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Abstract

Components within micro-scale engineering systems are often at the limits of com-

mercial miniaturization and this can cause unexpected behavior and variation in

performance. As such, modelling and analysis of system robustness plays an im-

portant role in product development. Here schematic bond graphs are used as a

front end in a sensitivity analysis based strategy for modelling robustness in multi-

physics micro-scale engineering systems. As an example, the analysis is applied to

a behind-the-ear (BTE) hearing aid.

By using bond graphs to model power flow through components within different

physical domains of the hearing aid, a set of differential equations to describe the sys-

tem dynamics is collated. Based on these equations, sensitivity analysis calculations

are used to approximately model the nature and the sources of output uncertainty

during system operation. These calculations represent a robustness evaluation of the

current hearing aid design and offer a means of identifying potential for improved

designs of multiphysics systems by way of key parameter identification.
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1 Introduction

Robust Engineering Design (RED) refers to the group of methodologies

dedicated to reducing the variation in performance of products and processes

arising from manufacture and use. In addition to design and analysis of exper-

iments, it now includes computer experiments on CAD/CAE simulation, ad-

vanced Response Surface Modelling methods, adaptive optimisation method-

ologies and reliability analysis, and should be included within general life-cycle

design. RED has been shown to be very effective in improving product or pro-

cess design through its use of experimental design and analysis methods [1]

[2]. However, RED has not been fully developed at the micro-scale [3] where

statistical variations could be relatively more important.

Hearing aids consist of an assembly of very small components such as tele-

coils, microphones, receivers and amplifiers. A typical such system is shown

in Figure 1. In order to fit in or around the ear and provide high gain, some

of these components are at the limits of commercial miniaturization which

can cause unexpected behavior and variation in performance. The economic

and social cost of hearing loss for the countries of the Europe Union was esti-

mated to be in excess of $220 billion in 2004 [4]. This highlights the need to

develop reliable, robust, high-quality hearing devices. A robustness analysis

of a micro-scale behind-the-ear (BTE) hearing aid device is performed in this

paper by way of using bond graph modelling alongside analytic sensitivity and

uncertainty methods and builds on a related empirical approach [5]. Recent

published work on hearing aids [6] has focused on algorithms for improved

digital signal processing such as speech enhancement [7], interference cancela-

tion [8] and new technology such as dual microphones [9]. Robustness has only

been addressed in terms of feedback. Therefore, to the authors knowledge, the

numerical results presented here on hearing aid robustness in terms of physical

parameters are new.

A hearing aid works in two modes; microphone mode and telecoil mode. In

microphone mode sound is converted into an electrical signal by the micro-

phone, which is then amplified and converted back into sound by a loudspeaker

called the receiver. In telecoil mode, instead of detecting sound pressure via a

microphone, the sound is transmitted as a radio signal and converted into an
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Fig. 1. Assembly diagram of BTE Hearing Aid

electrical signal by the telecoil.

In the work presented here a bond graph model of a hearing aid is developed

and used to derive a set of governing differential equations for the system.

Solving these equations numerically, in parallel with the corresponding sensi-

tivity differential equations, provides a simulation tool which models system

output as well as the sensitivity of this output to parameter variability. Based

on an output uncertainty approximation, these sensitivity results facilitate

identification of the components whose variability have greatest effect on sys-

tem performance. The levels of variability in the parameters is pre-defined by

the particular product specifications within the manufacturing process.

2 Bond Graph Modelling and Equation Generation

Bond graphs, introduced by Paynter [10], can be used to model multi-energy

domain systems based on electro-mechanical analogues. Notable contributions

to bond graph theory have been made by Karnopp [11], Rosenberg [12] and

Cellier [13]. Dynamic physical systems are concerned with one or more of the

following: (i) energy transfer, (ii) mass transfer, and (iii) information (or sig-

nal) transfer. Bond graphs are an abstract representation of a system that

uses one set of symbols to represent all applicable types of systems in terms

of energy transfer [14]. In particular, they focus on the exchange of power

between components by considering the flow of independent power variables 1

from one energy domain to another. The causality assignment and model-

1 The power variables are independent of the energy domain through which they

flow
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building associated with bond graphs makes them an interesting candidate

for combination with RED methods, as described by Atherton and Bates [15],

who applied bond graph models in an industrial engineering environment to

perform RED on the design of both a loudspeaker driver unit and a hedge

trimmer. In addition, Atherton et al [5] used bond graph models to perform

robustness analysis on the BTE hearing aid using a designed computer ex-

periment. The results demonstrated good agreement between simulation and

physical experiments.

