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Abstract

We study the information design problem in a single-unit auction setting. The information designer

controls independent private signals according to which the buyers infer their binary private values.

Assuming that the seller adopts the optimal auction due to Myerson (1981) in response, we characterize

both the buyer-optimal information structure, which maximizes the buyers’ surplus, and the seller-

worst information structure, which minimizes the seller’s revenue. We translate both information design

problems into finite-dimensional, constrained optimization problems in which one can explicitly solve

for the optimal information structure. In contrast to the case with one buyer (Roesler and Szentes,

2017), we show that with two or more buyers, the symmetric buyer-optimal information structure is

different from the symmetric seller-worst information structure. The good is always sold under the seller-

worst information structure but not under the buyer-optimal information structure. Nevertheless, as the

number of buyers goes to infinity, both symmetric information structures converge to no disclosure. We

also show that in our ex ante symmetric setting, an asymmetric information structure is never seller-worst

but can generate a strictly higher surplus for the buyers than the symmetric buyer-optimal information

structure.
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1 Introduction

Consider a seller who would like to sell one object to a group of buyers. The classical optimal auction

due to Myerson (1981) assumes that each buyer privately knows his own valuation; moreover, each

valuation follows a distribution which is common knowledge. In this paper, we study an information

design problem in which each buyer learns his private valuation independently via a signal according to

which the seller runs the Myersonian optimal auction. The seller earns the expected highest nonnegative

virtual value, whereas the buyers earn the expected total surplus minus the seller’s revenue. We derive the

buyer-optimal information structure which maximizes the buyers’ total surplus, as well as the seller-worst

information structure which minimizes the seller’s optimal revenue.

In reality the buyers may not know their own valuations for the good and have to assess how well the

product suits their need via information sources such as advertisements, recommendations from some

platform, or product descriptions. For instance, personalized advertising communicates privately with

the buyers according to their individual characteristics such as gender, age, economic status, and so on.

We consider contexts in which these personal characteristics are independently distributed so that the

information is purely private,1 that is, one learns nothing about a buyer’s information or characteristics

from the advertisement shown to another buyer. These features motivate our study of information design

with independent private signals.

Providing more information to the buyers can lead to a higher surplus but also a higher payment for

them in an optimal auction. Hence, the effect of a new information source on the buyers’ welfare is not

a priori clear. The buyer-optimal information structure contributes to our understanding of this issue by

identifying an information structure which maximizes the buyers’ aggregate surplus. In this regard, our

study builds upon the prior work on monopoly pricing by Roesler and Szentes (2017) but expands the

scope to an auction setup with multiple buyers. The information designer may be a regulator who aims

to promote consumers’ welfare by requiring the seller to disclose certain information about the product,

or else by restricting the seller from doing so.2 The information designer may also be a data vendor who

can sell product-related information for a fee proportional to buyers’ (average/ total) surplus and who

therefore looks for an information structure which maximizes the buyers’ surplus.

The buyers’ surplus is the total surplus minus the seller’s revenue. Hence, studying the seller-worst

information structure helps us understand the trade-off between minimizing the seller’s revenue and

maximizing the total surplus. The seller-worst information design also offers a “minmax” upper bound

1See, for instance, Chen, Owen, Pixton, and Simchi-Levi (2022) where the consumers’ characteristics are modeled as i.i.d.

random vectors.
2Terstiege and Wasser (2020) study a buyer-optimal information design problem with monopoly pricing in which the in-

formation designer may be a regulator of the product information. For example, prescription drug ads must list side-effects

and contra-indications to protect consumers. They focus on a situation where the buyer cannot commit to ignore any addi-

tional information released by the seller, whereas we follow Roesler and Szentes (2017) in setting aside the issue of the seller’s

disclosure.
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for the revenue guarantee of a mechanism regardless of the equilibrium and the information structure.

Such a “minmax” upper bound is crucial to establishing the strong duality results in Bergemann, Brooks,

and Morris (2016), Du (2018), and Brooks and Du (2021). Specifically, these strong duality results

show, in different contexts, that this “minmax” upper bound is equal to the maximal revenue guarantee

achieved by a “maxmin” mechanism. In this vein, the seller-worst information provides a first step toward

establishing such a strong duality result—or lack thereof, in an independent private-value setting.3

We assume that the seller has zero reservation value for the good and the buyers are ex ante symmetric.

In particular, the buyers’ ex post valuation of the good is equal to either 0 or 1 with an identical mean

p. We assume that each signal provides an unbiased estimator about the buyer’s valuation. Hence, by

Blackwell (1953), an information structure is feasible if and only if it consists of a profile of independent

signal distributions, all with mean p.4 We begin by solving an optimal symmetric signal distribution in

both information design problems.5 As is true for deriving symmetric equilibria in symmetric auctions, it

is also more tractable to derive a symmetric information structure in our ex ante symmetric information

design problems.6

We show that as long as there are two or more buyers, the buyer-optimal information structure need

not be equal to the seller-worst information structure. This result sharply contrasts with the results of

Roesler and Szentes (2017), which show that the two information structures are equivalent when there

is only one buyer. More precisely, when there are two or more buyers, we pin down a cutoff ps which

is decreasing with the number of buyers. If p is no more than ps, then the (symmetric) seller-worst

information structure for each buyer remains the same as in the one-buyer case. If p is higher than ps,

then the seller-worst signal distribution remains equal to a truncated Pareto distribution but with virtual

value ks > 0 for any signal less than 1, and with virtual value 1 when the signal is equal to 1. Since

3We discuss the tightness of this upper bound in Section 6.3. In particular, Bachrach, Chen, Talgam-Cohen, Yang, and

Zhang (2022) recently prove that when there are only two buyers, a second-price auction with a suitably chosen random reserve

price guarantees exactly the seller-worst revenue that we identify in this paper over all symmetric independent information

structures and undominated equilibria.
4Alternatively, our analysis also applies and produces the same result if the information designer is allowed to choose any

signal distributions with a given mean p and support [0, 1]. In a similar vein, Carrasco, Luz, Kos, Messner, Monteiro, and

Moreira (2018) study a revenue-maximizing seller with a single buyer where the seller has only partial information about the

buyer’s valuation distribution, e.g., its first and second moments.
5Focusing on the seller-optimal information, Bergemann and Pesendorfer (2007) considers a Myersonian optimal auction

setting where the seller can decide to whom to sell at what price and the accuracy by which bidders learn their (not necessarily

binary) valuation through independent private signals. In our setting, the seller-optimal information is full revelation (i.e., the

prior) against which the seller posts the price 1 and extracts full surplus. This is a special case of the full-surplus-extraction

result due to Krähmer (2020).
6Even with symmetric information structures, we still allow for irregular signal distributions for which the optimal auction

need not be a second-price auction with a reserve price. Hence, our information design problem is not equivalent to the

corresponding information design problem where the seller is committed to adopting a second-price auction with reserve; see

Section 4.4 for more discussions and Appendix A.12 for an illustrative example.
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all virtual values are nonnegative at any signal profile, the good is always sold. Indeed, raising the low

virtual value from 0 to ks has two countervailing effects. First, the seller’s revenue increases as the low

virtual value increases. Second, to satisfy the mean constraint, increasing the low virtual value must be

compensated for by decreasing the probability of having the high virtual value 1. Through a cost-benefit

analysis, we show that the low virtual value ks increases when either the prior mean or the number of

buyers grows.

The (symmetric) buyer-optimal information structure differs from the (symmetric) seller-worst infor-

mation structure in several ways. First, we pin down two cutoffs rb and pb which are also decreasing in

the number of buyers. If p lies between rb and pb, then the buyer-optimal information structure remains

the same as in the one-buyer case. When p is less than rb, the buyer-optimal signal distribution puts a

positive mass on signal 0 and the remaining mass on a truncated Pareto distribution with virtual values

0 and 1. Since signal 0 induces a negative virtual value, with positive probability the seller withholds

the good. The reason for this is that, to maximize the buyers’ surplus, the information designer needs

to consider not only the seller’s revenue but also the total surplus. Moreover, the total surplus is convex

in the buyers’ signal and hence favors dispersion. When p is above pb, the buyer-optimal signal distri-

bution is a truncated Pareto distribution. However, also due to the convexity of the total surplus, the

distribution induces a low virtual value kb < ks for any signal less than 1 and a high virtual value 1

otherwise.

Our results highlight two kinds of allocative inefficiency with multiple buyers. First, in our setting

the good will be allocated to a buyer with the highest interim (virtual) value, who need not have the

highest ex post value 1. Second, as we argue above, the buyer-optimal signal distribution may put a

positive mass on signal 0 against which the seller withholds the good. Both sorts of inefficiency sharply

contrast with the optimal information with one buyer under which ex post efficiency is always achieved.

When the number of buyers goes to infinity, the cutoffs ps, rb, and pb all tend to zero; both kb

and ks monotonically increase to p; and the corresponding probabilities assigned to virtual value 1

monotonically decrease. As a result, both the buyer-optimal and the seller-worst signal distributions

converge to a degenerate distribution which puts all mass on the prior mean p. In particular, learning

no information is asymptotically buyer-optimal with a large number of buyers. This result offers an

extreme form of the message due to Roesler and Szentes (2017) that a buyer does not want to learn

his valuation perfectly in a monopoly setting. This result also sharply contrasts with the result of Yang

(2018) that when the buyers engage in strategic information acquisition, they will acquire (in a symmetric

equilibrium) asymptotically perfect information about their values.

We summarize the results on optimal symmetric information in Table 1.

We also investigate asymmetric information structure in both information design problems. For the

seller-worst problem, we show that the optimal symmetric information structure remains the unique

optimal solution, even if the information designer can choose different signal distributions for different
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Table 1: Main results and comparisons

Number

of buyers
Optimal distribution with different prior mean p

Always

sell?

n = 1
Seller-worst Virtual values 0 and 1 for any prior mean p,

which is consistent with Roesler and Szentes (2017)
Yes

Buyer-optimal

n ≥ 2

Seller-worst
0 < p ≤ ps ps < p < 1 Yes

Virtual values 0 and 1 Virtual values ks and 1

Buyer-optimal
0 < p < rb rb ≤ p ≤ pb pb < p < 1 No

A positive mass on 0 as

well as virtual values 0 and 1

Virtual values

0 and 1

Virtual values

kb and 1

n→∞
Seller-worst

Degenerate distribution (revealing nothing) for any mean Yes
Buyer-optimal

buyers. Intuitively, averaging a profile of asymmetric virtual value distributions grants the seller fewer

option values in selecting the highest virtual values and thereby earns him less revenue. This means that

restricting attention to symmetric signal distributions entails no loss in minimizing the seller’s revenue.

However, averaging a profile of asymmetric signal distributions may entail loss in the expected total

surplus. In particular, we explore one case with two buyers and another case with a large number

of buyers, in both of which an asymmetric information structure generates a strictly higher aggregate

surplus for the buyers than the optimal symmetric information structure does. Our result shows that

asymmetric information structure can emerge endogenously as a choice of a buyer-optimal information

designer, even in our ex ante symmetric setting.

Finally, we explain the novelty of our argument. For us to solve our information design problems, it

is crucial that we transform the control variables. More precisely, instead of working with signal/interim

value distributions, we work with the interim virtual value distribution. After the change of variable,

the information design problem becomes an isoperimetric problem in optimal control theory. The Euler-

Lagrange equation can then be invoked in this problem to argue that the virtual value distribution

function is a step function with at most two steps. This effectively reduces the infinite-dimensional in-

formation design problem to a tractable finite-dimensional constrained optimization problem. Moreover,

with the few control variables, such as the two-step virtual value distribution functions, we are able to

understand their trade-off, as we have explained above.

The rest of this paper proceeds as follows. Section 2 describes our model and formulates the informa-

tion design problem. Section 3 presents our main results. Section 4 demonstrates how we simplify the

control variables of the information design problems. Section 5 studies the information design problem

with asymmetric signal distributions. Section 6 discusses issues with asymmetric or continuous priors
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and studies the tightness of our seller-worst upper bound for some candidate “maxmin” mechanisms.

Section 7 concludes. Appendix A contains all proofs which are omitted from the main text.

2 Model

There is a seller who has one object to sell to a finite set N = {1, 2, ..., n} of potential buyers. The seller

has no value for the object. Each buyer’s prior valuation, vi, is identically and independently drawn

from a Bernoulli distribution H on {0, 1}. Let p = E[vi] = Pr (vi = 1) denote the mean of H. To rule

out trivial cases, we assume that p ∈ (0, 1). Suppose that (i) each buyer can observe an independently

and identically distributed signal xi about vi from an information designer, and (ii) the joint distribution

of vi and xi is common knowledge to the seller as well as among the buyers. That is, the information

designer commits to a signal structure for each agent, and each agent observes that commitment, not

just for his own signal structure but also for the other agents’ signal structures.

2.1 Information structure

Following Roesler and Szentes (2017), we say a signal distribution is feasible if each signal of a buyer

provides him with an unbiased estimate about his valuation. Then, according to the characterization of

Blackwell (1953), the prior valuation distribution H is a mean-preserving spread of any feasible distribu-

tion of signals. Since H is a Bernoulli distribution on {0, 1}, the mean-preserving spread condition can be

reduced to a mean constraint. Hence, a feasible symmetric information structure is a signal distribution

G with G ∈ GH , where

GH =

{
G : [0, 1]→ [0, 1]

∣∣∣∣∫ 1

0

x dG(x) = p and G is a CDF

}
.

2.2 Information design problem

Given a feasible signal distribution G, a revenue-maximizing mechanism is an optimal auction due to

Myerson (1981). In an optimal auction, the seller’s revenue is equal to the expected highest, nonnegative,

ironed virtual value maxi{ϕ̂(xi|G), 0}. Formally, for any CDF G with supp(G) ⊂ [0, 1], let a = inf{x ∈

[0, 1]|G(x) > 0}, and define

Ψ(x|G) =


0, if x ∈ [0, a);

a− x(1−G(x)), if x ∈ [a, 1].

Let Φ(x|G) be the convexification of Ψ under the G-quantile space.7 By definition, for any x ∈ [0, 1],

the (ironed) virtual valuation at x, denoted as ϕ̂(x|G), is an infimum of the G -sub-gradients of Φ(x|G).

7That is, Φ(x|G) is the largest convex function of G(x) that is everywhere weakly below Ψ(x|G). In Appendix A.1 , we also

give a formal and detailed instruction about the ironed virtual value from Monteiro and Svaiter (2010) and also Yang (2018).
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If Φ(x|G) = Ψ(x|G) for any x, then we say that G is a regular distribution. We denote by ϕ̂ an ironed

virtual value and use ϕ to denote a virtual value induced from a regular distribution. If G is regular,

then the virtual value has the well-known expression equal to

ϕ(x|G) = x− 1−G (x)

G′ (x)
.

We allow the information designer to choose any feasible distribution function G, whether it is regular

or irregular and whether or not it admits a density function.

Let M(x|G) = {i ∈ N |ϕ̂(xi|G) ≥ maxj{ϕ̂(xj |G), 0}} be the set of buyers who have the largest

nonnegative virtual value for a given signal realization x; and let M ′(x|G) = {i ∈ N |xi ≥ xj , ∀j ∈

M(x|G)} be the set of buyers who have not only the highest nonnegative virtual value but also the

largest signal among those with the highest virtual value for a given signal realization x. Define an

allocation rule as follows:

qi(xi, x−i|G) =


1

|M′(x|G)| , if i ∈M ′(x|G);

0, if i 6∈M ′(x|G).

