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ZERO DYNAMICS AND FUNNEL CONTROL FOR LINEAR ELECTRICAL
CIRCUITS

THOMAS BERGER∗ AND TIMO REIS†

Abstract. We consider electrical circuits containing linear resistances, capacitances, inductances. The cir-
cuits can be described by differential-algebraic input-output systems, where the input consists of voltages of voltage
sources and currents of current sources and the output consists of currents of voltage sources and voltages of cur-
rent sources. We generalize a characterization of asymptotic stability of the circuit and give sufficient topological
criteria for its invariant zeros being located in the open left half-plane. We show that asymptotic stability of the zero
dynamics can be characterized by means of the interconnectivity of the circuit and that it implies that the circuit is
high-gain stabilizable with any positive high-gain factor. Thereafter we consider the output regulation problem for
electrical circuits by funnel control. We show that for circuits with asymptotically stable zero dynamics, the funnel
controller achieves tracking of a class of reference signals within a pre-specified funnel; this means in particular that
the transient behaviour of the output error can be prescribed and the funnel controller does neither incorporate any
internal model for the reference signals nor any identification mechanism, it is simple in its design. The results are
illustrated by a simulation of a discretized transmission line.

Key words. electrical circuits, passivity, differential-algebraic equations, zero dynamics, invariant zeros, high-
gain stabilization, funnel control

AMS subject calssifications.34A09, 15A22, 93B25, 93B52, 93C40

1. Introduction. We consider linear differential-algebraic systems of the form

d
dt Ex(t) = Ax(t)+Bu(t)

y(t) =Cx(t) ,
(1.1)

whereE,A∈Rn,n, B,C⊤ ∈Rn,m; the set of these square systems (i.e., same number of inputs
and outputs) is denoted byΣn,m and we write[E,A,B,C] ∈ Σn,m.

The functionsu,y : R → Rm are calledinput andoutputof the system, respectively. A
trajectory(x,u,y) : R → Rn ×Rm×Rm is said to be asolutionof (1.1) if, and only if, it
belongs to thebehaviourof (1.1):B[E,A,B,C] :=

{
(x,u,y) ∈ C (R≥0;Rn×R

m×R
m)

∣∣∣∣
Ex∈ C 1(R≥0;Rn) and(x,u,y)
solves (1.1) for allt ≥ 0

}
.

Particular emphasis is placed on thezero dynamicsof (1.1). These are, for[E,A,B,C] ∈ Σn,m,
defined by

Z D [E,A,B,C] :=
{
(x,u,y) ∈ B[E,A,B,C]

∣∣ y= 0
}
.

By linearity of (1.1),Z D [E,A,B,C] is a real vector space.
The zero dynamics of (1.1) are calledautonomousif, and only if,

∀w1,w2 ∈ Z D [E,A,B,C] ∀ I ⊆ R≥0 open interval : w1|I = w2|I =⇒ w1 = w2 ; (1.2)

andasymptotically stableif, and only if,

∀(x,u,y) ∈ Z D [E,A,B,C] : lim
t→∞

(
x(t),u(t)

)
= 0.
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Note that the above definitions are within the spirit of thebehavioural approach[10] and take
into account that the zero dynamicsZ D [E,A,B,C] are a linear behaviour. In this framework the
definition for autonomy of a general behavior was given in [10, Sec. 3.2] and the definition of
asymptotic stability in [10, Def. 7.2.1]. (Asymptotically stable) zero dynamics are the vector
space of those trajectories of the system which are, loosely speaking, not visible at the output
(and tend to zero).

In the present paper, we are interested in systems of the form (1.1), which arise from
modified nodal analysis (MNA) models of electrical circuits, i.e.,

sE−A=




sAC CA⊤

C +AR GA⊤
R AL AV

−A⊤
L sL 0

−A⊤
V

0 0



 , B=C⊤ =




−AI 0

0 0
0 −InV



 , (1.3)

x= (η⊤, i⊤L , i
⊤
V )

⊤, u= (i⊤I ,v⊤V )
⊤, y= (−v⊤I ,−i⊤V )

⊤, (1.4)

where

C ∈ RnC ,nC ,G ∈ R
nG ,nG ,L ∈ RnL ,nL ,

AC ∈Rne,nC ,AR ∈ R
ne,nG ,AL ∈ Rne,nL ,AV ∈ Rne,nV ,AI ∈Rne,nI ,

n= ne+nL +nV , m= nI +nV .





