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Abstract 
 

This paper discusses the problem of the fuzzy sliding mode control for a class of disturbed 

systems. First, a fuzzy auxiliary controller is constructed based on a feedback signal not only 

to estimate the unknown control term, but also participates in the sliding mode control due to 

the fuzzy rule employed. Then, we extend our theory into the cases, where some kind of system 

information cannot be obtained, for better use of our theoretical results in real engineering. 

Finally, some typical numerical examples are included to demonstrate the effectiveness and 

advantage of the designed sliding mode controller. 
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1. Introduction 

 

Disturbance exists in real systems widely, which makes the corresponding control 

problem much more complicated. To solve this problem, the sliding mode control (SMC) 

provides a good solution. Up to now, many relevant researches have been carried out 
[1-13]

. Based on SMC, the authors in [2] investigated the robust adaptive control problem 

for fuzzy systems with mismatched uncertainties. By using a high-gain observer, an 

output feedback model-reference variable structure controller is presented in [3] to 

achieve the global exponential stability with respect to a small residual set without 

generating peaking in the control signal. In [4], the subordinated reachability of the 

sliding motion is introduced to realize the control on a class of uncertain stochastic 

systems with time-varying delays. Through introducing a pseudo-inversion, the authors 

in [5] discussed the adaptive control for the uncertain discrete time linear systems 

preceded by hysteresis nonlinearity. In [6], a sufficient condition for existence of 

reduced-order sliding mode dynamics was derived to realize the SMC for a 

continuous-time switched stochastic system.  
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For SMC, the insensitivity to disturbances is due to its switching action between the 

different sliding mode surfaces. Conventionally, the general SMC method is based on 

the upper norm bound of the time-varying disturbance. The difference between the 

time-varying disturbance and its upper norm bound may lead to the serious chattering 

problem. The most effective solution is to obtain the precise estimation of the 

time-varying disturbance. Nowadays there are some feasible tools such as neural 

networks, genetic algorithm, wavelet series and piecewise polynomials, can be used to 

solve this problem. However, the balance among the accuracy of the estimation, the 

amount of the calculation, and the complexity of the control system is always a big 

concern. How to design a controller for the disturbed system with good overall 

performance is a very challenging topic, and this motivates our research. 

Since the pioneering work from Zadeh in 1965 [14], fuzzy science has received more 

and more attentions, corresponding researches can be seen in [15-29] and the references 

therein. Especially in 1992, Wang proved that fuzzy systems are universal 

approximators [30], fuzzy method soon became a powerful approximation tool and has 

wide application areas, SMC is one of them.  

In this paper, an auxiliary fuzzy controller based on one feedback signal will be built to 

not only estimate the unknown disturbances, but also participate in SMC, features 

simple structure and high efficiency; then, we will extend our theory into the cases that 

some kind of system information is not accessible, to make our researches possess more 

practical engineering value; these above are the main contributions of the paper. At last, 

some typical simulation examples will be included to demonstrate the effectiveness of 

the designed controllers.  

Notations used in this paper are fairly standard. Let nR  be the n-dimensional Euclidean 

space, n mR   represents the set of n m  real matrix, * denotes the elements below the 

main diagonal of a symmetric block matrix, ( )( ) i  denotes the ith derivative of ( ) , and 

the notation 0A   means that A is the real symmetric and positive definite.  

 

2. Problem Statement 

 

In this paper, the following disturbed system is considered 

 

1( ) ( ),    

( ) ( , ) ( , ) ( ) ( ) ( )

i i

n

x t x t i n

x t f x t f x t g t u t b u t

 

       
                      (1) 

 

where 1 2( ) ( ( ), ( ), , ( ))T n

nx t x t x t x t R   is the system state vector, ( , )f t  is the 

nonlinear function, ( , )f t   is the system parameter uncertainty, ( )g t  is the system 

disturbance, ( )u t  is the control parameter uncertainty, b  is the nonzero control 

coefficient, and ( )u t  is the control input. 
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Define the tracking error 

 

( ) ( ) ( )rE t x t x t                                              (2) 

 

where  1 2( ), ( ), ( )
T n

nE e t e t e t R  ,  1 2( ) ( ), ( ), ( )
T n

r r r rnx t x t x t x t R  , and 
1( )rx t  

is the desired trajectory with  

 
( 1)

1( ) ( ),     i

ri rx t x t i n                                          (3) 

 

where ( 1)( ) i  denotes the ( 1)i  th derivative of ( ) .  