That is, qi(xi, x−i|G) is an optimal auction allocation rule which breaks a tie in favor of surplus maxi-

mization.

We study the following information design problem parameterized by α = 0 or 1:

max
G

∫
[0,1]n

n∑
i=1

(αxi − ϕ̂(xi|G)) qi(xi, x−i|G)

n∏
i=1

(dG(xi)) (1)

s.t.

∫ 1

0

(1−G(x)) dx = p. (2)

The term
∑n
i=1 xiqi(xi, x−i|G) is the total surplus generated under the optimal auction allocation rule

qi. Moreover, the term
∑n
i=1 ϕ̂(xi|G)qi(xi, x−i|G) is the seller’s revenue under the allocation rule qi,

namely, the expected highest nonnegative virtual value. Hence, if α = 0, the information designer aims

to minimize the seller’s revenue, and this corresponds to the seller-worst information design problem.

If α = 1, the information designer aims to maximize the buyers’ surplus, and this corresponds to the

buyer-optimal information design problem. Hereafter, we call (2) the mean constraint.

Endow the space of Borel probability measures on [0, 1] with the weak∗ topology. We say a signal

distribution G induces nonnegative virtual values except at 0 if the virtual values induced by G are

nonnegative almost everywhere on (0, 1]. We denote by G+
H ⊂ GH the feasible signal distribution with

nonnegative virtual values except at 0. Also we say a signal distribution G is regular except at 0 if G

is regular almost everywhere on (0, 1]. We will argue later in Lemma 4 and in Lemma 5, the optimal

signal distribution must induce nonnegative virtual values except at 0 and be regular except at 0. We

now present two lemmas. The first lemma documents the existence of the solution to the problem in

(1). The second lemma highlights the additional trade-off which a buyer-optimal information designer is

facing, on top of minimizing the seller’s revenue.
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Lemma 1. For the problem in (1), an optimal solution exists.

Proof. We first establish the seller-worst case. By Theorem 2 of Monteiro (2015), the expected revenue

is a lower semicontinuous function in G. Hence, the objective function of the problem in (1) is an upper

semicontinuous function in G. Since GH is a closed subset of the set of Borel probability measures on

[0, 1], GH is compact. Thus, by the extreme value theorem, an optimal solution exists.

For the buyer-optimal problem, proving the existence of an optimal solution is more involved; we

provide a formal proof in Appendix A.2.

Lemma 2. For the problem in (1) and signal distribution Ĝ ∈ G+
H , if Ĝ is a mean-preserving spread of

signal distribution G, then Ĝ will generate more total surplus than G; and if Ĝ is a strict mean-preserving

spread of signal distribution G, then Ĝ will strictly generate more total surplus than G.8

Proof. Observe that
∑n
i=1 xiqi(xi, x−i|G) = max{x1, · · · , xn} if the good is allocated. Therefore,∫

[0,1]n

n∑
i=1

xiqi(xi, x−i|G)

n∏
i=1

(dG(xi)) ≤
∫ 1

0

xdGn ≤
∫ 1

0

xdĜn =

∫
[0,1]n

n∑
i=1

xiqi(xi, x−i|G)

n∏
i=1

(
dĜ(xi)

)
.

The first inequality follows because the good may not be allocated under qi. The second inequality

follows because Ĝ is a mean-preserving spread of G, and because
∫ 1

0
xdGn =

∫ 1

0
max{x1, · · · , xn}dG has

an integrand that is convex in x. Moreover, the second inequality is strict if Ĝ is a strict mean-preserving

spread of G. The equality follows because Ĝ ∈ G+
H , and the good is always sold under qi except when

xi = 0 for every i. (In this case, the total surplus remains the same, whether the good is sold or not.)

3 Main results

In this section, we present our results on both information design problems. We will detail their proofs

in Section 4.

The unique symmetric seller-worst information structure is a truncated Pareto distribution. The

distribution is regular and induces only two virtual values, ks and 1, on the support [xs, 1] , where

(ks, xs) depends on the prior mean p and the number of buyers n (but we will omit the dependence to

simplify the notations). The following result summarizes the seller-worst information structure:

Theorem 1. For each p and n, there exists a tuple (ks, xs) ∈ [0, 1]2 such that the unique symmetric

seller-worst information structure is the following truncated Pareto distribution:

Gs(x) =


1− xs−ks

x−ks , if x ∈ [xs, 1) ;

1, if x = 1.

(3)

Moreover, there exists a threshold ps such that (i) ks = 0 if p ∈ (0, ps]; and (ii) ks > 0 if p ∈ (ps, 1) .

8We say that Ĝ is a mean-preserving spread of signal distribution G if
∫ x
0 (Ĝ(t)−G(t))dt ≥ 0 for all x with equality at x = 1;

we also say that Ĝ is a strict mean-preserving spread if
∫ x
0 (Ĝ(t) − G(t))dt ≥ 0 for all x with strict inequality at some x with

G-positive probability.
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Theorem 1 states that the symmetric seller-worst signal distribution is a truncated Pareto distribution

which induces virtual value x− 1−Gs(x)
gs(x)

= x− xs/(x−ks)

xs/(x−ks)2
= ks for x ∈ [xs, 1), and virtual value 1 for x = 1.

Let θs ≡ 1 − xs−ks
1−ks be the probability of Gs inducing the low virtual value ks. Since the seller-worst

information induces only nonnegative values, the good is always sold. Moreover, since the seller-worst

information is regular, the seller’s optimal revenue can be achieved by a second-price auction with no

reserve; see Proposition 5.2 of Krishna (2009). The seller earns the expected virtual surplus equal to:

ks × θns + 1× (1− θns ) . (4)

Since Gs is the seller-worst information structure, the tuple (ks, xs) or, equivalently, (ks, θs) is chosen

to minimizes the seller’s expected virtual surplus, subject to the mean constraint

(1− ks)(1− θs)(1− log(1− θs)) + ks = p. (5)

The Lagrangian is linear in the low virtual value with the marginal effect being determined by the

following term:9

Js(θs) ≡ θs log(1− θs)︸ ︷︷ ︸
cost(<0)

+n(θs + (1− θs) log(1− θs))︸ ︷︷ ︸
benefit(>0)

. (6)

Intuitively, raising the low virtual value ks has two countervailing effects on a revenue-minimizing in-

formation designer. First, by increasing the lower virtual value, the seller’s revenue increases, which

translates into a cost in proportion to the first term in (6). Second, to obey the mean constraint, the

probability of the high virtual value 1 must be reduced, which results in a benefit in proportion to the

second term in (6). Observe that the cost and benefit only depend on the number of buyers n and

probability θs.

As the Lagrangian is linear in the low virtual value, an interior solution occurs only when the benefit

exactly offsets the cost, namely Js(θs) = 0, and then ks is pinned down by the mean constraint. With

no more than two buyers, we can verify that the cost dominates the benefits regardless of θs; hence, we

must have a corner solution ks = 0 and set ps = 1. Consequently, the seller-worst information structure

is the same for n = 1 and n = 2. If there are more than three buyers, by setting ks = 0 in Equation (5),

we obtain the threshold,

ps = (1− θs)(1− log(1− θs)), (7)

where θs is obtained from Js(θs) = 0. Again, for any prior mean below the threshold, the cost dominates

the benefit and thereby we have a corner solution. We provide details in Appendix A.7.

The cost-benefit analysis also tells us how the seller-worst information varies with the prior mean or

the number of buyers. The cost-benefit formula Js(θs) only depends on n, and so does the probability

θs of the low virtual value. Hence, for any fixed number of buyers, ks must go up in proportion with p

to obey the mean constraint (5). If n goes up, the benefit in Js(θs) increases; hence, the probability of

the low virtual value should also be increased to rebalance the cost and the benefit. Consequently, ks

9To be clear, the Lagrangian is defined to maximize the additive inverse of the objective in (4).
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should be raised to obey the mean constraint (5). In summary, the low virtual value ks is increasing in

both p and n.

We now turn to the buyer-optimal information. The unique buyer-optimal information structure is

also a truncated Pareto distribution; however, it may place some mass θ0 at signal x = 0. The distribution

is regular except at x = 0 and induces only two virtual values kb and 1 on the support [xb, 1], where

(θ0, kb, xb) depends on p and n. The following result summarizes the buyer-optimal information structure:

Theorem 2. For each p and n, there exists a tuple (θ0, kb, xb) ∈ [0, 1]3 such that the unique symmetric

buyer-optimal information structure is the following truncated Pareto distribution (except at x = 0):

Gb(x) =


θ0, if x ∈ [0, xb);

1− (xb−kb)(1−θ0)
x−kb

, if x ∈ [xb, 1);

1, if x = 1.

(8)

Moreover, there exist two thresholds rb and pb such that (i) kb = 0 and θ0 > 0 if p ∈ (0, rb); (ii) kb = 0

and θ0 = 0 if p ∈ [rb, pb]; and (iii) kb > 0 and θ0 = 0 if p ∈ (pb, 1).

The buyer-optimal signal distribution places mass θ0 at x = 0 and then becomes a truncated Pareto

distribution which induces virtual value kb for x ∈ [xb, 1), and virtual value 1 for x = 1. Under the

buyer-optimal information, the seller’s optimal revenue can be achieved by a second-price auction with

a positive reserve price xb > 0; see Proposition 5.2 of Krishna (2009).

To maximize the buyers’ surplus, the information designer must consider not only the seller’s revenue

but also the expected total surplus. As a result, the buyer-optimal information structure differs from the

seller-worst information structure in several ways. First, when the prior mean p < rb, the buyer-optimal

signal distribution puts a mass θ0 on signal 0; that is, with probability θn0 the good is not sold. Second,

when the prior mean p > pb, the low virtual value becomes positive; this reflects the same intuition as

that of the seller-worst information structure when p > ps.

Given Gb, we can compute the buyers’ total surplus:

n (1− kb) (1− θb)

(
n−1∑
i=1

−θib
i
− log (1− θb) +

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))
,

where θb ≡ 1 − (1−θ0)(xb−kb)
1−kb

is the mass θ0 plus the probability of Gb inducing virtual value kb. If

θ0 = 0, then the trade-off between θb and kb can be analyzed similarly as that of θs and ks in the

seller-worst information structure. In particular, an interior solution (kb, θb) is jointly determined by the

mean constraint

(1− kb)(1− θb) (1− log(1− θb)) + kb = p, (9)

and the cost-benefit equation

θb log(1− θb)︸ ︷︷ ︸
cost(<0)

+ θn−1
b (θb + (1− θb) log(1− θb)) +

n−1∑
i=1

θi+1
b

i︸ ︷︷ ︸
benefit(>0)

= 0. (10)
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Again, since Lagrangian is linear in kb, Equation (10) balances the cost and benefit. With no more than

two buyers, we can again verify that the cost dominates the benefits regardless of θb; hence, we must

have a corner solution kb = 0 and set pb = 1.10 If there are three or more buyers, by setting kb = 0 in

Equation (9), we obtain the following threshold:

pb = (1− θb)(1− log(1− θb)), (11)

where θb solves Equation (10). Then, for any prior mean below the threshold pb, the cost dominates the

benefit and thereby we have a corner solution for kb.

The cost-benefit equations in (6) and (10) also reveal that the buyer-optimal information designer is

more reluctant to raise the low virtual value than a seller-worst information designer. Indeed, controlling

the marginal cost, the buyer-optimal information designer receives less marginal benefit from raising the

low virtual value than a seller-worst information designer does; see Claim 1 in Appendix A.8 for a formal

comparison. This is because raising the low virtual value, subject to the mean constraint, results in a

mean-preserving contraction; hence, it decreases the expected total surplus by Lemma 2. It also follows

from the benefit comparison that pb is larger than ps, and for any given p, we have kb ≤ ks.

As in the seller-worst information design, the cost-benefit Equation (10) only depends on n, and so

does the probability θb. Hence, for any fixed number of buyers, kb must go up in proportion with p to

obey the mean constraint (9). If n grows up, the benefit in (10) increases; hence, the probability of the

low virtual value should also be increased to rebalance the cost and the benefit. Consequently, kb should

be raised to obey the mean constraint (9). In summary, the low virtual value kb is increasing in both p

and n.

Moreover, we identify another threshold rb < pb below which the buyer-optimal information designer

also deviates from the unique seller-worst information structure. In particular, for p < rb, the buyer-

optimal information designer puts a positive mass θ0 on x = 0 to induce a mean-preserving spread from

the seller-worst information structure. While the mean-preserving spread generates more revenue for

the seller, it generates even more expected total surplus to benefit the buyers. We provide a similar

cost-benefit analysis to pin down (θ0, θb) as well as rb in Appendix A.8.11

As the number of buyer goes to infinity, both θs (which solves Js(θs) = 0), and θb (which solves

Equation (10)) converge to 1; hence, both ps in (7) and pb in (11) converge to zero. It then follows from

Equations (5) and (9) that ks and kb will also increase to p. We summarize this in Corollary 1.

Corollary 1. As n→∞, the buyer-optimal information structure coincides with the seller-worst infor-

mation structure in the limit. Both are given by the degenerate distribution which assigns probability one

to p.

10In contrast to the seller-worst case, however, the buyer-optimal information structure for n = 2 may differ from that of

n = 1, since the former may put a mass at x = 0.
11We also show in Appendix A.8 that θ0 and kb cannot both be positive and thereby each cost-benefit tradeoff involves only

two of the three parameters.
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Corollary 1 implies that when n is large, both the buyer-optimal and the seller-worst information

structures are close to “no disclosure”; that is, the information designer chooses the degenerate distribu-

tion which concentrates on x = p. In the limit, the seller charges and extracts the ex ante expectation p

of a single buyer’s value and leaves no surplus to the buyers. This is consistent with Part (ii) of Theorem

5 in Ganuza and Penalva (2010) which establishes that in a second-price auction with no reserve and a

sufficiently large number of buyers, a less precise signal produces a lower revenue for the seller.

Corollary 1 also contrasts with the result of Yang (2018). Specifically, Yang (2018) shows that

when buyers engage in strategic information acquisition, the unique symmetric equilibrium information

structure converges to full information, as the number of buyers goes to infinity. Hence, the buyers

also retain zero surplus in the limit, as in our buyer-optimal information structure. Since our symmetric

buyer-optimal information structure provides an upper bound of the buyers’ surplus under the symmetric

equilibrium in Yang (2018), the comparison reveals that their gap vanishes as the number of buyers goes

to infinity.12

In Yang (2018), the buyers’ surplus goes to zero because of the increasing competition in information

acquisition with more buyers. In our case, however, the limiting zero surplus is driven by the buyer-

optimal information designer’s intentional choice to increase the low virtual value kb in order to reduce the

probability of virtual value 1. As we explained after presenting Theorem 1, when n is large, reducing the

probability of a high virtual value becomes a dominant consideration for the buyer-optimal information

designer. Nevertheless, we will show later that the buyers do retain a nonvanishing surplus even when

n goes to infinity; as long as the information designer can commit herself to choosing an asymmetric

information structure; see Section 5.2.

Figure 1 provides a numerical example with p = 1/2 and n = 1, 2, ..., 10. We document a number of

features in this example to illustrate our main results.

• The top subfigure shows:

– As n increases, the low virtual value goes up in both the seller-worst and buyer-optimal cases.

– The seller-worst low virtual value ks is larger than the buyer-optimal low virtual value kb.

– ks tends to 0.5 faster than kb.