(1.5)

Here AC , AR , AL , AV and AI denote the element-related incidence matrices,C , G andL are
the matrices expressing the consecutive relations of capacitances, resistances and inductances,
η(t) is the vector of node potentials,iL (t), iV (t), iI (t) are the vectors of currents through
inductances, voltage and current sources, andvV (t), vI (t) are the voltages of voltage and
current sources.

We show that, for models of electrical circuits (1.3), asymptotic stability of the zero
dynamics is a structural property. That is, this property can be guaranteed if the circuit has
certain interconnectivity properties. These criteria do not incorporate any parameter values.
In this context, we also characterize the absence of invariant zeros in the close right half-plane
and stabilization by high-gain output-feedback. For systems with asymptotically stable zero
dynamics, we prove that funnel control is feasible.

We close the introduction with the nomenclature used in this paper.

N, N0 set of natural numbers,N0 = N∪{0}, set of all integers, resp.

R≥0, (R≥0) = [0,∞), ((0,∞))

C+(C−) open set of complex numbers with positive (negative) real part, resp.

R[s] the ring of polynomials with coefficients inR

R(s) the quotient field ofR[s]

Rn,m the set ofn×m matrices with entries in a ringR

Gln(R) the group of invertible matrices inRn,n

On(R) the group of orthogonal matrices inRn,n

M∗ = M⊤, the conjugate transpose ofM ∈ Cn,m

‖x‖ =
√

x⊤x, the Euclidean norm ofx∈ Rn
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‖M‖ = max
{
‖M x‖

∣∣x∈ Rm, ‖x‖ = 1
}

, induced norm ofM ∈ Rn,m

C ℓ(I ;Rn) the set ofℓ-times continuously differentiable functionsf : T → Rn, ℓ ∈
N0∪{∞}, T ⊆ R an interval

Bℓ(T ;Rn) = { f ∈ C ℓ(T ;Rn)
∣∣ di

dt i f is bounded fori = 0, . . . , ℓ}, ℓ ∈ N0∪{∞}, T ⊆ R

an interval

2. Matrix pencils and rational functions. Let sE− A ∈ R[s]k,n be a matrix pencil.
ThensE−A is calledregular if, and only if,k= n and det(sE−A) ∈R[s]\{0}.

We introduce the following notation: Fork∈ N, we define the matrices

Nk =

[0
1

1 0

]
∈ R

k×k, Kk =

[
1 0

1 0

]
, Lk =

[
0 1

0 1

]
∈ R

(k−1)×k.

Many properties of a matrix pencil can be characterized in terms of theKronecker canon-
ical form (KCF).

LEMMA 2.1 (Kronecker canonical form [6]).For a matrix pencil sE−A∈C[s]k,n, there
exist matrices W∈ Glk(C), T ∈ Gln(C), such that

W(sE−A)T = diag(C1(s), . . . ,Ck(s)), (2.1)

where each of the pencilsC j (s) is of one of the types presented in Table 2.1.
The numbersλ appearing in the blocks of type W1 are called thegeneralized eigen-

valuesof sE−A. A generalized eigenvalue is calledsemi-simple, if all blocks of type W1
corresponding toλ are of size1×1.

Theindexν ∈ N0 of sE−A is defined as

ν := max
({

k j
∣∣ C j(s) is of type W2 or W4, j = 1, . . . ,k

}
∪{0}

)
.

Type Size C j(s) Parameters

W1 k j × k j (s−λ )Ikj −Nkj k j ∈ N, λ ∈ C

W2 k j × k j sNkj − Ikj k j ∈ N

W3 (k j −1)× k j sKkj −Lkj k j ∈ N

W4 k j × (k j −1) sK⊤
kj
−L⊤

kj
k j ∈ N

Table 2.1: Block types in Kronecker canonical form

The following is immediate from the block structure of the KCF.
COROLLARY 2.2 (Generalized eigenvalues).Let a pencil sE−A ∈ R[s]k,n be given.

Thenλ ∈ C is a generalized eigenvalue of sE−A if, and only if,

rkC(λE−A)< rkR(s)(sE−A).

It is shown in [6] that the KCF is unique up to permutation of the indicesj = 1, . . . ,k.
Since each block of type W3 (W4) leads to an additional column (resp. row) rank deficiency
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of 1, the regularity of a pencil is equivalent to the absence of blocks of type W3 and W4 in
its KCF.

In the following we collect some facts on rational matrix functions. These concepts and
findings will play an important role for the analysis of the MNA model (1.1), (1.3).

DEFINITION 2.3 (Positive real/proper rational function).A rational matrix function
G(s) ∈ R(s)m,m is calledpositive realif, and only if, G(s) does not have any poles inC+

and, for allλ ∈ C+, we have

G(λ )+G∗(λ )≥ 0.

