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Abstract. The application of the sliding mode control
technique to DC-DC converters is addressed in this
paper. It is shown that this control approach can give
good results in terms of robustness toward load and input
voltage variations, while maintaining a dynamic response
at least comparable to standard current control
techniques.

The sliding mode control application to buck and boost
converters is analyzed in detail, while general design
considerations are given for buck-boost Cuk and Sepic
converters.

Control refinements, like current limitation, constant
switching frequency and output voltage steady-state error
cancellation are also discussed.

I. INTRODUCTION

Switched mode DC-DC converters are nonlinear and time
variant systems, and do not lend themselves to the
application of linear control theory. The State Space
Averaging method is usually applied for characterization of
DC-DC converters. With this approach an equivalent average
model is developed by circuit averaging in a switching
period all the system variables: in this way only the system
dynamic is preserved while the high frequency behavior of
the variables is lost. This derivation relies on the assumptions
of a switching frequency much greater than the natural
frequency of the system and of small state variable ripples.
From the average model, a suitable small-signal model is
then derived by perturbation and linearization around a
precise operating point under small ripple approximation.
Finally, the small-signal model is used to derive all the
necessary converter transfer function in order to design a
linear control system by using classical linear control
techniques.

Sliding Mode approach for Variable Structure Systems
(VSS) offers an alternative way to implement a control
action which exploits the inherent variable structure nature of
DC-DC converters [1-7]. In particular, the converter switches
are driven as a function of the instantaneous values of the
state variables in such a way so as to force the system
trajectory to stay on a suitable selected surface on the phase
space called the sliding surface. The most remarkable feature
of sliding mode control is its ability to result in very robust
control systems.

In order to describe the salient characteristic of this control
technique, let us consider, as an example, a simple VSS
described by the following equations:
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where u is a discontinuous control input which can assume
the values ±1. With u = +1 the eigenvalues are complex with
zero real part; thus, for this substructure the phase trajectories
are circles as shown in Fig. 1 and the system is marginally
stable. With u = -1 the corresponding substructure has real
eigenvalues with opposite sign; the corresponding phase
trajectories are shown in Fig. 1. Only one phase trajectory,

namely x q x2 1= −  ( q = K ) converges toward the origin

(stable system), while all other trajectories are divergent
(unstable system). Now let us define the following control
law:

Region I: ( )x x c x1 2 1 0⋅ + <   ⇒  u = -1

Region II: ( )x x c x1 2 1 0⋅ + >   ⇒  u = +1

where c is lower than q (the system eigenvalue). The
switching boundaries are the x2 axis and the line

x c x2 1 0+ = .The system structure changes whenever the

system Representative Point (RP) enters a region defined by
the switching boundaries. The important property of the
phase trajectories of both substructures is that, in the vicinity
of the switching line x c x2 1 0+ = , they converge to the

switching line. The immediate consequence of this property
is that, once the RP hits the switching line, the control law
ensures that the RP does not move away from the switching
line. Fig. 2a shows a typical overall trajectory starting from
an arbitrary  initial condition P(x10, x20). The resultant
trajectory is seen to be on the switching line (in the
hypothesis of ideal infinite frequency commutations between
the two substructures). The switching line x c x2 1 0+ =
defined by the control law is not part of the trajectories of
any of the substructures of the VSS.

This motion of the system RP along a trajectory, on which
the structure of the system changes, and that is not part of
any of the substructure trajectories, is called the Sliding
Mode, and the switching line x c x2 1 0+ =  is called the

Sliding Line. When sliding mode exists the resultant system
performance is completely different from that dictated by any
of the substructures of the VSS and can be, under particular



conditions, made independent of the properties of the
substructures employed and dependent only on the preset
control law (in this example the boundary x c x2 1 0+ = ).
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Fig. 1 - Example of VSS with phase-plane description

When the switching boundary is not ideal, i.e. the
commutation frequency between the two substructures is
finite, then the overall system trajectory is as shown in
Fig. 2b. Of course, if the width of the hysteresis around the
switching line goes to zero the system behavior returns to be
ideal.

