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Abstract

This paper investigates the problem of robust finite-time H, control for a class of uncertain discrete-time
Markovian jump nonlinear systems with time-delays represented by Takagi—Sugeno (T—S) model. Initially,
the concepts of stochastic finite-time boundedness and stochastic finite-time H , stabilization are presented.
Then, by using stochastic Lyapunov—Krasovskii functional approach, sufficient conditions are derived such
that the resulting close-loop system is stochastically finite-time bounded and satisfies a prescribed H o,
disturbance attenuation level in a given finite-time interval. Furthermore, sufficient criteria on stochastic
finite-time H., stabilization using a fuzzy state-feedback controller are provided, and the controller is
designed by solving an optimization problem in terms of linear matrix inequalities. Finally, two numerical
examples are exploited to show the validity of the proposed design techniques.
© 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the past few decades, the fuzzy logic control has been utilized as an alternative approach to
conventional control for complex nonlinear systems. As one of most important form of fuzzy
systems, Takagi—Sugeno (T-S) fuzzy model [1] has been recognized as a popular and powerful
tool in approximating and describing complex nonlinear systems. The main reason of this
attention to T-S fuzzy model is due to the fact that it can combine the merits of both fuzzy logic
theory and linear systems, and then stability analysis and controller design of the overall fuzzy
systems can be carried out in the Lyapunov function framework. Therefore, many problems have
been tackled and some appealing results for T-S fuzzy systems have been reported in the
literature. For example, the problems of stability analysis of T-S fuzzy systems have been

discussed in [2]. The robust H,, control has been addressed in [3]. The H,, filtering problem has
been considered in [4-8] and the output-feedback control has been studied in [9,10]. Some other
important results like the guaranteed cost control, variable structure control and reliable control
have also been presented for a class of T-S fuzzy systems in [11-13]. More results on fuzzy
systems can be found in [14-16] and the references therein.

On the other hand, considerable attention has been paid to Markovian jump systems (MJSs) in
the control community since the family of stochastic systems have been extensively applied to
modeling various practical processes that can experience abrupt changes in their structures and
parameters, possibly caused by the phenomena such as component failures, sudden
environmental disturbances, and changing subsystem interconnections, and so on. Therefore,
many attracting results and a large variety of control problems have been reported in the
literature. For example, the authors considered the stability analysis and state-feedback
stabilization problems for MJSs in [17]. The references [18,19] studied the robust H,, control

problem, and the H filtering problem has been presented in [20-22]. The sliding mode control
and passivity analysis for a class of stochastic systems have also been investigated in [23-25].
More detailed results on the topic could be found in [26] and the references therein. Recently,
fuzzy MJSs, as a special form of MJSs, have also received many researches. Some results on
fuzzy MJSs have been investigated and studied, such as the stability analysis and state-feedback
stabilization problem [27], the Hy, control [28] and the output-feedback stabilization [29].

In many practical applications, however, many concerned problems are that the described system

state does not exceed a certain bound in a given finite-time interval. Compared with classical
Lyapunov asymptotical stability, finite-time stability or short-time stability were investigated to
deal with the transient performances of system trajectories in a specified finite-time interval.
Finite-time stability or short-time stability were first introduced in the 1960s [30], and then the
definition of finite-time stability was extended to finite-time boundedness in [31]. Further,
applying the linear matrix inequality (LMI) technique and Lyapunov approach, many results on

finite-time stability and stabilization have been investigated for linear systems, nonlinear systems,
stochastic systems, switching systems, fuzzy systems and singular systems. For instance, the
authors in [32] studied the state-feedback finite-time stabilization for discrete-time linear systems.
The problem of finite-time stability and stabilization was tackled for nonlinear stochastic hybrid
systems in [33]. The results on robust finite-time stabilization were provided for uncertain
continuous-time fuzzy MJSs in [34]. For more details of the literature related to finite-time
stability, finite-time stabilization and finite-time H, control, the reader is

referred to [35-39].

Motivated byaforementioned discussions, in this paper, we deal with the problem of robust finite-
time H control for uncertain discrete-time Markovian jump T-S fuzzy systems with



time-delays. The concepts of stochastic finite-time boundedness and stochastic finite-time H
stabilization for a class of stochastic systems are first presented. Then, sufficient conditions of
stochastic finite-time boundedness or stochastic finite-time H, stabilization via a fuzzy state-
feedback controller are obtained for the class of fuzzy stochastic systems. Sufficient criteria on
stochastic finite-time boundedness or stochastic finite-time H ., stabilization can be tackled by a
feasibility problem in terms of LMIs with a fixed parameter. Finally, two numerical examples are
provided to illustrate the validity of the proposed methods. The contributions of this paper lie in
the following three aspects: (i) by using stochastic Lyapunov function method and LMI
technique, the stochastic finite-time H, stabilization analysis is provided for discrete-time time-
delay T-S fuzzy systems with Markovian jumps; (ii) when parameter uncertainties appear in
discrete-time T-S fuzzy systems with Markovian jumps and time-delays, the robust stochastic
finite-time H, stabilization criteria are presented in terms of LMIs by applying the matrix
decomposition techniques; and (iii) as an affiliated result, we also derive the sufficient conditions
of stochastic finite-time boundedness for the class of discrete-time T—S fuzzy nonlinear systems
with Markovian jumps and time-delays. Therefore, the main purpose of this paper is to make the
first attempt to tackle the aforementioned contributions.

