄(m, v?), seller j can never win the auction with a

positive payoff, bidding truthfully yields a zero payoff and thus is optimal for him.

Suppose vi ∈ [v?, b̄(m, v?)). Seller j never bids strictly less than b(m, v?). Otherwise, he

can deviate to a slightly higher bid and still win for sure. Bidding above b̄(m, v?) is also

not optimal for seller j since he loses for sure in that case. Therefore, seller j chooses a

bid in [b(m, v?), b̄(m, v?)] to maximize his expected payoff. This is equivalent to choosing

v̂ ∈ [v?, b̄(m, v?)] and bidding β(v̂;m, v?). Formally, seller j solves

max
v̂∈[v?,b̄(m,v?)]

$(v̂; v) := [1−G(v̂; v?)]m−1[1−Ψ(β(v̂;m, v?))][β(v̂;m, v?)− v].

It can be verified that

∂$(v̂; v)

∂v̂
=

mβ(v̂;m, v?)

β(v̂;m, v?)− v̂
[1−G(v̂; v?)]m−2G′(v̂; v?)[1−Ψ(β(v̂;m, v?))](v − v̂).

It follows from the definition of b(m, v?) that β(v;m, v?) > v for all v ∈ [v?, b̄(m, v?)).

Therefore, $(v̂; v) is maximized by v̂ = v and it is optimal for seller j to bid β(v;m, v?).
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Proof of Footnote 22

Proof. Consider the right derivative of p?(v) for any v ∈ (0, r). For notational ease, define

C(v;m) := [1− F (v)]m[F (v)]N−1−m[b(m+ 1, v)− v]. (16)

I first prove that C ′+(v;m) := limε→0+
C(v+ε;m)−C(v;m)

ε
> −[1− F (v)]m[F (v)]N−1−m.

By definition,

b(m+ 1, v) =
maxr≥b≥v b[1− F (b)]m+1

[1− F (v)]m+1
.

If there exists b′ ∈ (v, r] such that b′ ∈ arg maxr≥b≥v b[1 − F (b)]m+1, then increasing v

marginally would not change the value of maxr≥b≥v b[1− F (b)]m+1. It follows that

C ′+(v;m) =
∂
{

[F (v)]N−1−mb′[1− F (b′)]m+1/[1− F (v)]
}

∂v
−
∂
{

[1− F (v)]m[F (v)]N−1−mv
}

∂v

= b′[1− F (b′)]m+1 (N − 1−m)[F (v)]N−2−m[1− F (v)] + [F (v)]N−1−m

[1− F (v)]2
f(v)

− v
{

(N − 1−m)[F (v)]N−2−m[1− F (v)]m −m[1− F (v)]m−1[F (v)]N−1−m
}
f(v)

− [1− F (v)]m[F (v)]N−1−m

> −[1− F (v)]m[F (v)]N−1−m,

where the inequality follows from the fact that b′[1− F (b′)]m+1 ≥ v[1− F (v)]m+1.

If v[1 − F (v)]m+1 > b[1 − F (b)]m+1 for all b ∈ (v, r], there exists ε > 0 such that

b(m + 1, v′) = v′ for all v′ ∈ [v, v + ε]. As a result, C(v′;m) = 0 for v′ ∈ [v, v + ε]. This

implies that

C ′+(v;m) = 0 > −[1− F (v)]m[F (v)]N−1−m.

To sum up, (16) holds and the following ensues,

lim
ε→0+

p?(v + ε)− p?(v)

ε
= 1− [1− F (v)]N−1 +

N−2∑
m=0

(
N − 1

m

)
C ′+(v;m)

> 1− [1− F (v)]N−1 −
N−2∑
m=0

(
N − 1

m

)
[1− F (v)]m[F (v)]N−1−m = 0.

Consequently, p?(v) is strictly increasing in v ∈ (0, r).
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Finally, it is easy to verify that p?(0) = π0 and p?(r) = r. This completes the proof.

Proof of Proposition 3

Proof. Point (i) follows immediately from Lemma 2 and the indifference condition (5).

To prove Point (ii), it suffices to verify the cutoff acceptance strategy is optimal for a

representative seller i ∈ I. If seller i, with a realized value of vi, accepts the acquisition offer,

his payoff is

$A
i (vi) = p− vi.