G(s) is calledproperif, and only if,lims→∞ G(s) ∈Rm,m exists.
LEMMA 2.4 (Properties of positive real functions [1, Sec. 5.1]).Let G(s) ∈ R(s)m,m be

positive real. Then there existω1, . . . ,ωk ∈ R, Hermitian and positive semi-definite matri-
ces M1, . . . ,Mk ∈ Cm,m, M0,M∞ ∈ Rm,m and some proper and positive real function Gs(s) ∈
R(s)m,m which does not have any poles on iR, such that

G(s) = Gs(s)+ sM∞ +
M0

s
+

k

∑
j=1

M j

s− iω j
+

M j

s+ iω j
.

In particular, we may characterize the positive realness of matrix pencilssE−A∈R[s]n,n

by means of certain definiteness properties of the matricesE,A∈ Rn,n.
LEMMA 2.5 (Positive real matrix pencils).A matrix pencil sE−A∈ R[s]n,n is positive

real if, and only if, E= E⊤ ≥ 0 and A+A⊤ ≤ 0.
Proof. ⇒: SinceE = E⊤ ≥ 0 andA+A⊤ ≤ 0 we have that, for allλ ∈ C+,

(λE−A)+ (λE−A)∗ = λE+λE⊤−A−A⊤ = 2Re(λ )E− (A+A⊤)≥ 0. (2.2)

Therefore,sE−A is positive real.
⇐: SincesE−A is positive real, Lemma 2.4 implies existence of some additive decom-

position

sE−A= sM∞ +Gp(s),

whereGp(s) ∈ R(s)n,n is proper and positive real, andM∞ ∈ Rn,n is symmetric and positive
semi-definite. Therefore, we obtainE = E⊤ = M∞ ≥ 0, and the constant rational function
Gp(s) = −A is positive real. The latter implies, by definition of positive realness, thatA+
A⊤ ≤ 0.

In the following we collect some further properties of positive real matrix pencilssE−A
with the additional assumption that the kernels ofE andA intersect trivially. This in particular
encompasses regular MNA models of passive electrical networks.

LEMMA 2.6 (Properties of positive real pencil).Let a positive real pencil sE−A ∈
R[s]n,n be such thatkerE∩kerA= {0}. Then the following holds true:

(i) sE−A is regular.
(ii) (sE−A)−1 ∈R(s)n,n is positive real.
(iii) All generalized eigenvalues of sE−A have non-positive real part.
(iv) All generalized eigenvalues of sE−A on the imaginary axis are semi-simple.
(v) The index of sE−A is at most two.

Proof. Step 1: To prove that (i) and (iii) hold true, we show that ker(λE−A) = {0}
for all λ ∈ C+. Seeking a contradiction, assume thatλ ∈ C+ andx∈ Cn \{0} are such that
(λE−A)x= 0. Then we obtain

0= x∗
(
(λE−A)+ (λE−A)∗

)
x

(2.2)
= 2Re(λ )x∗Ex− x∗(A+A⊤)x.
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Since, by Lemma 2.5, there holdsE ≥ 0, A+ A⊤ ≤ 0 and Re(λ ) > 0, we havex∗Ex=
x∗(A+A⊤)x= 0, whence, in particular,Ex= 0. Therefore, the equation(λE−A)x= 0 gives
also rise toAx= 0 and consequently,x∈ kerE∩kerA= {0}, a contradiction.

Step 2: We show (ii). This is a consequence of

(λE−A)−1+(λE−A)−∗ =(λE−A)−1((λE−A)∗+(λE−A))(λE−A)−∗

(2.2)
= (λE−A)−1(2Re(λ )E− (A+A⊤))(λE−A)−∗,

E ≥ 0, A+A⊤ ≤ 0 and Re(λ )> 0.
Step 3: It remains to show that (iv) and (v) are valid: Since(sE−A)−1 is positive real

by (ii), Lemma 2.4 gives rise to the fact that all poles on the imaginary axis are of order one
and, moreover,(sE−A)−1 = sM+Gp(s), whereGp(s)∈R[s]n,n is proper andM ∈Rn,n. This
in particular means thats−1(sE−A)−1 is proper. LetW,T ∈Gln(C) be such thatW(sE−A)T
is in KCF (2.1). Regularity ofsE−A then gives rise to

(sE−A)−1 = T−1diag(C1(s)
−1, . . . ,Ck(s)

−1)W−1. (2.3)

Assuming that (iv) does not hold, i.e., there exists someω ∈ R such thatiω is a generalized
eigenvalue ofsE−A which is not semi-simple. Then there exists some block