– When n = 2, the buyer-optimal signal distribution puts a mass of 0.06 on x = 0 against which

the seller withholds the good.

• The bottom-left subfigure shows:

– The buyers’ surplus under the buyer-optimal information structure is strictly higher than that

of the seller-worst information structure.

12Shi (2012) studies an optimal auction problem in which the buyers acquire information individually from restricted feasible

information structures after the auction is announced; in contrast, in Yang (2018) as well as in our paper, the optimal auction

is designed according to the information, whether by design in our case or from the buyers’ strategic acquisition in the case of

Yang (2018).
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Figure 1: A simulation for different n with p = 0.5

– The buyers’ surplus grows only from n = 1 to n = 2 and then decreases with n.

• The bottom-right subfigure shows:

– The seller’s revenue under the buyer-optimal information structure is strictly higher than that

of the seller-worst information structure.

– The seller-worst revenue never exceeds 0.5 since the information designer can opt to disclose no

information. In contrast, with n ≥ 4, the seller’s revenue under the buyer-optimal information

exceeds 0.5.

4 Outline of the solution

Here we outline the steps to solve the information design problems we encounter. As we mentioned in

the introduction, the key idea is to reduce the problems into tractable, finite-dimensional constrained

optimization problems.

1. We first present two preliminary lemmas to restrict the class of distributions of interest:

(a) Any buyer-optimal information structure induces nonnegative virtual values except at 0, i.e.,

the buyer-optimal signal distribution must belong to G+
H . Moreover, any seller-worst informa-

tion structure must induce nonnegative virtual values almost everywhere. (Lemma 4).
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(b) Any buyer-optimal signal distribution must be “regular except at 0” (i.e., regular everywhere

except at x = 0) and any seller-worst signal distribution must be regular (Lemma 5 ).

2. We change the choice variable in our information design problems from the distribution of signals

to the distribution of virtual values (Lemma 7).

3. We show that the reformulation after the change of variable reduces the information design prob-

lems to tractable, finite-dimensional optimization problems. This enables us to derive the explicit

solution to the information design problems, regardless of the number of buyers. In particular,

when n = 1, we obtain the same solution that appears in Roesler and Szentes (2017).

4.1 Preliminary Lemmas

In this subsection, we present the two preliminary results, Lemmas 4 and 5, to restrict the class of

distributions of interest to the information designer. Both results rely on the following observation

established by Roesler and Szentes (2017) and Yang (2018).

Denote the left- and right-hand limit of a function ξ (·) at a signal x by ξ
(
x−
)

= limδ↑0 ξ (x− δ) and

ξ
(
x+
)

= limδ↓0 ξ (x+ δ), respectively.

Lemma 3. For any distribution G, any x0 ∈ [0, 1], and any k ∈
[
ϕ̂(x−0 |G), ϕ̂(x+

0 |G)
]
,

(x− k)(1−G(x)) ≤ (x0 − k)(1−G(x−0 )), ∀x ∈ [0, 1]. (12)

Proof. See Lemma 9 in Yang (2018).

We can rearrange the inequality (12) to obtain

G(x) ≥ 1− (x0 − k)(1−G(x−0 ))

x− k .

In particular, the right-hand side is a Pareto distribution function which generates a constant virtual

value k. Hence, Lemma 3 says that the Pareto distribution first-order stochastically dominates any other

distribution G with k ∈ [ϕ̂(x−0 |G), ϕ̂(x+
0 |G)].

Lemma 4. Any optimal signal distribution G which solves the information design problem in (1) must

induce nonnegative virtual values except at 0(i.e., G ∈ G+
H); moreover, if G is a solution to (1) for α = 0,

it must induce nonnegative virtual values almost everywhere on [0, 1].

Proof. See Appendix A.3.

Figure 2 illustrates that how to improve the information designer’s objective (for both the buyer-

optimal case and the seller-worst case) . First, in the left subfigure, the blue curve is an arbitrary

candidate distribution, which generates negative virtual values over the interval [0, x2). The red curve

coincides with the blue curve for x ≥ x2. For x < x2, the red curve is a Pareto distribution which

generates a virtual value 0 over the interval (x1, x2). By Lemma 3, we also put a positive mass θ0 on

14



x1 x2 1
0

θ0

1

x

D
is

tr
ib

u
ti

o
n

:
G

(x
) Original

Modified

x1 x2

ϕ̂(0)

0

1

x

V
ir

tu
a
l

va
lu

e:
ϕ̂

(x
) Maybe negative

nonnegative except at 0

Figure 2: An improvement by a distribution with nonnegative virtual value except at 0
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Figure 3: A further improvement by a nonnegative virtual value distribution

x = 0 for the red curve to generate the same mean as the blue curve. By construction, the red curve is a

strict mean-preserving spread of the blue curve; therefore, by Lemma 2, the red curve can generate more

expected total surplus. Second, by construction, for x ∈ (0, x2), both of the ironed virtual values are no

more than zero, and for x ∈ [x2, 1] the nonnegative ironed virtual value of the red curve coincides with

that of the blue curve in the right subfigure. Therefore, the red curve generates strictly higher surplus

for the buyers than the blue curve. In summary, the modification strictly benefits a buyer-optimal

information designer and causes no loss to a seller-worst information designer. Hence, a buyer-optimal

information structure must induce nonnegative virtual values except at 0.

Even though the seller-worst information designer does not benefit from the modification in Figure

2, we use Figure 3 to illustrate how we can further modify the red curve in Figure 2 to decrease the

seller’s revenue. Intuitively, since the seller gets no revenue as long as the virtual value is nonpositive,

instead of inducing a negative virtual value at zero, a seller-worst information designer can do better by

raising the negative virtual value to zero while decreasing the probability assigned to a positive virtual

value to maintain the mean. More precisely, consider the green curve, which coincides with the red curve

for x ≥ x3. For x < x3, the green curve becomes a Pareto distribution which generates virtual value

0 over the interval (x0, x3) such that the green curve generates the same mean as the red curve. By
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Figure 4: An improvement by a regular distribution except at 0

construction, and as shown in the right subfigure, the green curve generates strictly lower virtual values

than the red curve over the interval (x2, x3); hence, the green curve generates strictly less revenue.

Lemma 5. Any optimal signal distribution G which solves the information design problem in (1) must

be regular except at 0; moreover, if G is a solution to (1) for α = 0, it must be regular.

Proof. See Appendix A.4.

Figure 4 illustrates how to improve the buyer-optimal information designer’s objective with regular

distributions except at 0. First, in the left subfigure, the blue curve is a candidate distribution, which

is irregular over the interval (x1, x2) and generates ironed virtual value k ≥ 0 over the interval [x0, x2].

The red curve coincides with the blue curve for x ≥ x2. For x < x2, the red curve becomes a Pareto

(and hence regular) distribution which generates a same virtual value k over the interval (x1, x2) and

puts remaining mass θ0 on 0. Observe that the red curve is a strict mean-preserving spread of the

blue curve in the left subfigure.13 Hence, by Lemma 2, the red curve can generate more expected total

surplus. Second, the red curve induces weakly lower ironed virtual values than the blue curve; hence, the

seller earns less under the red curve than under the blue curve. Overall, the buyer-optimal information

designer’s objective value is higher under the red curve than under the blue curve. Moreover, by Lemma

4, the red curve induces negative virtual value at x = 0 and hence neither the red curve nor the blue

curve can be seller-worst.

By Lemma 5, we will hereafter use ϕ instead of ϕ̂ to denote the virtual value.

4.2 Change of variable

We now introduce a key step in solving the information design problems, namely, we change our control

variable from a signal distribution to a virtual value distribution. Let F (k) be the distribution of virtual

13We draw the blue curve above the red curve on the ironed interval [x1, x2] because the Pareto signal distribution with

virtual value k first-order stochastically dominates the original signal distribution by Lemma 3.
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values given a feasible signal distribution G. Since G is regular except at 0, F (k) = ProbG {x|ϕ(x) ≤ k}.

Then, except at x = 0, the virtual value of G at signal x is

ϕ(x) = x− 1−G(x)

G′(x)
. (13)

First, assume that the virtual valuation function ϕ(·) is strictly increasing, so that its inverse x(k) =

ϕ−1(k) is well defined. Consequently, F (k) = G(x(k)) and F ′(k) = G′(x(k))x′(k). By Equation (13), we

have the following ordinary differential equation of x(k):

k = x (k)− 1− F (k)

F ′(k)
x′ (k) . (14)

Solving the differential equation, we obtain Lemma 6 below.

Lemma 6. Suppose that ϕ is strictly increasing in x . For each k with ϕ(x) = k, x(k) is the buyer’s

expected virtual value conditional on his virtual value being greater than or equal to k, i.e.,

x (k) = E[ϕ|ϕ ≥ k] = k +

∫ 1

k
(1− F (s))ds

1− F (k)
. (15)

Alternatively, we can also derive the expression of x(k) by applying the Envelope Theorem.14 Observe

that x(k) is the solution to the following monopoly pricing problem with marginal cost k:

V (k) = max
x

(x− k)(1−G(x)).

By the Envelope Theorem, we can derive:

∂V (k)

∂k
= − (1−G (x(k))) .

Hence,

V (1)− V (k) = −(x (k)− k)(1−G(x (k))) =

∫ 1

k

− (1−G (x(s))) ds

=⇒ x(k) = k +

∫ 1

k
(1−G (x(s))) ds

1−G(x(k))
= k +

∫ 1

k
(1− F (s)) ds

1− F (k)
.

Moreover, we can still make use of the expression for x (k) in (15), even when ϕ(x) is only weakly

increasing (by regularity). To see this, note that any weakly increasing function can be uniformly

approximated by a strictly increasing function. Let {ϕm}∞m=1 be a sequence of strictly increasing functions

converging uniformly to ϕ. For each m, let Gm and Fm be sequences of signal distributions and virtual

value distributions corresponding to ϕm. Specifically, by solving Equation (13), we obtain Gm(x) =

1 − exp
{∫ x

0
(ϕm(t)− t)−1dt

}
and Fm is the virtual value distribution induced by Gm. Since {ϕm}

converges uniformly to ϕ, we also have {Gm} and {Fm} uniformly converge to G and F , respectively.

In Appendix A.5, we use this convergence result and the expression in (15) to establish the following

14We thank Kai Hao Yang for suggesting this elegant argument to us.
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equation:∫ 1

0

xdGn(x) = 1−
∫ 1

0

Gn(x)dx

=

∫ 1

0

n(1− F (k))

(
n−1∑
i=1

−F i(k)

i
− log(1− F (k)) +

n−1∑
i=1

F i(0−)

i
+ log(1− F (0−))

)
− Fn(k)dk + 1,

(16)

where G (0) = F
(
0−
)
. Indeed, we show in Appendix A.5 that Equation (16) follows for each Gm and

Fm and we then apply the bounded convergence theorem. To see the intuition, suppose that n = 1 and

there is no mass on signal 0. Then, Equation (16) is reduced to:∫ 1

0

(1− F (k))(1− log(1− F (k)))dk = p. (17)

We may regard (17) as a mean constraint for a general virtual value distribution that generalizes the

special case (5) for a binary virtual value distribution on {ks, 1} .

Equation (16) is the total surplus given the distribution G, and when n = 1, Equation (16) is reduced

to the expected mean. Hence, we have the following lemma.

Lemma 7. After the change of variable, the information designer’s problem in (1) can be written as

follows:

max
F

∫ 1

0

αn(1− F (k))

(
n−1∑
i=1

−F i(k)

i
− log(1− F (k)) +

(
n−1∑
i=1

F i(0−)

i
+ log(1− F (0−))

))
dk (18)

+ (1− α)

∫ 1

0

Fn(k)dk + (α− 1)

s.t.

∫ 1

0

(1− F (k))(1− log(1− F (k)) + log(1− F (0−)))dk = p.

Proof. It directly follows from Equation (16).

4.3 The case with n = 1: Roesler and Szentes (2017) revisited

We are now ready to solve the information design problem for the case with n = 1, which is analyzed in

Roesler and Szentes (2017). For n = 1, we can rewrite the information designer’s problem as

max
F

α

∫ 1

0

xdG(x)︸ ︷︷ ︸
the total surplus

−
∫ 1

0

kdF (k)︸ ︷︷ ︸
the seller’s revenue

s.t.

∫ 1

0

(1− F (k))(1− log(1− F (k)) + log(1− F (0−)))dk = p.

When n = 1, the total surplus
∫ 1

0
xdG is linear in G; moreover,

∫ 1

0
xdG = p by the mean constraint.

Therefore, the value of α has no effect on the optimization. This implies that the buyer-optimal infor-

mation structure is equivalent to the seller-worst information structure. Since the virtual value is always

nonnegative for the seller-worst case, we have G(0) = F (0−) = 0, i.e., there is no mass on x = 0.
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The information design problem is an isoperimetric problem in optimal control theory; see Theorem

4.2.1 of van Brunt (2004). To solve the optimal control problem, we can write the Lagrangian as

L(F, λ) = αp+

∫ 1

0

(F − λ((1− F )(1− log(1− F ))− p)) dk − 1.

Let θ = F (k). Then, for each k, the Euler-Lagrange condition implies that

∂L/∂θ = 1− λ log(1− θ) = 0.

Since the solution of the Euler-Lagrange equation cannot be either θ = 0 or θ = 1, there exists a

constant λ = 1/ log(1 − θ) < 0 . Since log(1 − θ) is monotone decreasing, there is at most a solution

θ ∈ (0, 1), such that the Euler-Lagrange equation holds. Therefore, F (k) has only three values 0,

θ, and 1; hence, F is a two-point distribution. Moreover, since the constant λ is fixed, and since

log(1− θ)|θ↑1 → −∞ , we have

∂L
∂θ

∣∣∣∣
θ↑1

= 1− λ log(1− θ)|θ↑1 → −∞.

Therefore, it will never be optimal for F (k) to jump to 1 before k = 1; therefore, the larger value with

respect to F must be 1. That is, the support of F is {k, 1}.

Now, the information designer only needs to choose {k, F (k) = θ} to maximize

max
k≥0,θ

αp− (θ × k + (1− θ)× 1)

s.t. k + (1− k)(1− θ)(1− log(1− θ)) = p.

The Lagrangian is

L(k, θ, λ, µ) = αp− kθ − (1− θ) + λ (p− (k + (1− k)(1− θ)(1− log(1− θ)))) .

and the Euler-Lagrange equation for θ is

∂L
∂θ

= (1− k) (1− λ(log(1− θ))) = 0.

Therefore,

λ = 1/ log(1− θ).

Hence, the Euler-Lagrange equation for k is

∂L
∂k

= −θ − λ(θ + (1− θ) log(1− θ)) =
θ + log(1− θ)
− log(1− θ) < 0.

Therefore, the optimal k = 0, and F is a two-point distribution which puts mass only on the virtual

values 0 and 1.

In summary, we have reproduced the optimal signal distribution derived in Roesler and Szentes (2017),

namely,

G(x) =


1− 1−θ

x
, if x ∈ [1− θ, 1);

1, if x = 1.

Under the optimal signal distribution, for x ∈ [1− θ, 1), the virtual value is zero with probability θ. For

x = 1, the virtual value is 1 with probability 1− θ.
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4.4 The case with n ≥ 2

As in the case with n = 1, we can reduce the infinite-dimensional information design problem to a

finite-dimensional problem by the following lemma.

Lemma 8. The support of any optimal virtual value distribution F has two points, say, {k, 1}.

