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Abstract

Most methods for finding interesting gene expres-
sion profiles from gene microarray data are based on
a single discriminant, e.g. the classical paired t-test.
Here a different approach is introduced based on
gene ranking according to Pareto depth in multiple
discriminants. The novelty of our approach, which
is an extension of our previous work on Pareto front
analysis (PFA), is that a gene’s relative rank is de-
termined according to the ordinal theory of multiple
objective optimization. Furthermore, the distribu-
tion of each gene’s rank, called Pareto depth, is de-
termined by resampling over the microarray repli-
cates. This distribution is called the Pareto depth
sampling distribution (PDSD) and it is used to as-
sess the stability of each ranking. We illustrate and
compare the PDSD approach with both simulated
and real gene microarray experiments.
Keywords: gene filtering, multi-objective optimiza-
tion, false discovery rate, data depth analysis.

1 Introduction

Since Watson and Crick discovered DNA more than
fifty years ago, the field of genomics has progressed
from a speculative science starved for data and com-
putation cycles to one of the most thriving areas of
current biomedical research and development [26].
Spectacular advances in gene mapping of humans
and other organisms [6, 22, 21] have been made
over the past decade. Similar advances are be-
ing made in the discovery of within-species vari-
ation of transcript expression levels, e.g., due to
factors such as growth, disease, and environment
[27, 5, 1, 7]. Progress in understanding such gene
expression mechanisms has been made possible by
the gene microarray and its associated signal ex-
traction and processing algorithms [20, 18, 19]. In

this paper, we will present a new method for analyz-
ing gene microarray data which we call the method
of Pareto depth sampling distributions (PDSD).

The massive scale and variability of microarray
gene data creates new and challenging problems
of clustering and data mining: the so-called gene
filtering problem. This problem has two subprob-
lems called gene screening and gene ranking. Gene
screening is concerned with determining a list of
gene probes whose expression levels are statistically
and biologically significant with respect to some p-
value or familywise error rate. Gene ranking is con-
cerned with finding a fixed number of genes that
are rank ordered according to one or more statisti-
cal and biological criteria. These two subproblems
are closely related, but this paper focusses on gene
ranking using multiple criteria. Multicriteria meth-
ods of gene screening with familywise error con-
straints have been presented elsewhere [14] and will
not be discussed further in this paper.

Multicriteria gene filtering seeks to find genes
whose expression profiles strike an optimal compro-
mise between maximizing (or minimizing) several
criteria. It is often easier for a molecular biolo-
gist to specify several criteria than a single crite-
rion. For example the biologist might be inter-
ested in aging genes, which he might define as those
genes having expression profiles that are increas-
ing over time, have low curvature over time, and
whose total increase from initial time to final time
is large. Or one may have to deal with two bi-
ologists who each have different criteria for what
features constitute an interesting aging gene. In a
well designed gene microarray experiment, multicri-
teria (or other) methods of screening will generally
result in a large number of genes and the biologist
must next face the problem of selecting a few of the
most “promising genes” to investigate further. Res-
olution of this problem is of importance since vali-
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dation of gene response requires running more sen-
sitive amplification protocols, such as quantitative
real-time reverse-transcription polymerase-chain-reaction
(RT-PCR). As compared to microarray experiments,
RT-PCR’s higher sensitivity is offset by its lower
throughput and its higher cost-per-probe.

It is thus clear that some sort of rank order-
ing of the selected genes would help guide the bi-
ologist to a cost effective solution of the validation
problem. As a linear ordering of multiple criteria
does not generally exist, an absolute ranking of the
selected genes is generally impossible. However a
partial ordering is possible when formulated as a
multicriterion optimization problem. This partial
ordering groups genes into successive Pareto fronts
of the multicriteria scattergram (see Section 3). It
is this partial ordering which was used in our pre-
vious work [10, 11, 13] to obtain relative rankings
of gene expression levels based on microarray ex-
periments. We called our multiobjective approach
to gene ranking Pareto front analysis (PFA). As
pointed out in [13] the PFA approach is related to
John Tukey’s notion of data depths and contours of
depth in a multivariate sample [24, 8]. To highlight
the contrast between PFA and the concept of data
depths we will refer to the Pareto depth of a gene
as the Pareto front on which the gene lies. It is to
be noted that Pareto analysis has been adopted for
many continuous and discrete optimization applica-
tions including evolutionary computing [23, 28].