C j(s) = (s− iω)Ikj −Nkj

with k j > 1 in the KCF ofsE−A. Hence, due to

C j (s)
−1 =

kj−1

∑
l=0

1
(s− iω)l+1Nl

kj
,

the formula (2.3) implies that(sE−A)−1 has a pole of order greater than one on the imaginary
axis, a contradiction.
Assume that (v) does not hold, i.e., the index ofsE−A exceeds two. Then there exists some
block

C j (s) = sNkj − Ikj

with k j > 2 in the KCF ofsE−A. Then

C j (s)
−1 =−

kj−1

∑
l=0

sl Nl
kj
,

and this contradicts properness ofs−1(sE−A)−1.

3. Graph theoretical preliminaries. In this section we introduce the graph theoretical
concepts which are crucial for the modified nodal analysis of electrical circuits. We derive
some characterizations for the absence of cutsets and loops in a given subgraph. These char-
acterizations will be given in terms of algebraic properties of the incidence matrices.

DEFINITION 3.1 (Graph theoretical concepts).A graphis a tripleG = (V,E,ϕ) consist-
ing of anode setV and abranch setE together with anincidence map

ϕ : E →V ×V, e 7→ ϕ(e) = (ϕ1(e),ϕ2(e)) .

If ϕ(e) = (v1,v2), we call e to bedirected fromv1 to v2. v1 is called theinitial nodeand v2 the
terminal nodeof e. Two graphsGa = (Va,Ea,ϕa), Gb = (Vb,Eb,ϕb) are calledisomorphic, if
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there exist bijective mappingsιE : Ea → Eb, ιV : Va →Vb, such thatϕa,1 = ι−1
V ◦ϕb,1◦ ιE and

ϕa,2 = ι−1
V ◦ϕb,2◦ ιE.

Let V′ ⊆V and let E′ be a set of branches satisfying

E′ ⊆ E|V′ :=
{

e∈ E
∣∣ ϕ1(e) ∈V ′ andϕ2(e) ∈V ′ } .

Further let ϕ |E′ be the restriction ofϕ to E′. Then the tripleK := (V ′,E′, ϕ |E′) is called
subgraph ofG . In the case where E′ = E|V′ , we call K the induced subgraph onV ′. If
V ′ =V, thenK is called aspanning subgraph. A proper subgraphis one with E6= E′.

G is calledfinite, if both the node and the branch set are finite.
For each branch e, define an additional branch−e being directed from the terminal

to the initial node of e, that isϕ(−e) = (ϕ2(e),ϕ1(e)) for e∈ E. Now define the set̃E =
{ e | e∈ E or −e∈ E }. A tuple w= (w1, . . . ,wr) ∈ Ẽr , where for i= 1, . . . , r −1,

v0 := ϕ1(v1), vi := ϕ2(wi) = ϕ1(wi+1)

is calledpath fromv0 to vr ; w is calledelementary path, if v1, . . . ,vr are distinct. Aloop
is an elementary path with v0 = vr . Two nodes v,v′ are calledconnected, if there exists a
path from v to v′. The graph itself is called connected, if any two nodes are connected.
A subgraphK = (V ′,E′, ϕ |E′) is calledcomponent of connectivity, if it is connected and
K c := (V \V ′,E \E′, ϕ |E\E′) is a subgraph.

A spanning subgraphK = (V,E′, ϕ |E′) is called acutsetof G = (V,E,ϕ), if its branch
set is non-empty,G −K := (V,E \E′, ϕ |E\E′) is a disconnected subgraph andG −K ′ is a
connected subgraph for any proper spanning subgraphK ′ of K .

For finite graphs we can set up special matrices which will be useful to describe Kirch-
hoff’s laws.

DEFINITION 3.2 (Incidence matrix).Let a finite graphG = (V,E,ϕ) with l branches
E = {e1, . . . ,el} and k nodes V= {v1, . . . ,vk} be given. Then theall-node incidence matrix
of G is given byA0 = (ai j ) ∈Rk,l , where

ai j =






1, if ϕ1(ej) = vi ,

−1, if ϕ2(ej) = vi ,

0, otherwise.

Since the rows ofA0 sum up to the zero row vector, one might delete an arbitrary row ofA0

to obtain a matrixA having the same rank asA0. We callA an incidence matrixof G .
This section continues with some results on the relation between properties of subgraphs

and linear algebraic properties of corresponding submatrices of incidence matrices. First we
declare some manners of speaking.