II. REVIEW OF SLIDING MODE THEORY

Let us consider, the following general system with scalar
control [1]:

( )� , ,x f x= t u (2)

where x is a column vector and f is a function vector both of
dimension n and u is an element which can influence the
system motion (control input). We consider that the function
vector f is discontinuous on a surface σ(x,t) = 0. Thus we can
write:
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The system is in sliding mode if its representative point
moves on the sliding surface σ (x,t) = 0.
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 Fig. 2 - Sliding regime in VSS. a) ideal switching line; b) switching

line with hysteresis

A. Existence Conditions
As stated previously, In order for a sliding mode to exist,

the phase trajectories of the two substructures corresponding
to the two different values of the vector function f must be
directed toward the sliding surface σ(x,t) = 0. In other words,
approaching the sliding surface from points which satisfy

σ < 0, the corresponding state velocity vector f- must be
directed toward the sliding surface, and the same must
happens when we consider points above the surface (σ > 0)

for which the corresponding state velocity vector is f+.
Indicating with subscript N the components of state velocity

vectors f+ and f- orthogonal to the sliding surface we can
write:
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the existence condition of the sliding mode becomes:

lim

lim
limσ

σ

σ

σ

σ σ σ→

→

→

+

−

<

>
⇒ <o

o

o

d
dt
d
dt

d
dt

0

0
0 (6)

When the inequality given by (6) holds in the entire state
space and not only in an infinitesimal region around the



sliding surface then this condition is also a sufficient
condition that the system will reach the sliding surface.

B. Reaching Conditions
We want to illustrate here a simple sufficient condition for

reaching of the sliding regime that we will use later with
respect to the application of the sliding mode control to
switching power supplies. Let us consider the system (2) for
which the scalar discontinuous input u is given by:
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Let [x+] and [x-] be the steady state RPs corresponding to

the inputs u+ and u-. Then a sufficient condition for reaching
the sliding surface is given by:
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In other words, if the steady state point for one substructure
belongs to the region of the phase space reserved to the other
substructure, then soon or later the system RP will hit the
sliding surface.

C. System Description in Sliding Mode: Equivalent Control
The next focus of interest in the analysis of VSS is the

behavior of the system operating in sliding regime.
Let us consider here a particular class of systems that are

linear with the control input, i.e.

( ) ( )� , ,x f x B x= +t t u (9)

where x f B∈ℜ ∈ℑ ∈ℜn n u, , , 1 .

The scalar control input u is discontinuous on the sliding
surface σ(x,t) = 0, as shown in (7) while f and B are
continuous function vectors. Under sliding mode control, the
system trajectories stay on the sliding surface, hence:

( ) ( )σ σx x, � ,t t= ⇒ =0 0 (10)
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where G is a 1 by n matrix whose elements are the
derivatives of the sliding surface with respect to the state
variables (gradient vector). Using (9) and (11) we find:

 ( ) ( )Gx Gf x GB x� , ,= + =t t ueq 0 (12)

where the control input u was substituted by an equivalent
control ueq that represents an equivalent continuous control
input that maintains the system evolution on the sliding

surface. On the assumption that [GB]-1 exists, from (12) we
can derive the expression for the equivalent control:

( ) ( )u teq = −
−

GB Gf x
1

, (13)

Lastly, substituting this expression into (9) we find:

( )[ ] ( )� ,x I B G B G f x= −
−1

t (14)

Equation (14) describes the system motion under sliding
mode control. It is important to note that the matrix

( )I B GB G−
−1

 is less than full rank. This is because, under

sliding regime, the system motion is constrained to be on the

sliding surface. As a consequence, the equivalent system
described by (14) is of order n-1.

This equivalent control description of a VSS in sliding
regime is valid also for multiple control inputs. In this case,
the system motion is constrained on the hypersurface
obtained by the intersection of the individual switching
surfaces Si(x,t) = 0, i.e.:

[ ]σ = =S S Sm
T

1 2 0, , ,�� (15)

In this case, (13) and (14) are still valid provided that ueq is
now an equivalent vector control and G is a m by n matrix
whose rows are the gradient vectors of Si(x,t). In this case,

the equivalent system described by (14) results of order n-m.