Notations: The notations in this paper are quite standard. R", R and Z; - ( are used to
denote the sets of n component real vectors, n x m real matrices, and the set of nonnegative
integers, respectively. oy, (A) and o, (A) denote the smallest and the largest eigenvalue of
matrix A, respectively. M” and M~"' stand for the transpose and the inverse of matrix M,
respectively. The symbol =k represents a matrix which can be inferred by symmetry and diag{---}
denotes a block-diagonal matrix. (£2, F, P) is probability space, £2 is the sample space, F is the
o-algebra of subsets of the sample space and P is the probability measure on F. In addition, E{.}
stands for the mathematical expectation with some probability measure.

2. Problem statement and preliminaries

Consider the following discrete-time Markovian jump system (DMIJS) with time-delays which
could be represented by a T-S fuzzy model over the probability space (£2, F, P):
Plant rules i: IF 0y is p;1, 05 1S pp, ..., 0y is pjs, THEN

x(k + 1) = Ai(ry, k)x(k) + Agi(ri, k)x(k — d) + Bi(ri, k)u(k) + Gi(ri,, k)w(k), (la)
2(k) = Ci(r)x(k) + Cyi(ri)x(k —d) + Dyi(ri)u(k) + Dai(ri)w(k), (1b)
x(k) =¢(k),ke{—d,...,0}, (1c)

where x(k) € R™, u(k) € R™ and z(k) € R’ are the system state, the control input, and the control
output, respectively, d is a positive integer denoting the constant time-delay of the system state,
¢k),ke{—d,...,0} is a vector-valued initial discrete sequence. The stochastic jump process
{rr,k =0} is a discrete-time, discrete-state Markov chain taking values in a finite set
S={1,2,...,s} with transition probabilities 7;,,, where 7, >0 and Y, _ 7, =1 forall [€ S.
Ai(r, k), Agi(ri, k), Bi(ri, k) and Gy(ry, k) are appropriately dimensioned system matrices with
time-varying parametric uncertainties, which are assumed to be of the form:

[Ai(ri, k) Adgi(ri, k) Bilri, k) Gilri, k) |
= [Ai(r)  Aai(ri)  Bi(re)  Gi(ri) |
+ Fi(r)A(ri, k) [ Evilri) - Eai(re) - Esi(ri) - Esi(ri) |, (2)



where A(ry, k) is an unknown, time-varying matrix function and satisfies A7 (ry, k)A(ry, k) < I for
all eSS and keZi>o. Ai(r),Au(ri), Bi(ri), Gi(ri), Ci(ri), Fi(ri), Evi(ri), E2i(re), E3i(r1),
E4i(r), Cai(r), D1j(ry) and Do;(ry) are known constant matrices of appropriate dimensions. 6;
and p; (i=1,....f,j=1,...,8) are respectively the premise variables and the fuzzy sets, fis the
number of IF-THEN rules. The fuzzy basis functions are given by

TT5_ 11(6(K))
A | LT (9)

in which p;(6;(k)) represents the grade of membership of 6;(k) in p;. It is obvious that
Z{ _1hi(0(k)) =1 with h;(6(k))> 0. Moreover, the noise signal w(k) € R satisfies

hi(0(k)) = ®)

E{ ) wT(k)w(k)} <w’, w=0. 4)

To simplify the notation, in the sequel, for each possible ry =[,1 € S, matrix M;(r;) will be
denoted by M;,; for instance, A;(ry) will be denoted by A;;, Ayi(rr) by Agis, Ai(re, k) by A (k),
and so on. In addition, h;(k),A and”P; denote h;(0(k)), {1, ....f} and X5 _ 7P, respectively.