DEFINITION 3.3. LetG be a graph,K be a spanning subgraph ofG , L be a subgraph
of G , andℓ be a path ofG .

(i) L is called aK -cutset, if L is a cutset ofK .
(ii) ℓ is called aK -loop, if ℓ is a loop ofK .
A spanning subgraphK of the finite graphG has an incidence matrix AK which is

constructed by deleting rows of the incidence matrix A ofG corresponding to the branches
of the complementary spanning subgraphG −K . By a suitable reordering of the branches,
the incidence matrix reads

A =
[
AK AG−K

]
. (3.1)
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LEMMA 3.4 (Subgraphs and incidence matrices [11, Lem. 2.1 & Lem. 2.3]).Let G be
a connected graph with incidence matrixA ∈Rl−1,k. Further, letK be a spanning subgraph.
Assume that the branches ofG are sorted in a way that(3.1) is satisfied. Then the following
holds true:

(i) The following two assertions are equivalent:
a) G does not containK -cutsets.
b) kerA⊤

G−K
= {0}.

(ii) The following two assertions are equivalent:
a) G does not containK -loops.
b) kerAK = {0}.

The following two auxiliary results are concerned with properties of subgraphs of sub-
graphs, and give some equivalent characterizations in terms of properties of their incidence
matrices.

LEMMA 3.5 (Loops in subgraphs [11, Prop. 4.5]).Let G be a connected graph with
incidence matrixA ∈ Rk−1,l . Further, letK be a spanning subgraph ofG , and letL be
a spanning subgraph ofK . Assume that the branches ofG are sorted in a way that

A =
[
AL AK −L AG−K

]
and AK =

[
AL AK −L

]
.

Then the following two assertions are equivalent:
a) G does not containK -loops except forL -loops.
b) kerAK = kerAL ×{0}.

LEMMA 3.6 (Cutsets in subgraphs [11, Prop. 4.4]).Let G be a connected graph with
incidence matrixA ∈ Rk−1,l . Further, letK be a spanning subgraph ofG , and letL be
a spanning subgraph ofK . Assume that the branches ofG are sorted in a way that

A =
[
AL AK −L AG−K

]
and AG−L =

[
AK −L AG−K

]
.

Then the following two assertions are equivalent:
a) G does not containK -cutsets except forL -cutsets.
b) kerA⊤

G−K
= kerA⊤

G−L
.

4. Circuit equations. It is well-known [5, 7] that the graph underlying an electrical
circuit can be described by an incidence matrix A∈ Rk−1,l , which can be decomposed into
submatrices

A =
[
AC AR AL AV AI

]

for the quantities in (1.5), wherene = k−1 andl = nC +nG +nL +nV +nI . Each subma-
trix is the incidence matrix of a specific subgraph of the circuit graph. AC is the incidence
matrix of the subgraph consisting of all circuit nodes and all branches corresponding to ca-
pacitors. Similarly, AR ,AL ,AV ,AI are the incidence matrices corresponding to the resistor,
inductor, voltage source and current source subgraphs, resp. Then using the standard MNA
modeling procedure [7], which is just a clever arrangement of Kirchhoff’s laws together with
the characteristic equations of the devices, results in a differential-algebraic system (1.1)
with (1.3)–(1.5).C , G andL are the matrices expressing the consecutive relations of capac-
itances, resistances and inductances,η(t) is the vector of node potentials,iL (t), iV (t), iI (t)
are the vectors of currents through inductances, voltage and current sources, andvV (t), vI (t)
are the voltages of voltage and current sources.

It is a reasonable assumption that an electrical circuit is connected; otherwise, since the
components of connectivity do not physically interact, one might consider them separately.
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Furthermore, in the present paper we consider circuits withpassivedevices. These assump-
tions lead to the following assumptions on the MNA model (1.3)–(1.5) of the circuit (compare
Lemma 3.4).

(A1) rk
[
AC AR AL AV AI

]
= ne,

(A2) C = C ⊤ > 0,L = L⊤ > 0,G +G ⊤ > 0.

It is possible that in the circuit equations (1.1) there are still redundant equations and
superfluous variables, i.e., in general the pencilsE−A arising from (1.3), (1.5) is not regular.
In the following we show how this can be overcome by a simple transformation; the reduced
circuit model is regular and positive real. This transformation is also important to show
feasibility of funnel control in Section 7.

THEOREM 4.1 (Reduction of circuit pencil). Let sE− A ∈ R[s]n,n with E,A as
in (1.3), (1.5) be given and suppose that(A1) and (A2) hold. Let ZCRLV , Z′

CRLV
, Z̄V , Z̄′

V

be real matrices with full column rank such that

imZCRLV = ker
[
AC AR AL AV

]⊤
, im Z̄V = kerAV ,

imZ′
CRLV

= im
[
AC AR AL AV

]
, im Z̄′

V
= imA⊤

V
.