Proof. The information design problem is also an isoperimetric problem in optimal control theory. Define

the following Lagrangian,

L(F, λ) =

∫ 1

0

αn(1− F (k))

(
n−1∑
i=1

−F i(k)

i
− log(1− F (k)) +

(
n−1∑
i=1

F i(0−)

i
+ log(1− F (0−))

))
dk

+

∫ 1

0

(1− α)Fn(k)− λ(1− F (k))(1− log(1− F (k)) + log(1− F (0−)))dk + pλ+ (α− 1).

Let θ0 = F (0−) = G (0), and let θ = F (k). By Theorem 4.2.1 of van Brunt (2004), the Euler-Lagrange

equation for L and for each state k should be satisfied as follows:

∂L
∂θ

=− nα

(
n−1∑
i=1

−θi/i− log(1− θ) +

(
n−1∑
i=1

θi0/i+ log(1− θ0)

))
+ nα(1− θ)

(
n−1∑
i=1

−θi−1 +
1

1− θ

)

+ n(1− α)θn−1 − λ log(1− θ) + λ log(1− θ0)

=nα

n−1∑
i=1

θi/i+ nα log(1− θ)− λ log(1− θ) +

(
−nα

n−1∑
i=1

θi0/i− (nα− λ) log(1− θ0)

)

+ nα(1− θ)
(
θn−1 − 1

1− θ +
1

1− θ

)
+ n(1− α)θn−1

=nα

n−1∑
i=1

θi/i+ nθn−1 + nα log(1− θ)− λ log(1− θ) +

(
−nα

n−1∑
i=1

θi0/i− (nα− λ) log(1− θ0)

)
= 0.

Denote ∂L/∂θ by Iα(θ). Then by taking the derivative of Iα(θ) with respect to θ, we have:

I ′α(θ) = nα

n−1∑
i=1

θi−1 + n(n− 1)θn−2 +
−nα+ λ

1− θ =
nα(1− θn−1)

1− θ + n(n− 1)θn−2 +
−nα+ λ

1− θ

=
−nαθn−1 + n(n− 1)θn−2(1− θ) + λ

1− θ =
λ+ nθn−2 (n− 1− (n− 1 + α)θ)

1− θ .

We prove the following lemma in Appendix A.6:

Lemma 9. There is at most one θ with Iα(θ) = 0 which also satisfies the second-order condition.15

Therefore, F (k) has only three values 0, θ, and 1; hence, F is a two-point distribution. We then argue

that for both α = 0 and α = 1, signal 1 is on the support of F .

1. When α = 0, it is only when λ < 0 that feasible solutions of θ exist; see cases 2 and 3 in Appendix

A.6. Therefore,

I0(θ)|θ↑1 = nθn−1
∣∣
θ↑1 − λ(log(1− θ)|θ↑1 + λ log(1− θ0))

= n+ λ log(1− θ0)− λ log(1− θ)|θ↑1 → −∞.

15In Figure 5, we also draw the curve of Iα(θ) and I′α(θ) to illustrate this lemma. In Figure 5, we choose the parameters to

be n = 3, α = 1, λ = −0.5, and θ0 = 0.
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Figure 5: The curve of I ′1(θ) and I1(θ).

Therefore, having F (k) jump to 1 before k = 1 will never be optimal.

2. When α = 1, it is only when λ < n, feasible solutions of θ exist; see cases 2, 3 and 4 in Appendix

A.6. Therefore,

I1(θ)|θ↑1 =

(
n

n−1∑
i=1

θi/i+ nθn−1 + n log(1− θ)− λ log(1− θ)

)∣∣∣∣∣
θ↑1

+

(
−n

n−1∑
i=1

θi0/i− (n− λ) log(1− θ0)

)

=n+ n

n−1∑
i=1

1/i+

(
−n

n−1∑
i=1

θi0/i− (n− λ) log(1− θ0)

)

+ (n− λ) log(1− θ)|θ↑1 → −∞.

Therefore, having F (k) jump to 1 before k = 1 will never be optimal.

In summary, the support of F has two points {k, 1}.

Therefore, the information designer will choose the optimal k, θ, and θ0 (with θ = F (k) and θ0 =

G(0) = F (0−)) such that

max
θ0,k,θ

(
αn(1− k)(1− θ)

(
n−1∑
i=1

−θi

i
− log(1− θ) +

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

)))

+ (α− 1) + (1− α)(1− k)θn + (1− α)kθn0 (19)

s.t. (1− k) ((1− θ)(1− log(1− θ) + log(1− θ0)) + k(1− θ0) = p,

k ≥ 0, θ0 ≥ 0, and θ0 ≤ θ ≤ 1.

The solution to this finite-dimensional optimization problem is standard and we present the details in

Appendices A.7 and A.8. In fact, the solution to this finite-dimensional problem is unique. Since the

information design problem has at least one solution by Lemma 1, this unique solution is globally optimal;

this concludes the proofs of Theorems 1 and 2.
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We now wish to briefly comment on how our approach differs from that of Roesler and Szentes (2017).

When there is only one buyer, a posted price mechanism is optimal. Hence, a signal distribution matters

only in determining the optimal posted price, i.e., ϕ−1 (0). This is how Roesler and Szentes (2017) are

able to argue that it entails no loss of generality to focus on a class of Pareto distributions, and the two-

point Pareto distribution with virtual values 0 and 1 is the buyer-optimal information structure. When

there are multiple buyers, we may take the second-price auction with an optimal reserve price to be an

extension of the posted price mechanism. Unlike Roesler and Szentes (2017), however, a second-price

auction with a reserve price need not be an optimal auction against an irregular signal distribution.

To explain, while an irregular signal distribution can be ironed into a regular signal distribution, the

optimal expected revenue under the irregular distribution is the same as the revenue of a second-price

auction with a reserve price under the regular distribution obtained from ironing rather than the irregular

distribution.16 We show in Section 6.2 that when the seller is committed to using a second-price auction

with reserve price 0, then for n = 2, the seller-worst information structure is the binary prior (i.e.,

full revelation). Hence, contrary to Theorem 1, the information structure which minimizes the seller’s

revenue in a second-price auction is an irregular distribution.

5 Asymmetric information structures

So far we have assumed that the information designer chooses the same signal distribution across all

buyers. A natural question to ask is whether the information designer can do better by choosing different

signal distributions for different buyers. The short answer is “No” for the seller-worst information design

problem and “Yes” for the buyer-optimal information design problem. We elaborate further below.

To allow for asymmetric signal distributions, we first reformulate the information design problems. Let

M(x|G) = {i ∈ N |ϕ̂(xi|Gi) ≥ maxj{ϕ̂(xj |Gj), 0}} be the set of buyers who have the largest nonnegative

virtual value for a given signal realization x, where G stands for {Gi}ni=1; and let M ′(x|G) = {i ∈

N |xi ≥ maxj xj , ∀j ∈M(x|G)} be the set of buyers who not only have the largest virtual value but also

the largest signal among those with the highest virtual value for a given signal realization x. Then, the

optimal auction allocation rule for buyer i when all buyers report their signals is given by the following:

qi(xi, x−i|G) =


1

|M′(x|G)| , if i ∈M ′(x|G);

0, if i 6∈M ′(x|G).

16For the sake of completeness, we provide an example in Appendix A.12 to illustrate this point; see also the working paper

version of Monteiro and Svaiter (2010) for a similar example. In particular, our example admits a density and nonnegative

(ironed) virtual values for every signal.
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We now study the following information design problem:

max
{Gi}ni=1

∫
[0,1]n

n∑
i=1

(αxi − ϕ̂(xi|Gi)) qi(xi, x−i|G)

n∏
i=1

(dGi(xi)) (20)

s.t.

∫ 1

0

1−Gi(xi)dxi = p, ∀i = 1, · · · , n.

While we allow for asymmetric signal distributions in the information design problem (20), we still assume

that the agents’ binary priors have the same mean p. We relegate the discussion about asymmetric priors

to Section 6.1.

5.1 The seller-worst case

In this section, we show that the optimal symmetric seller-worst information structure in Theorem 1

remains the unique optimal solution, even if the information designer can choose an asymmetric infor-

mation structure. We first document the existence of the solution to problem (20) when α = 0; see

Lemma 10. The proof is similar to the proof of Lemma 1 and is therefore omitted.

Lemma 10. For the problem in (20) with α = 0, an optimal solution exists.

The following Lemma 11, corresponds to Lemmas 4 and 5. The proof is similar so we provide only a

sketch of it in Appendix A.9.

Lemma 11. Any profile of optimal signal distributions {Gi}ni=1 which solves the information design

problem in (20) must be regular and induce nonnegative virtual values almost everywhere on [0, 1].

Then, as in Lemma 7, it follows from Lemma 11 that the asymmetric information design problem

can be reformulated as:

max
{Fi}ni=1

∫ 1

0

n∏
i=1

Fi(k)dk − 1 (21)

s.t.

∫ 1

0

(1− Fi(k))(1− log(1− Fi(k)))dk = p, ∀i = 1, · · · , n.

We now state and prove the following theorem.

Theorem 3. The unique seller-worst information structure in Theorem 1 remains the unique seller-worst

information structure which solves the problem in (20) with α = 0.

Proof. For any profile of virtual value distributions {Fi}ni=1, let F (k) ≡ 1
n

∑n
i=1 Fi(k), and denote by F

a symmetric signal distribution profile where each buyer receives his signal according to F .

First, the symmetric signal distribution F yields weakly less revenue than {Fi}ni=1 does. For any k,

by the inequality of arithmetic and geometric means, we have

Fn(k) =

(
1

n

n∑
i=1

Fi(k)

)n
≥

n∏
i=1

Fi(k). (22)
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Moreover, the equality in (22) holds if and only if Fi(k) = F for all i. Integrating both sides yields∫ 1

0
Fn(k)dk ≥

∫ 1

0

∏n
i=1 Fi(k)dk. Hence, F yields weakly less revenue than {Fi}ni=1 does and strictly less

revenue when Fi 6= F for some i.

Second, F generates a weakly higher mean than p. Indeed, the integral term in the mean constraint is

strictly concave with respect to F (k). That is, I ′′(θ) = −1/(1−θ) < 0 where I(θ) = (1−θ)(1−log(1−θ)).

Next, define

F̂ (k) =


F (k−1 ), if k ∈ [0, k1);

F (k), if k ∈ [k1, 1],

for some k1 so that F̂ satisfies the constraint in (21). Since F̂ (k) ≥ F (k) for any k, it follows that∫ 1

0
F̂n(k)dk ≥

∫ 1

0
Fn(k)dk and F̂ yields less revenue than F . Therefore, the improvement from {Fi}ni=1

to F̂ is strict when Fi 6= F for some i. It follows that the symmetric seller-worst information structure

in Theorem 1 remains the unique solution to the problem in (21) with α = 0.

5.2 The buyer-optimal case

For the buyer-optimal information design problem, we demonstrate that an asymmetric signal distribu-

tion can strictly improve upon the optimal symmetric signal distribution in Theorem 2. We demonstrate

such an improvement for the case of n = 2 with p < rb, and the case of n→∞.

Proposition 1. For n = 2 with p < rb or for n → ∞, there exist asymmetric information structures

which can strictly improve upon the optimal symmetric signal distribution in Theorem 2 and Corollary

1, respectively.

Proof. See Appendix A.10.

To see the main idea, for the case where n = 2 with p < rb, we focus our search for improvement on

the signal distributions which put a positive mass only on signal 0, on signals with virtual value 0, and on

signals with virtual value 1 for each buyer. Since each buyer’s virtual value distribution needs to satisfy

the mean constraint, it is uniquely determined by its probability assigned to signal 0. We then optimize

within the specific class of information structures with these two probabilities assigned to signal 0 (one

for each buyer). It turns out that within this class of distributions, the two buyers’ aggregate surplus

is maximized when one buyer’s signal distribution assigns positive probability on signal 0, whereas the

other buyer’s signal distribution assigns zero probability. Moreover, the former buyer benefits, while the

latter one loses relative to the symmetric buyer-optimal information; see Appendix A.10 for more details.

For the case where n → ∞, we also consider a specific class of information structures in which (i)

buyer i’s signal distribution puts positive mass only on signal 0, on signals with virtual value p, and on

signals with virtual value 1; and (ii) all the other buyers’ signal distributions are a degenerate distribution

which puts the entire mass on signal p. We will construct an asymmetric information structure in which
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no buyer is worse off and some buyer is strictly better off, relative to the symmetric buyer-optimal

information structure.

Proposition 1 shows that the buyer-optimal signal distributions, whether there exists one or many,

are asymmetric in general. Also in general, the total surplus as a max function of buyers’ value favors

dispersion. Indeed, while averaging the signal distributions (F = 1
n
Fi) can reduce the revenue, it might

reduce the total surplus. The issue is reminiscent of the result in Bergemann and Pesendorfer (2007)

which shows that a seller-optimal information structure is asymmetric across all buyers. In Bergemann

and Pesendorfer (2007), an information structure is chosen to maximize the expected nonnegative virtual

surplus, which also favors asymmetry/dispersion. Therefore, relative to the optimal symmetric informa-

tion structure, an asymmetric information structure increases the total surplus as well as the seller’s

revenue. Proposition 1 demonstrates that we can choose an asymmetric information structure which

increases the expected total surplus more than the expected (nonnegative) virtual surplus.17

6 Discussion

So far we have studied our information design problem with ex ante symmetric binary priors and a

Myersonian optimal auction. In this section, we will first discuss the issues with asymmetric priors and

continuous priors. Next, we will discuss the tightness of our seller-worst revenue upper bound for the

revenue guarantee of informationally robust auctions.

6.1 Asymmetric prior mean

Suppose that each buyer i has his own prior mean pi. We discuss only the seller-worst problem for which

we know a solution exists. The seller-worst information problem is to maximize the same objective

function in (21) with each buyer i’s individual mean constraint now being:∫ 1

0

(1− Fi(k))(1− log(1− Fi(k)) + log(1− Fi(0−)))dk = pi.

In this case, our arguments for regularity and nonnegative virtual values are still valid except at zero.

For n = 2, we obtain the seller-worst information structure in the following proposition.

Proposition 2. Suppose that n = 2 and each buyer i has a prior mean pi. Then, the seller-worst

information structure is a profile of signal distributions {G1, G2} such that, for each buyer i, Gi is a

truncated Pareto distribution as follows:

Gi(x) =


1− xi

x
, if x ∈ [xi, 1);

1, if x = 1,

where xi is determined by buyer i’s mean constraint.

17However, the existence or the exact shape of an asymmetric buyer-optimal information structure remains unknown to us

at this time.
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Proof. See Appendix A.11.

Thus, both buyers have the virtual values {0, 1} and the degree of asymmetry between p1 and p2 is

reflected only by x1 and x2. For n ≥ 3, the seller-worst problem remains an isoperimetric problem and

we can similarly reduce it to a finite-dimensional constrained optimization problem as we do in Theorem

1. The finite-dimensional problem, however, becomes intractable and its closed-form solution(s) remain

unknown to us.

6.2 Continuous prior distributions

We now consider continuous prior distributions. Our analysis in Sections 3–5 remains applicable, if the

information designer is allowed to choose any profile of signal distributions with a given mean p. However,

if the information designer has full information about the prior, then a signal distribution is feasible if

and only if it is a mean-preserving contraction of the prior; see Blackwell (1953). That is, the set of

feasible signal distributions becomes

GH =

{
G : [0, 1]→ [0, 1]

∣∣∣∣ ∫ 1

0

xdG(x) = p,

∫ x

0

G(t)dt ≤
∫ x

0

H(t)dt, ∀x ∈ [0, 1]

}
.

