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Abstract

In this paper, a robust model predictive control for a Wiener-like system is presented. The proposed

system consists of a lineal dynamic block represented by Laguerre or Kautz basis followed by a High Level

Piecewise Linear function. The results are evaluated on the basis of a simulation of a distillation column.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Although most of the contributions for controller design are based on a linear model of
the process, typically industrial processes are inherently nonlinear. However, when the
system is highly nonlinear and the operating point changes along a wide region, it is
difficult to represent adequately a given system by means of a linear model. In such cases,
there are very few controller design techniques that can be proven to stabilize processes in
the presence of nonlinearities and constraints.
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For this reason, there has been much interest in nonlinear model-based control.
A critical step in the application of these methods is the development of a suitable model
of the process dynamics. One possible approach for modeling a dynamical system is to select a
nonlinear black-box structure. Sjöberg et al. [1] described several black-box approaches for
model development and they connected all of them in a common framework.

A special class of the so-called block oriented nonlinear models are those ‘‘cascade
models’’ [2] in which a linear time invariant (LTI) dynamic block is preceded and/or
followed by a static nonlinearity. The Wiener and Hammerstein models are special kinds
of nonlinear systems where the nonlinear block is static and follows or is followed by a
linear system, respectively. These models have applications in many engineering problems
and therefore, identification of both Hammerstein and Wiener models has been an active
research area for many years [3]. As regards applicability, these structures are present in a
wide variety of fields. A detailed review on applications can be found in [3]. Among other
practical uses of these cascade models, it can be mentioned many in the field of chemical
engineering [4–12], communications [13,14], medicine [15] as well as biology [16–20].

Although several approaches can be found in the literature for nominal identification of
these models there are not many developments to obtain uncertain models. It is a well-
known fact that the high computational cost involved in the identification is inherent to the
nature of both models [21]. Robust identification of both Wiener and Hammerstein
structures is a subject under research, among the attempts for robust identification of
Wiener models it can be mentioned [7,22–25], and for Hammerstein models [22,26–28].
A typical approach for robust identification is to define a set of possible models to
represent all the process behaviors. One possible strategy concerning robust Wiener model
identification is to concentrate the uncertainty in the nonlinear static block [23,29].
However, the validity of these results is limited to those cases in which the nonlinearity is
invertible. In [30,25] no iterative algorithms for robust identification of Wiener and
Hammerstein systems are presented. The adopted methodology allows to make a robust
model in the sense that the overall data can be reproduced by the family of models
obtained. In a recent work [31], an uncertain parametric Wiener-like model as the one
described in Fig. 1 is treated. This is the modeling approach herein followed to represent
the uncertain Wiener system. In this model, the static nonlinearity is represented by High
Level Canonical Piecewise Linear (HLCPWL) functions [32–34], while the linear dynamic
part consists of a finite number of Laguerre or Kautz filters [35,36]. In order to estimate the
parameters of the HLCPWL functions, the uncertainty is described as a set of parameters,
Fig. 1. Wiener-like model.
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which are identified through the solution of an optimization problem. The approach herein
followed can be connected with formulations made within the set membership theory
framework (see, e.g. [37–40] for surveys on the topic).
The resulting methodology is robust since that the identified set of parameters is such that

any of the collected data can be represented by at least one of the models in the set. This set
of feasible parameters is obtained by solving a simple linear programming problem.
Once the block-structured model of the process is determined, the design of a suitable

dedicated controller has to be dealt with. As regards the control of nonlinear systems, there
are very few design techniques that can be proven to stabilize processes in the presence of
nonlinearities and constraints. Model predictive control (MPC) is one of these techniques.
MPC refers to a class of computer control algorithms that regulates the future behavior of
a plant through the use of an explicit process model. At each control interval the MPC
algorithm computes an open-loop sequence of manipulated variable adjustments in order
to optimize future plant behavior. The first input in the optimal sequence is injected into
the plant, and the entire optimization is repeated at subsequent control intervals [41].
With the introduction of a dynamic nonlinear model within the NMPC algorithm, the

complexity of the predictive control problem increases significantly. This issue has been
thoroughly dealt with in the review papers by Bequette [42] and Henson [43], where they
presented the various approaches for handling nonlinear systems via MPC.
In particular, Wiener models have a special structure that facilitates their application to NMPC