The sensitivity bond graph approach [16] develops sensitivity components

which model the sensitivity of efforts and flows with respect to changes in

component parameter values. These sensitivities are then combined in a bond

graph to implicitly solve the system sensitivity equations. In contrast, the

method presented here uses bond graphs to obtain a set of linearized govern-

ing system equations that are the starting point for developing a corresponding

sensitivity analysis formulation. All of the equations are then directly solved

and analysed outside the bond graph environment. In this way, the techniques

used to solve the differential equation systems are not governed by the choice

of bond graph simulator. Furthermore, the construction of incremental bond

graphs is avoided [17] and the original engineering system topology is main-

tained. In this paper the linearization process is performed by the bond graph

simulator 20-Sim [18]. This translates the bond graph system symbolically

into a standard state-space form around a chosen working point. The sym-

bolic linearization requires that all the elements of the original system are

differentiable.

Figure 2 shows the bond graph model of the BTE hearing aid device which

in this paper is modelled in telecoil mode rather than microphone mode as

considered in [5]. In the bond graph representation, the telecoil is represented

as a pure inductance by a generalised inertia element, Itcoil. Indeed, all the

electro-magneto-mechanical elements are represented in electrical terms in this

bond graph in accordance with standard industry practice. The signal to the

telecoil originates from a radio loop, which is represented as a modulated

effort source with a.c. and d.c. parts. The three-stage amplifier is prominent

in the center of the bond graph (shaded grey) is represented here, as in [5],

in signal terms rather than power transmitting elements. This is because the
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Fig. 2. Bond graph model of a hearing aid device in telecoil mode.

amplifier stage is an integrated circuit and, as this part of the design is not

modifiable in practice, it is represented as a set of three simple gain stages

(K-blocks). The signal blocks represent either the construction of the test

signal, or D.C. shifts to represent the functional behaviour of the amplifier gain

stages. Numbered R and C elements represent various basic electrical resistors

and capacitors of the circuit respectively, and Rtc and Rvc represent tone

control and volume control variable resistors respectively. The receiver, which

produces sound output, is limited to equivalent circuit load elements, Rrec

and Irec, rather than attempt to model the many component parts associated

with generating acoustic output. The resultant bond graph maintains integral

causality throughout, thus remaining mathematically well formulated.

The bond graph simulation software 20-sim [18] was used to simulate the

model in Figure 2, subject to a sinusoidal input signal MSe, and five system

state variables were identified from the linearization process, as listed in Table

1. The independent system parameters identified by the bond graph model

are presented in Table 2.

One of the advantages of bond graph modelling is the facility to extract the

governing system differential equations from the bond graph representation
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vC2(t) Voltage across C2

vC3(t) Voltage across C3

vC4(t) Voltage across C4

irec(t) Current through Receiver

itcoil(t) Current through Telecoil
Table 1

System states in bond graph of hearing aid system

by linearization around a working point, determined by solving the nonlinear

system and specifying system inputs and outputs. This is achieved by enforc-

ing conservation of power laws at each junction in terms of the independent

effort and flow variables, and is performed automatically by the bond graph

simulation software [18]. The linearized dynamic governing system differential

equations of the system in Figure 2 are generated by the bond graph simulator

and written in matrix form as follows.



v′C2

v′C3

v′C4

i′rec

i′tcoil



=



0 0 0 0 1
C2

0 − R5+Rvc+8Rtc

C3Rtc(R5+Rvc)
−8

C3(R5+Rvc)
0 R6(R5+Rvc−23.2Rtc)

4C3Rtc(R5+Rvc)

0 −8
C4(R5+Rvc)

−8
C4(R5+Rvc)

0 −5.9R6

C4(R5+Rvc)

0 305.1
Irec

305.1
Irec

−Rrec

Irec

225.9R6

Irec

−1
Itcoil

0 0 0 −1.738R6

Itcoil





vC2

vC3

vC4

irec

itcoil



+



0

0

0

0

MSe

Itcoil


(1)

Here u′ denotes a derivative of u with respect to time and numerical values

represent the substitution of numerical constants such as amplifier gain and

battery voltage in the model. A member of the ODE suite of codes in MAT-

LAB [19] was modified to solve the dynamic system (1) and this solution was

compared against that of bond graph software simulator [18] to validate the

accuracy of the extracted linear equation system. The accuracy of the bond

graph representation has already been validated against experimental results

in [5] for the microphone mode.
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3 Sensitivity and Uncertainty Analysis