The main issue here is to handle the mean-preserving spread constraint on the signal distributions.

Changing the variable is no longer useful so we need a different tool akin to the method developed in

Dworczak and Martini (2019), although our objective function is still different from that in Dworczak

and Martini (2019). Consider, for instance, the case of a second-price auction (with no reserve). The

seller-worst problem can be expressed as

max
G

∫ 1

0

(
nGn−1 (x)− (n− 1)Gn (x)− 1

)
dx (23)

s.t. H is a mean-preserving spread of G.

We obtain the following result for the case with two buyers:

Proposition 3. For n = 2, full revelation (i.e., G = H) solves the problem in (23).

Proof. The objective is∫ 1

0

2G−G2 − 1dx = −
∫ 1

0

xd
(
2G−G2) =

∫ 1

0

xdG2(x)− 2p.

Moreover,
∫ 1

0
xdG2(x) is maximized if G = H, since G2 is the CDF of the convex function, max {x1, x2},

when x1 and x2 are independently distributed according to G. Hence, full revelation minimizes the

sellers’ revenue.

Proposition 3 has an implication for both the seller-worst problem and the buyer-optimal problem

with two buyers. Specifically, we can still argue that the seller-worst signal distribution must be regular

and symmetric, and must admit only nonnegative virtual values. Since a second-price auction with
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a reserve price is optimal for such signal distributions, identifying a seller-worst information structure

amounts to solving the problem in (23). If the prior distribution is regular and admits nonnegative virtual

values, it is also a feasible choice in this problem. Hence, the proof of Proposition 3 demonstrated that

the full revelation is the seller-worst information structure. Moreover, since full revelation maximizes the

total surplus, it is also the buyer-optimal information structure. The following corollary summarizes our

findings.18

Corollary 2. For n = 2, if the prior distribution is regular and admits nonnegative virtual values,

then full revelation is both the unique symmetric buyer-optimal and the unique symmetric seller-worst

information structure.

Corollary 2 restores the equivalence between the buyer-optimal information structure and the seller-

worst information structure. However, it requires the prior to be regular and induce only nonnegative

virtual values. In particular, it rules out the binary prior which we analyze in Theorems 1 and 2.19 In

Appendix A.13, we construct a regular continuous prior under which the buyer-optimal and seller-worst

information structures are not equivalent. The example clarifies that the inequivalence of the seller-

worst information and the buyer-optimal information arises not because the prior is discrete but rather

it induces negative virtual values.

The uniqueness of the buyer-optimal information structure in Corollary 2 also contrasts with the

multiplicity of buyer-optimal information structures available with a single buyer.20 Since the information

designer selects only signal distributions which are regular and admit nonnegative virtual values, the seller

adopts a second-price auction. When n = 2, the objective function in (23) is strictly convex in G; hence,

full revelation is the unique buyer-optimal information structure. When n = 1, on the other hand, the

objective becomes linear in G. Hence, any signal distribution that induces (i) the same posted price

and (ii) the same probability of exceeding the posted price of a buyer-optimal signal distribution is also

buyer-optimal.

18Based on our result that the seller-worst information is regular and induces nonnegative virtual value, Corollary 2 can

alternatively obtained from Part (i) in Theorem 5 of Ganuza and Penalva (2010), which shows that in a second-price auction

with two bidders, the seller’s revenue is nonincreasing in the precision of the signals.
19If n ≥ 3 or the prior is irregular, we can still solve the problem in (23); we report the solution in Chen and Yang (2021).

However, the optimal signal distributions which we obtain in these situations are no longer regular. As we demonstrate in

Example A.12, the optimal auction need not be a second-price auction with a reserve price.
20For example, when n = 1 and the prior is uniformly distribution on [1/2, 1], the buyer-optimal information structure

identified in Roesler and Szentes (2017) is a truncated Pareto distribution G(x) = 1− 1
2x

for x ∈ [1/2, 0.824) and G(x) = 1 for

x ∈ [0.824, 1]. Against both the truncated Pareto distribution as well as the prior, the seller chooses the posted price 1/2 and

obtains revenue 1/4.
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6.3 Tightness of the seller-worst upper bound

As we mentioned in the introduction, our seller-worst revenue provides an upper bound for the revenue

guarantee of any mechanism over all symmetric independent information structures and undominated

equilibria. To illustrate the effectiveness of this upper bound, we consider a specific example with prior

mean p = 0.5 and two buyers. It follows from Theorem 1 that the seller-worst revenue is 2xs−x2
s = 0.3385,

where xs ≈ 0.1867 solves xs − xs log(xs) = p.

We now explore the revenue guaranteed by a second-price auction with a random reserve price dis-

tributed under the truthful equilibrium. This is consistent with the approach as taken by Che (2022),

Park (2021), and Zhang (2021) in their study of the optimal revenue guarantee by a dominant-strategy

mechanism with a mean constraint.21 Formally, denote by R the distribution function of a random

reserve price. Let σT be the truth-telling equilibrium, i.e., σTi (xi) = xi for each xi; in addition, let

Π
(
R,G, σT

)
denote the seller’s revenue under σT . The revenue guaranteed by R (under the truthful

equilibrium) is defined as minG Π
(
R,G, σT

)
.

First, we examine the performance of a deterministic reserve price. In particular, Suzdaltsev (2020)

proves that r = 0 solves

max
r

min
G

Π
(
r,G, σT

)
.

It follows from Proposition 3 that the prior/full revelation solves minG Π
(
0, G, σT

)
. As a result, minG Π

(
0, G, σT

)
=

p2 = 0.25. Hence, any deterministic reserve guarantees the revenue 0.25, which is about 73.85 percent of

the seller-worst revenue. In fact, by the same argument, for any p, any deterministic reserve guarantees

at most p2/(2xs − x2
s) of the seller-worst revenue.

Second, we examine the performance of a specific random reserve price. Consider

Rb(r) =


0, if r ∈ [0, e−1/b);

1 + b× log(r), if r ∈ [e−1/b, 1].

In particular, Rb becomes the random posted price due to Carrasco, Luz, Kos, Messner, Monteiro, and

Moreira (2018) for b = 1
− log xs

≈ 0.5958.22 Our simulation result shows that when we choose b = 0.5958 ,

we have minG Π
(
Rb, G, σ

T
)

= 0.2939, which is about 86.8 percent of the seller-worst revenue. In contrast,

when b = 0.339, we have minG Π
(
Rb, G, σ

T
)

= 0.3382, which is about 99.9 percent of the seller-worst

revenue.

21Park (2021) studies the optimal revenue guarantee in a public good provision setting, Zhang (2021) studies the problem in

a bilateral trade setting, and Che (2022) studies the problem in an auction setting where mechanisms satisfy a condition called

“competitiveness”. These papers all adopt a duality approach and allow for correlated signal distributions. In our example,

the guaranteed revenue in Che (2022) is 0.317 which is about 93.6 percent of our seller-worst revenue. The optimal revenue

guarantee in general dominant-strategy auctions remains unknown to us.
22Carrasco, Luz, Kos, Messner, Monteiro, and Moreira (2018) proves that a random posted price attains the seller-worst

revenue when there is a single buyer.
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Third, Bachrach, Chen, Talgam-Cohen, Yang, and Zhang (2022) has identified, for n = 2 and any prior

mean p, a random reserve price distribution R∗(r) which guarantees the seller-worst revenue 2xs − x2
s.

23

In particular,

R∗(r) =



r(1−xs)
r−xs

(
1 + 1

− log(xs)
× log(r)

)
, if r ∈ (0, xs) ∪ (xs, 1] ;

1−xs
− log(xs)

, if r = xs;

0, if r = 0.

7 Conclusion

In this paper, we characterize the symmetric buyer-optimal information structure as well as the symmetric

seller-worst information structure with symmetric binary priors and a Myersonian optimal auction. We

show that with a binary i.i.d. prior on 0 and 1, the two information structures are not equivalent, and

yet both converge to “no disclosure” when the number of buyers goes to infinity. We also demonstrate

that an asymmetric information structure is never seller-worst but can generate a strictly higher surplus

for the buyers on an aggregate level.

The independent private-value setting enables us to express both the buyers’ surplus as well as the

seller’s revenue in terms of the buyers’ (ironed) virtual values. This approach thereby neatly subsumes

the IC and IR constraints and leads to an information design problem amenable to optimal control. For

general correlated signal distributions, however, we know of no way to express the seller’s optimal revenue

or the buyers’ surplus with the intractable (binding) IC and IR constraints.24 One way to bypass this

difficulty is to appeal to the strong duality approach used in Du (2018) and Brooks and Du (2021). That

approach requires identifying a seller-worst/minmax information structure (among all correlated signal

distributions) together with a maxmin mechanism that achieves the seller-worst revenue upper bound.

We leave this important yet challenging question for future research.

Do the optimal information structures that we have provided resemble any real-world information

structures? We do not have an answer. As information structures are inherently harder to observe than,

say, contracts or selling mechanisms, we must also maintain the awareness that the predictions we have

derived, like some of those in contract theory, might be entirely counterfactual. As we have demonstrated,

however, the optimal information structures do provide useful theoretical benchmarks which shed light

on other problems such as strategic information acquisitions or optimal revenue guarantees.

23Bachrach and Talgam-Cohen (2022) incorporates material from these three other recent independent working papers:

Bachrach and Talgam-Cohen (2022), Chen and Yang (2022), and Zhang (2022).
24Mathevet, Perego, and Taneva (2020) study the information design problem allowing for correlated signals under a fixed

game, whereas the game in our information design problem is chosen optimally by the seller in response to the information

structure.
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Appendix

A Omitted proofs

A.1 Formal definition of ironed virtual valuations

For any CDF G with supp(G) ⊂ [0, 1], let a = inf{x ∈ [0, 1]|G(x) > 0}, and define

Ψ(x|G) =


0, if x ∈ [0, a);

a− x(1−G(x)), if x ∈ [a, 1].

Let Θ = {(α, β) ∈ R2|α+ βG(x) ≤ Ψ(x|G), ∀x ∈ [0, 1]} and let

Φ(x|G) = sup{α+ βG(x)|(α, β) ∈ Θ},

where Φ(x|G) is called the convexification of Ψ under under the G-quantile space.

We say that w(x) is a sub-gradient of Φ(x|G) at x ∈ [0, 1] if

Φ(z|G)− Φ(x|G) ≥ w(x)(G(z)−G(x)), ∀z ∈ [0, 1].

For each x ∈ [0, 1], let ∂Φ(x|G) denote the set of sub-gradients of Φ(·|G) at x. Finally, let

ϕ̂(x|G) = inf ∂Φ(x|G).

Then, ϕ̂(x|G) is defined as the ironed virtual valuation induced by G.

A.2 Proof of Lemma 1

Proof. When α = 1, we first consider the following information design problem:

max
G∈GH

(∫
[0,1]n

max{x1, · · · , xn}
n∏
i=1

(dG(xi))−
∫

[0,1]n

n∑
i=1

(ϕ̂(xi|G)) qi(xi, x−i|G)

n∏
i=1

(dG(xi))

)
. (24)

Denote by V1(G) and V2(G) the objective of problem (1) and problem (24) under the signal distri-

bution G respectively.

First, since max{x1, · · · , xn} is continuous in x, the first term in (24) is continuous in G. Moreover,

by Theorem 2 of Monteiro (2015), the expected revenue is a lower semicontinuous function in G. Hence,

V2(G) is an upper semicontinuous function in G. Also since GH is a closed subset of the set of Borel

probability measures on [0, 1], GH is compact. Thus, by the extreme value theorem, an optimal solution

of the problem in (24) exists. Let G∗ be the optimal solution to the problem (24).

Second, for any signal distribution G which induces negative virtual values with positive probability,

we take the same modified distribution G̃θ0 ∈ G+
H as follows,

G̃θ0(x) =


θ0, if x ∈ [0, xθ0);

1− x0(1−G(x−0 ))

x
, if x ∈ [xθ0 , x0);

G(x), if x ∈ [x0, 1],
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where θ0 denotes the mass on x = 0. Since the virtual value on x0 is 0 ∈ [ϕ̂(x−0 |G), ϕ̂(x+
0 |G)], by Lemma

3, when x ∈ [xθ0 , x0], we have G(x) ≥ G̃θ0 (x). If θ0 = 0, then G̃0 first-order stochastically dominates

G(x), and thereby
∫ 1

0
xdG̃0 ≥

∫ 1

0
xdG(x). If θ0 = G(x−0 ), then xθ0 = x0. Hence, G̃G(x−0 ) is first-

order stochastically dominated by G(x) and
∫ 1

0
xdĜG(x−0 ) ≤

∫ 1

0
xdG(x). Since

∫ 1

0
xdĜθ0(x) is continuous

and strictly decreasing in θ0, it follows from the intermediate-value theorem that there exists a unique

θ0 ∈ [0, G(x−0 )] such that
∫ 1

0
xdG̃θ0 = p. Moreover, by Lemma 3, since G assigns positive probabilities

on negative virtual values for signals in (0, 1], we have θ0 ∈ (0, G(x−0 )). Hence, G̃θ0 is a feasible signal

distribution with nonnegative virtual values except at 0; moreover, G̃θ0 is a strict mean-preserving spread

of G. First, since the first term of the objective is convex in signal profile, the expectation of the first

term under G̃θ0 is strictly greater than that under G. Meanwhile, since ϕ̂
(
x|G̃θ0

)
= 0 and the seller

only allocates the good to a buyer with a non-negative virtual value, the expected virtual value is the

same under G and G̃θ0 . Therefore, V2

(
G̃θ0

)
> V2(G). Hence, G∗ ∈ G+

H .

Third, we claim that G∗ also solves the problem (1). To see this, observe that for any G and any

signal realization (x1, · · · , xn),
∑n
i=1 xiqi(xi, x−i|G) ≤ max{x1, · · · , xn}. If G ∈ G+

H , then for any signal

realization (x1, · · · , xn),
∑n
i=1 xiqi(xi, x−i|G) = max{x1, · · · , xn}. Hence,

V1(G) ≤ V2(G) for any G ∈ GH , and V1(G) = V2(G) for any G ∈ G+
H . (25)

Finally,

max
G∈GH

V1(G) ≤ max
G∈GH

V2(G) = V2(G∗) = V1(G∗),

where the first inequality and the third equality follow from (25) and the second equality follows from the

definition of G∗. Hence, G∗ solves the problem in (1). Hence an optimal solution exists in the problem

(1).

A.3 Proof of Lemma 4

Proof. The case with α = 1: Let G be a signal distribution which assigns positive probability on negative

virtual values for signals in (0, 1]. Let x0 = inf{x|ϕ̂(x|G) ≥ 0}. Define G̃θ0(x) such that

G̃θ0(x) =


θ0, if x ∈ [0, xθ0);

1− x0(1−G(x−0 ))

x
, if x ∈ [xθ0 , x0);

G(x), if x ∈ [x0, 1],

where θ0 denotes the mass on x = 0. Since the virtual value on x0 is 0 ∈ [ϕ̂(x−0 |G), ϕ̂(x+
0 |G)], by

Lemma 3, when x ∈ [xθ0 , x0], we have G(x) ≥ G̃θ0 (x). If θ0 = 0, then G̃0 first-order stochastically

dominates G(x), and thereby
∫ 1

0
xdG̃0 ≥

∫ 1

0
xdG(x). If θ0 = G(x−0 ), then xθ0 = x0. Hence, G̃G(x−0 )

is first-order stochastically dominated by G(x) and
∫ 1

0
xdĜG(x−0 ) ≤

∫ 1

0
xdG(x). Since

∫ 1

0
xdĜθ0(x) is

continuous and strictly decreasing in θ0, it follows from the intermediate-value theorem that there exists
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a unique θ0 ∈ [0, G(x−0 )] such that
∫ 1

0
xdG̃θ0 = p. Moreover, by Lemma 3, since G assigns positive

probabilities on negative virtual values for signals in (0, 1], we have θ0 ∈ (0, G(x−0 )).