By using the fuzzy blending method, the overall fuzzy DMIJS could be inferred as follows:

f
x(k+1) = 2,1 hi(k)[A; 1(k)x(k) + Agi(k)x(k —d) 4 Bi(k)u(k) + Gi(k)w(k)], (5a)
f
(k) = ;1 hi(k)[Ciux(k) 4+ Cgipx(k —d) + Dyju(k) 4+ Do w(k)], (5b)
(k) = p(k), k € {—d, ..., 0). (5¢)

The design of controllers in this paper is performed through the parallel distributed compensation
and the overall controller is thus inferred as

;
u(k) = ;1 hi(k)K i x(k), (6)

where K is the state-feedback gain to be designed. Then, the resulting closed-loop fuzzy DMIJS
can be written in the following form:

x(k + 1) = Ay(h, k)x(k) + Aa(h, k)x(k—d) + G(h, k)w(k), (7a)

(k) = Ci(h)x(k) + Ag(h)x(k — d) + Di(hyw(k), (7b)

where

i=1j=

S f
Alh k)= 21 hi(k)hj(k)[A; (k) + Bi(k)K 1],

f f
Ag(h, k)= Z hi(k)Agii(k), Gi(h, k) = Z hi(k)G; (k),

1= 1=

i=1j=

ff
C(h)y= Y Z] hi(k)h(K)[Cig + DhiiKjl,
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f f
Ca(h) = '21 hi(k)Cyigs Di(h) = 3 hi(k)Da.

i= i=1

Definition 2.1. (see [38], stochastically finite-time stable (SFTS)). The time-delay fuzzy DMJS

(7a) with w(k) = 0 and u(k) = 0 is said to be SFTS with respect to (8,, €, R}, N), where 0 <4, <e,
R;>0and N € Zj > o, if

E(x" (k))Rx(k)} < 67 = E{x" (ko)Rix(ko)} <€, ky € {—d, ...,0},ka € {1,2,...,N}. (8)

Definition 2.2. (see [38], stochastically finite-time bounded (SFTB)). The time-delay fuzzy

DMIS (7a) is said to be SFTB with respect to (6,, €, R, N, @), where 0<,<e¢, R;>0and N € Z;
> 0, if the constraint relation (8) holds.

Definition 2.3. (see [38], stochastically finite-time H., stabilizable). The time-delay fuzzy
DMIS (7a) and (7b) is said to be stochastic finite-time H,, stabilizable with respect to
(6,6, R;,N,y,w), where 0<d,<e, R;>0, y>0 and N € Zj > ¢, if the time-delay fuzzy DMIJS
(7a) and (7b) is SFTB with respect to (Jy, €, R;, N,w) and under the zero-initial condition the
output z(k) satisfies

E{ ) zT<k>z(k>}<y2E{ 5 wT(k>w(k)} ©)

for any nonzero w(k) which satisfies (4), where y is a prescribed positive scalar. Moreover, the
control law (6) is called as finite-time H., controller of the time-delay fuzzy DMJS (1a)—(1c).

Lemma 2.1 (Zhang et al. [35,38]). If matrices U, F(k) and V are of appropriate dimensions,
and time-varying matrix function F(k) satisfying FT(k)F(k) <1 for all k € Zi~ o, then, for an
arbitrary positive constant 0, the following inequality holds

UF(k)V + [UF(k)V]" <ouUT + 0~ 'vTv. (10)

The main aim of this paper is to design a fuzzy state-feedback controller of the form (6) which
can ensure stochastic finite-time H., stabilization of the time-delay fuzzy DMIJS (7a) and (7b).

3. Main results

In this section, we consider stochastic finite-time H, stabilization analysis of the time-delay
fuzzy DMIJS described by Eqgs. (1a)—(1c). LMI conditions will be established to show that the
nominal or uncertain fuzzy DMIJS (7a) and (7b) is SFTB and the output z(k) and disturbance w(k)
satisfies the constraint relation (9).

Theorem 3.1. The time-delay fuzzy DMJS (7a) is SFTB with respect to (0, €, R;, N, w), if there
exist scalars A > 1 and €>0, a symmetric positive-definite matrix Q, sets of symmetric positive-
definite matrices {P;,1 € S} and {Q,,1 € S}, for all € § and i,j € A, such that

AT (h, )P A(h, k) — AP+ Q * %
Al (h, )P A(h, k) —Q + AL (h, )P Ay(h, k) * <0,
G[ (h, k)P A(h, k) G{ (h, k)P A y(h, k) — Q)+ GJ (h,K)P,Gy(h, k)

(11a)

[0 + 05d)5; + opw” <api~Ne?, (11b)



0p =MmaxX; ¢ stomax(Q))}, P = R[_ I/ZPIR[_ 172 and @1 = R[_ 1/ZQR[_ 1/2-

Proof. We first choose the following stochastic Lyapunov—Krasovskii functional:

V(k) = X" (k)P (k) + kil () 0x(n). (12)
n=k—d

Then, a simple computation yields

E(V(k + D)~ ViK) =E{ 3 Prlrer = miro =) x [+ DPak+ D+ 3 xT(n)QX(n)]} V)
m n=k—d+l1