[6,44,29]. In these models, due to the static nature of the nonlinearities, they can be removed from
the control problem, which allows solving the NMPC problem as a linear MPC one.
In a recent paper [25], a robust algorithm for MPC control of Wiener models was

presented. In that work, the authors extended the ideas of [45] to Wiener models, by
inverting the nonlinear gain. Nevertheless, this strategy is not applicable to the Wiener-like
systems herein treated (Fig. 1) due to the dimension of the nonlinear PWL functions that
makes impossible the inversion. To overcome this problem, we follow the ideas in [22],
where the nonlinearities are transformed into polytopic descriptions. In such a way, the
procedure enables the use of robust linear MPC techniques for controlling these Wiener-
like structures, while convex optimization problem is retained.
The paper is organized as follows. In Section 2, the model structure is presented. The

concepts and results about HLCPWL functions and Wiener modeling are briefly
summarized and the approximation structures are described. The approach for identifying
the HLCPWL mapping within the framework of set membership estimation theory is
presented and the model structure is addressed. Section 3 presents the RMPC synthesis for
such identified Wiener-like models. This is the main contribution of this paper: a robust
controller design algorithm for MIMOWiener-like model in the presence of uncertainty. In
Section 4 a distillation column simulation model is presented to illustrate both the robust
identification and control approaches. This process is an interesting benchmark due to its
well-known nonlinear dynamics. This paper concludes with some final remarks in Section 5.

2. Wiener-like model

2.1. Model description

In this work, we focus on a particular and widely used type of block-oriented nonlinear
models, the Wiener-like model, and we assume it has a parametric representation.
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The structure of the model herein studied is shown in Fig. 1, where the linear block maps
an input sequence fuðkÞg 2 RNu to a sequence of intermediate signals fzðkÞg 2 RNz . The
model output is ŷðkÞ ¼ fpwlðzðkÞÞ 2 RNy . The linear part of model is represented by
orthogonal bases [12,26]:

zi,j,pðkÞ ¼ Bi,j,pðqÞujðkÞ, ð1Þ

for i¼ 1, . . . ,Ny, j ¼ 1, . . . ,Nu and p¼ 1, . . . ,Nz; where q is the forward time operator, Nz

is the number of terms in the orthonormal basis, uj is the jth entry on the input vector and
the Bi,j,pðqÞ are the elements that relate the jth input to the ith output via the intermediate
variables zi,j,p. These bases are defined as

Bi,j,0ðqÞ ¼
ð1�x2i,jÞ

1=2

q�xi,j

ð2Þ

and

Bi,j,pðqÞ ¼ Bi,j,p�1ðqÞ
1�xi,jq

q�xi,j

� �
, p¼ 1, . . . ,m: ð3Þ

This basis allows to use the previous knowledge of the dominant modes of the systems,
including them as parameters xi,j.

To represent the nonlinear block, we use piecewise linear functions, these functions are
defined on a rectangular compact domain S of the form

S6fx 2 Rn : airxirai þ dndiv; i¼ 1,2, . . . ,ng, ð4Þ

where ai 2 R, d is the grid size and ndiv 2 Zþ is the number of divisions associated with the
xi-axis. The domain S is partitioned by means of a simplicial boundary configuration H.

The space PWLH ½S� of all continuous PWL mappings defined over the domain S

partitioned with a simplicial boundary configuration H [46] is a linear vector space.
According to [34], any fpwl 2 PWLH ½S� can be written as

fpwlðxÞ ¼ cTLðxÞ, ð5Þ

where c is the vector of parameters and L is the matrix of the basis functions defined on S.
Then, for the particular case we are dealing with, the dimension n stands for the number

of filters (e.g. Laguerre filters) used in each input vector. In such a case, the nonlinear static
block takes the form

~yiðkÞ ¼ cT
i LðziðkÞÞ, ð6Þ

for i¼ 1, . . . ,Ny, where zi(k) is the vector formed by the entries zi,j,pðkÞ (with j ¼ 1, . . . ,Nu

and p¼ 1, . . . ,Nz) and ci is the vector of unknown parameters of the nonlinear block which
must be determined.