D. Stability
Analyzing the system behavior in the phase plane for the

second order system, we found that the system stability is
guaranteed if its trajectory, in sliding regime, is directed
toward a stable operating point. For higher order systems, a
direct view of the phase space is not feasible and we must
asses the stability problem through mathematical tools. To
this purpose, let us first consider a simple linear system with
scalar control in the following canonical form:
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and
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This latter equation completely defines the system dynamic
in sliding regime. In particular, the system stability is
ensured by choosing all positive sliding surface coefficients
ci. Moreover, since in this case the system dynamic in sliding
mode depends only on the sliding surface coefficients ci, we
have a system behavior which is completely different from
those given by the substructures defined by the two control

input values u+ and u-. This is a highly desirable situation
because the system dynamic can be directly determined by a
proper ci selection. Unfortunately, for high order systems, not
only high order derivatives are difficult to measure, but could
prove to be discontinuous as well. Therefore we are obliged
to select system states which are measurable, physical, and
continuous variables. In this case the system stability in
sliding mode can be analyze by using the equivalent control
method (14). Here a different procedure is followed which
will be illustrated with reference to the boost converter with
sliding mode control.

III. SLIDING MODE CONTROL OF BUCK DC-DC
CONVERTERS

It was already mentioned that one of the most important
feature of the sliding mode regimes in VSS is the ability to
achieve responses that are independent of system parameters,
the only constraint being the canonical form description of
the system. From this point of view, the buck DC-DC
converter is particularly suitable for the application of the



sliding mode control, since its controllable states (output
voltage and its derivative) are all continuous and accessible
for measurement.

A. Phase Plane Description
The basic Buck DC-DC converter topology is shown In

Fig. 3.

Fig. 3 - Buck DC-DC converter topology

As already mentioned it is more convenient to use a system
description which involves the output error and its derivative,
i.e.

x u U

x
dx

dt

du

dt

i
o o

o C

1

2
1

= −

= = =







*

C

(18)

The system equations, in terms of state variables x1 and x2
and considering a Continuous Conduction Mode (CCM)
operation can be written as:
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where u is the discontinuous input which can assume the
values 0 (switch OFF) or 1(switch ON). In matricial form:
�x Ax B D= + +u (20)
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In normal converters the damping factor of this second
order system is less than 1, resulting in complex conjugate
eigenvalues with negative real part. The phase trajectories
corresponding to the substructures u = ±1 are shown in Fig. 4
for different values of the initial conditions.

It is convenient to select the sliding surface as a linear
combination of the state variables since it results very simple
to implement in the real control system and it allows the use
of the equivalent control method to describe the system
dynamic in sliding mode. Thus, we can write:

( )σ x C xT= + = =c x x1 1 2 0 (21)

where CT = [c1, 1] is the vector of sliding surface coefficients
which correspond to G in (11) (coefficient c2 was set to 1

without loss of generality).
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Fig. 4 - Subsystem trajectories and sliding line in the phase plane of

the buck converter

This equation describes a line in the phase plane passing
through the origin, which represents the stable operating
point for this converter (zero output voltage error and its
derivative). Using (19), (21)  becomes:

( )σ x = + =c x x1 1 1 0� (22)

which completely describes the system dynamic in sliding
mode. Thus, if existence and reaching conditions of the
sliding mode are satisfied, a stable system is obtained by
choosing a positive value for c1. The sliding line is shown in

Fig. 4. This picture reveals the great potentialities of the
phase plane representation for second order systems. In fact a
direct inspection of Fig. 4 shows that if we choose the
following control law
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then both existence and reaching conditions are satisfied. In
fact we can easily see that with this control law, for both
sides of the sliding line the phase trajectories of the
corresponding substructures are directed toward the sliding
line (at least in a small region around it). Moreover, the
equilibrium point for the substructure corresponding to u = 0
belongs to the region of the phase plane relative to the other
substructure and viceversa, thus ensuring the reachability of
the sliding line from any allowed initial state condition.