=1 =

= 2 Timx? (k + )Pk + 1) —xT (k)Px(k) + xT (k)Ox(k) — xT (k — d)Ox(k — d)

m=1

Al (h, PA(h, k) — P + Q % %
=&(k) AL (h, )P1A|(h, k) — Q0+ AL(h, )P Aq(h, k) % &(k).
G (h, k)P A((h, k) G (h, )P A (h, k) GY (h, KP,Gy(h, k)
(13)
where &7 (k) = [x” (k) x”(k—d) w"(k)]. From conditions (11a) and (13), we can establish
E{V(k + 1)} — V(k) <(A— DxT (k)Pix(k) + wT (k)Qw(k)
< (A—DV(k) + aow’ (yw(k). (14)

Therefore, we have
E{V(k + 1)} <AE{V(k)} + aQE{wT(k)w(k)}. (15)
Notice that 4 > 1, it follows from Eq. (15) that

k—
E{V(k)} <*E{V(0)} + aQE{ zl pe=n= 1WT(n)w(n)} < FE{V(0)) + oo’ (16)
n=0
Let P/=R, 1/2P1Rl_ 12.0,= R, 1/ZQRI_ 2 and notice that E{xT(n)Rx(n)} < 8% for all
ne{—d,...,0}, we have
E{V(0)} <G5E{x" (0)Rx(0)} + aQE{ _zl xT(n)Rlx(n)} <[op + opdl5.. (17)
n= —d

On the other hand, for all [ € S, we can obtain
E(V(k)} = E(x" ()Px(k)} = ELT (KR, *PiR)*x(k)} = a5E" (k)Rix(k)). (18)

From (16) to (18), we can deduce

[EF + O'ad]/lk@zc + GQ/lsz

E{x"(k)Rix(k) } < (19)

95

Therefore, it follows from (1 1a) that E{x” (k)R;x(k)} <> for all k € {1,2, ..., N}. The proof of this
theorem is completed. O

Theorem 3.2. The time-delay fuzzy DMJS (7a) and (7b) is stochastically finite-time H
stabilizable with respect to (6y, €, R;, N,y, @), if there exist scalars A > 1,¢>0,y >0, a symmetric
positive-definite matrix Q, a set of symmetric positive-definite matrices {P;,l € S}, for all [e S



and i,j € A, such that

— AP+ Q0 % % % *
0 -0 % % %
0 0 27N % * | <0, (20a)
Ly (k) Lyhk) Lzfhk)y —P~' %
Ci(h) Ca(h) D(h) 0 =1
[0 + 05dls; + 2~ VY@’ <aza Ve, (20b)

where

L] 10 = | VERAT (hK)  JTRAT(K) - JTAT (R,

15 () = [ VERAYLK) JTRAYK) e TAG R,

1 (0 = [ VARGI () ARGl (hK) -+ JEGI (B ],

P= diag{Pl,PZ, ...,Ps}.
Proof. By the Schur complements, it follows that condition (20a) implies

— AP+ 0 % * %
0 —Q % %
0 0 —a Ve x| <0 2D

Li(h,k)  Lyh,k) L3(hk) —P!

Denote Q; = A~ "VyI and notice the form of Py, L, /(h, k), L, ;(h, k), L3 ;(h, k) and P, it is obvious
that Eq. (21) is equivalent to condition (11a). Thus, conditions (21) and (20b) can guarantee that
the time-delay DMIJS (7a) is SFTB with respect to (y, €, R;, N, w) according to Theorem 3.1. On
the other hand, consider the similar fuzzy Lyapunov—Krasovskii functional as Theorem 3.1.
Taking into account condition (20a) and Q; =1~ "y?I, one can derive from Eq. (20a) that the
following inequality:

E(V(k + 1)} <2V(k) =2 (k)z(k) + 7?2~ Yw (kyw(k) (22)

holds for all /€ S. According to Eq. (22), we can derive

E{V(k)} < *E{V(0)} — kil AR ()2()) + yz/lNE{kil lkjle(j)w(j)}. (23)
. =

j=0

Under the zero-value initial condition and noting that V(k) > 0 for all k € Z; » ¢, we have
k—1 ) k=1 .
Y AR (D) <A VES Y AT GwG) ¢ (24)
j=0 j=0
Notice that 1 > 1, we have

E{ % ZT(k)Z(k)} = % E{z" (k)z(k)} < % E(AY % (k)z(k)}
k

k=0 k=0 =0



<y2/1_NE{ % AN‘kwT(k)w(k)} gyzE{ % wT(k)w(k)}. (25)
k=0 0

k=

Thus, condition (9) holds. This completes the proof. O

To solve Theorem 3.2, the following theorem gives LMI conditions to ensure stochastic finite-
time H , stabilization via fuzzy state-feedback control design for the nominal fuzzy DMIJS (1a)—

(1o).