Then we have

T =




Z′
CRLV

0 0 ZCRLV 0

0 InL 0 0 0

0 0 Z̄′
V

0 Z̄V


 ∈ Gln(R), (4.1)

and

T⊤(sE−A)T =


sẼ− Ã 0

0 0


 ,

where the pencil

sẼ− Ã=




(Z′
CRLV

)⊤
(

sAC C A⊤
C +AR GA⊤

R

)
Z′
CRLV

(Z′
CRLV

)⊤AL (Z′
CRLV

)⊤AV Z̄′
V

−A⊤
L Z′
CRLV

sL 0

−Z̄′
V

A⊤
V

Z′
CRLV

0 0


 (4.2)

is regular and satisfieskerẼ∩kerÃ= {0}, Ẽ = Ẽ⊤ ≥ 0 andÃ+ Ã⊤ ≤ 0.
Proof. The invertibility ofT is a consequence of imZCRLV ⊕ imZ′

CRLV
=Rne and imZ̄V ⊕

im Z̄′
V
= RnV . The properties̃E = Ẽ⊤ ≥ 0 andÃ+ Ã⊤ ≤ 0 follow immediately from the

construction ofẼ andÃ. To prove thatsẼ− Ã is regular, it suffices by Lemma 2.6 to show
that kerẼ∩ kerÃ = {0}: Let x∈ kerẼ∩ kerÃ. Partitioning according to the block structure
of Ẽ andÃ, i.e.,x = (x⊤1 ,x

⊤
2 ,x

⊤
3 )

⊤, and using that, by (A2),C > 0, L > 0 andG + G ⊤ > 0,
we obtain fromx⊤Ẽx= x⊤

(
Ã+ Ã⊤)x= 0 thatx2 = 0 and


A⊤
C

A⊤
R


Z′
CRLV x1 = 0. (4.3)
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Furthermore,̃Ax= 0 gives rise to

(a) (Z̄′
V )

⊤A⊤
V Z′
CRLV x1 = 0, (b) A⊤

L Z′
CRLV x1 = 0, and (c) (Z′

CRLV )
⊤AV Z̄′

V x3 = 0.

(a) implies

A⊤
V Z′
CRLV x1 ∈ ker(Z̄′

V )
⊤ = (im Z̄′

V )
⊥ = (imA⊤

V )
⊥,

whence A⊤
V

Z′
CRLV

x1 = 0. Together with (4.3) and (b) this yields

Z′
CRLV x1 ∈ ker

[
AC AR AL AV

]⊤
= imZCRLV = (imZ′

CRLV )
⊥,

and thereforex1 = 0. By (c) we find

AV Z̄′
V x3 ∈ ker(Z′

CRLV )
⊤ = (imZ′

CRLV )
⊥

= ker
[
AC AR AL AV

]⊤
⊆ kerA⊤

V = (imAV )
⊥,

and thus AV Z̄′
V

x3 = 0. From this, we obtain

Z̄′
V x3 ∈ kerAV = (imA⊤

V )
⊥ = (im Z̄′

V )
⊥,

whencex3 = 0.
We may infer the following characterization of the presence of generalized eigenvalues

from Theorem 4.1.
COROLLARY 4.2 (Kernel and generalized eigenvalues).Let sE−A∈ R[s]n,n with E,A

as in(1.3), (1.5)be given and suppose that(A1) and(A2) hold. Then

kerR(s) sE−A= kerR(s)
[
AC AR AL AV

]⊤
×{0}× kerR(s)AV .

Furthermore,λ ∈C is not a generalized eigenvalue of sE−A if, and only if,

kerC λE−A= kerC
[
AC AR AL AV

]⊤
×{0}× kerCAV .

Proof. Using the transformation matrixT in (4.1) and accompanying notation from The-
orem 4.1, we obtain (denoting the number of columns ofZCRLV by k1 and the number of
columns ofZ̄V by k2) that

kerR(s) sE−A= T
(
kerR(s)(sẼ− Ã)
︸ ︷︷ ︸

={0}

×R(s)k1+k2
)

= imR(s)ZCRLV ×{0}× imR(s) Z̄V

= kerR(s)
[
AC AR AL AV

]⊤
×{0}× kerR(s) AV .

Now let λ ∈ C and observe that

kerCλE−A= T
(

kerC λ Ẽ− Ã×C
k1+k2

)
.