Note that different time constants for each model entry are considered. Moreover, the
approach herein followed assumes the most general situation in which any input ui(k) can
influence any linear block output zj(k). In the same way, it is assumed that any nonlinear
block output can be influenced by any input zj(k) to this block.

Henceforth, it will be useful to formulate the model in a state-space form. For a
particular input uj(k) and for any i¼ 1, . . . ,Ny, let us analyze the signal zi,j. From the
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expression of the first base (2) we obtain

zi,j,0ðk þ 1Þ ¼ xi,jzi,j,0ðkÞ þ ð1�x
2
i,jÞ

1=2ujðkÞ: ð7Þ

Analogously, using Eq. (3) it results

zi,j,1ðk þ 1Þ ¼ xi,jzi,j,1ðkÞ þ zi,j,0ðkÞ�xi,jzi,j,0ðk þ 1Þ

¼ xi,jzi,j,1ðkÞ þ zi,j,0ðkÞ�xi,jðxi,jzi,j,0ðkÞ þ ð1�x
2
i,jÞ

1=2ujðkÞÞ

¼ xi,jzi,j,1ðkÞ þ ð1�x
2
i,jÞzi,j,0ðkÞ�xi,jð1�x

2
i,jÞ

1=2ujðkÞ: ð8Þ

In the same way,

zi,j,2ðk þ 1Þ ¼ xi,jzi,j,2ðkÞ þ zi,j,1ðkÞ�xi,jzi,j,1ðk þ 1Þ

¼ xi,jzi,j,2ðkÞ þ ð1�x
2
i,jÞzi,j,1ðkÞ�xi,jð1�x

2
i,jÞzi,j,0ðkÞ þ x2i,jð1�x

2
i,jÞ

1=2ujðkÞ:

ð9Þ

If we group these expression in a matricial form (see Appendix), we obtain

zi,jðk þ 1Þ ¼Ai,jzi,jðkÞ þ Bi,jujðkÞ: ð10Þ

Therefore, the following multivariable model is obtained:

xðk þ 1Þ ¼AxðkÞ þ BuðkÞ: ð11Þ

The vectors zi can be obtained from the vector x by tacking the entries zi,j,pðkÞ for values
j ¼ 1, . . . ,Nu and p¼ 1, . . . ,Nz, i.e.,

ziðkÞ ¼CixðkÞ, ð12Þ

where the matrices Ci (i¼ 1, . . . ,Ny) have ones in the appropriated places and zeros elsewhere.

2.2. Model identification

Provided an input–output data set from the plant, a nominal model of the process can be
obtained; however, the aim is to perform a robust identification. An uncertain model can
be described by defining a set of parameters C for the nonlinear static block, as follows:

C¼ fc : clrcrcug, ð13Þ

where the inequalities apply entry by entry, i.e.,

cl
i,prci,prcu

i,p ð14Þ

for i¼ 1, . . . ,Ny and p¼ 1, . . . ,Nz. In order to obtain an uncertain model, we must
determine the parameter bounds cl and cu in such a way that every input data u(k) can be
mapped through the model to the corresponding y(k).
Now, let us analyze this situation in order to compute the parameter bounds that satisfy

this condition. This determination is based on the whole input/output data available.
Given the input datum u(k), the linear block maps (at some specific time t) onto a signal

zi(k) for i¼ 1, . . . ,Ny by means of Eqs. (11)–(12). Subsequently, the PWL basis operates on
zi(k) generating LðziðkÞÞ. Therefore, the estimated output ~yiðkÞ can be written in terms of
the external input u(k) and expressed as

~yiðkÞ ¼ cT
i
~LiðuðkÞÞ: ð15Þ
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Note that this output only depends on the input signal u(k) and on some model parameters
fixed a priori. In this way, and since the entries of liðuðkÞÞ are positive [34], it is possible to
compute the bounds of the robust model as

min
cl ,cu

X
p

ðcu
i,p�cl

i,pÞ ð16Þ

subject to

ðclÞ
T ~LðuðkÞÞryðkÞ, t¼ 1, . . . ,K , ð17Þ

ðcuÞ
T ~LðuðkÞÞZyðkÞ, t¼ 1, . . . ,K , ð18Þ

where K is the number of data measurement available.
Note that the proposed approach for the identification problem allows to transform it into a

Linear Programming problem with convex feasible region. The number of optimization
variables is twice the number of model parameters and the number of constrains is twice the
number of the process data. Due to the suitable formulation of these problem, its solution is
obtained in an efficient way.