 

Then the error dynamic system can be expressed by 
 

1( ) ( )

( ) ( , ) ( ) ( ) ( )

i i

n rn

e t e t

e t f x t x t p t b u t



    
                              (4) 

with 

 ( ) ( , ) ( ) ( )p t f x t g t u t                                         (5) 

 

The problem to be addressed in this paper is to design a controller such that the tracking 

error variable satisfies 

 

lim ( ) lim ( ) ( ) 0r
t t

E t x t x t
 

                                    (6) 

 

Let us recall the following results which will be used throughout the paper. 

 

Lemma 1
[31]

: If ( ) :w t R R  is a uniformly continuous function for 0t   and if 

0
lim ( )

t

t
w t dt

   exists and is finite, then 

 

lim ( ) 0
t

w t


                                                   (7) 

 

Lemma 2. 
[32]

: If there exists a positive scalar  , satisfy 

 

(t) (t) 0s s                                                  (8) 

 

Then, this dynamic system is exponential stable. 

 

3. Design of fuzzy sliding mode controller 

 

In this section, the fuzzy SMC method is introduced to realize the tracking control for 

the disturbed system.  
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First, the following sliding surface is introduced 

 
1

1

(t) ( ) (t) (t)
n

T

n i i

i

s C E t e c e




                                     (9) 

where 
1 2 1[ , , , ,1]T

nC c c c   is chosen such that the distribution of the roots of 

characteristic equation 1 2

1 2 1 0n n

np c p c p c 

      is on the left side of complex 

plane to make the following system stable. 

 
1

1

(t) (t) 0
n

n i i

i

e c e




                                              (10)  

Then, we have 

1

1

1

1

1

1

(t) (t) (t)

     ( ) ( ) ( ) ( ) (t)

n

n i i

i

n

rn i i

i

s e c e

f x x t p t b u t c e













 

     




                      (11) 

Introducing the following auxiliary sliding surface 

 

(t) (t) (t)s s                                                (12) 

                                 

where   is a positive scalar. 

 

We deduce that 

2 1

2 1 1

1 1

2

2 1

1

( ) ( ) ( ) ( ) ( ( ) ( ))

       ( ) ( ( ) ( ) ( ) ( ))

         ( ( ) ( ) ( ) ( ))

         ( ( ) ( ) ( ) ( )

n n

i i n n n i i n

i i

n

i i n rn

i

rn

rn i

t c e t c e t e t c e t e t

c e t c f x x t p t b u t

f x x t p t b u t

f x x t p t b u t c e

 



 

  

 



 



    

     

    

     

 



1

1

1

(t))]
n

i

i









            (13) 

First, a fuzzy auxiliary controller ( )D t is built to estimate the SMC unknown term ( )d t . 

Corresponding fuzzy rules are given by 

IF ( ) 0Sd t   THEN ( )D t  should be increased 

IF ( ) 0Sd t   THEN ( )D t  should be decreased 

where 

( ) ( ) sgn( ( ))Sd t s t s t     
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It is noted that ( )D t  can be very big. This may lead to some kind of serious control 

problem in practice. Therefore based on the following integral relationship with ( )D t , 

( )D t  is introduced to carry out the fuzzy controller design. 

0
( ) ( )

t

D t G D s ds                                            (14) 

where G is the proportionality coefficient. 

Let Sd  denote the fuzzy input ( )Sd t , and D  denote the fuzzy output ( )D t . The 

fuzzy sets of the input and the output are defined as 

{ , , , , }

{ , , , , }

Sd NB NM ZO PM PB

D NB NM ZO PM PB



 
 

where NB is negative and large, NM is negative and medium, ZO is zero, PM is the 

positive and medium, and PB is positive and large. 

 

Select the following fuzzy rules 

 

R1: IF Sd is PB THEN D is PB 

R2: IF Sd is PM THEN D is PM 

R3: IF Sd is ZO THEN D is ZO 

R4: IF Sd is NM THEN D is NM 

R5: IF Sd is PB THEN D is NB 

 

Then based on the Lyaponov method and the dynamic SMC theory, the following 

controller is presented. 

 

Theorem 1. For 0  , system (1) can track the desired trajectory based on the 

following fuzzy dynamic sliding mode controller 

 
2 1

2 1

1 1

1

1
( ) [ ( ) ( ) ( ) ( ) ( )]

        ( )( ( ) ( ) ( )) sgn( ( ))        

n n

rn i i i i

i i

n rn

u t f t x t D t c e t c e t
b

c f t x t b u t t



  

 

 

 



     

       

 
          (15) 

     

where ( )D t  is the auxiliary fuzzy controller, and used to estimate the SMC unknown 

term 1( ) ( ) ( )( )nd t p t p t c    .  