3.1 General Theory

First order dynamic differential models such as (1), linear or otherwise, take

the general form
dy

dt
= f(y, θ, t) (2)

where t represents time, y and θ represent the vectors containing the n sys-

tem outputs (solutions) and m parameters respectively, and f is a vector

of functions in y, θ and t such that y = [y1, y2, ..., yn]T , θ = [θ1, θ2, ..., θm]T

and f = [f1, f2, ..., fn]T . Note that when f(y, θ, t) can be broken into a pure

state and a forcing input, as in the present case, we may write f(y, θ, t) =

f̃(y, θ, t) + u(θ, t). Taking derivatives with respect to θ on either side of the

governing equations (2) results in the sensitivity differential equations

dS(θ, t)

dt
=

∂f

∂y
S(θ, t) +

∂f

∂θ
(3)

which describe the time evolution of the n×m local sensitivity matrix S(θ, t)

whose components are given by

Sij =
∂yi(θ, t)

∂θj

(4)

The components (4) are termed local sensitivity coefficients. In (3), the

n× n matrix ∂f
∂y

and n×m matrix ∂f
∂θ

can be derived explicitly from (2) and

are termed the Jacobian and parametric Jacobian matrices respectively.

By the direct method for sensitivity analysis [20] [21] the sets of differential

equations (2) and (3) are solved jointly at each time step of a numerical time

integration scheme, with information generated in the solution of (2) used

in the solution of (3). Accordingly a solution to both y(θ, t) and S(θ, t) is

returned at each time step of the numerical method. In the work presented

here a member of the ODE suite of codes ode45 [22] in MATLAB was modified

to solve the governing and sensitivity differential equation system in this way.

Whilst numerical methods are not necessarily required to solve a linear gov-

erning system, the direct method as outlined here is readily extendable to
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more complex non-linear models. At any time point t0 during the numerical

solution process, based on a first order Taylor series approximation [23], the

covariance of the system output vector cov(y) can be approximated by

cov(y(t0)) ≈ S(µθ, t0)ΣθS
T (µθ, t0) (5)

where Σθ is the covariance matrix based on the predetermined variability in

the system parameters and µθ is the vector of nominal parameter values. For

independent system parameters θi such that

Σθ = diag(σ2(θ1), .., σ
2(θm)) (6)

a linear estimate of σ2(yi(t0)), the variance of model output yi at t0 owing to

parameter variability, can be written from (5) as

σ2(yi(t0)) =
m∑

j=1

σ2
j (yi) (7)

where σ2(yi(t0)) represents the diagonal elements of cov(y(t0)), and

σ2
j (yi) ≈ S2

ij(µθ, t0)σ
2(θj) (8)

is the contribution of the variance σ2(θj) in parameter θj to the resultant vari-

ance in model output yi at t0. Therefore, the total output variance represented

in equation (7) is a sum over independent parameter contributions.

3.2 Telecoil Sensitivity Formulation

Following on from the theory in section 3.1, for the telecoil system the state

and parameter vectors are given from Tables 1 and 2 respectively by

y = [vC2 , vC3 , vC4 , irec, itcoil]
T (9)

θ = [Itcoil, R6, Irec, Rrec, C2, C4, R5, Rvc, C3, Rtc]
T (10)

and the functions contained in the vector f of equation 2 are defined by the

matrix-vector multiplication on the right hand side of (1).
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The parametric Jacobian matrix in equation (3) is thus defined as

∂f

∂θ
=



0 0 0 0
∂v′

C2

∂C2
0 0 0 0 0

0
∂v′

C3

∂R6
0 0 0 0

∂v′
C3

∂R5

∂v′
C3

∂Rvc

∂v′
C3

∂C3

∂v′
C3

∂Rtc

0
∂v′

C4

∂R6
0 0 0

∂v′
C4

∂C4

∂v′
C4

∂R5

∂v′
C4

∂Rvc
0 0

0 ∂i′rec

∂R6

∂i′rec

∂Irec

∂i′rec

∂Rrec
0 0 0 0 0 0

∂i′tcoil

∂Itcoil

∂i′tcoil

∂R6
0 0 0 0 0 0 0 0


(11)

whose elements should not be taken literally, but can be derived analytically

from (1) as presented in Appendix A (known zeros are indicated). Owing to

system linearity, the Jacobian ∂f
∂y

for the hearing aid system is equivalent to

the system matrix in (1).