3. Robust MPC for the Wiener-like model

The ‘‘multi-model’’ paradigm for RMPC was introduced in [45]. The underlying model
is given as

xðk þ 1Þ ¼AxðkÞ þ BuðkÞ, yðkÞ ¼CxðkÞ, ½A B� 2 O, ð19Þ

where uðkÞ 2 Rnu is the control input, xðkÞ 2 Rnx is the state of the plant, yðkÞ 2 Rny is the
plant output, and O is a polytope that stands for the set of uncertainty

O¼Cof½A1 B1�,½A2 B2�, . . . ,½AL BL�g ð20Þ

where Co means convex hull. Note that if ½A B� 2 O then, for some liZ0; i¼ 1, . . . ,L withP
li ¼ 1 it is possible to write

½A B� ¼
XL

i ¼ 1

li½Ai Bi�: ð21Þ

For this process description, the unconstrained RMPC performance objective can be
possed as [45]

min
uðkþijkÞ,i ¼ 0,1,...,m

max
½A B�2O

J1ðkÞ, ð22Þ

where

J1ðkÞ ¼
X1
i ¼ 0

½xðk þ ijkÞT Q1xðk þ ijkÞ þ uðk þ ijkÞT Ruðk þ ijkÞ�, ð23Þ

where xðk þ ijkÞ and uðk þ ijkÞ are the state and control move, respectively, at time k þ i,
computed based on measurements at time k. In particular, xðkjkÞ is the measured state at
time k and uðkjkÞ is the control move to be implemented at time k. It is assumed that there
is no control action after time k þ C�1 (i.e. uðk þ ijkÞ ¼ 0 for iZC) with C is the control
horizon.
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Eq. (22) is a ‘‘min–max’’ problem. The maximization is over the set of possible plants,
and corresponds to choose a plant ½A B� 2 O, which, if uses as model for predictions,
would lead to the worst case value of J1ðkÞ among all plants in O. This worst case value is
then minimized over the present and future control moves uðk þ ijkÞ, i¼ 0,1, . . . ,C.
To solve this problem, in [45] there is developed an upper bound on J1ðkÞ in the form of

J1ðkÞZV ðxðkjkÞÞ, ð24Þ

where V ðxÞ ¼ xT Px with P40. Thus

max
½A B�2O

J1ðkÞrV ðxðkjkÞÞ: ð25Þ

This expression gives an upper bound on the robust performance objective. Thus solution
of the problem can be obtained on the basis of the following theorem [45].

Theorem 1. Let xðkÞ ¼ xðkjkÞ be the state of the uncertain system (19). Then the state

feedback matrix F in the control law uðk þ ijkÞ ¼ Fxðk þ ijkÞ, iZ0 that minimizes the upper

bound V ðxðkjkÞÞ on the robust performance objective function at sampling time k is given by

F ¼YQ�1, ð26Þ

where Q40 and Y are obtained from the solution (if it exists) of the following linear objective

minimization problem with LMI constraints:

min
g,Q,Y

g ð27Þ

subject to

1 xðkjkÞT

xðkjkÞ Q

" #
Z0, ð28Þ

and

Q QAT
j þ Y T BT

j QQ
1=2
1 Y T R1=2

AjQþ BjY Q 0 0

QQ
1=2
1 0 gI 0

R1=2Y 0 0 gI

2
66664

3
77775Z0, j ¼ 1,2, . . . ,L: ð29Þ

Proof. See [45].