Several variants of PFA were introduced in [10,
11, 13] including resistant PFA (RPFA), based on
cross-validation, and posterior PFA (PPFA), based
on Bayes posterior analysis, of gene rankings. These
rankings were computed by rank ordering each gene’s
probability of lying on the first two or three Pareto
fronts of the multicriteria scattergram. This pa-
per introduces a more powerful PFA gene discov-
ery tool, the aforementioned Pareto depth sampling
distribution method, into the PFA toolbox. The
PDSD method generates an empirical distribution
of the depth of the front, the Pareto depth, on
which each gene lies. This distribution is computed
by implementing a resampling method similar to
the bootstrap. From this distribution many differ-
ent attributes of the Pareto depth can be deter-
mined and used for ranking the genes. The PDSD
approach is more general than our previous cross-
validation PFA approach that used a special at-
tribute, the cumulative PDSD, to rank the genes.
Using simulations we compare our PFA methods to
the standard paired t-test on the basis of correct
discovery and false discovery rates. Our principal

conclusion is that the PDSD approach, when for-
mulated as a Pareto depth test, significantly out-
performs previous PFA and paired t-test methods.

Our experience has shown that the PFA method-
ology can discover important genes that elude stan-
dard analysis such as paired t-test or other analysis
of variance (ANOVA) methods. However, our ob-
jective here is limited to introducing and illustrating
the PFA methodology and we do so using both con-
trolled simulations and experimental data. These
datasets are representative of real world microarray
experiments for studying the genetics of retinal ag-
ing and disease. We report on more comprehensive
comparisons, biological significance of genes discov-
ered using PFA, and scientific significance of the
experiments elsewhere.

The paper is organized as follows. In Sec. 2 we
give some background on genomics and briefly re-
view gene microarray technology. In Sec. 3 we mo-
tivate and describe the PFA multicriterion ranking
approach and introduce the concept of PDSD’s. In
Sec. 4 we report on quantitative comparisons be-
tween the Pareto depth test and other tests used
for gene selection and ranking. Finally, in Sec. 5
we conclude with some general remarks.

2 Background

The ability to perform accurate genetic differenti-
ation between two or more biological populations
is a problem of great interest to researchers in ge-
netics and related areas. For example, in a tempo-
rally sampled population of mice one is frequently
interested in identifying genes that display a sig-
nificant change in expression level between a pair
of time points. Gene microarrays have revolution-
ized the field of experimental genetics by offering to
the experimenter the ability to simultaneously mea-
sure thousands of gene sequences simultaneously. A
gene microarray consists of a large number N of
known DNA probes that are put in distinct loca-
tions on a small slide [16, 2, 9]. After hybridization
of an unknown tissue sample to the microarray, the
abundance of each probe present in the sample can
be estimated from the measured levels of hybridiza-
tion, called probe responses, of the sample to each
probe.

Due to high response variability the study of dif-
ferential gene expression between two or more pop-
ulations or time points usually requires hybridizing
several samples from each population. We assume
that there are T populations each consisting of Mt

samples, t = 1, . . . , T . For each of the
∑T

t=1 Mt
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samples we assume an independent microarray hy-
bridization experiment is performed yielding N gene
probe responses extracted from the microarray. De-
fine the measured response of the n-th probe on the
m-th microarray acquired at time t

ytm(n), n = 1, . . . , N, m = 1, . . . , Mt, t = 1, . . . , T.

When several gene chip experiments are performed
over time they can be combined in order to find
genes with interesting expression profiles. This is a
data mining problem for which many methods have
been proposed including: multiple paired t-tests;
linear discriminant analysis; self organizing (Ko-
honen) maps (SOM); principal components analy-
sis (PCA); K-means clustering; hierarchical cluster-
ing (kdb trees, CART, gene shaving); and support
vector machines (SVM) [12, 4]. Validation meth-
ods have been widely used and include [25, 17]:
significance analysis of microarrays (SAM); boot-
strapping cluster analysis; and leave-one-out cross-
validation. Most of these methods are based on
filtering out profiles that maximize some criterion
such as: the ratio of between-population-variation
to within-population-variation; or the temporal cor-
relation between a measured profile and a profile
template. As contrasted to maximizing such scalar
criteria, multicriteria gene filtering seeks to find the
best compromise between maximizing or minimiz-
ing several criteria. This method is closely related
to multi-objective optimization which has been used
in many applications [23, 28].