Note that the real structure of Fig. 3 has a physical
limitation due to the rectifying characteristic of the
freewheeling diode. In fact, when the switch is OFF, the
inductor current can assume only non negative values. In
particular, when iL goes to zero it remains zero and the

output capacitor discharge exponentially to zero. This
situation corresponds to the Discontinuous Conduction Mode
(DCM) and it poses a constraint on the state variables. In
other words, part of the phase plane does not correspond to
possible physical states of the system and so need not to be
analyzed. The boundary of this region can be derived from
the constraint iL = 0 and is given by the equation:

x x
U o

2 1
1= − −

RC RC

*

(24)

which corresponds to the straight line with a negative slope

equal to -1/RC and passing through the point (-Uo
*, 0)



shown in dashed line in Fig. 4. In the same figure, the line

x Uo1 = − *  is also reported which defines another not

physically accessible region of the phase plane, i.e. the
region in which uo < 0.

B. Existence Conditions
We want know to give a more precise demonstration of the

existence of the sliding regime for the buck converter. From
the sliding mode theory the conditions for the sliding regime
to exist are (see (6)):
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Using (20) and (21) these inequality become:
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Equations λ1(x) = 0 and λ2(x) = 0 define two lines in the

phase plane with the same slope passing through points (-

Uo
*, 0) and (Ug-Uo

*, 0) respectively. The regions of

existence of the sliding mode are depicted in Fig. 5 for two
different situations: a) c1 > 1/RC, and b) c1 < 1/RC. As we

can see, the increase of c1 value causes a reduction of sliding

mode existence region. Remember that the sliding line
coefficient c1 determines also the system dynamic response

in sliding mode. In particular from (22) the system dynamic
response results of first order with a time constant τ  = 1/c1.

Thus high response speeds, i.e. τ < RC, limit the existence
region of the sliding mode. This can cause overshoots and
ringing during transients.

In order to better understand this concept, let's take a look
to some simulation results. Fig. 6 shows the phase
trajectories of a buck converter with sliding mode control for
two different c1 values: when the slope of the sliding line
becomes too high the system RP hits the sliding line in a
point outside the region of the existence of the sliding mode.
As a consequence the switch remains in a fixed position
(open in this case) until the RP hits the sliding line again.

The time responses of the inductor current iL and output

voltage uo for different c1 values are reported in Fig. 7a and

b respectively. Note that with c1 = 1/RC neither the inductor
current nor the output voltage have overshoot during start up.
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Fig. 5 - Regions of existence of the sliding mode in the phase plane.
a) c1 > 1/RC; b) c1 < 1/RC
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2

6

10

14

0 1 2 3 4 5

k=1

k=2

k=3

time [10   s]-4

i  [A]L

Fig. 7a - Time responses of inductor current at different c1 values

(k = c1⋅RC)



0 1 2 3 4 5
1

2

3

4

5

k=1

k=2

k=3

time [10   s]-4

U  [V]o

Fig. 7b - Time responses of output voltage uo at different c1
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C. Switching Frequency
A real system cannot switch at an infinite frequency, thus

usually an hysteresis band is used around the sliding line in
order to set the switching frequency at the desired value. In
this case we can estimate the switching frequency looking at
Fig. 8:

Fig. 8 - Detail of system commutation with hysteresis
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Using (11) and (12), (26) can be written as:

( )f u uS = −C BT

eq eqH 1 (27)

Using (13) and considering a steady state situation (i.e.
x1 ≈ 0) (27) gives:
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IV. SLIDING MODE CONTROL OF BOOST DC-DC
CONVERTERS

For boost as well as buck-boost DC-DC converters the
derivative of the output voltage turns out to be a
discontinuous variable, and we cannot express the system in
canonical form. Thus, the inductor current and output voltage
errors are chosen as state variables i.e.:
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where the current reference I* depends on the converter
operating point (output power and input voltage).