Hence, G̃θ0 is a feasible signal distribution with nonnegative virtual values except at 0; moreover, G̃θ0

is a strict mean-preserving spread of G. Therefore, by Lemma 2, the total surplus under G̃θ0 is strictly

greater than the total surplus under G. In addition, since ϕ̂
(
x|G̃θ0

)
= 0, the seller only allocates the

good to a buyer with a non-negative virtual value, the expected virtual value is the same under G and

G̃θ0 . Hence, the objective value will be strictly higher as the expected total surplus becomes strictly

higher and the seller’s revenue remains the same. Hence, any optimal signal distribution G must induce

nonnegative virtual values with probability one on (0, 1].

The case with α = 0: Suppose that G̃θ0 puts some positive mass on x = 0. For α = 0, we can further

modify the distribution G̃θ0 to reduce the seller’s revenue as follows. Define another signal distribution,

Ĝx1(x) =


1− 1−G̃θ0 (x1)

x
, if x ∈ [1− Ĝθ0(x1), x1];

G̃θ0 (x) , if x ∈ (x1, 1].

For x1 = x0, we have Ĝx1(x) = G̃0 (x) which first-order stochastically dominates G̃θ0 , then
∫ 1

0
xdĜx0 ≥∫ 1

0
xdG̃θ0 , and for x1 = 1, it is a degenerate distribution with all mass on x = 0. Also since

∫ 1

0
xdĜx1

is continuous and strictly decreasing in x1, the intermediate-value theorem implies that there exists an

unique x1 ∈ (x0, 1) such that
∫ 1

0
xdĜx1 = p. Thus, Ĝx1 is a feasible information structure.

Since ϕ̂(x1|Ĝx1) = 0 ≤ ϕ̂(x1|G̃θ0), for each realization of signals, we have max{0, ϕ̂(x|Ĝx1)} ≤

max{0, ϕ̂(x|G̃θ0)}. Moreover, the inequality is strict with positive probability. Hence, the seller’s revenue

is strictly lower under Ĝx1 than under G̃θ0 .

A.4 Proof of Lemma 5

Proof. For any irregular distribution G with nonnegative virtual values except at 0, there exists some

x′ > 0 such that Ψ(x′|G) < Φ(x′|G). Since G(x) is right continuous with respect to x′, so is Ψ(x′|G).

Therefore, there exists an interval [x′, x′′], such that for any x ∈ [x′, x′′], Ψ(x|G) < Φ(x|G). Let [x1, x2] ⊇

[x′, x′′] be an ironed interval such that ϕ̂(x|G) = k is constant for x ∈ [x1, x2]. And for x ∈ (x1, x2),

Ψ(x|G) ≤ Φ(x|G). For x = x1 and x = x2 , Ψ(x|G) = Φ(x|G). Moreover, since Ψ(x1|G) = Φ(x1|G),

G(x) is continuous at x1. Then let Ĝ be

Ĝ =


G(x), if x 6∈ [x1, x2];

1− (1−G(x1))(x1−k)
x−k , if x ∈ [x1, x2].

The modified distribution Ĝ has two key features: firstly, it generates the same virtual value as G for

any realized signal x; secondly, by lemma 3, since we have Ĝ(x) ≤ G(x) and Ĝ(x) < G(x) on x ∈ (x1, x2)

(otherwise, G(x) is regular), Ĝ will strictly first-order stochastically dominate G(x), which implies that

Ĝ will generate a strictly higher mean than p.
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Hence, we can modify Ĝ again to satisfy the mean constraint. Let Ĝθ0 be

Ĝθ0 =


θ0, if x ∈ [0, xθ0);

Ĝ(x), if x ∈ [xθ0 , 1],

where θ0 = Ĝ(xθ0) denotes the mass on signal x = 0.

It is clear that ∫ 1

0

xdĜ0(x) =

∫ 1

0

xdĜ(x) > p > 0 =

∫ 1

0

xdĜ1(x).

Since
∫ 1

0
xdĜθ0(x) is continuous and strictly decreasing in θ0, the intermediate-value theorem implies that

there exists a unique θ0 ∈ (0, 1) such that
∫ 1

0
xdĜθ0 = p. Therefore, Ĝθ0 is a feasible signal distribution.

By construction,

ϕ̂(x|Ĝθ0) =


− 1−θ0

θ0
< 0, if x ∈ [0, xθ0);

ϕ̂(x|Ĝ) = ϕ̂(x|G), if x ∈ [xθ0 , 1].

Hence, max{ϕ̂(x|Ĝθ0), 0} ≤ max{ϕ̂(x|G), 0}.

Hence, given any signal distribution G, we can modify a buyer’s signal distribution to Ĝθ0 . As the

arguments in Lemma 4, this modification has two effects: first, the seller’s revenue (the second term

of the objective function) as a max function of nonnegative virtual values becomes weakly less; second,

since the constructed distribution Ĝθ0 is a strict mean-preserving spread of the original distribution G,

by Lemma 4 and Lemma 2, the total surplus is strictly higher. Therefore, with this modification, the

buyers’ total surplus is strictly higher. Hence,the buyer-optimal distribution must be regular except at

0.

Moreover, this modification still puts a positive mass on signal 0. By Lemma 4, we can further

modify this distribution into another distribution with nonnegative virtual values and generate strictly

less revenue for the seller. Thus, the seller-worst distribution must also be regular.

A.5 Change of variable

Denote Gm(0) by Fm(0−), we have∫ 1

0

xdGnm(x) =

∫ 1

0

(
k +

∫ 1

k
(1− Fm(s))ds

1− Fm(k)

)
dFnm(k)

=

∫ 1

0

kdFnm(k) + n

∫ 1

0

(∫ 1

k
(1− Fm(s))ds

1− Fm(k)

)
Fn−1
m (k)dFm(k)

=

∫ 1

0

kdFnm(k) + n

∫ 1

0

∫ 1

k

(1− Fm(s))
Fn−1
m (k)

1− Fm(k)
dsdFm(k)

=

∫ 1

0

kdFnm(k) + n

∫ 1

0

(1− Fm(s))

∫ s

0

Fn−1
m (k)

1− Fm(k)
dFm(k)ds

=

∫ 1

0

kdFnm(k) + n

∫ 1

0

(1− Fm(s))

∫ Fm(s)

Fm(0−)

θn−1

1− θdθds

=

∫ 1

0

n(1− Fm(k))

(
n−1∑
i=1

−F im(k)

i
− log(1− Fm(k)) +

(
n−1∑
i=1

F im(0−)

i
+ log(1− Fm(0−))

))
− Fnm(k)dk + 1.
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Then by bounded convergence theorem, since Gm and Fm uniformly converge to G and F respectively,

Equation (16) holds.

A.6 Proof of Lemma 9

Proof. First, define

ζα(θ) = nθn−2 (n− 1− (n− 1 + α)θ) = (1− θ)I ′α(θ)− λ.

We discuss the cases with α = 0 and α = 1, respectively.

1. For α = 0, we have ζ0(θ) = n(n− 1)(1− θ)θn−2, then

∂ζ0(θ)

∂θ
= n(n− 1)θn−3 (n− 2− (n− 1)θ) .

Therefore, ζ0(θ) is increasing in θ when θ ∈ (0, (n − 2)/(n − 1)), and then decreasing in θ when

θ ∈ ((n − 2)/(n − 1), 1). Moreover, we have ζ0(0) = ζ0(1) = 0. We then have the following three

cases:

(a) Case 1. λ ≥ 0: In this case, I ′0(θ) is always positive for both α = 0. Hence, I0(θ) is increasing.

Thus, I0(θ) will cross the θ-axis from below at most once. The objective function takes a local

minimal and hence we ignore this case.

(b) Case 2. λ ∈ [λ∗0, 0) where λ∗0 = −ζ0((n− 2)/(n− 1)) < 0: I ′0(θ) is first negative, then positive,

and eventually becomes negative. In addition, I0(θ) = 0 when θ = θ0. Hence I0(θ) will first

decrease from 0, then increase, and finally decrease. In this case, I0(θ) will cross the θ-axis at

most twice. Only for the second time, I0(θ) will cross the θ-axis from above.

(c) Case 3. λ < λ∗0: Then I0(θ) is always decreasing. Thus, I0(θ) crosses the θ-axis from above at

most once.

2. For α = 1, we have ζ1(θ) = nθn−2 (n− 1− nθ), then

∂ζ1(θ)

∂θ
= nθn−3 ((n− 2)(n− 1− nθ)− nθ) = n(n− 1)θn−3 ((n− 2)− nθ) .

Therefore, ζ1(θ) is increasing in θ when θ ∈ (0, (n − 2)/n), and then decreasing in θ when θ ∈

((n−2)/n, 1). Moreover, we have ζ1(0) = 0 and ζ1(1) = −n. We then have the following four cases:

(a) Case 1. λ ≥ n: In this case, I ′1(θ) is always positive. Hence, I1(θ) is increasing. Thus, I1(θ)

will cross the θ-axis from below at most once. The objective function takes a local minimal

and hence we ignore the case.

(b) Case 2. λ ∈ [0, n): I ′1(θ) is first positive and then negative, therefore, I1(θ) will first increase

and then decrease. In this case, I1(θ) will cross the θ-axis at most twice. However, only for

the second time, I1(θ) will cross the θ-axis from above. Hence there is only one θ such that

I1(θ) = 0 and also satisfying the second-order condition.
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(c) Case 3. λ ∈ [λ∗1, 0) where λ∗1 = −ζ1((n − 2)/n) < 0: I ′1(θ) is first negative, then positive,

and eventually becomes negative. In addition, I1(θ) = 0 when θ = θ0. Hence I1(θ) will first

decrease from 0, then increase, and finally decrease. In this case, I1(θ) will cross the θ-axis at

most twice. Only for the second time, I1(θ) will cross the θ-axis from above.

(d) Case 4. λ < λ∗1: Then I1(θ) will be always decreasing. Thus I1(θ) will also cross the θ -axis

from above at most once.

A.7 Finite-dimensional seller-worst optimization

To obtain the solution, we solve Problem (19) with α = 0 :

max
k≥0,θ

− (θn × k + (1− θn)× 1)

s.t. k + (1− k)(1− θ)(1− log(1− θ)) = p.

Given the Lagrangian multiplier λs, the Lagrangian is

Ls(θ, k, λs) = (1− k)θn − λs(k + (1− k)(1− θ)(1− log(1− θ)) + λsp− 1.

The Euler-Lagrange condition with respect to θ implies:

∂Ls
∂θ

= (1− k)
(
nθn−1 − λs log(1− θ)

)
= 0.

Hence,

λs =
nθn−1

log(1− θ) . (26)

Recall

Js(θ) = (θ log(1− θ) + n(θ + (1− θ) log(1− θ))) .

Then, taking the derivative of Ls with respect to k and using (26), we obtain

∂Ls
∂k

=− θn − λs(1− (1− θ)(1− log(1− θ)))

=
θn−1

− log(1− θ) (θ log(1− θ) + n(θ + (1− θ) log(1− θ))) =
θn−1

− log(1− θ)Js(θ).

Hence, the sign of
∂Ls
∂k

is determined by the sign of Js(θ). Moreover, we have

J ′s(θ) = log(1− θ)− θ

1− θ + n− n− n log(1− θ) = −(n− 1) log(1− θ)− θ

1− θ ,

J ′′s (θ) =
(n− 2)− (n− 1)θ

(1− θ)2
.

• When n = 2, for θ > 0, we have J ′′s (θ) < 0 ; therefore, J ′s(θ) < J ′s(0) = 0. Hence Js(θ) is always

less than Js(0) = 0. As a result, the optimal ks = 0 and we set ps = 1.
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• When n ≥ 3, J ′′s (θ) = 0 has a unique solution θ1 = (n − 2)/(n − 1). Moreover, J ′s(θ) is increasing

in θ if θ ∈ (0, θ1) and decreasing in θ if θ ∈ (θ1, 1). Since 1/(1− θ) decreases faster than log(1− θ),

limθ↑1 J
′
s(θ)→ −∞. Furthermore, since J ′s(0) = 0, there exists θ2 ∈ (θ1, 1) such that for θ ∈ (0, θ2),

J ′s(θ) is greater than 0 and for θ ∈ (θ2, 1), J ′s(θ) is less than 0. Therefore, Js(θ) is increasing for

θ ∈ (0, θ2) and decreasing for θ ∈ (θ2, 1). In addition, Js(0) = 0 and limθ↑1 Js(θ)→ −∞. Therefore,

there exists a unique θs ∈ (θ2, 1) such that Js(θs) = 0; moreover, Js(θ) > 0 if θ < θs and Js(θ) < 0

if θ > θs. Recall that the threshold

ps = (1− θs)(1− log(1− θs)),

where θs satisfies Js(θs) = 0. If ks > 0 with the mass θs, the mean constraint requires p > ps.

Moreover, the corner solution occurs when 0 < p ≤ ps. Notice that for an interior solution, θs only

depends on n and so does ps.

In summary, as stated in Theorem 1, the seller-worst information is the truncated Pareto distribution

Gs in (3) parametrized by (ks, xs).

• When n = 2, for any p ∈ (0, 1), we have a corner solution ks = 0. As a result, xs is pinned down

by the mean constraint xs(1− log(xs)) = p.

• When n ≥ 3 and p ∈ (0, ps], we have a corner solution ks = 0. As a result, xs is pinned down by

the mean constraint xs(1− log(xs)) = p.

• When n ≥ 3 and p ∈ (ps, 1), ks is an interior solution and θs > 0 solves Js(θs) = 0; and ks is pinned

down by the mean constraint

(1− ks)(1− θs)(1− log(1− θs)) + ks = p.

Finally, plugging θs and ks into θs ≡ 1− (xs − ks) / (1− ks), we obtain xs.

A.8 Finite-dimensional buyer-optimal optimization

To obtain the solution, we solve Problem (19) with α = 1:

max
{θ0≥0,k≥0,θ}

n(1− k)(1− θ)

(
n−1∑
i=1

−θi

i
− log(1− θ) +

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))
(27)

s.t. (1− k) ((1− θ)(1− log(1− θ) + log(1− θ0)) + k(1− θ0) = p.

Given the Lagrangian multiplier λb, the Lagrangian is

Lb(θ0, k, θ, λb) =n(1− k)(1− θ)

(
n−1∑
i=1

−θi

i
− log(1− θ) +

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))

− λb ((1− k)(1− θ)(1− log(1− θ) + log(1− θ0)) + k(1− θ0)) + λbp.
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The Euler-Lagrange condition with respect to θ implies:

∂Lb
∂θ

=(1− k)

(
−n

(
n−1∑
i=1

−θi

i
− log(1− θ) +

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))
+ n(1− θ)

(
n−1∑
i=1

−θi−1 +
1

1− θ

))

− λb(1− k) (−(1− log(1− θ) + log(1− θ0)) + 1)

=(1− k)

(
−n

(
n−1∑
i=1

−θi

i
− log(1− θ) +

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))
+ n(1− θ)

(
−1− θn−1

1− θ +
1

1− θ

))

− λb(1− k) (−(1− log(1− θ) + log(1− θ0)) + 1)

=(1− k)

(
n

(
θn−1 +

(
n−1∑
i=1

θi

i
+ log(1− θ)

)
−

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))
− λ(log(1− θ)− log(1− θ0))

)
= 0.