2.1 Data Sets

Data from two microarray experiments are used in
the sequel to illustrate our analysis. These data
were collected by collaborators in Anand Swaroop’s
laboratory in the Dept. of Ophthalmology at the
University of Michigan. We briefly describe these
two experiments below.

2.2 Mouse Retinal Aging Study

The experiment consists of hybridizing 24 retinal
tissue samples taken from each of 24 age-sorted mice
at 6 ages (time points) with 4 replicates per time
point. These 6 time points consisted of 2 early
development (Pn2, Pn10) and 4 late development
(M2, M6, M16, M21) samples. RNA from each sam-
ple of retinal tissue was amplified and hybridized to
the 12,422 probes on one of 24 Affymetrix U74Av2
Mouse GeneChip microarrays. The data arrays from
the GeneChips were processed by Affymetrix MAS5

software to yield log2 probe response data. Of in-
terest to our biology collaborators is the effect of
aging on retinal gene expression. For this purpose
we compare two populations comprising the 8 tissue
samples at the two extreme late development time
points M2 and M21. Our objective was to find genes
with a high level of differential expression between
these points.

2.3 Human Retinal Aging Study

The experiment consists of hybridizing 16 retinal
tissue samples taken from 8 young human donors
and 8 old human donors. The ages of the young
donors ranged from 16 to 21 years and the ages of
the old donors ranged from 70 to 85 years old. The
16 tissue samples were hybridized to 16 Affymetrix
U95A Human GeneChip microarrays each contain-
ing N = 12, 642 probes. Again MAS5 software was
used to extract log2 probe response data and our
objective was to find genes with a high level of dif-
ferential expression between the young and old pop-
ulations.

3 Gene Screening and Rank-
ing

Consider the problem of finding a set of genes whose
mean expression levels are significantly different be-
tween a pair of populations (T = 2). The mea-
sured probe responses from such genes should ex-
hibit small within-population variability (intra-class
dispersion) and large between-population variabil-
ity (inter-class dispersion). Two natural measures
of intra-class dispersion ξ1 and inter-class dispersion
ξ2, respectively, are the (scaled) absolute difference
between sample means:

ξ2(n) =
1√

1
M1

+ 1
M2

|ȳ1.(n)− ȳ2.(n)| , (1)

where,

ȳt.(n) =
1

Mt

Mt∑
m=1

ytm(n)

and the pooled sample standard deviation:

ξ1(n) =

√
(M1 − 1)σ2

1(n) + (M2 − 1)σ2
2(n)

(M1 − 1) + (M2 − 1)
(2)
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where,

σ2
t (n) =

1
Mt − 1

Mt∑
m=1

(ytm(n)− ȳt.(n))2 .

The simple paired t-test [3] can be used to sep-
arate the populations by thresholding the ratio of
the two dispersion measures:

Tpt(n) =
ξ2(n)
ξ1(n)

S
>
<
S

ηT (3)

where ηT is a user-specified threshold. Here S refers
to selecting gene n while S refers to rejecting gene
n. If the user wishes to constrain familywise er-
ror rate or false discovery rate then ηT is chosen as
a function of the quantiles of the student-t density
with M1+M2−2 degrees of freedom. Alternatively,
if the user wishes to select a fixed number p of genes
for further study, e.g., by RT-PCR, then ηT is data-
dependent. Specifically, in this latter case one re-
duces ηT until the number card{n : Tpt(n) > ηT } is
equal to p, i.e. exactly p genes have Tpt(n) values
that exceed ηT .

The test statistic Tpt(n) in (3) is a scalar cri-
terion that could be used to rank the genes in de-
creasing order of Tpt, or, equivalently, in increasing
p-value.