A. Phase Plane Description and Existence Conditions
The system equations for the boost converter in terms of

state variables x1 and x2 can be written as:
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where u u= −1 . Let us assume for the moment that
reference signal I* is available and constant. The system
phase trajectories are shown in Fig. 9 together with the
following sliding line:

( )σ x C xT= + = =x g x1 2 0 (31)

Choosing the same control law (23) of the buck converter it
can be easily seen that both existence and reaching
conditions are satisfied (the former at least in a small region
enclosing the origin). As for the buck converter, constraint

iL ≥ 0 holds which means x I1 ≥ − * .

From (6) the sliding mode existence region is given by the
following inequalities:
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Fig. 9 - Phase trajectories and sliding line for a boost dc-dc

converter

The equations λ1(x) = 0 and λ2(x) = 0 define two lines in

the phase plane which are shown in Fig. 10. As we can see in
order to obtain an existence region for the sliding mode
which includes the origin (which represents the steady-state
point) we must ensure that both the intersections of line
λ1(x) = 0 with the x2 axes and of λ2(x) = 0 with x1 axes are

positive. With this constraint from the above inequality we
obtain:

g
U

U
g

o

< RC
L * (32)

The value of the sliding surface coefficient must therefore
be chosen to satisfy (32) in order to ensure that sliding mode
exists at least in a region around the steady-state operating
point.
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The assumption we made about the availability of the

current reference signal I*  is not realistic in practice, since
the latter depends on the converter operating point (output
power and input voltage). What it is usually done in practice
is to derive this reference signal directly from the inductor
current by using a low-pass filter. Clearly, this approach
greatly affects all the aspects of the sliding regime. First of
all, the system order is increased by one due to the state
variable introduced by the low-pass filter, i.e.:
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Thus we can represent the overall system choosing as state
variables:
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The sliding line becomes a sliding surface in the phase
space:

( )σ x C xT= + − = =x g x x1 2 3 0 (36)

where CT = [1 g -1] is the vector of the sliding surface
coefficients and x1-x3 represents now the inductor current

error. Fortunately, the existence conditions analysis for the
system (35) leads to same constraint (32) which was derived
without take into account the low-pass filter dynamic.
However, unlike the buck converter, (36) does not give
directly information on the system stability and on the
possible values of filter time constant τ.

B. Stability Analysis
In the following, a procedure similar to the equivalent

control method is used in order to derive a suitable small
signal model for the system (35) in sliding mode. The
starting point is the Small-Signal State Space Averaged
Model of the boost converter:
�� � � �x A x B C= + +u dg (37)
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where [ ] [ ]x = =� , � , � �, � , � *x x x i u i
T

o

T

1 2 3 and D’=1-D. In (37),

eq. (33), which is valid also for perturbed variables, was
added to the original boost equations. From the sliding
surface definition we can write:

( ) ( ) ( )σ x C xT= − + − = − + =i i g u U i i g uo o o
* * *

� �

� � (38)

where CT = [1, g, -1]T and the steady-state values X of the
state variables coincide with the corresponding reference
values X*. Now, if the system is in sliding regime we can
write:

( ) ( )σ σx x C xT= ⇒ = =0 0� �� (39)

From (37) and (39) we can derive an expression for the
duty-cycle perturbation as a function of the state variables
and the input which, substituted into (37), yields:
�� � �x A x B= ′ + ′ug (40)

In (40), which represents a third order system, one equation
(for example the last one corresponding to the variable x3) is
redundant and can be eliminated by using the equation σ = 0.
The result is

[ ]�� � � , � � , �x A x B xT= + =Τ u x xg

T

1 2 (41)
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. Equations (41) completely describe

the system behavior under sliding mode control. Moreover,
they can be used to derive closed loop transfer functions like
output impedance and audiosusceptibility which allow
meaningful comparison with other control techniques.