If seller i rejects the acquisition offer, he participates in the procurement auction. As is

shown in the proof of Lemma 2, seller i’s expected payoff $R
i (vi) satisfies

∂$R
i (vi)

∂vi
≥ −1.

As a result, $A
i (vi) − $R

i (vi) decreases with vi. Since $A
i (v?) = $R

i (v?), it is optimal for

seller i to accept the acquisition offer if and only if vi < v?.

Proof of Proposition 4

Proof. See Example 1 in the main text.

Lemma 6 For all v† ∈ [0, r),

y(m, v†) := v† +

∫ r

v†

[
1− F (x)

1− F (v†)

]m
dx > b(m, v†) := max

r≥b≥v†
b[1−G(b; v†)]m.

Proof of Lemma 6

Proof. Recall that G(v; v†) := F (v)−F (v†)
1−F (v†)

for v ∈ [v†, 1]. So it suffices to prove that

v† +

∫ r

v†

[
1−G(x; v†)

]m
dx > b[1−G(b; v†)]m for all v† ∈ [0, r) and b ∈ [v†, r].
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In fact,

v† +

∫ r

v†

[
1−G(x; v†)

]m
dx ≥ v† +

∫ b

v†

[
1−G(x; v†)

]m
dx

≥ v† +

∫ b

v†

[
1−G(b; v†)

]m
dx

= v†
{

1−
[
1−G(b; v†)

]m}
+ b[1−G(b; v†)]m

≥ b[1−G(b; v†)]m.

The equalities cannot hold at the same time, as that requires b = r (from the first inequality),

G(x; v†) = G(b; v†) for almost every x ∈ [v†, b] (from the second inequality), and v† = 0 (from

the last inequality).

Proof of Lemma 5

Proof. It suffices to prove that β̃(v;m, v?) > β(v;m, v?) for all v ∈ [v?, b̄(m, v?)), which is

equivalent to

Z(v) := v[1−G(v; v?)]m +

∫ r

v

[1−G(x; v?)]mdx > b(m, v?) for all v ∈ [v?, b̄(m, v?)).

It is easy to verify that Z(v) is strictly decreasing in v ∈ [v?, b̄(m, v?)]. Then the proof is

completed by the following fact,

Z(b̄(m, v?)) = b(m, v?) +

∫ r

b̄(m,v?)

[1−G(x; v?)]mdx ≥ b(m, v?).

Proof of Proposition 6

Proof. It suffices to verify that the acceptance/rejection schedule is optimal for an arbitrary

seller j ∈ A, given that all the other sellers follow the equilibrium strategies described in

Proposition 6.

If seller j, with a realized valuation vj ≤ r,34 accepts the offer, his payoff is πAj (vj) =

pj(v
∗)− vj. If he rejects the offer, he participates in the procurement auction. Seller j wins

34Note that p∗j (v∗) ≤ r, so seller j would reject the acquisition offer if vj > r.
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in the procurement auction if and only if all the other sellers’ valuations are above vj and

the speculator failed to acquire any item. Formally, seller j’s winning probability is

WPj(vj) =
∏
i∈I\A

[1− Fi(vj)]
∏

s∈A\{j}

[
1− F (max{vj, v∗s})

]
.

As a result, seller j’s expected payoff in the auction is πRj (vj) =
∫ r
vj
WPj(x)dx.

The following two facts in combination verify the optimality of accepting the acquisition

offer if and only if vj < v∗j :

∂[πAj (vj)− πRj (vj)]

∂vj
= −[1−WPj(vj)] ≤ 0, and πAj (v∗j ) = πRj (v∗j ).

Proof of Proposition 2′

Proof. I show in what follows that the speculator can obtain a positive expected profit by

setting v∗j = v∗ for all j ∈ A and appropriately choosing v∗.