3.1 Multiple Objective Ranking

Multiple objective optimization captures the intrin-
sic compromises among possibly conflicting objec-
tives. To illustrate, in the present context we con-
sider the pair of criteria ξ2(n) (1) and ξ1(n) (2). A
gene that maximizes ξ2 and minimizes ξ1 over all
genes would be a very attractive gene indeed. Un-
fortunately, such an extreme of optimality is seldom
attained with multiple criteria. A more common
case is illustrated in Fig. 1.a. It should be obvi-
ous to the reader that gene A is “better” than gene
C because both criteria are higher for A than for
C. However it is not as straightforward to specify a
preference between A, B and D. Multi-criteria rank-
ing uses the “non-dominated” property as a way to
establish such a preference relation. A and B are
said to be non-dominated because improvement of
one criterion in going from A to B corresponds to
degradation of the other criterion. All the genes
which are non-dominated constitute a curve which
is called the Pareto front. A second Pareto front is
obtained by stripping off points on the first front
and computing the Pareto front of the remaining
points. This process can be repeated to define a

third front and so on. A gene that lies on the k-th
Pareto front will be said to be at ”Pareto depth” k.

A 

B 

C 

D ξ 

ξ
2 

1 ξ 

ξ
2 

1 

Figure 1: a). A, B, D are non-dominated genes in the
dual criteria plane where ξ1 is to be minimized and ξ2

is to be maximized. Genes A, B, and D are at Pareto
depth 1 while gene C is at Pareto depth 2. b). Successive
Pareto fronts in dual criteria plane (o : first Pareto
front, * : second Pareto front, + : third Pareto front).

 

ξ1 

ξ2 
Optimum 

 

ξ1 

ξ2 

Figure 2: a). Pareto front contains a single gene, b).
Pareto front contains all genes. In a) linear ordering ex-
ists and a single gene (optimum) dominates the others.
In b) no non-trivial partial ordering exists and there is
only one Pareto front.

In rare cases the Pareto front consists of a sin-
gle gene (see Fig. 2.a). At the opposite extreme,
there are cases where the Pareto front consists of
the entire set of genes (see Fig. 2.b). It can be
shown that as the number of criteria increases the
Pareto front becomes less and less discriminatory,
e.g. for an infinite number of criteria it consists
of the entire set of genes. In practical cases where
only a few criteria are used there are multiple Pareto
fronts each consisting of many genes. We illustrate
in Fig. 3 where we show the scatterplot of the cri-
teria {(ξ1(n), ξ2(n))}N

n=1 defined in (1) and (2) for
all gene probe responses extracted from microar-
rays in the mouse retina aging experiment. As in
[13] we call this scatterplot the multicriterion scat-
tergram. For this set of data, Fig. 3 shows the first
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Pareto front as lying on the left-upper boundary of
the multicriterion scattergram.
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Figure 3: The multicriterion scattergram for the
mouse retina aging experiment. Each point in the
scatterplot corresponds to the pair (ξ1(n), ξ2(n)) for
a particular gene n. The first three Pareto fronts
are indicated (◦, ¤ and?).

For comparison, in Fig. 4 we show the multicri-
terion scattergram for the human retina aging data
set with the same pair of criteria ξ1, ξ2 defined in
(1) and (2). As the upper left boundary of this
scatterplot is much shallower and denser than the
scatterplot in Fig. 3 the first Pareto front of the hu-
man data contains many more genes than the first
Pareto front of the mouse data. Since they would
not render well in this densely populated boundary
region, the Pareto fronts are not indicated in Fig.
4.

3.2 Pareto Depth Sampling Distribu-
tion

Microarray data are strongly corrupted by biologi-
cal variations and measurement variations. To ac-
count for this variation we applied a simple resam-
pling procedure to robustify the Pareto analysis.
This resampling is implemented as a bootstrap pro-
cedure and is equivalent to leave-one-out cross-validation
[15]. Resampling proceeds as follows: for each time
point a sample is omitted leaving 2M sets of (M −
1)2 pairs to be tested (here we set Mt = M , cor-
responding to the two data sets presented above).
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Figure 4: The multicriterion scattergram for the hu-
man retina aging experiment. Each point in the
scatterplot corresponds to the pair (ξ1(n), ξ2(n)) for
a particular gene n.