By Corollary 2.2,λ is not a generalized eigenvalue ofsE−A if, and only if, rkCλE−A=
rkR(s) sE−A or, equivalently, dimkerC λE−A = dimkerR(s) sE−A. Therefore,λ is not a
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generalized eigenvalue ofsE−A if, and only if, kerC λ Ẽ− Ã= {0} and this implies the last
statement of the corollary.

In the following we will use expressions likeVL -loop for a loop in the circuit graph
whose branch set consists only of branches corresponding to voltage sources and/or induc-
tors. Likewise, aI C -cutset is a cutset in the circuit graph whose branch set consist only of
branches corresponding to current sources and/or capacitors.

COROLLARY 4.3 (Regularity of circuit pencil). Let sE− A ∈ R[s]n,n with E,A as
in (1.3), (1.5) be the MNA model of an electrical circuit and suppose that(A1) and (A2)
hold. Then the following statements are equivalent:
a) sE−A is regular.

b) ker
[
AC AR AL AV

]⊤
= {0} andkerAV = {0}.

c) The circuit neither containsV -loops norI -cutsets.
Proof. The result follows immediately from Corollary 4.2 and Lemma 3.4.
Next we give sufficient criteria for the absence of purely imaginary generalized eigen-

values of the pencilsE−A as in (1.3), (1.5). This result can be seen as a generalization of the
results in [11] to circuits which might containI -cutsets and/orV -loops, i.e., wheresE−A
is not necessarily regular.

THEOREM 4.4 (Absence of imaginary eigenvalues).Let sE−A∈ R[s]n,n with E,A as
in (1.3), (1.5)be the MNA model of an electrical circuit and suppose that(A1) and(A2) hold.
Furthermore, suppose that at least one of the following two assertions holds:

(i) The circuit neither containsVL -loops except forV -loops, norI CL -cutsets except
for I L -cutsets; equivalently

ker
[
AV AL

]
= kerAV ×{0}

and ker
[
AR AV

]⊤
= ker

[
AC AR AV

]⊤
.

(4.4)

(ii) The circuit neither containsI C -cutsets except forI -cutsets, norVCL -loops except
for VC -loops; equivalently

ker
[
AR AL AV

]⊤
= ker

[
AC AR AL AV

]⊤

and ker
[
AV AC AL

]
= ker

[
AV AC

]
×{0}.

(4.5)

Then all generalized eigenvalues of sE−A are in containedC−.
Proof. The equivalent characterizations of the absence of certain loops or cutsets in the

circuit graph, resp., and kernel conditions on the element-related incidence matrices follow
from Lemmas 3.5 and 3.6.

By Theorem 4.1 and Lemma 2.6 all generalized eigenvalues ofsE−A are contained in
C−. Then, using Corollary 4.2, we have to show that

∀ω ∈R : kerC(iωE−A) = kerC
[
AC AR AL AV

]⊤
×{0}× kerC AV . (4.6)

Since “⊇” does always hold true, we show “⊆”. Let ω ∈ R andx1 ∈ Cne, x2 ∈ CnL and
x3 ∈ C

nV be such that

x := (x⊤1 ,x
⊤
2 ,x

⊤
3 )

⊤ ∈ kerC(iωE−A). (4.7)

By the structure ofsE−A as in (1.3), relation (4.7) implies A⊤
V

x1 = 0 and

0= x∗
(
(iωE−A)+ (iωE−A)∗

)
x=−x∗(A+A⊤)x=−x∗1AR (G +G ⊤)A⊤

R x1,
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hence A⊤R x1 = 0 sinceG +G ⊤ > 0 by (A2).

We show that (i) implies (4.6): Sincex1 ∈ kerC
[
AR AV

]⊤
we obtain from (4.4) that

x1 ∈ kerC A⊤
C . Then (4.7) implies AL x2+AV x3 = 0 and by (4.4) we find AV x3 = 0 andx2 = 0.

The latter implies thatx1 ∈ kerC A⊤
L . Altogether, we have that (4.6) is valid.

We show that (ii) implies (4.6): From (4.7) we have

AC (iωCA⊤
C x1)+AL x2+AV x3 = 0, (4.8)

and by (4.5) we obtainx2 = 0. This implies A⊤L x1 = 0, hencex1 ∈ kerC
[
AR AL AV

]⊤

which by (4.5) yields

[
AC AR AL AV

]⊤
x1 = 0.

Now, from (4.8) we have AV x3 = 0 and (4.6) is shown.