Given that v∗j = v∗ for all j ∈ A, the speculator’s profit from the events in which only

one seller accepts the offer is

Π∗(v∗, 1) =
∑
j∈A

Fj(v
∗)

∏
j′∈A\{j}

[1− Fj′(v∗)]

{∫ v∗

0

∏
i∈I\A

[1− Fi(x)]dx

+

∫ r

v∗

∏
i∈I\{j}[1− Fi(x)]∏

j′∈A\{j}[1− Fj′(v∗)]
dx− v∗ −

∫ r

v∗

∏
i∈I\{j}

[1− Fi(x)]dx

}
.
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As v∗ approaches 0, one can see that35

Π∗(v∗, 1) =
∑
j∈A

∑
j′∈A\{j}

Fj(v
∗)Fj′(v

∗)

∫ r

v∗

∏
i∈I\{j}

[1− Fi(x)]dx

+
∑

j∈A,i∈I\A

O
(
v∗Fj(v

∗)Fi(v
∗)
)

+
∑

j∈A,j′∈A\{j}

o
(
Fj(v

∗)Fj′(v
∗)
)

=
∑

j∈A,j′∈A\{j}

Fj(v
∗)Fj′(v

∗)


∫ r

v∗

∏
i∈I\{j}

[1− Fi(x)]dx+

∫ r

v∗

∏
i∈I\{j′}

[1− Fi(x)]dx


+

∑
j∈A,i∈I\A

O
(
v∗Fj(v

∗)Fi(v
∗)
)

+
∑

j∈A,j′∈A\{j}

o
(
Fj(v

∗)Fj′(v
∗)
)
.

The speculator’s expected profit from the events in which two sellers accept the offers is

Π∗(v∗, 2) =
∑

j∈A,j′∈A\{j}

Fj(v
∗)Fj′(v

∗)
∏

j′′∈A\{j,j′}

[1− Fj′′(v∗)]

{∫ v∗

0

∏
i∈I\A

[1− Fi(x)]dx

+

∫ r

v∗

∏
i∈I\{j,j′}[1− Fi(x)]∏

j′′∈A\{j,j′}[1− Fj′′(v∗)]
dx− 2v∗ −

∫ r

v∗

∏
i∈I\{j,j′}

[1− Fi(x)][2− Fj(x)− Fj′(x)]dx

}
.

As v∗ approaches 0, one can see that

Π∗(v∗, 2) =
∑

j∈A,j′∈A\{j}

Fj(v
∗)Fj′(v

∗)

∫ r

v∗

∏
i∈I\{j,j′}

[1− Fi(x)][Fj(x) + Fj′(x)− 1]dx

+
∑

j∈A,j′∈A\{j}

o
(
Fj(v

∗)Fj′(v
∗)
)
.

Analogously, one can calculate Π∗(v∗,m) for m ≥ 3. For m ≥ 3, it is clear that

Π∗(v∗,m) =
∑

j∈A
∑

j′∈A\{j} o
(
Fj(v

∗)Fj′(v
∗)
)

as v∗ approaches 0. Since the speculator’s

35I use O(·) to denote the same order infinitesimal and o(·) to denote higher order infinitesimal as v∗ → 0.
That is, for an arbitrary function of v∗ denoted by T (v∗), limv∗→0O(T (v∗))/T (v∗) equals a non-zero constant,
and limv∗→0 o(T (v∗))/T (v∗) = 0.
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expected profit is Π∗(v∗) =
∑

m Π∗(v∗,m), as v∗ approaches 0,36

Π∗(v∗) =
∑
j∈A

∑
j′∈A\{j}

Fj(v
∗)Fj′(v

∗)

∫ r

v∗

∏
i∈I\{j,j′}

[1− Fi(x)]dx

+
∑

j∈A,i∈I\A

O
(
v∗Fj(v

∗)Fi(v
∗)
)

+
∑

j∈A,j′∈A\{j}

o
(
Fj(v

∗)Fj′(v
∗)
)
.

One can find j1, j2 ∈ A such that limv→0[Fj(v)/Fj1(v)] < ∞ for all j ∈ A and that

limv→0[Fj′(v)/Fj2(v)] < ∞ for all j′ ∈ A \ {j1}. Then j1 and j2 (as k and k′) must satisfy

Condition 1. From Condition 1 and the specification of j1 and j2, it follows that

lim
v→0

vFj(v)Fi(v)

Fj1(v)Fj2(v)
= 0 and lim

v→0

o
(
Fj(v

∗)Fj′(v
∗)
)

Fj1(v)Fj2(v)
= 0,∀j ∈ A, j′ ∈ A \ {j}, and i ∈ I \ A.