Solving the formulated sensitivity equation in the form of (3) alongside the

governing system (1) returns the values of the system solution variables at

each time step along side the sensitivity coefficients of equation (4) which

form system sensitivity matrix given in this application by

S(µθ, t) =



∂vC2

∂Itcoil

∂vC2

∂R6

∂vC2

∂Irec

∂vC2

∂Rrec

∂vC2

∂C2

∂vC2

∂C4

∂vC2

∂R5

∂vC2

∂Rvc

∂vC2

∂C3

∂vC2

∂Rtc

∂vC3

∂Itcoil

∂vC3

∂R6

∂vC3

∂Irec

∂vC3

∂Rrec

∂vC3

∂C2

∂vC3

∂C4

∂vC3

∂R5

∂vC3

∂Rvc

∂vC3

∂C3

∂vC4

∂Rtc

∂vC4

∂Itcoil

∂vC4

∂R6

∂vC4

∂Irec

∂vC4

∂Rrec

∂vC4

∂C2

∂vC4

∂C4

∂vC4

∂R5

∂vC4

∂Rvc

∂vC4

∂C3

∂vC4

∂Rtc

∂irec

∂Itcoil

∂irec

∂R6

∂irec

∂Irec

∂irec

∂Rrec

∂irec

∂C2

∂irec

∂C4

∂irec

∂R5

∂irec

∂Rvc

∂irec

∂C3

∂irec

∂Rtc

∂itcoil

∂Itcoil

∂itcoil

∂R6

∂itcoil

∂Irec

∂itcoil

∂Rrec

∂itcoil

∂C2

∂itcoil

∂C4

∂itcoil

∂R5

∂itcoil

∂Rvc

∂itcoil

∂C3

∂itcoil

∂Rtc


(12)

where each of the coefficients in (12) are calculated at µθ and at time t, where

µθ is determined using the nominal values of the system parameters. The

parameter nominal values and manufacturing tolerances for the hearing aid

design were taken from the manufacturers data sheets and are presented in

Table 2. Each manufacturing tolerance acts as a source of variability that is

translated to variation in the system output. Parameter standard deviation

was computed by assuming all parameter values are uniformly distributed

within the prescribed range and using the standard formula σ = (b−a)/(2
√

3),

where a and b are the lower and upper bounds, respectively.
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parameter description nominal tolerance Std. Dev.

R5 resistance R5 6800 Ω ±10% 392.6 Ω

R6 resistance R6 75000 Ω ± 5% 2165 Ω

Rrec receiver resistance 500 Ω ±10% 28.87 Ω

Rtc tone control resistance 1700 Ω ±10% 98.14 Ω

Rvc volume control resistance 50000 Ω ±20% 5774 Ω

C2 capacitance C2 100e-09 F ± 5% 2.887e-09 F

C3 capacitance C3 15e-09 F ±10% 0.866e-09 F

C4 capacitance C4 0.47e-06 F +80% -20% 0.137e-06 F

Irec receiver inductance 0.345 H ±22% 0.0438 H

Itcoil telecoil inductance 0.295 H ±15% 0.0255 H
Table 2

Hearing aid system parameter descriptions, manufacturing data for nominal values

and tolerances and calculated standard deviations assuming Uniform distribution.

Using the sensitivity matrix (12) variations in parameter value can be prop-

agated through to the system output using equations (7) and (8), with the

individual sources contributing most to the output variance being identified

by (8). The results of numerically implementing this strategy for determining

the sources of variability in the hearing aid system model output are presented

in Section 4.