This problem could be extended to consider constraints on the manipulated variables
and on the process outputs. If constraints on the control variables are Juðk þ ijkÞJ2rumax

for ir0 the following LMI should be included as constraint in problem (26):

u2
maxI Y

Y T Q

" #
Z0: ð30Þ

In the case of output constraints of the form

max
½A B�2O

Jyðk þ ijkÞJ2rymax ð31Þ
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the LMI constraint to be include in Eq. (26) is

Q ðAjQþ BjY Þ
T CT

CðAjQþ BjY Þ y2
maxI

" #
Z0, j ¼ 1,2, . . . ,L: ð32Þ

In the context of systems modeled as Orthonormal Basis Functions, [47] extended this
result to models in the form

~xðk þ 1Þ ¼ ~A ~xðkÞ þ ~B ~uðkÞ,

~yðkÞ ¼ ~C ~xðkÞ, ð33Þ

where the uncertainty is concentrated on matrix ~C and matrices ~A and ~B are completely
determined, as it is the case of the model identified in Section 2. In this model, the
description of the uncertainty is in the form ~C 2 OC , where

OC ¼CofC1,C2, . . . ,CLg: ð34Þ

In other words, if ~C 2 OC then, for some liZ0; i¼ 1, . . . ,L with
P

li ¼ 1 we have

~C ¼
XL

i ¼ 1

liCi: ð35Þ

By writing this model in function of deviation variables, and considering a constant
setpoint signal on the horizon (w), the following model is obtained [47]:

D ~xðk þ 1Þ

~yðk þ 1Þ�w

" #
¼

~A 0

~C ~A I

" #
D ~xðkÞ

~yðkÞ�w

" #
þ

~B
~C ~B

" #
D ~uðkÞ

½yðkÞ�w� ¼ ½0 I �
D ~xðkÞ

~yðkÞ�w

" #
, ð36Þ

where D¼ 1�q�1 and q�1 is the delay operator.
Now, defining

A¼
~A 0

~C ~A I

" #
, B¼

~B
~C ~B

" #
, C ¼ ½0 I �, x¼

D ~xðkÞ

~yðkÞ�w

" #
, yðkÞ ¼ ~yðkÞ�w,

uðkÞ ¼ D ~uðkÞ, Ai ¼
~A 0

~Ci
~A I

" #
and Bi ¼

~B
~Ci
~B

" #
for i¼ 1, . . . ,L,

it is possible to solve the RMPC problem with objective function

J1ðkÞ ¼
X1
i ¼ 0

fð ~yðk þ ijkÞ�wÞT Q1ð ~yðk þ ijkÞ�wÞ þ D ~uðk þ ijkÞT RD ~uðk þ ijkÞg ð37Þ

by means of the result of Theorem 1.
More recently, [25] extended this result to the control of Wiener models with uncertainties in

linear and nonlinear blocks. An important drawback of such approach is it demands
invertibility of the static nonlinearity, which is a rather restrictive condition. In the
modeling approach herein followed it is considered that the static nonlinearity may be
invertible or not, therefore, the controller design developed in [25] is not suitable and a
different strategy must be developed for the controller synthesis. For this purpose, it is
relevant the paper by Bloemen et al. [22] where the static nonlinearity is represented by a
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polytopic description which is linear in z(k). Basically, conic sector bounds [48] of the
nonlinear function are determined (which are valid in the operating region) and the
following inequalities arise

Cmin:zðkÞryðkÞrCmax:zðkÞ ð38Þ

which involves the uncertain nonlinear functions in Eq. (15) pass through the origin [22].
The situation described in Eq. (38) is illustrated in Fig. 2, which illustrate the conic sectors.
In other words,

yðkÞ ¼CðzðkÞÞ:zðkÞ ð39Þ

with

CðzðkÞÞ 2 OG ¼CofGmin,Gmaxg: ð40Þ

In this way, it is possible to use the algorithm presented in [45], to design a robust
controller for the Wiener-like model proposed in Section 2.
The resultant robust control design method can be applied to a general model structure

in which the nonlinearities are transformed into polytopic descriptions. Therefore, this
procedure enables the use of robust linear MPC techniques for controlling these Wiener-
like structures. An important advantage of this approach is it retains the convexity of the
optimization problem associated to the control movement calculation.
Note that the control design problem, which is stated in the framework of LMI theory,

is able to deal with model uncertainty as well as input and output constraints.
Another advantage of the presented approach is it uses polytopic descriptions instead of

removing the nonlinearities from the control problem. In such a way, the effect of the
nonlinearities on the input–output behavior of the plant is still considered. As the nonlinearity
is present in the original design criterion, a better control performance can be attained.
Fig. 2. Linear bounds for y(k).
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4. Simulation example: distillation column