Thus, we have

λb =
n
(
θn−1 +

(∑n−1
i=1

θi

i
+ log(1− θ)

)
−
(∑n−1

i=1

θi0
i

+ log(1− θ0)
))

log(1− θ)− log(1− θ0)
. (28)

Also, taking the derivative of Lb with respect to θ0, we have

∂Lb
∂θ0

=(1− k)(1− θ)n

(
n−1∑
i

θi−1
0 − 1

1− θ0

)
− λb

(
− (1− k)(1− θ)

1− θ0
− k
)

=
−(1− k)(1− θ)nθn−1

0

1− θ0
− λb

−(1− k)(1− θ)− k(1− θ0)

(1− θ0)

=− (1− k)(1− θ)nθn−1
0 − λb(1− θ + k(θ − θ0))

(1− θ0)
. (29)

Taking the derivative of Lb with respect to k, we have

∂Lb
∂k

=(1− θ)

(
n

(
n−1∑
i=1

θi

i
+ log(1− θ)

)
− n

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))

+ λb(1− θ)(1− log(1− θ) + log(1− θ0))− λb(1− θ0).

Since k and θ0 may have corner solutions, we will study the corner solutions and interior solutions

by cases. And we will show that k and θ0 cannot be both interior.

• If k > 0, by Equation (28), we have

λb(1− θ)(log(1− θ) + log(1− θ0))

=n(1− θ)θn−1 + n(1− θ)

((
n−1∑
i=1

θi

i
+ log(1− θ)

)
−

(
n−1∑
i=1

θi0
i

+ log(1− θ0)

))
.

Therefore,

∂Lb
∂k

=λb(1− θ)(log(1− θ) + log(1− θ0))− n(1− θ)θn−1 + λb(1− θ)(1− log(1− θ) + log(1− θ0))− λb(1− θ0)

=λb(1− θ)− n(1− θ)θn−1 − λb(1− θ0) = 0.

Hence, we have

λb =
−n(1− θ)θn−1

θ − θ0
.
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Since θb ≥ θ0, we have

∂Lb
∂θ0

=
(1− k)(1− θ)nθn−1

0 + λb((1− θ) + k(θ − θ0))

−(1− θ0)

=
n(1− θ)
−(1− θ0)

(
(1− k)θn−1

0 +
θn−1(1− θ)
θ − θ0

+ kθn−1

)
=
n(1− θ)
−(1− θ0)

(
θn−1

0 +
θn−1(1− θ)
θ − θ0

+ k
(
θn−1 − θn−1

0

))
< 0.

Therefore, as long as k > 0, we have ∂Lb
∂θ0

< 0, and thereby θ0 will go down to 0 and be a corner

solution.

We then pin down the support of p such that the optimal k > 0. Given θ0 = 0, let

Jb(θ) ≡ log(1− θ) + θn−2 (θ + (1− θ) log(1− θ)) +

n−1∑
i=1

θi

i

=θn−1 +

n−1∑
i=1

θi

i
+ log(1− θ)(1 + (1− θ)θn−2) (30)

We then have

∂Lb
∂k

= −
nθ
(
θn−1 +

(∑n−1
i=1

θi

i
+ log(1− θ)

))
log(1− θ) − n(1− θ)θn−1 =

nθ

− log(1− θ)Jb(θ).

Hence, the sign of
∂Lb
∂k

is determined by the sign of Jb(θ).
25 Moreover, we have

J ′b(θ) =
θn−3 (θ + (1− θ) log(1− θ))

1− θ ((n− 2)− (n− 1)θ) ,

=⇒Sign J ′b(θ) = Sign ((n− 2)− (n− 1)θ) .

As in the seller-worst case,

– When n = 2, for any θ > 0, J ′b(θ) < 0 and Jb(θ) < Jb(0) = 0. As a result, the optimal kb = 0

when n = 2. In this case, we set pb = 1.

– When n ≥ 3, for θ ∈ (0, (n− 2)/(n− 1)), J ′b(θ) > 0 and for θ ∈ ((n− 2)/(n− 1), 1], J ′b(θ) < 0.

In addition that Jb(0) = 0 and lim
θ↑1

Jb(θ) → −∞, there exists a unique θb ∈ (0, 1) such that

Jb(θb) = 0; moreover, Jb(θ) > 0 if θ < θb and Jb(θ) < 0 if θ > θb.

Recall that the threshold

pb = (1− θb)(1− log(1− θb)),

where θb satisfies Jb(θb) = 0. If kb > 0 with the mass θb, the mean constraint requires p > pb.

Moreover, the corner solution kb = 0 occurs when 0 < p ≤ ps.

• If kb = 0, we have p ∈ (0, pb]. We then only need to solve θ0 and θ. Moreover, if the optimal θ0 is

chosen, θ will be automatically pinned down by the mean constraint. We also have two cases for

the optimal θ0: θ0 > 0 and θ0 = 0.

25We present instead θJb(θ) in the cost-benefit equation (10) for the ease of comparison with Js (θ).

40



Suppose that θ0 > 0, then the Euler-Lagrange condition for θ0 in Equation (29) implies

∂Lb
∂θ0

=− (1− kb)(1− θ)nθn−1
0 − λb(1− θ + k(θ − θ0))

(1− θ0)

=− (1− θ)nθn−1
0

(1− θ0)︸ ︷︷ ︸
cost(<0)

+
λb(1− θ)
(1− θ0)︸ ︷︷ ︸

benefit(>0)

= 0. (31)

Raising the mass θ0 at signal 0 has two countervailing effects on the objective in (27). First, by

increasing θ0,
∑n−1
i=1

θi0
i

+ log(1 − θ0) in (27) decreases, which translates into a cost in proportion

to the first term in (31). Second, to obey the mean constraint, the probability θ is reduced, thus∑n−1
i=1

−θi
i
− log(1− θ) in (27) increases, which results in a benefit in proportion to the second term

in (31).

Together with Equation (28), we have

λb = nθn−1
0 =

n
(
θn−1 +

(∑n−1
i=1

θi

i
+ log(1− θ)

)
−
(∑n−1

i=1

θi0
i

+ log(1− θ0)
))

log(1− θ)− log(1− θ0)
. (32)

We have if λb > 0, θ0 is positive; if λb ≤ 0, θ0 = 0. In order that there exists a positive solution

(θ, θ0), we also have some restrictions on the mean p.

More precisely, there exists another threshold,26

rb = (1− θrb)(1− log(1− θrb)),

where θrb satisfies Equation (32) with λb = 0 and θ0 = 0, that is,

θn−1
rb +

(
n−1∑
i=1

θirb
i

+ log(1− θrb)

)
= 0.

When p ∈ (0, rb), λb will be positive. In this case, θ0 will be also positive. When p ∈ [rb, pb],
∂Lb
∂θ0

is always less than 0, θ0 will go down to 0 and both kb and θ0 will be corner solutions.

In summary, as stated in Theorem 2, the buyer optimal information (α = 1) is the truncated Pareto

distribution Gb in (8) parameterized by (θ0, kb, θb).

• When n = 2, for any p ∈ (0, 1), the optimal kb = 0 is a corner solution.

– When p ∈ (0, rb), θ0 is an interior solution. (θ0, θb) is jointly determined by the Euler-Lagrange

condition and the mean constraint,

θ0 =
(2θb + log(1− θb))− (θ0 + log(1− θ0))

log(1− θb)− log(1− θ0)
,

(1− θb) (1− log (1− θb) + log(1− θ0)) = p.

– When p ∈ [rb, 1), both kb = 0 and θ0 = 0 are corner solutions. The only parameter xb is then

pinned down by the mean constraint xb(1− log(xb)) = p.

26Note that θrb > θb and thereby rb < pb. This is because the factor (1 − θ)θn−2 in Expression (30) makes Jb(θ) arrives 0

faster; and the function (1− θ)(1− log(1− θ)) is decreasing in θ.

41



• When n = 3, there are two thresholds rb and pb.

– When p ∈ (pb, 1), kb is an interior solution and θ0 = 0 is a corner solution. θb > 0 solves

Jb(θb) = 0; and kb is pinned down by the mean constraint

(1− kb)(1− θb)(1− log(1− θb)) + kb = p.

– When p ∈ [rb, pb], both kb = 0 and θ0 = 0 are corner solutions. The only parameter xb is then

pinned down by the mean constraint xb(1− log(xb)) = p.

– When p ∈ (0, rb), kb = 0 is a corner solution and θ0 is an interior solution. (θ0, θb) is jointly

determined by the Euler-Lagrange condition and the mean constraint,

θn−1
0 =

(
θn−1
b +

(∑n−1
i=1

θib
i

+ log(1− θb)
)
−
(∑n−1

i=1

θi0
i

+ log(1− θ0)
))

log(1− θb)− log(1− θ0)
,

(1− θb) (1− log (1− θb) + log(1− θ0)) = p.

Lastly, we show the following lemma that the benefit in (6) is greater than the benefit in (10). Hence,

the buyer-optimal information designer is more reluctant to raise the low virtual value than a seller-worst

information designer.

Claim 1. For any n ≥ 3, the benefit in (6) is greater than the benefit in (10).

Proof. Define the difference of the benefit in (6) and the benefit in (10) by 4Jn(θ)× θ. Hence, we have

4Jn(θ) =
(
n− θn−1)(1 +

(1− θ) log(1− θ)
θ

)
−
n−1∑
i=1

θi

i
.

We then define

4Jn2(θ) =
(
n− θ2−1)(1 +

(1− θ) log(1− θ)
θ

)
−
n−1∑
i=1

θi

i
.

We have 4Jn(θ) ≥ 4Jn2(θ) for any n ≥ 3. Then, taking the derivative of 4Jn2 with respect to θ, we

obtain

∂4Jn2

∂θ
=

n

θ2
(− log(1− θ)− θ) + log(1− θ)− 1− θn−1

1− θ .

Moreover,

∂24Jn2

∂θ∂n
=
− log(1− θ)− θ

θ2
+
θn−1 log(θ)

1− θ

≥ ∂24Jn2

∂θ∂n

∣∣∣∣
n=3

(θ) > 0, ∀θ ∈ (0, 1).

That is, ∂4Jn2
∂θ

is increasing in n. Hence, to show that ∂4Jn2
∂θ

> 0 for any n ≥ 3, it suffices to show

∂4Jn2
∂θ

> 0 when n = 3. First, we have

∂24Jn2

∂θ2

∣∣∣∣
n=3

=
6 log(1− θ)− (θ−2)θ(θ2−3)

θ−1

θ3
.

Then, we have

∂

∂θ

(
6 log(1− θ)−

(θ − 2)θ
(
θ2 − 3

)
θ − 1

)
=
θ2(−3θ2 + 8θ − 3)

(1− θ)2
.
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For θ ∈ (0, 1
3

(
4−
√

7
)
), we have −3θ2+8θ−3 < 0 and for θ ∈ ( 1

3

(
4−
√

7
)
, 1), we have −3θ2+8θ−3 > 0.

Therefore, ∂24Jn2
∂θ2

∣∣∣
n=3

is first decreasing and then increasing. Since limθ↓0
∂24Jn2
∂θ2

∣∣∣
n=3

(θ) = −1

and limθ↑1
∂24Jn2
∂θ2

∣∣∣
n=3

(θ) → ∞, ∂4Jn2
∂θ

∣∣
n=3

is also decreasing first and then increasing. Therefore,

∂4Jn2
∂θ

∣∣
n=3

has a unique minimum over θ ∈ (0, 1) which is strictly positive. Hence, when n = 3,

∂4Jn2
∂θ

> 0 for any θ. Thus, 4Jn(θ) > 4Jn2(θ) ≥ 4Jn2(0) = 0. Therefore, the benefit in (6) is greater

than the benefit in (10).

A.9 Proof of Lemma 11

Proof of nonnegativity. For each buyer i, let Gi be a signal distribution which assigns positive probability

on negative virtual values for signals in [0, 1] and let xi0 = inf{x|ϕ̂(x|Gi) ≥ 0}.

First, we construct a distribution G̃θi0i similar to that in Appendix A.3:

G̃θi0i (x) =


θi0, if x ∈ [0, xθi0);

1− x0(1−Gi(x
−
0 ))

x
, if x ∈ [xθi0 , xi0);

Gi(x), if x ∈ [xi0, 1],

By similar arguments, {G̃θi0i }i generates weakly less revenue than {Gi}.

Second, define another signal distribution Ĝx1i similar to that in Appendix A.3:

Ĝxi1i (x) =


1− 1−G̃θi0i (xi1)

x
, if x ∈ [1− Ĝθi0i (xi1), xi1];

G̃θi0i (x) , if x ∈ (xi1, 1].

By similar arguments, {Ĝxi1i }i generates strictly less revenue than {G̃θi0i }i.

Proof of regularity. For each buyer i, let Gi induce ironed virtual value on [xi1, xi2]. First, we construct

a distribution Ĝθi0i similar to that in Appendix A.4:

Ĝθi0i (x) =


θi0, if x ∈ [0, xθi0),

Ĝi(x), if x ∈ [xθi0 , 1],

where

Ĝi(x) =


Gi(x), if x 6∈ [xi1, xi2];

1− (1−Gi(xi1))(xi1−k)
x−k , if x ∈ [xi1, xi2].

By similar arguments, {Ĝθi0i }i generates weakly less revenue than {Gi}.

Although this modification still puts a positive mass on signal 0, by the nonnegativity part of Lemma

11, we can further modify this distribution into the one with nonnegative virtual values and thereby

achieve strictly less seller revenue. Thus, the seller-worst distribution must also be regular.
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A.10 Proof of Proposition 1

Proof for n = 2. Within the class documented in the context, let θ0i denote the mass on signal 0 and

1− θi denote the mass on signal 1 for buyer i. Without loss of generality, we assume that θ01 ≤ θ02, and

then the buyer-optimal information design problem is

max
θ0i,θi

∫ 1

0

xd(G1G2)− (1− θ1θ2)

s.t. (1− θi) (1− log(1− θi) + log(1− θ0i)) = p, ∀i = 1, 2.

And the objective can be rewritten as

1−
∫ 1

0

G1G2dx− (1− θ1θ2)

=1−
∫ x1

0

θ01θ02dx−
∫ x2

x1

θ02

(
1− a1

x

)
dx−

∫ 1

x2

(
1− a1

x

)(
1− a2

x

)
dx− (1− θ1θ2)

=1− θ01θ02x1 − θ02(x2 − x1 − a1(log(x2)− log(x1)))− (1− x2)

− (a1 + a2) log(x2)− a1a2

(
1− 1

x2

)
− (1− θ1θ2)

=2(1− θ1)(θ02 − θ2) + θ02(1− θ1) (log(1− θ01)− log(1− θ1))

+ (2− (1− θ1)θ02 − θ1 − θ2) (log(1− θ02)− log(1− θ2)) .