Theorem 3.3. Consider the time-delay nominal fuzzy DMJS (7a) and (7b), there exists a state
Seedback control gain K;;=7Y; ;X 171 such that the DMJS (7a) and (7b) is stochastically finite-
time Hy, stabilizable with respect to (6x,€,R;,N,y,w), if there exist scalars
A>1,0>0,e>0,y>0,n,>0 and n,>0, a symmetric positive-definite matrix M, a set of
mode-dependent symmetric  positive-definite matrices {X;,l€ S}, a set of matrices
{YiieA,le S}, forall [€ S and i,j € A, such that

By <0, (26a)
Eij,l + Eji,l <0, i<j, (26b)
oR ' <X; <R/, 260)
mR ' <M<n,R, (26d)
(@ —eHr N % %
5x —0 %k < (), (266)
5)5\/(_1 O — 171
where
- ),XI % % %
0 =M * %
Eij,l = Llij,l LSi,l - X+ in’IML%}J % * )
Lajjy Dy C d,',[Mng’ ; —1+ Cyiy MCZI}J %
X 0 0 0 -M

T T r .. T
L= [V Ay NIRAy VA |,

T T T T
Ly, = [\/”llAdi,l NTRA G \/ﬂISAdi,l},

T Gl r .. Gl
Ly, = [ Gy, Gy msGiy |,

Lyjji = CiX; + DY, Ajjy = Ay Xi + BiiYjy,
X= diag{Xl,Xz, ...,XS}.

Proof. Denote

i=1j= i=1 i=

fof f f
A= X Z] hi(k)hj(k)[Ai; + BiiKjil, Aa(h) = % hi(k)Agis, Gi(h) = ‘21 hi(k)Gi.



Then, condition (20a) is converted into the following inequality:

—IPI+Q % % % %
0 -0 % % %
0 0 — A N1 % % | <0, (27)
Lih)  Lyh) Ly(h)y —P' =%
Ci(h) Ca(h)  Di(h) 0 -1

where

LY (h) = [VanA[ (h)TRA] (h).../mA] (W),
LY (h) = [anAl(h) JapAl(h)...JmAL )],
LY (h) = [Van Gl ()7 GY (h).../msG ()],

Applying the Schur complements, we can verify that Eq. (27) is equivalent to

— AP+ 0 * * *
0 S % %
Lihy  Li(h)  —P~ '+ Ly~ 'LL (b o <0
Cy(h) Di(h) Ca(h)Q~'LY (k) —I+ Ca(h)Q~ ' Cly(h)
(28)

Pre- and -post-multiplying (28) by the block-diagonal matrix diag{P;”',1,1,1} and using Schur
complement lemma, this results in the following inequality holds

iél . él hi(k)hj(k)©y, <0, (29)
where
[ —ap! % " % .
0 -2V s * e
0= LiP; ! Ls;; —pP 14 L2i,lQ—1Lsz,/ % ® ,
CiP! D»; CuiiO~ ILZTJ.J I+ Cyi10™ 1C£j’] %
P ! 0 0 0 —0!

L1y = [VanAy, /anAy,... /@Ay,
L} = [an AL 7oA . AL,
L}, = [Van Gl /anGly.. Gl
Cijiy=Cii+ Dy Kj;,Ajy=Aiy + By K.
Denote
Ly, = @LugaP ' = [WanAl, VAl AL,
Lyji= CyaPr ' = CyP ' + DiuKjPr ',



where Aj;=A; P ' =A P + By K; P ', By setting X;=P; ", Y;;=K;;X;, M=Q ', X
=P~ it follows that

X =P~ =diag{X,,X,, ..., X,},
Ay =AyX + By K X;=A; X, + B Yy,
Lyjjy = CiyX; + D1y K X; = Ci X + Dy Y.

Thus, we can deduce that condition (29) is equivalent to the following inequality:

fof f
L X hilbh®Es+ Zul + X 1} (k)Z i3, <O0. (30)

i=1j>i

Therefore, conditions (26a) and (26b) can guarantee that condition (20a) holds.

Taking into account that P, =X, ', P, :RI_I/ZPIRI_I/2 and Q, :Rl_l/zQRl_l/z, it follows

from (23c) and (23d) that 1 <5, <0~ ', o <ni !. Then, a sufficient condition to guarantee
(20Db) is that

(¢! +171_1d)6)2c+l_N}/2w2<l_N€2. 31

By Schur complement property, condition (31) is equivalent to Eq. (26e). Further, conditions
(23c)—(23e) can guarantee that condition (20b) holds. Thus, the proof of the theorem is
completed. O

The following corollary is an easy consequence of Theorem 3.3.