The goal of this section is to illustrate the application of the proposed methodology
regarding both identification and control. For this purpose, a distillation column has been
selected. This is an appealing application as it is one of the most common unit operations
in the chemical industry. Its relevance as well as its complex nature have been the main
reasons for being a favorite subject in process systems engineering field. Moreover, in the
areas of modeling and control, distillation columns have captured the attraction of many
researchers. Such is the case of Skogestad et al. [49,50], whose Column A has been widely
diffused. This simulation example is herein selected to illustrate the proposed identification
methodology for both Wiener and Hammerstein models.

In this case the LV control structure is used. This Liquid–Vapor (LV) strategy is a
common control pairing in binary distillation column system. In order to maintain mole
fraction of distillate and bottom product, this structure will manipulate the reflux flow rate
and steam flow rate. Then, the input uðkÞ ¼ ½VB LT �

T is a vector formed by the boilup and
the reflux flows, respectively. On the other hand, the output yðkÞ ¼ ½xB xD�

T is a vector
formed by the liquid bottom and the distillate product compositions, respectively.
Therefore, a two input–two output process is considered for the identification.

4.1. Model identification

Simulation of Column A was accomplished in order to collect the required input–output
data of this nonlinear process. For such purpose, random signals with uniform distribution
around 2% of the nominal steady-state operating point were considered for the inputs (i.e.
manipulated variables). A sample time of 50 s was assumed.

The dominant poles in the Laguerre basis were chosen taking into account a preliminary
linear identification. In this case, a Laguerre expansion of order 1 was selected with poles
xi,1 ¼ 0:5451 and xi,2 ¼ 0:6805 for i¼1,2. As regards the PWL approximation, the domain
was defined as zi,1,1 2 ½�0:02,0:02� and zi,2,1 2 ½�0:002,0:002� for i¼1,2, and each
dimension was divided into 10 partitions.

A nominal model was computed by minimizing a quadratic criterion [12] to show the
suitability of the proposed Wiener-like structure for modeling the distillation process
herein considered. Figs. 3 and 4 illustrate the approximation achieved for both outputs (xB

and xD) with the Wiener-like structure and the linear model. Note that the improvement
due to the inclusion of a nonlinear block justifies the use of the Wiener-like model.

The results of the robust identification are depicted in Figs. 5 and 6. From these plots it is
clear that the measurement data are completely represented by the uncertain model obtained.

4.2. Robust control

The algorithm developed in Section 3 is used to achieve a robust MPC control for the
Wiener-like model. The following design parameters are considered: Q1 ¼ diag½1=0:01
6=0:99� and R¼ diag½1 1�.

To calculate the sequence of control inputs, the RMPC algorithm requires the uncertain
model which represents the observed behavior of the process to be covered with a conic
sector. These sectors are Gmax ¼ ½1:7799�0:0532� and Gmin ¼ ½0:3341�0:8744� for xB and
Gmax ¼ ½1:5709�0:1227� and Gmin ¼ ½0:2865�1:0329� for xD.
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A sequence of wide range changes is applied to the setpoints. Simulation results are
shown in Figs. 7 and 8 for both controlled variables. In these plots are included the
performances achieved with both the robust and the nominal nonlinear model predictive
controller. The nominal scheme is implemented by direct optimization of a quadratic
objective function under the constraint of the nominal Wiener-like model. It should be
remarked that the robust controller outperforms the nominal one because the latter
sometimes fails in tracking the setpoint, while the robust one succeeds in tracking every
new setpoint value. Figs. 9 and 10 show the corresponding manipulated variables
movements for both controllers (i.e. the robust and the nominal ones).
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As the optimization problem should be solved at each sample time, it is interesting to
consider the necessary time to obtain the solution. The implementation performed in this
work made use of MATLAB LMI Toolbox [51]. In the complete simulation, which was
accomplished with an Intel Processor Core I3 330 M (2.13 GHz), the largest time demand
to perform the optimization was 0.4 s, which is even lower than the sample time (50 s). On
the other hand, the nominal MPC algorithm execution involved a computational time
which exceeded a second.