Therefore, the Lagrangian is

L =2(1− θ1)(θ02 − θ2) + θ02(1− θ1) (log(1− θ01)− log(1− θ1)))

+ (2− (1− θ1)θ02 − θ1 − θ2) (log(1− θ02)− log(1− θ2)))

−
2∑
i=1

λi ((1− θi) (1− log(1− θi) + log(1− θ0i))− p) .

Taking the first derivative with respect to θ01 yields

∂L
∂θ01

=
−θ02(1− θ1)

1− θ01
+
λ1(1− θ1)

1− θ01
=

(λ1 − θ02)(1− θ1)

1− θ01
.

Since λ1 is constant, ∂L
∂θ01

is either always non-positive or always nonnegative. Therefore, the optimal

θ01 is a boundary solution. That is θ01 = θ02 or θ01 = 0.

First, if θ01 = θ02, then the solution becomes the symmetric buyer-optimal information structure

design problem when n = 2.

Second, if θ01 = 0, then the information designer only needs to choose the optimal θ02 to maximize

the buyers’ surplus. Since p < rb, the symmetric buyer-optimal information structure puts a positive

mass on signal 0. Hence, θ02 > 0; otherwise, by the mean constraint, both buyers distributions become

identical and place mass only on virtual values 0 and 1, which, by Theorem 2, is not optimal.

However, to guarantee that the asymmetric case with θ01 = 0 and θ02 > 0 is not vacuous, we have

to know the exact value of λ1 and θ02. We appeal to simulation. For instance, let p = 0.4, under the

symmetric buyer-optimal information, the mass on signal 0 is θ0 ' 0.1251. Then, the mean constraint
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implies θb ' 0.8581. Hence, the buyers’ surplus is 0.3082. If we take θ01 = 0 and θ02 = 0.3, then the mean

constraint implies that θ1 ' 0.8677 and θ2 ' 0.8374. The buyers’ surplus is 0.3107 > 0.3082. Moreover,

under the resulting asymmetric information structure, buyer 1’s surplus is 0.1443 < 0.1541 = 0.3082/2,

whereas buyer 2’s surplus is 0.1663 > 0.1541. Hence, buyer 2 benefits from the asymmetric information

structure more than the loss incurred by buyer 1.

Proof for n→∞. Let θ0 denote the mass on signal 0 and 1 − θ denote the mass on signal 1, let buyer

i’s signal distribution be

Gi(x) =


θ0, if x ∈ [0, x1);

1− (1−θ)(1−p)
x−p , if x ∈ [x1, 1);

1, if x = 1,

where x1 = p+ (1− θ)(1− p)/(1− θ0), and all the other buyers’ signal distributions be the degenerate

distribution as in Corollary 1. First, for x ∈ [x1, 1), the induced virtual value is p. And since x1 > p, by

the allocation rule, the good will be allocated to buyer i if buyer i’s signal belongs to [x1, 1). Since the

seller can only get p which is strictly less than x1 when xi ∈ [x1, 1), buyer i must obtain some positive

information rents. Hence, the buyers’ total surplus is strictly positive.27

A.11 Proof of Proposition 2

Proof. With change of variable, for n = 2, the seller-worst information designer’s problem can be written

as

max
{Fi(k)}2i=1

∫ 1

0

2∏
i=1

Fi(k)dk − 1 (33)

s.t.

∫ 1

0

(1− Fi(k))(1− log(1− Fi(k)))dk = pi, ∀i = 1, 2.

Consider the following Lagrangian L:

L(Fi(k), λi) =

∫ 1

0

2∏
i=1

Fi(k)−
2∑
i=1

λi ((1− Fi(k))(1− log(1− Fi(k)))) dk +

2∑
i=1

λipi.

By Theorem 4.2.1 of van Brunt (2004), for any state k, the Euler-Lagrange equation with respect to

Fi(k) is ∏
j 6=i

Fj(k)− λi log(1− Fi(k)) = 0, ∀i = 1, 2.

Denote θi = Fi(k) and we have

θ2 = λ1 log(1− θ1),

θ1 = λ2 log(1− θ2).

27For example, let p = 0.4, take θ0 = 0.4751 and θ = 0.8661 which satisfies the mean constraint. Then, the buyers’ surplus

is 0.1097 which is strictly larger than 0 under the symmetric buyer-optimal information structure when n→∞.
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First, note that λi should be negative. Then, we claim that there is a unique solution pair (θ∗1 , θ
∗
2)

such that the Euler-Lagrange equations are satisfied. Hence, given any solution (θi, θj), we have

θ1 = λ2 log(1− λ1 log(1− θ1)). (34)

Taking the first and second derivative of the right-hand side, we obtain

∂

∂θ1
λ2 log(1− λ1 log(1− θ1)) =

λ1λ2

(1− θ1)(1− λ1 log(1− θ1))
> 0,

∂2

∂θ2
1

λ2 log(1− λ1 log(1− θ1)) =
λ1λ2(1− λ1 log(1− θ1)− λ1)

(1− θ1)2(1− λ1 log(1− θ1))2
> 0.

Hence, the right-hand side is convex and increasing in θ1. It follows that there will be only one solution

of θ1 such that Equation (34) holds.

Hence, an optimal F ∗1 (k) and F ∗2 (k) are both constantly equal to θ1 and θ2 for k < 1 That is, both

F ∗1 (k) and F ∗2 (k) have binary support {k, 1}. By part (1) of Lemma 10, the uniqueness of θi implies

(F ∗1 , F
∗
2 ) with the binary support is also a global maximizer.

Again, let θi be the mass on the virtual value k for buyer i. Then the information design problem is

reduced into

max
k,θ1,θ2

(1− k)θ1θ2 − 1

s.t. k + (1− k) ((1− θi)(1− log(1− θi))) = pi.

The Lagrangian with multiplier λi is

L(k, θ1, θ2, λ1, λ2) = (1− k)θ1θ2 − 1−
2∑
i=1

λi (k + (1− k) ((1− θi)(1− log(1− θi)))− pi) .

The Euler-Lagrange equation with respect to θi is

∂L
∂θi

= (1− k) (θ−i − λi log(1− θi)) = 0 =⇒ λi =
θ−i

log(1− θi)
. (35)

Also the Euler-Lagrange equation with respect to k is

∂L
∂k

= −θ1θ2 −
2∑
i=1

λi (θi + (1− θi) log(1− θi)) . (36)

Plugging Equation (35) into Expression (36), we have

∂L
∂k

= θ1θ2 − θ1

(
1 +

θ2

log(1− θ2)

)
− θ2

(
1 +

θ1

log(1− θ1)

)
.

We claim that ∂L
∂k
≤ 0. To see this, it suffices to show that 1 + θi

log(1−θi)
≥ θi

2
. Indeed,

∂

∂θi

(
−
(

1− θi
2

)
log(1− θi)− θi

)
=

1

2

(
θi

1− θi
+ log(1− θi)

)
≥ 0.

Hence, −
(

1− θi
2

)
log(1− θi)− θi ≥ 0. That is, 1 + θi

log(1−θi)
≥ θi

2
. Therefore, in order the maximize the

objective, the information designer should choose k = 0.
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A.12 Auctions under an irregular distribution

Suppose that the support of the signal x is [1, 2]. Consider the signal distribution:

G(x) =


2x− 2, if x ∈ [1, 4

3
);

x
2
, if x ∈ [ 4

3
, 2].

The quantile function x(τ) of distribution G is given by:

x(τ) =


τ
2

+ 1, if τ ∈ [0, 2
3
);

2τ, if τ ∈ [ 2
3
, 1].

The virtual value without ironing is given by

ϕ(x) = x− 1−G(x)

g(x)
=


x− 1−(2x−2)

2
= 2x− 3

2
, if x ∈ [1, 4

3
);

x− 1−x/2
1/2

= 2x− 2, if x ∈ [ 4
3
, 2].

Denote Φ(x) =
∫ x

1
ϕ(t)g(t)dt. Then,

Φ(x) =


∫ x

1
2(2t− 3/2)dt = (x− 1)(2x− 1), if x ∈ [1, 4

3
);∫ 4/3

1
2(2t− 3/2)dt+

∫ x
4/3

1
2
(2t− 2)dt = 1

2
x(x− 2) + 1, if x ∈ [ 4

3
, 2].

Therefore, Φ(τ) = Φ(x(τ)) is given by

Φ(τ) =


(x(τ)− 1)(2x(τ)− 1) = τ

2
(τ + 1), if τ ∈ [0, 2

3
);

1
2
x(τ)(x(τ)− 2) + 1 = 1− 2τ + 2τ2, if τ ∈ [ 2

3
, 1].

Denote Ψ(τ) be the largest convex function such that Ψ(τ) ≤ Φ(τ). Then

Ψ(τ) =



τ
2
(τ + 1), if τ ∈ [0, 1

2
);

τ − 1
8
, if τ ∈ [ 1

2
, 3

4
);

1− 2τ + 2τ2, if τ ∈ [ 3
4
, 1].

Therefore, the ironed virtual value ϕ̂(τ) = Ψ′(τ) is given by

ϕ̂(τ) =


τ + 1

2
, if τ ∈ [0, 1

2
);

1, if τ ∈ [ 1
2
, 3

4
);

4τ − 2, if τ ∈ [ 3
4
, 1].

Replace τ by G(x) and the ironed virtual value ϕ̂(x) in terms of x is given by

ϕ̂(x) =


2x− 3

2
, if x ∈ [1, 5

4
);

1, if x ∈ [ 5
4
, 3

2
);

2x− 2, if x ∈ [ 3
2
, 1].

Note that ϕ̂(x) ≥ ϕ̂(1) = 1/2 is always positive. Hence, the optimal reserve price is zero. Let us then

compute the expected highest ironed virtual value ϕ̂(x) and the revenue under a second-price auction.
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1. First, by symmetry, the largest value x(1) induces the highest ironed virtual value and the highest

value x(1) follows the distribution G2. Then, we have

E[ϕ̂(x(1))|G] =

∫ 2

1

ϕ̂(x)dG2(x) =

∫ 2

1

ϕ̂(x)2 · g(x)G(x)dx

=

∫ 5/4

1

(2x− 3/2)2 · 2(2x− 2)dx+

∫ 4/3

5/4

1 · 2 · 2(2x− 2)dx+

∫ 3/2

4/3

1 · 2x

4
dx+

∫ 2

3/2

(2x− 2) · 2x

4
dx

=
5

24
+

7

36
+

17

144
+

2

3
=

19

16
.

2. Second, the lowest value x(2) follows the distribution 2G−G2, then we have

E[x(2)|G] =

∫ 2

1

xd(2G−G2) =

∫ 2

1

x · 2 · g(x)(1−G(x))dx

=

∫ 4/3

1

x · 2 · 2(3− 2x)dx+

∫ 2

4/3

x · 2 · 1

2
(1− x

2
)dx

=
82

81
+

14

81
=

96

81
=

32

27
=

19

16
− 1

432
<

19

16
.

Therefore, a second-price auction with an optimal reserve price 0 obtains strictly less revenue than

the expected highest ironed virtual value. Hence, the second-price auction with an optimal reserve price

0 is not an optimal auction.

Note that although G(x) can induce the ironed virtual value ϕ̂(x), the regular distribution Ĝ which

also induces the same virtual value ϕ̂(x) will first-order stochastically dominate G. Hence, the expectation

of the lowest/second-highest value x(2) of Ĝ is strictly larger than that of G. Formally, Ĝ is given by

Ĝ(x) =


2x− 2, if x ∈ [1, 5

4
];

1− 1
8(x−1)

, if x ∈ ( 5
4
, 3

2
);

x
2
, if x ∈ [ 3

2
, 2].

For x ∈
[
1, 5

4

]
∪
[

3
2
, 2
]
, we have Ĝ(x) = G(x). For x ∈

(
5
4
, 3

2

)
, Ĝ(x) < G(x). Hence Ĝ first-order

stochastically dominates G. Moreover, we have E
[
x(2)|Ĝ

]
= 19

16
= E

[
ϕ̂(x(1))|G

]
. Of course, this is an

example of the standard result that the optimal auction is a second-price auction with an optimal reserve

price, provided that the signal distribution is regular.

A.13 Inequivalence under a continuous prior with negative virtual values

Claim 2. The buyer-optimal information structure and the seller-worst information structure are in-

equivalent under the following regular continuous prior Ĥ with EĤ [x] ' 0.26785,

Ĥ(x) =


5x, if x ∈ [0, 1/20];

1− 9/80
x−(−1/10)

, if x ∈ [1/20, 0.999);

112500
1099

x− 111401
1099

, if x ∈ [0.999, 1].

It follows that Ĥ induces negative virtual values on [0, 0.999). In particular, the virtual value is −1/10

on [1/20, 0.999).
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Proof. First, we provide an upper bound of the buyers’ surplus under some seller-worst information

structure G∗s .

• Suppose that we only have the mean constraint instead of the mean-preserving spread constraint.

By Theorem 1, the following signal distribution is the unique seller-worst information structure,

Gs =


1− xs

x
, if x ∈ [xs, 1);

1, if x = 1,

where xs ' 0.07445 solves xs(1 − log(xs)) = EĤ [x]. Since the information designer faces a more

strict mean-preserving spread constraint under the prior H, the seller-worst information structure

G∗s will generate a weakly higher seller’s revenue than Gs does.

• Even though Gs is infeasible under the mean-preserving spread constraint, we claim that the seller-

worst information structure G∗s must generate a lower buyers’ surplus than Gs does.

Since the seller-worst signal distribution must be regular and admit only nonnegative virtual values

even under continuous priors, Gs must be a mean-preserving spread of G∗s .

– To explain, since the virtual value is ϕ(x) = x − 1−G(x)
G′(x)

, at an intersection of two regular

distributions, both of the distributions have the same x and G(x) , and thereby the distribution

with a higher virtual value ϕ(x) must have a higher slope G′(x) at (x,G(x)). Moreover, Gs has

zero virtual values on [xs, 1) and Gs has nonnegative virtual values on [0, 1]. As illustrated in

Figure 6, we claim that G∗s will only cross Gs from the below. Suppose G∗s crosses Gs from the

above at x0 as the blue curve in Figure 6. Since Gs has a higher slope than G∗s at (x0, Gs(x0)),

ϕ(x0|G∗s) < ϕ(x0|Gs) = 0 which contradicts with the fact that Gs∗ must induce nonnegative

virtual values. Therefore, G∗s must cross Gs from the below once and only once.

Therefore, by Lemma 2, Gs generates more total surplus than G∗s . Since the good is always allocated

under both G∗s and Gs, the buyers’ surplus (as the total surplus minus the seller’s revenue) under

G∗s will be lower than that under Gs.

• The buyers’ surplus under Gs is 0.24898, hence the buyers’ surplus under the seller-worst signal

distribution G∗s can not exceed 0.24898.

Second, to show the inequivalence, it suffices to find another feasible signal distribution Ĝ which

generates a higher buyers’ surplus than 0.24898. And the construction is as follows,

Ĝ(x) =



5x, if x ∈ [0, 1/50];

0.1, if x ∈ (1/50, x0);

1− 0.9x0
x

, if x ∈ [x0, 0.999);

1, if x ∈ [0.999, 1],

where x0 ' 0.0858.
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Figure 6: Gs∗ single-crosses Gs
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Figure 7: Ĝ is feasible

The yield buyers’ surplus under Ĝ is 0.25205 > 0.24898.

Finally, we use Figure 7 to illustrate that Ĥ is a mean-preserving spread of Ĝ.
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