Corollary 3.1. Consider the time-delay nominal fuzzy DMJS (7a), there exists a state-feedback
control gain K;; =YX 1_1 such that the fuzzy DMJS (7a) is SFTB with respect to
(6,6, R, N, ), if there exist scalars 2>1,6>0,6>0,6,>0,6,>0,7,>0 and n,>0, a
symmetric positive-definite matrix M, sets of mode-dependent symmetric positive-definite
matrices {X;,l € S} and {Q,,l € S}, a set of matrices {Y;;,i€ A,l€ S}, forall l€ S and i,j € A,
such that (26¢) and (26d) and the following conditions hold

‘—'Eii,l <0, (328.)
Eij’] + ._Eji,[ <0, i<j, (32b)
ol< Ql <0ol, (32C)
@25 —2AN % %
O -0 % | <0, (32d)
6x\/g 0 -—m
where
—X; ES %
0 -0, S S

4]

il Lyjs Ly =X+ LoygMLy, %
X 0 0 -M



Consider the robust finite-time H, stabilization problem of the time-delay uncertain fuzzy
DMIS (la)—(1c), we have the following theorem stated:

Theorem 3.4. Consider the time-delay uncertain fuzzy DMJS (7a) and (7b), there exists a state-
feedback control gain K;; =Y ,-JXl_l such that the DMJS (7a) and (7b) is stochastically finite-
time Hy, stabilizable with respect to (6y,¢,R,N,y,w), if there exist scalars
A>1,6>0,e>0,y>0,n7,>0 and 1, >0, a set of positive scalars {6;,i,j € A,l € S}, a mode-
dependent symmetric positive-definite matrix M, a set of mode-dependent symmetric positive-
definite matrices {X;,1 € S}, a set of matrices {Y;;,i€ A, 1 € S}, forall [ € S and i, ] € A, such that
Egs. (26¢c)—(26e) and the following inequalities hold

PN L (33a)
i = <0, a
i iy Ty
P U [P (33b)
lj,l - AZU,[ A3U,[ B J!
where
— X & S
N2
Iy = 0 —A 7y * I
Lyiiy Ly, -X+ in,zMLzTi,l + Fiiy

- T

Laiiy Doiy CaiyMLy;,
T

iy = | Lsiiy  Eaiy  EoiyMLy;, |,

X 0 0
[ —1+ C4iiMCY, %
3= EpMCY;, —Oid + EyyMEY,, % |,
I 0 0 M
T —21X * *
Avjs = 0 -2 * ,

Lyji+ Lyip  Laig+Lajy  —2X+ %inj,lMLg,;]-J +Fji+Fji
[ Lyjs + Lajiy  Doig+ Dajy 3 CayyM Cﬁ,j,l

Aoy = Lsj E4iy YEyuMLY, ,
, Ls;iy E4j; % Eyj, MLgij,l
L X 0 0
—21 + 5 CayyMCly, % N .
A= %Ezi,]MCtz,j,l —9,_',-,51 + %EZ’?T’ME;'J :k ) " |
7 EyuMCyy, 3 E2uMEy,, — 0l + 1y MEY,, «
0 0 0 i

+= T 74T T T
Fiju =0 X [anF; /s [VanF sk,
Lyjji = Loiy + Lojj, Caijy = Caig + Cyjg, Lsijjg = E11 X1 + E3iY .



Proof. By Theorem 3.3, we only need to prove that Eqs. (33a) and (33b) can guarantee that Eq.
(20a) holds. Pre- and -post-multiplying Eq. (20a) by the block-diagonal matrix
diag{P,‘1 1,1,1,1}, we can observe that Eq. (20a) is equivalent to the following inequality:

lZIJZ hi(K)h()[ ¥ oi0 + ¥ 1.(k)] < (34)
where
) AR Y ¢) SR * * *
0 -0 % * %
Wit = 0 0 -2V % % |
Ly P! Loy Ls;y -P ' %
CijuP! Caiy Dy 0 -1

.0 = Ui Ak)V iz, + (Ui Vi)',
with
Ul,=[000 /zF},... JmsF}, 0],
Vit =IEwP; "+ E3iyK;iP, " Enij Eqiy 0 ... 00].
According to Lemma 2.1, for arbitrary 0;;;>0,i,jeA,l€ S, we have

1lAl(k)Vt]l + (Ul lAl(k)Vljl) < gl_]lUllU +6Ul VU[Vl]l (35)

Notice that 'Poif ; 1S a symmetric matrix. Thus, a sufficient condition to guarantee Eq. (34) is that
Z Z hi(k)hi(k)¥ 1, <0, (36)
i=1j=

where ¥, = (Yo + HUIUllU )+
equivalent to the following 1nequa11ty

UIIV”IV,}I. Thus, we can deduce that condition (36) is

Z Z hi(k)h () ¥ .0 + ¥jia] + Z h; (k)W i1 <O0. (37

i=1j>i
Therefore, it follows that a sufficient condition to guarantee Eq. (37) is that
T,’i’1<0, (383)

T,'j,l =+ lei,l <0. (38b)

Applying similar approach to Theorem 3.3, we can prove that Egs. (33a) and (33b) are equivalent
to Egs. (38a) and (38b), respectively. Thus, Eqgs. (33a) and (33b) can guarantee that Eq. (20a)
holds. ©

By Theorem 3.4, the following corollary can be easily obtained.