 

Proof.  Choose the Lyapunov functional candidate as 

21
( ) ( )

2
V t t                                                (16) 

The time derivative of ( )V t  along trajectories of the error model (4) is as 
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2

2 1

1

1

1

1

( ) ( ) ( )

      ( )[ ( ) ( ( ) ( ) ( ) ( ))

         ( ( ) ( ) ( ) ( ))

         ( ( ) ( ) ( ) ( ) (t))]

n

i i n rn

i

rn

n

rn i i

i

V t t t

t c e t c f x x t p t b u t

f x x t p t b u t

f x x t p t b u t c e

 







 











     

    

     





            (17) 

Substituting (15) into (17) yields 

 

1( ) ( )[ ( ) ( ) ( ) ( ) sgn( ( ))]

      ( )

nV t t p t c p t D t t

w t

       

 
                 (18) 

 

where ( ) ( )w t t   

 

Consider ε > 0, we have 0V  . Integrating both sides of (18) from 0 to t leads to 

 

0
lim ( ) (0) lim ( )

t

t t
V t V w t dt

 
                                      (19) 

 

Since ( )V t  is positive and (0)V  is finite, the following inequality can be concluded 

 

0
lim ( ) (0)

t

t
w t dt V


                                           (20) 

 

According to Lemma 1, we have 

lim ( ) lim ( ) 0
t t

w t t 
 

                                         (21) 

Hence we have lim ( ) 0
t

t


 . According to Lemma 2, we obtain lim ( ) 0
t

s t


 . 

Consider (9), we have lim ( ) 0
t

E t


 . This means the achievement of the tracking 

control. The proof of Theorem 1 is thus completed.    

 

From Theorem 1, it can be seen that the proposed dynamic sliding mode controller 

needs the differential information of ( )f t  and ( )rnx t . Suppose that we can not obtain 

these information, the following controller is presented. 

 

Corollary 1. For 0  , system (1) can track the desired trajectory based on the 

following fuzzy dynamic sliding mode controller 

2 1

2 1

1 1

1

1
( ) [ ( ) ( ) ( )]

        ( )( ( ) ( ) ( )) sgn( ( ))

n n

i i i i

i i

n rn

u t D t c e t c e t
b

c f t x t b u t t



  

 

 

 



   

       

 
               (22) 
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where ( )D t  is the auxiliary fuzzy controller, and used to estimate the SMC unknown 

term 
1( ) ( ) ( ) ( ) ( )( )rn nd t p t f t x t p t c      .  

 

From Corollary 1, we can see that the controller is based on the information of ( )f t  

and ( )rnx t . Suppose that we can not obtain ( )f t  and ( )rnx t , the following controller 

is proposed. 

 

Corollary 2. For 0  , system (1) can track the desired trajectory based on the 

following fuzzy dynamic sliding mode controller 

 
2 1

2 1

1 1

1

1
( ) [ ( ) ( ) ( )] sgn( ( ))

( )

        ( ) ( )        

n n

i i i i

i i

n

u t D t c e t c e t t
b t

c b u t

  



 

 

 



     

  

 
           (23) 

     

where ( )D t  is the auxiliary fuzzy controller, and used to estimate the SMC unknown 

term 1( ) ( ) ( ) ( ) ( ( ) ( ) ( ))( )rn rn nd t p t f t x t p t f t x t c        .  

 

Theorem 1, Corollary 1 and Corollary 2 are all based on the fuzzy dynamic SMC 

theory. Finally, the following controller is proposed based on the fuzzy SMC theory. 

 

Theorem 2. For 0  , system (1) can track the desired trajectory based on the 

following fuzzy sliding mode controller 

 

 
1

1

1

1
( ) [ ( ) ( ) (t) ( ) sgn ( ) ]

n

rn i i

i

u t f x x t c e D t s t
b








                    (24) 

 

where ( )D t  is the auxiliary fuzzy controller, and used to estimate the SMC unknown 

term ( ) ( )d t p t .  

 

Remark 1. From Theorems 1 and 2, it can be derived that, in theory, the dynamic 

sliding mode controller possesses the better anti-chattering performance through 

transferring the switching term sgn( ( ))t   from ( )u t  to ( )u t . 