For each of these resampled set of genes the Pareto
fronts are computed. The most resistant genes are
those which remain on the top Pareto fronts through-
out the resampling process. To quantify the move-
ment of a given gene across the Pareto fronts we
introduce the Pareto depth sampling distribution
(PDSD). For each gene this distribution corresponds
to the empirical distribution of the 2M Pareto front
indexes visited during the resampling process:

Pdsdn(k) =
1

Mresamp

Mresamp∑

j=1

1n(j, k), k = 1, . . . , N

where Mresamp = 2M is the number of resampling
trials, and 1n(j, k) is an indicator function of the
event: ”j-th resampling of n-th gene is on k-th
Pareto front.” If K is the total number of Pareto
fronts in the scattergram (ξ1(n), ξ2(n)}N

n=1 then, by
convention, we define Pdsdn(k) = 0 for k > K. As
the PDSD is a probability distribution Pdsdn(k) ≥
0 and

∑
k Pdsdn(k) = 1.

Figure 5 corresponds to the (un-normalized) PDSDs
over the first 40 Pareto depths for four different
genes taken from the human data set under the
dual criteria (ξ1, ξ2) of (1) and (2). The highly
concentrated PDSD in the top-left panel indicates
that this gene is very stable; it remains on the first
front throughout the resampling process. At the op-
posite extreme, the highly dispersed PDSD on the
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Figure 5: Unormalized PDSDs for four different
genes taken from human retina experiment. These
PDSDs are indexed by the Pareto depth, which is
equivalent to Pareto front number.

bottom-right panel indicates a very unstable gene;
its Pareto depth is highly sensitive to resampling.
The two other panels depict PDSD’s of genes that
lie within these two extremes. As the PDSD sum-
marizes all of the empirical Pareto depth statistics
it can be used to develop a wide array of gene rank-
ing criteria. For example, in [10] we ranked genes
in terms of the proportion of resampling trials for
which a gene remained on one of the top 3 Pareto
fronts. This ranking criterion is equivalent to the
cumulative Pareto front test

Tcum(n) =
3∑

k=1

Pdsdn(k)
S
>
<
S

ηc. (4)

In this paper we investigate a different PDSD
ranking statistic for pulling out genes that are both
highly stable and have low Pareto depth. Genes
with these attributes can be captured by requiring
that their Pareto depth variance σ2(n) and squared
Pareto depth mean m2(n) be small. Equivalently,
we define the Pareto depth test

Tpd(n) =
√

m2(n) + σ2(n)
S
>
<
S

ηd. (5)

Note that the test statistic Tpd(n) is equivalently
expressed as Tpd(n) =

∑
k k2Pdsdn(k).

Figure 6 is the scatter plot of the pairs of mo-
ments {(m2(n), σ2(n))}N

n=1 of the gene PDSDs for
the human retina data. The best genes are those
which have smallest mean and variance, i.e., the
genes that lie on the lower left corner of the scatter

plot. For a given threshold ηd the test (5) defines a
quarter disk region in the plane of Fig. 6 centered
at the origin (0, 0) with disk radius ηd. Genes whose
moment pair (m2(n), σ2(n)) falls in this region will
pass the test and be selected as having both low and
stable Pareto depths. Bootstrap methods, imple-
mented with random permutation and resampling,
could be straightforwardly implemented to deter-
mine the p-values of this test. However, in this pa-
per we will focus on constraining the number of dis-
covered genes as opposed to the level of significance
of the test. When the number of discovered genes
is constrained to be 50, the top ranked 50 genes fall
into the acceptance region of the test (5). Figure 7
shows a gray-coded image of the PDSDs for each of
these top 50 genes for the human retina data. The
figure indicates that the Pareto depths of these 50
genes are tightly concentrated in the range 1 to 6.
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Figure 6: The scatter plot of the square mean (hor-
izontal axis) and the variance (vertical axis) of the
Pareto depth of each gene for human retinal data.
Here CV refers to our resampling method consisting
of leave-one out cross-validation.

For comparison, Fig. 8 shows the PDSDs ob-
tained by applying exactly the same selection crite-
rion (5) to the mouse aging experiment as we just
presented for the human aging experiment. Notice
that the PDSDs for the top 50 mouse genes are
spread over 16 or more Pareto depths. This high
spread reflects the facts that: (1) there are fewer
stable Pareto dominant genes in the mouse aging
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Figure 7: The PDSDs of the 50 top human genes
discovered using the test (5) applied to the scatter
plot of Fig. 6 with threshold ηd determined such that
exactly 50 genes fall into acceptance region. The
magnitude of the PDSD is encoded in the false color
range of black (PDSD=1) to white (PDSD = 0).

experiment as compared to the human aging ex-
periment; (2) the Pareto front for the human aging
experiment is broader and contains more genes than
for the mouse aging data.
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Figure 8: The PDSDs of the 50 top mouse genes
discovered using the test ((5). As compared to the
human genes Fig. 7 there is much higher variability
in the Pareto depths of the top 50.