Therefore,

lim
v∗→0

Π∗(v∗)

Fj1(v
∗)Fj2(v

∗)
≥
∫ r

0

∏
i∈I\{j1,j2}

[1− Fi(x)]dx > 0.

This completes the proof.

Proof of Proposition 7

Proof. First, it is useful to note that a seller can either participate in the procurement

auction, or the return and refund auction, but not both. Since there are no continuation

games for the sellers in the two auctions, it is easy to verify that the bidding strategies

described in Proposition 7 are optimal for the sellers.

For the speculator, the return and refund auction happens after the procurement auction.

Therefore, his bidding in the procurement auction may affect how many items he has for

sale in the return and refund auction. Suppose that the speculator acquired K ≥ 1 items

from K sellers. The speculator’s opportunity cost for selling one item in the procurement

auction is that he can bring one less item to the return and refund auction. Because bringing

all K items to the return and refund auction yields a zero auction revenue, the speculator’s

opportunity cost for selling one item is 0. Therefore, strategic supply withholding—bidding

0 for one item and withholding the rest—is optimal for the speculator.

36Note that |A| > 1 is needed to make sure A \ {j} is not an empty set.
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It only remains to verify that the acceptance/rejection schedule is optimal for an arbitrary

seller j ∈ A, given that all the other sellers follow their strategies described in Proposition 7.

If seller j ∈ A, with a realized valuation vj ∈ [0, 1], accepts the acquisition offer, he gets

a payment of p̄∗j(v
∗) and a chance to participate in the return and refund auction. In the

return and refund auction, seller j wins if his valuation is not the lowest among the sellers

who accepted the acquisition offer. The winning probability is

WPj(vj) = 1−
∏

s∈A\{j}

[
1− F (min{vj, v∗s})

]
.

Therefore, seller j’s expected payoff in the return and refund auction is
∫ vj

0
WPj(x)dx.

Further, seller j’s expected payoff from accepting the acquisition offer is

πAj (vj) = p̄∗j(v
∗)− vj +

∫ vj

0

WPj(x)dx.

If seller j rejects the acquisition offer, he participates in the procurement auction. Seller

j wins in the procurement auction if his valuation is lower than the reserve price and is the

lowest among all the sellers, and no seller sold to the speculator. Formally, seller j’s winning

probability is

WPj(vj) := 1{vj≤r}
∏
i∈I\A

[1− Fi(vj)]
∏

s∈A\{j}

[
1− F (max{vj, v∗s})

]
.

Therefore, seller j’s expected payoff from the procurement auction is

πRj (vj) =

∫ r

vj

WPj(x)dx.

Note that πAj (v∗j ) = πRj (v∗j ). Then it suffices to show that πAj (vj)− πRj (vj) decreases with
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vj. In fact,

∂[πAj (vj)− πRj (vj)]

∂vj
= −

{ ∏
s∈A\{j}

[
1− F (min{vj, v∗s})

]
− 1{vj≤r}

∏
i∈I\A

[1− Fi(vj)]
∏

s∈A\{j}

[
1− F (max{vj, v∗s})

]}
≤ 0,

where the inequality follows from 1{vj≤r}
∏

i∈I\A[1 − Fi(vj)] ≤ 1 and 1 − F (min{vj, v∗s}) ≥

1− F (max{vj, v∗s}). This completes the proof.

Proof of Proposition 8

Proof. Suppose that in an equilibrium, all the sellers with valuations lower than r are

knocked out of the procurement auction. Because F (r) < 1, on the equilibrium path,

rejection of the acquisition offer can still happen. Therefore, the speculator cannot tell

whether a rejection is because of a deviation or because the seller has a valuation above r.

So the speculator must bid r in the procurement auction, regardless of how many rejections

occurred.

For a seller with value v < r, the equilibrium payoff in the compete knockout scenario is∫ r
v

[1−F (x)]N−1dx. However, if the seller deviates and bids r−ε in the procurement auction,

where ε is an arbitrarily small number, he gets a higher payoff of r − ε − v. This means

complete knockout cannot happen in equilibrium.
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