Additional simulation tests were accomplished to investigate the influence of the design
parameters Q1 and R (see Eq. (23)) on the controllers performance. For this purpose,
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different values were given to the weight R in order to modify the influence of the control
movements on the controller design. Simulation results are shown in Figs. 11 and 12 for
both controlled variables. Note that the obtained outputs variables clearly agree with Eq.
(23), i.e., the lower the weight R, the faster the achievable output response. Therefore, this
physical meaning of the design parameter R is verified.
5. Conclusions

In the present work, both identification and control of a Wiener-like system are dealt
with. The dynamic linear part is represented by a finite set of discrete Laguerre or Kautz
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transfer functions, while the nonlinear static part is realized by high level canonical
piecewise linear basis functions (HLCPWL). It must be pointed out that though this
modeling structure can lead to a larger number of potentially necessary parameters than
other Wiener-like systems such as those in [28], better approximation quality can be
achieved with the models herein considered. It is well-known that this structure allows to
uniformly approximate any causal, time-invariant, nonlinear discrete dynamic system with
fading memory [24,52]. The modeling problem is tackled using a parametric identification
approach which is stated and worked out as a linear programming problem.
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The main contribution of the paper consists in a method for robust control of a Wiener-
like model structure where the nonlinearities are transformed into polytopic descriptions.
In such a way, the procedure enables the use of robust linear MPC techniques for
controlling these Wiener-like structures, while convex optimization problem is retained.
The whole control problem (which deals with model uncertainty as well as input and

output constraints) is formulated in the framework of LMI theory. For this purpose,
Lyapunov functions are used that are a widely diffused tool for stability assessment.
Therefore, an LMI optimization problem is stated and solved.
The main advantage of using the polytopic descriptions instead of removing the

nonlinearities from the control problem is that the effect of the nonlinearities on the
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input–output behavior of the plant is still taken into account. Because the nonlinearity is
present in the original design criterion, a better control performance is obtained. This fact has
been illustrated by a simulation example which involves composition control of a distillation
column.
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Appendix
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B¼
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[1] J. Sjöberg, O. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.Y. Glorennec, H. Hjalmarsson, A. Juditsky,

Nonlinear black-box modeling in system identification: a unified overview, Automatica 12 (12) (1995)

1691–1724.

[2] R. Haber, H. Unbehauen, Structure identification of nonlinear dynamic system a survey on input/output

approaches, Automatica 26 (4) (1990) 651–677.

[3] A. Janczak, Identification of Nonlinear Systems using Neural Networks and Polynomial Models, vol. 310,

Springer, Berlin, 2005.

[4] A. Kalafatis, N. Arifin, L. Wang, W.R. Cluett, A new approach to the identification of pH processes based

on Wiener model, Chemical Engineering Science 50 (23) (1995) 3693–3701.

[5] K.P. Fruzzetti, A. Palazoglu, K.A. McDonald, Nonlinear model predictive control using Hammerstein

models, Journal of Process Control 7 (1997) 31–41.

[6] S.J. Norquay, A. Palazoglu, J.A. Romagnoli, Model predictive control based on Wiener models, Chemical

Engineering Science 53 (1) (1998) 75–84.

[7] A. Visala, H. Pitkänen, J. Paanajärvi, Wiener-NN models and robust identification, in: International Joint

Conference on Neural Networks (IJCNN’99), vol. 3, 10–16 July, Washington, DC, USA, 1999, pp. 2188–2193.

[8] Y. Zhu, Distillation column identification for control using Wiener model, in: Proceedings of American

Control Conference, vol. 5, 2–4 June, San Diego, CA, USA, 1999, pp. 3462–3466.

[9] E. Eskinat, S. Johnson, W. Luyben, Use of Hammerstein models in identification of nonlinear systems,

AIChE Journal 37 (1991) 255–268.

[10] G. Sentoni, O. Agamennoni, A. Desages, J. Romagnoli, Approximate models for nonlinear process control,

AIChE Journal 42 (1996) 2240–2250.

[11] R.K. Pearson, M. Pottmann, Gray-box identification of block-oriented nonlinear models, Journal of Process

Control 10 (2000) 301–315.
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