Corollary 3.2. Consider the time-delay uncertain fuzzy DMJS (7a), there exists a state-feedback
control gain K;j= Y,;;X,_1 such that the DMJS (7a) is SFTB with respect to (6,,¢,R;, N, w),
if there exist scalars 1>1,6>0,¢>0,0,>0,0,>0,7,>0 and n,>0, a set of positive
scalars {0;;,1i,je A, l €S}, a mode-dependent symmetric positive-definite matrix M, sets of



mode-dependent symmetric positive-definite matrices {X;,1 € S} and {Q,, 1 € S}, a set of matrices
{Yi,ieA,leS}, for all 1€ S and i,j€ A, such that Eqgs. (26c), (26d), (32c), (32d) and the
following conditions hold

7 INTYRE <0 (39a)
R _ ) a
il Ioip sy
7& Ay % 0. iz (39b)
ijil— | = e s l s
ol Agiir Az /
where
—/1X1 % &
flii,l = O - Ql * - 5
Ly Ly —X+ in,zMLZ,, + Fiiy
_ [Lsiy Esqy ExM LzTi,l
I = X0 0 ’
_ — 0l + Ezi,lMEzri,z *
I = 0 YAk
T 2X, * *
A lijl = 0 —2Q *

1 T T =
Liji+ Lijis  Lajg+ Lajy —2X + 5 LojuMLy;  + Fijy + Fjig
- 1 T
Lsij;  Eaiy 53 E2MLy;,
_ 1 T
Asiji= | Lsjiy  E4j1 3E5 MLy, |,

| Xi 0 0
[ — 9,’]’,[1 + %E2i,lMEgi,1 ES ES
XSij,l = %EZj,lME;J — 61-,-,11 + %Ezj,lMEZTjJ ES
0 0 —iM

Remark 3.1. It i; significant to observe that conditions (26a), (26b), (26e), (33a) and (33b) are
not strict LMIs, however, once we fix the parameter /A, the conditions can be turned into LMIs-
based feasibility problem. Thus, one can obtain that the feasibility of conditions stated in
Theorems 3.3 and 3.4 can be turned into the following LMIs-based feasibility problem with a
fixed parameter 4, respectively:
min (e + y?)
XI, Yi,laM9rlls7729O-
s.t. LMIs(26a)—(26¢). (40)

min  (e> 4 7?)
X, Yi,M,ny,1,,0;5,0
s.t. LMIs(26¢)—(26e), (33a) and (33b). (41)
Remark 3.2. In order to get the minimum optimal value of €> + y?, by Theorems 3.3 and 3.4,
one can first find the range of the feasible solution of the parameter A, and then the locally



convergent solution can be obtained by applying the program fininsearch in the unconstrained
nonlinear optimization toolbox of Matlab.

Remark 3.3. Noted that Theorems 3.3 and 3.4 have presented the sufficient conditions to
guarantee stochastic finite-time H, stabilization of the nominal or uncertain discrete-time fuzzy
MIJSs with time-delays, respectively. From the optimization problem (40) or (41), one can see
that €2 + y? is taken as the optimal value and optimized over value € + y?. Similarly, we can
also choose y” as the optimal value and optimize over value y*. However, the former optimization
approach should be suitable in order to let the system trajectories take the smaller bound as much
as possible in a specified finite-time interval.

Remark 3.4. For conservatism reduction purpose, fuzzy or piecewise Lyapunov functional
approaches can be applied to addressing the problems of H,, filtering and output-feedback
control for fuzzy nonlinear systems with Markovian jumps and time-delays, see the Refs.
[4,10,16]. Based on the novel Lyapunov functionals, we may also deal with the finite-time H
control problem for continuous- or discrete-time fuzzy MJSs with time-varying delays and obtain
the corresponding results in the future work.

4. Numerical examples

In this section, we provide two simulation examples to illustrate the proposed results.

Example 4.1. Consider the following time-delay nominal fuzzy DMJS involving two modes
with the following parameters:

1.2 0.5 0.6 0 —-06 04
A= , Agg= , Ap= ,

08 1 0 —05 115
| ~06 01 ~05 02] 0.5 —041
dl2 — 0 _04 P 2,1 — 1 1 P d2,1 — 0 —06 P
| ~06 08) 06 —04) 70 I
27101 12) "7 o —os] THMTTET o)
b [0 G 00 o 01
1,2 =022 = 0 1 B 1,1 = Y2,1 = 0 1 B 12 =422 = 0 05 5

Cii=C1=Cip=0Cp= [0-5 0], Ciig=Cni1=Cap=Cpp= [0-2 0],

Dy11 =Dioy =Dy1p=Dpp=[05 02], Dyy1=Dypj=Dyr=Dn,=[1 1].