4 Experimental Comparisons

Here we compare the paired t-test (3), the cumu-
lative Pareto front test (4) used in [10], and the
Pareto depth test (5) on the basis of their gene rank-
ing performance for the retinal aging experimental
data and for simulated data.

4.1 Experimental Data

Figures 9 and 10 show the number of genes dis-
covered as a function of the paired t-test threshold
ηT for the experimental human and mouse data, re-
spectively. The shapes of the curves in these two fig-
ures are substantially different. Indeed the distinc-
tive plateau at the right tail of Fig. 10 is due to the
existence of several mouse genes whose best scores
(ξ1(n), ξ2(n)) are well detached from the scores of
the rest of the genes. There are no such highly de-
tached human genes as can be seen by comparing
the multicriteria scattergrams of Figs. 3 and 4. Fig-
ures 11 and 12 show the number of genes discovered
as a function of the inverse Pareto depth test thresh-
old 1/ηd for the experimental human and mouse
data, respectively. Again the shapes of the curves
in these two figures are substantially different. As
compared to the paired t-test figures, Figs. 9 and
10, the increase in the number of genes discovered
by the Pareto depth test is much more gradual as
1/ηp decreases, suggesting that the Pareto rankings
are more stable to measurement variations as com-
pared to the rankings induced by the t-test statistic.
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Figure 9: Number of t-test-extracted genes as a
function of threshold ηT for data in human retina
aging study.
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Figure 10: Number of t-test-extracted genes as a
function of threshold ηT for data in mouse retina
aging study.
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Figure 11: Number of Pareto-depth-test-extracted
genes as a function of inverse threshold 1/ηd for
data in human retina aging study.

4.2 Simulated Data

We performed a limited set of simulations to be
able to compare estimated rankings to the ”ground
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Figure 12: Number of Pareto-depth-test-extracted
genes as a function of inverse threshold 1/ηd for
data in mouse retina aging study.

truth” true rankings. The simulations were de-
signed to be representative of gene expressions in
a typical gene microarray experiment. Three hun-
dred (N = 300) different probe responses were sim-
ulated. Eight (M = 8) replicates of the n-th gene
probe response were generated according to an i.i.d.
Gaussian distribution with means and variances given
by (m1(n), σ2

1(n)) and (m2(n), σ2
2(n)) for popula-

tions 1 and 2, respectively. The variances were
made equal σ2

1(n) = σ2
2(n) = σ2(n) over both pop-

ulations. The means and variances were set by the
following formula:

σ(n) = ξ2(n), m1(n) = 0, m2(n) = ξ1(n)ξ2(n)/2

where the values of ξ1(n), ξ2(n) are indicated by
the criteria structure illustrated in Fig. 13. The
ground truth ranking of all genes is determined by
this figure which can be viewed as the ensemble
mean scattergram. We designate the 90 genes on
the first 3 fronts of Fig. 13 (depth increasing along
−45o diagonal) as ground-truth-optimal genes.

Figure 14 shows a realization of the empirical
scattergram obtained from sample mean and vari-
ance estimates derived from the replicates. Fig-
ure 15 shows the three first Pareto fronts and the
boundaries of two acceptance regions for the paired
t-test applied to the empirical scattergram of Fig.
14. The first three Pareto fronts do not capture
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Figure 13: Ensemble mean scattergram (ground
truth) for simulation study. There are 10 groups
of 30 genes represented by each of the 10 semicir-
cles. Ground truth Pareto optimal genes lie on the
outermost front (low ξ1 and high ξ2).
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Figure 14: Empirical scattergram constructed from
estimating sample mean and variance from the M =
8 i.i.d. samples of each gene.