As far as the system stability is concerned, by imposing
positive values for the coefficients of the characteristic
polynomial we get:

0 < < = ′g g D
crit

RC
L

(42)

and

τ >
′

⋅
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D g
2

1

1
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It is interesting to note that constraint (42) coincides with
the existence condition given by (32). In fact, in steady-state
we have:

U
U

U
U D

o

g

o

g

= =
′

*
1 (44)

Thus, (42) and (43) are the design equations for a sliding
mode control of boost converters in which a low-pass filter is
used to derive the inductor current reference signal.

C. Alternative Approach



Another interesting way of applying the sliding mode
control to boost converters is to use the following sliding
line:

( )σ τx C xT= + + = =x g x x1 2 3
1

0 (45)
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In this way, at steady state, (45) force the output voltage
error x2 to be zero irrespective of the converter operating
point. Once again the system order increases by one due to
the new state variable x3. The same analysis done for the
system with low-pass filter can be carried out also for this
case in order to check for the system stability in sliding
mode.

V. SLIDING MODE CONTROL OF OTHER
 DC-DC CONVERTERS

A. Buck-Boost Converters
The application of sliding mode control to buck-boost

DC-DC converters follows the same approach as for the
boost DC-DC converters, thus it will be not reported here.
The results of the stability analysis gives the following
design constraint on the sliding surface coefficient g and
low-pass filter time constant τ:

0 < < = ′g g D
Dcrit

RC
L

(47)

and

( )
τ τ> =

′ + − ′
crit D

D

L

D R
L

RC

2

2
(48)

where τcrit is the limit expression for τ obtained using the
value gcrit for g.

B. Cuk and Sepic Converters
As a general approach to high-order converters like Cuk

and Sepic a sliding function can be built as linear
combination of all state variable errors xi, i.e.

( )σ x =
=
∑k xi i
i

N

1

(49)

This general approach, although interesting in theory, is not
practical. In fact, it requires sensing of too many state
variables with an unacceptable increase of complexity as
compare to standard control techniques like current mode
control. However, for Cuk and Sepic converters a reduced
order sliding mode control can be used with satisfactory
performances with respect to standard control techniques
[5-8]. In this case some sliding coefficients in (49) can be set
to zero. In particular, for Cuk and Sepic converters, the
sensing of only output voltage and input inductor current was
proposed and the current reference signal was obtained, as
for the boost converter, by using a low-pass filter.

The small signal analysis performed for the sliding mode
control of boost converters can be generalized [6]. This can
be used to derive useful design hints for the selection of

sliding surface coefficients and filter time constants. As an
example, from the small signal model in sliding mode
(similar to (41)) the root locus of closed-loop system
eigenvalues can be plotted as a function of the low-pass filter
time constant as shown in Fig. 11 in the case of a Sepic
converter [7].
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Fig. 11- Root locus of closed-loop system for variation of low-pass
filter time constant of a Sepic converter

VI. CONTROL REFINEMENTS

Compare to the current control, the sliding mode approach
has still some aspects that must be improved. In particular it
should provide:

(i) current limitation,
(ii) zero output voltage steady-state error,
(iii) constant switching frequency.

A. Current Limitation
As we have seen from Fig. 7a, a fast converter response

calls for overshoots in the inductor current iL. In fact the first

part of the transient response depends on the system
parameters, and only when the system RP hits the sliding line
in a point belonging to the existence region the system
dynamic is dictated by the sliding equation (for the buck
converter it is actually independent of the converter
parameters and dependent only on the sliding coefficient c1).