We assume that the transition rate matrix is given by

06 04
= .
[0.3 0.7}

For simplicity, /;(k) and h, (k) are fuzzy basis functions defined, respectively, as i (k) = h(x;(k))
and hy(k) = 1 — h(x (k) with



B=—xi(k)], |xi(k)|<3,
6
hleai (k) = { 1, 1 (k)| > 3.

Let Ri=R,=1,,6,=1,N=5,w=2 and d=1, by Theorem 3.3, the optimal bound with
minimum value of €? + y? relies on the parameter 1. One can find a feasible solution when
1.90 < 1 <36.50. Fig. 1 shows the optimal value with different values of A. Then, by using the
program fminsearch in the optimization toolbox of Matlab starting at A=2, we can also find the
locally convergent solution 1=2.1626, y=15.7421, ¢=33.9467, and the state-feedback control
gains can be derived as

02804 —0.4109 —1.4482 —0.5412
MU 102848 —04353 0 T2 T | 04945 —0.2787 )

~ 13937 —0.0070 —0.7539 05136
0.0348 —08134|" 7 | —0.4498 —09513 |

K1,2={

Now, we set the initial conditions as x(— 1) = x(0) =[0.6 —0.8]” and the initial mode ro = 1.
We further assume that w(k) =[0.9¢ % 0.8¢~* sin k]”, then, the simulation of the jumping

€ 0 15

Fig. 1. The local optimal bound of € and y.
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Jumping modes

0.5

0 10 20 30 40 50 60
time(k)

Fig. 2. The switching signal of the system with the initial mode 1.



modes and the state response of the closed-loop time-delay fuzzy DMIS are depicted in Figs. 2
and 3, which show the effectiveness of the proposed methods.

Example 4.2. To show stochastic finite-time boundedness of the time-delay uncertain fuzzy
DMIJS with disturbance attenuation y, let

Fii=Fy=Fia=Fy=[01 0.1]",
Ey =Fpy=Fn,=Fpy=[001 0.1],
Epg=Fni=Fy,=Fp,=[0 001],
E3=Fn)1=F30=F3n)= [0 0-1],

Ejgi=Fp1=Fupr=Fp,=1[01 02],

and 4,(k) = [¢/(k)], where ¢! (k)g;(k) <1 for all /€ {1,2}. Moreover, other matrix variables and
the transition rate matrix are defined in Example 4.1.

state x

state x
o

time(k)
0 10 20 30 40 50 60
time(k)

Fig. 3. The response of the system state x(k) in the different time interval.

Fig. 4. The local optimal bound of € and y.



Let Ry =Ry =15,6,=1,N=5,w=2 and d=1, by Theorem 3.4, the optimal bound with
minimum value of €> + y? relies on the parameter 1. One can find a feasible solution when
1.95 <1 <36.34. Fig. 4 shows the optimal value with different values of A. Then, by using the
program fiminsearch in the optimization toolbox of Matlab starting at A=2, we can also find the
locally convergent solution 1=2.1644, y=16.1363,6=34.6719 and the state-feedback control
gains can be derived as

02380 —0.3724 —1.3966 —0.4939
MU 102400 —04708 0 TP T | 04585 —03122)

—1.4625 0.0439 } { —0.4601  0.7330 }
> 22 = .

Ki,=
0.0245 —0.7991 —0.4588 —0.9601

Figs. 5 and 6 give the jumping modes and the state response of the closed-loop time-delay uncertain
fuzzy DMJS under the same initial conditions, parameters w(k) and ¢,(k) as Example 4.1.

2.5

Jumping modes

0 10 20 30 40 50 60
time(k)

Fig. 5. The switching signal of the system with the initial mode 1.

state x

30 40 50 60
time(k)

Fig. 6. The response of the system state x(k) in the different time interval.



5. Conclusions

This paper studies the problem of robust finite-time H., control for a class of uncertain
discrete-time Markovian jump T-S fuzzy systems with time-delays. By applying the stochastic
Lyapunov—Krasovskii function method, a finite-time H,, controller is designed such that the
resulting closed-loop system is stochastically finite-time bounded and satisfies a prescribed H
performance level in the given finite-time interval. Sufficient criteria are provided for the
solvability of the problem, which can be tackled by a feasibility problem in terms of LMIs. Two
examples are presented to show the validity of the proposed design approaches. It should be also
pointed out that stochastic finite-time H, filtering problems of time-delay fuzzy MJSs including
continuous-time case and discrete-time one will be investigated in our future work.
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