all of the ground-truth-optimal genes but they have
a very low (0%) false discovery rate (proportion of
genes found which are not ground-truth-optimal).
The solid line boundary of the paired t-test cor-
responds to a threshold ηT which discovers the 90
genes with highest Tpt(n) value. Use of this ac-
ceptance region would result in discovery of more
ground-truth-optimal genes than discovered by the
first three Pareto fronts, but with a false discov-
ery rate of approximately 15%. The dashed line

boundary corresponds to a paired t-test threshold
ηT which would lead to discovery of all of the 90
ground-truth-optimal genes. However, the false dis-
covery rate of this acceptance region is quite high
(> 40%). In Fig. 16 is another depiction of the two
acceptance regions of the paired t-test. It is clear
from this example that neither the paired t-test
nor the cumulative Pareto front test (4) succeed in
extracting all the ground-truth-optimal genes with
low false discovery rate. The next question we ad-
dress is: would a Pareto depth test do better than
the simple three front Pareto test and paired t-tests
illustrated here?
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Figure 15: Three first Pareto fronts (◦, ¤ and ∗)
and boundaries of paired t-test acceptance ragions
for the scattergram of Fig. 14.

To quantify the tradeoffs between the paired t-
test and the Pareto tests for extracting the ground-
truth-optimal genes we performed a representative
simulation study to compute the average correct
discovery rates and the average false discovery rates
as a function of the number M of replicates. All
tests were implemented with a data dependent thresh-
old which selected the 90 top genes as ranked by the
respective test statistics. For the range of M stud-
ied this threshold setting gave the paired t-test a
nearly constant correct discovery rate of approxi-
mately 88%. The cumulative Pareto front test (4)
and the Pareto depth test (5) were implemented for
comparison.

In Figs. 17 and 18 we plot the correct discovery
rate and the false discovery rate, respectively, for
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Figure 16: Paired t-test statistic and thresholds cor-
responding to boundaries in Fig. 15. Genes are or-
dered from right to left by scanning successive fronts
in the ensemble mean scattergram of Fig. 13.

the paired t-test and the cumulative Pareto front
test. From the figures it is clear that the cumula-
tive Pareto front test has better performance than
the paired t-test for large M . However, it suffers
from lower correct discovery rate than the paired
t-test for small M . In Figs. 19 and 20 the same
error rates are compared for the paired t-test and
the Pareto depth test. The Pareto depth test per-
formed significantly better (higher correct discovery
rate and lower false discovery rate) than the paired
t-test for all M .

The alert reader will realize that our definition
of ground-truth-optimal genes favors the Pareto meth-
ods of gene ranking and selection as compared to
the paired t methods. Our definition of ground-
truth-optimality was motivated by our several years
of experience helping molecular biologists discover
biologically interesting genes, in particular genes
with weak but interesting transcription factors. A
more comprehensive study would compare the per-
formance of Pareto to paired t approaches when the
ground-truth-optimal genes are defined differently.
Due to space limitations we do not present the re-
sults of this study here.
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Figure 17: Correct discovery rate as a function of
the number of replicates for paired t-test (solid) ver-
sus cumulative Pareto front test (dashed). Both
tests have data-dependent thresholds that select the
90 top ranked genes according to their respective test
statistics. )
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Figure 18: False discovery rate as a function of the
number of replicates for paired t-test (solid) versus
cumulative Pareto front test (dashed). Both tests
have data-dependent thresholds that select the 90
top ranked genes according to their respective test
statistics.

5 Conclusion

DNA microarray technology allows one to evalu-
ate the expression profile of thousands of genes si-
multaneously. However, to take full advantage of
these powerful tools, we need to find new methods
to handle large amounts of data and information
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Figure 19: Correct discovery rate as a function of
the number of replicates for paired t-test (solid) ver-
sus Pareto depth test (dashed). Both tests have
data-dependent thresholds that select the 90 top
ranked genes according to their respective test statis-
tics.
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Figure 20: False discovery rate as a function of the
number of replicates for paired t-test (solid) versus
Pareto depth test (dashed). Both tests have data-
dependent thresholds that select the 90 top ranked
genes according to their respective test statistics.

without becoming overwhelmed by the potentially
large number of candidate genes. This paper has
presented a new method of Pareto analysis that can
identify and rank genes that have both stable and
low Pareto depths relative to the remaining genes.
Additional genes discovered using this algorithm are
now being validated by RT-PCR methods. Many
signal processing challenges remain due to the in-

creasingly high dimensionality of genetic data sets.
The developed method has been implemented in
matlab and C and is sufficiently fast to be part of
an interactive tool for gene screening, ranking, and
clustering.
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