The large inductor current could not be tolerated by the
converter devices for two reasons: it can cause the inductor
core to saturate with consequent even high peak current
value or can be simply greater than the maximum allowed
switch current. Thus it is convenient to introduce into the
controller a protection circuit which prevents the inductor
current from reaching dangerous values. This feature can be
easily incorporated into the sliding mode controller by a
suitable modification of the sliding line. For example, in the
case of buck converters, in order to keep constant the
inductor current we have to force the system RP on the line:

x x
I ULmax o

2 1
1= − + −

RC C RC

*

(50)

Thus the global sliding line consists of two pieces:



( )′ = + − −








 >

+ <






σ x

x
x I

U
i I

c x x i I

Lmax
o

L Lmax

L Lmax

1
2

1 1 2

1
RC C R

  for   

                                for  

*

(51)

The phase plane trajectories for a buck converter with
inductor current limitation and with c1 = 2/RC  are shown in
Fig. 12 and the corresponding inductor current transient
behavior is shown in Fig. 13. It is interesting to note that (51)
gives an explanation of why the fastest response without
overshoots is obtained for c1 = 1/RC. In fact, if c1 = 1/RC

and ILmax = Uo
* /R the two pieces of the sliding line σ'

become a single line and thus the inductor current reaches its
steady-state value Uo

* /R without overshoot.

In general, current limitation can be provided with the
simple arrangements shown in Fig. 14, i.e. by using another
hysteretic comparator and an AND port.

x1

x2

u = 0

u = 1

σ(  ) = 0x

i   = IL Lmax

Fig. 12- Phase trajectories  for a buck converter with inductor
current limitation (c1 = 2/RC)
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Fig. 13- Time response of inductor current iL of a buck converter

with current limitation (c1 = 2/RC)

B. Zero Output Voltage Steady-State Error
When the inductor current error is computed by using a

high-pass filter, its steady-state average value is necessarily
zero. Thus, if sliding function σ, due to the hysteretic control,
has non-zero average value, a steady-state output voltage
error necessarily appears. This problem can be solved by
introducing a PI action on sliding function σ in order to
eliminate its dc value (see Fig. 14). In practice, the integral
action of this regulator is enabled only when the system is on

the sliding surface; in this way, the system behavior during
large transients, when σ can have values far from zero, is not
affected, thus maintaining the large-signal dynamic
characteristics of sliding mode control.
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Fig. 14 - Reduced-order sliding mode controller with inductor
current limitation, constant switching frequency

and no output voltage steady state error

C. Constant Switching Frequency
As already shown for the buck converter, the switching

frequency depends on the converter operating point. This can
be unacceptable if the range of variation becomes too high.
One possible solution is the implementation of a variable
hysteresis band, for example using a PLL [9]. Another
approach is to inject a suitable constant frequency signal w
into the sliding function as shown in Fig. 14 [6]. If, in the
steady state, the amplitude of w is predominant in σf, a

commutation occurs at any cycle of w. This also allows
converter synchronization to an external trigger. Instead,
under dynamic conditions, error terms xi and xu increase, w is

overridden, and the system retains the excellent dynamic
response of the sliding mode. Simulated waveforms of ramp
w, and σPI, σf signals are reported in Fig. 15.

The selection of the ramp signal w amplitude is worthy to
be further discussed. In fact it should be selected by taking
into account the slope of function σPI and the hysteresis band

amplitude, so that function σf hits the lower part of the

hysteresis band at the end of the ramp, causing the
commutation. From the analysis of the waveform shown in
Fig. 15, we can find that the slope Se of the external ramp

must satisfy the following inequality

S B
T

Se
s

r> −∆
δ

(52)

in which ∆B represent the hysteresis band amplitude and Sr is

the slope of function σPI during the switch on-time. Note
that, in the presence of an external ramp, signal σPI must

have a non zero average value in order to accommodate for
the desired converter duty-cycle (see Fig. 15).

Of Course a triangular disturbing signal is not the only
waveform we can use. A pulse signal can be used
alternatively as reported in [10].
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σ f
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Fig. 15 - simulated waveforms of ramp w, and σPI, σf
signals.

CONCLUSIONS

The application of the sliding mode control technique to
DC-DC converters is analyzed in detail with reference to
buck and boost converters. This control techniques provides
good overall performances compared to standard current
control and good robustness against load and input voltage
variations.

Guidelines for the extension of this control technique to
buck-boost Cuk and Sepic converters are given and
improvements like current limitation, constant switching
frequency and output voltage steady-state error cancellation
are discussed.
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