 

4. Numerical Examples 
 

In this section, we will verify the proposed methodology by giving some illustrative 

examples.  

First, we consider the following disturbed system 

1 2

2

( ) ( )

( ) ( , ) ( ) ( )

x t x t

x t f x t p t b u t



   
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where 

3

2 1 1

2 2

2 2

( , ) 0.5 ( ) ( ) ( ), 133,

( 1.5) ( 3)
( ) 50exp 20exp

2 0.2 2 0.1

f x t x t x t x t b

t t
p t

    

    
      

    

 

For simulation purposes, we consider the step size 0.001 second, the initial state 

0 [ 1, 1]Tx    , the desired trajectory ( ) sin(2 )rx t t , and the control parameters 

0.5, 0.5, 800, 150r G c     . The membership function of the input and the output 

of the fuzzy auxiliary controller are shown in Figs. 1 and 2. First, we consider case 1 

based on the general existing SMC method by fixing ( ) max{ ( )} 50D t d t  . 

Corresponding simulation results are shown in Figs. 3-5. Then, we consider case 2 

based on our fuzzy SMC method in Theorem 2. Corresponding simulation results are 

shown in Figs. 6-8.  

Remark 2. Figs. 3 and 6 show the time response of ( )d t  and ( )D t . Figs. 4 and 7 

show the time response of the tracking error. Figs. 5 and 8 show the time response of the 

control input. In case 1 that based on the general existing SMC method, ( )D t  is fixed 

as a constant of 50. Fig. 5 shows there is an obvious SMC chattering phenomenon when 

( ) 50d t  , and the biggest amplitude is over 0.8. For this problem, ( )d t  is estimated 

by the auxiliary fuzzy controller in case 2 that based on our fuzzy SMC method. From 

Fig. 8 we can see, the SMC chattering phenomenon is substantially reduced and the 

biggest chattering amplitude is less than 0.02, far less than 0.8. This demonstrates the 

advantage of our fuzzy sliding mode controller.  

Next, we consider the following disturbed system 

1 2

2

( ) ( ),    

( ) ( , ) ( ) ( )

x t x t i n

x t f x t p t b u t

 

   
 

where 
2

1 2 1

2

2

( , ) 2 1.4 0.8 , 1

( 5)
( ) 20exp

2 0.2

f x t x x x b

t
p t

   

 
  

 

 

1 2 1 1

2

2 2

( , ) 2 1.4 1.6

20( 5) ( 5)
( ) exp

0.25 2 0.2

f x t x x x x

t t
p t

  

  
   

 

 

The desired trajectory comes from the following nonlinear system  

1 2

3

2 1 2 1

( ) ( )

( ) ( ) 0.2 ( ) ( ) 0.32cos(1.2 )

r r

r r r r

x t x t

x t x t x t x t t



   
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For simulation purposes, we consider the step size 0.001 second, the initial condition 

0 [ 1,2]Tx   , 
0 [0.8942,-0.7008]T

rx  , and control parameters 0.1, 0.1, 800r G    , 

150, 2.0c   . The membership functions of the input and the output of fuzzy system 

are same as above. First, we consider case 3 based on the general existing dynamic 

SMC method by fixing ( ) max{ ( )} 20D t d t  . Corresponding simulation results are 

shown in Figs. 9-12. Then, we consider case 4 based on the dynamic fuzzy SMC 

method in Theorem 1. Corresponding simulation results are shown in Figs. 13-16.  

Remark 3. Figs. 9 and 13 show the time response of ( )d t  and ( )D t . Figs. 10 and 14 

show the time response of the tracking error. Figs. 11 and 15 show the time response of 

the control input. Figs. 12 and 16 show the time response of ( )s t  and ( )t . In case 3, 

based on the general existing dynamic SMC method, ( )D t  is fixed as a constant of 20. 

Figure 9 shows that the biggest amplitude of ( )d t  is over 20. Figure 11 shows that the 

control chattering is transferred from ( )u t  to ( )u t , and the biggest SMC chattering 

amplitude is over 5.0. However, from Fig. 10 we can see, ( )d t  exceeds 20 at about 5 

seconds, there appears a big tracking error, which can not meet the control requirement. 

For this problem, ( )d t  is estimated by the auxiliary fuzzy controller in case 4 based on 

our dynamic SMC method. Fig. 15 shows that the biggest SMC chattering amplitude is 

diminished below 0.05, far less than 5.0. From Fig. 14 we can see the tracking control is 

realized within 4 seconds without any static and dynamic tracking error during the 

whole process, which demonstrate the advantage of our fuzzy dynamic sliding mode 

controller.  