4 Numerical Results

From the system outputs listed in Table 1, the currents irec and itcoil are

investigated in terms of their sensitivity to other circuit component values

since, in telecoil mode, the telecoil and receiver are known to interact in close

proximity [24]. At a sinusoidal input signal 2 of amplitude 1mV and frequency

1 kHz, the simulated solutions irec and itcoil generated by solving the governing

differential system (1) using a time integration scheme are also 1 kHz sinusoids

2 This signal is equivalent to the expected input generated by a telecoil.
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parameter σj(irec) σj(itcoil)

R5 0.09e-06 0

R6 0.67e-06 224.3e-12

Rrec 0.91e-06 0

Rtc 0.37e-06 0

Rvc 1.44e-06 0

C2 0.02e-06 2.7e-12

C3 0.41e-06 0

C4 0.78e-06 0

Irec 8.79e-06 0

Itcoil 0.09e-06 28.7e-12

Table 3

Individual parameter contribution to output sensitivity, expressed as standard de-

viations (Amperes per unit change of jth parameter).

of varying amplitudes with a d.c. offset. The system sensitivity coefficients

will also be periodic at the same frequency since the governing and sensitivity

equation systems share the same eigenvalues. By using the system sensitivity

coefficients computed at each step of the solution procedure, the parameter

variances were propagated through to the chosen model outputs. The peak-

to-peak amplitudes of the simulated sinusoid solutions irec and itcoil, and their

corresponding variances due to variation in parameter values are presented in

Tables 3 and 4.

The output variance in itcoil was found to be mostly due to the variance of

R6, although this variance is negligible compared to the nominal output value

of itcoil. As such itcoil can be considered robust to parameter variations. The

major contributor to the variance in irec was seen to be that of parameter Irec

alongside small contributions from parameters Rvc, Rrec, C4 and R6. As such,

manufacturing tolerances on the other parameters have little or no effect on

system performance.
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Nominal Pk-Pk Output Value 0.625e-03 0.1013e-06

Total Output Std. Dev. 13.63e-06 255.8e-12
Table 4

Peak-to-peak amplitudes of the 1kHz sinusoids representing irec, itcoil, and the cor-

responding total standard deviation owing to parameter variation. All units in Am-

peres.

5 Conclusions

An analytic bond graph sensitivity analysis based methodology for ro-

bustness evaluation in multi-physics engineering systems has been presented

and implemented in the case of a BTE hearing aid device. The methodology

uses a linearized state space formulation of a bond graph system to iden-

tify key parameters from a robustness perspective while avoiding the need to

continually re-run simulations at changing parameter values at the expense

of solving a coupled sensitivity differential equation at each simulation time

step. These results identify the most significant hearing aid design parameters

from a robustness perspective so that they can be selected to either maximise

performance or reduce costs.

The methods presented here can be applied generally to dynamic engineering

systems, but are especially useful in a multi-energy domain, where an entire

system can be modelled and analyzed in a single simulation environment. The

linearization of the system is valid around a specified working point and is per-

formed symbolically when the original system contains differentiable functions.

For nonlinear systems the linearization process, which involves manipulation

of equations, will not be as simple as for linear systems. However, formula-

tion and reduction will follow the same pattern analytically even if simulation

packages such as 20-Sim are unable to do this at present. This consistency of

approach is addressed in [25].
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Appendix A

The elements of the parametric Jacobian matrix of equation 11 are given by

∂v′C2

∂C2

=
−itcoil

C2
2

(13)

∂v′C3

∂C3

=
vC3(8Rtc + R5 + Rvc) + R6itcoil(5.8Rtc − 0.26(R5 + Rvc)) + 8RtcvC4

C2
3Rtc(R5 + Rvc)

(14)
∂v′C3

∂R5

=
∂v′C3

∂Rvc

=
8vC3 + 8vC4 + 5.9R6itcoil

C3(R5 + Rvc)2
(15)

∂v′C3

∂Rtc

=
vC3 − (R6itcoil)/4

C3R2
tc

(16)

∂v′C3

∂R6

=
−5.9itcoil

C3(R5 + Rvc)
(17)

∂v′C4

∂C4

=
(8vC3 + 8vC4 + 5.9R6itcoil)

C2
4(R5 + Rvc)

(18)

∂v′C4

∂R5

=
∂v′C4

∂Rvc

=
8vC3 + 8vC4 + 5.9R6itcoil

C4(R5 + Rvc)2
(19)

∂v′C4

∂R6

=
−5.9itcoil

C4(R5 + Rvc)
(20)

∂i′rec

∂Irec

=
1

I2
rec

(−305vC3 − 305vC4 + Rrecirec − 226R6itcoil) (21)

∂i′rec

∂Rrec

=
−irec

Irec

(22)

∂i′rec

∂R6

=
226itcoil

Irec

(23)

∂i′tcoil

∂Itcoil

=
1

I2
tcoil

(vC2 + 1.73itcoilR6 −MSe) (24)

∂i′tcoil

∂R6

=
−1.73itcoil

Itcoil

(25)
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