Remark 4. From the simulation examples, we can see the chattering phenomenon is 

reduced effectively by using the fuzzy controller, however there still exists the SMC 

switching term sgn( ( ))s t  , though   is a small constant. To further overcome the 

control chattering phenomenon, the switching term sgn( ( ))s t   is recommended to be 

replaced with sat( ( ))s t  .  

Remark 5. From examples 1 and 2, we can see the fuzzy dynamic sliding mode 

controller in Theorem 1 has better anti-chattering performance compared with the 

controller in Theorem 2 through transferring the switching term from ( )u t  to ( )u t , 

and is more suitable for the situation with higher control performance requirement. 

However, the proposed controller in Theorem 2 has simpler structure and needs less 

system state information. Hence, it is more suitable for the situation with lower control 

performance requirement and high cost concerns.  

Remark 6. The fuzzy auxiliary controllers presented in this paper are based on the 

feedback signal ( ) sgn( ( ))Sd t t     , and the fuzzy rule is designed to keep Sd  at 

zero. Hence we have ( ) ( ) ( ) ( ) 0V t t t t       . This means that the fuzzy 

auxiliary controllers participate in the SMC meanwhile.  
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5. Conclusion 
 

In this paper, the fuzzy control method and the sliding mode control method have been 

included to construct the controllers for disturbed systems. First, a fuzzy controller 

based on one feedback signal has been built not only to estimate the unknown control 

term, but also take part in the sliding mode control due to its fuzzy rule employed, and 

features simple structure and high efficiency. Then, we have extended our theoretical 

results into the cases, where some kind of system information is not accessible, to make 

our research more applicable to the real engineering. Finally some typical numerical 

examples have been given to demonstrate the effectiveness and advantage of the 

presented fuzzy sliding mode controller. 
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Appendix A 
 

Proof of Theorem 2.  Choose the Lyapunov functional candidate as 

 

21
( ) ( )

2
V t s t                                                (25) 

 

The time derivative of ( )V t  along trajectories of the error model (4) is as 

 

1

1

1

( ) ( ) ( )

      ( )[ ( ) ( ) ( ) ( ) (t)]
n

rn i i

i

V t s t s t

s t f x x t d t b u t c e








     
                (26) 

 

Substituting (24) into (26) yields 

 

( ) ( )[ ( ) ( ) sgn( ( ))]

       ( )

V t s t d t D t s t

w t

   

 
                             (27) 

 

where ( ) ( )w t s t . 

 

Consider ε > 0, we have 0V  . Integrating both sides of (27) from 0 to t leads to 



 11 

 

0
lim ( ) (0) lim ( )

t

t t
V t V w t dt

 
                                      (28) 

 

Since ( )V t  is positive and (0)V  is finite, the following inequality can be concluded 

 

0
lim ( ) (0)

t

t
w t dt V


                                           (29) 

 

According to Lemma 1, we have lim ( ) lim ( ) 0
t t

w t s t
 

  . Then considering (9), we 

derive lim ( ) 0
t

E t


 . This means the achievement of the tracking control. The proof of 

Theorem 2 is thus completed.    
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Fig.1. The membership function of the fuzzy input 
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Fig.2. The membership function of the fuzzy output 
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Fig.3. The time response of d(t) and D(t) for case 1 
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Fig.4. The time response of the tracking error for case 1 



 15 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

time/s

C
o
n
tr

o
l 
in

p
u
t

 
Fig.5. The time response of the control input for case 1 
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Fig.6. The time response of d(t) and D(t) for case 2 



 16 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time/s

T
ra

c
k
in

g
 e

rr
o
r

 

Fig.7. The time response of the tracking error for case 2 
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Fig.8. The time response of the control input for case 2 
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Fig.9.  The time response of d(t) and D(t) for case 3 
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Fig.10.  The time response of the tracking error for case 3 
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Fig.11. The time response of ( )u t  and ( )u t  for case 3 
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Fig.12. The time response of ( )s t  and ( )t  for case 3 
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Fig. 13.  Time response of d(t) and D(t) for case 4 
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Fig. 14.  Time response of the tracking error for case 4 
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Fig. 15.  Time response of ( )u t  and ( )u t  for case 4 
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Fig. 16.  Time response of ( )s t  and ( )t  for case 4 

 