5. Zero dynamics and invariant zeros. In this section we derive topological character-
izations of autonomous and asymptotically stable zero dynamics of the circuit system. The
latter is done by an investigation of the invariant zeros of the system.

Using a simple transformation of the system, properties of the zero dynamics can be
led back to properties of a circuit pencil where voltage sources are replaced with current
sources, and vice versa. To this end, consider[E,A,B,C] ∈ Σn,m with (1.3), (1.5) and define
the matricesW,T ∈ Gln+m(R) by

W =




Ine 0 0 0 −AV

0 InL 0 0 0

0 0 0 −InI
0

0 0 0 0 InV

0 0 InV 0 0




, T =




Ine 0 0 0 0

0 InL 0 0 0

0 0 0 InV 0

0 0 InI
0 0

−A⊤
V

0 0 0 InV




.

Then we obtain

W


sE−A −B

−C 0


T =




sAC CA⊤
C +AR GA⊤

R AL AI 0 0

−A⊤
L sL 0 0 0

−A⊤
I

0 0 0 0

0 0 0 InV 0

0 0 0 0 InV




. (5.1)

As desired, the upper left part is a matrix pencil which is the MNA model of a circuit in
which voltage sources are replaced with current sources, and vice versa. We may now derive
the following important properties, which are immediate from Corollary 4.2 and (5.1).

COROLLARY 5.1 (Kernel and generalized eigenvalues of system pencil).
Let [E,A,B,C] ∈ Σn,m with (1.3), (1.5)be the MNA model of an electrical circuit and suppose
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that (A1) and(A2) hold. Then

kerR(s)


sE−A −B

−C 0


=








x1(s)

0

0

x3(s)

−A⊤
V

x1(s)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1(s) ∈ kerR(s)
[
AC AR AL AI

]⊤
,

x3(s) ∈ kerR(s)AI





.

Furthermore,λ ∈C is not a generalized eigenvalue of
[

sE−A −B
−C 0

]
if, and only if,

kerC



λE−A −B

−C 0



=








x1

0

0

x3

−A⊤
V

x1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ kerC
[
AC AR AL AI

]⊤
,

x3 ∈ kerCAI





.

We now aim to characterize autonomous zero dynamics.
PROPOSITION5.2 (Autonomous zero dynamics).Let [E,A,B,C]∈ Σn,m with (1.3), (1.5)

be the MNA model of an electrical circuit and suppose that(A1) and (A2) hold. Then the
following statements are equivalent.

(i) The zero dynamicsZ D [E,A,B,C] are autonomous.

(ii) rkR(s)

[
sE−A −B
−C 0

]
= n+m.

(iii) kerR(s)
[

sE−A −B
−C 0

]
= {0}.

(iv) ker
[
AC AR AL AI

]⊤
= {0} andkerAI = {0}.

(v) The circuit neither containsI -loops norV -cutsets.
Proof. The equivalence of (i) and (ii) has been proved in [2, Prop. 3.6] (note that the

rank overR[s] and overR(s) coincide). (ii)⇔(iii) is clear and (iii)⇔(iv) follows from Corol-
lary 5.1. The equivalence of (iv) and (v) is then a consequence of Lemma 3.4.

In order to characterize asymptotic stability of the zero dynamics we need the concept of
invariant zeros. An invariant zero of[E,A,B,C] ∈ Σn,m is defined as a generalized eigenvalue
of

[
sE−A −B
−C 0

]
, see e.g. [9].

DEFINITION 5.3 (Invariant zeros).Let [E,A,B,C]∈ Σn,m. Thenλ ∈C is calledinvariant
zero of[E,A,B,C] if, and only if,

rkC


λE−A −B

−C 0


< rkR(s)


sE−A −B

−C 0


 .

From Theorem 4.4 and (5.1) we get the following result on the location of invariant zeros.
COROLLARY 5.4 (Location of invariant zeros).Let [E,A,B,C] ∈ Σn,m with (1.3), (1.5)

be the MNA model of an electrical circuit and suppose that(A1) and(A2) hold. Furthermore,
suppose that at least one of the following two assertions holds:

(i) The circuit neither containsI L -loops except forI -loops, norVCL -cutsets except
for VL -cutsets.
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(ii) The circuit neither containsVC -cutsets except forV -cutsets, norI CL -loops except
for I C -loops.

Then all invariant zeros of[E,A,B,C] are contained inC−.

We are now in the position to characterize asymptotically stable zero dynamics.
THEOREM 5.5 (Asymptotically stable zero dynamics). Let [E,A,B,C] ∈ Σn,m

with (1.3), (1.5) be the MNA model of an electrical circuit and suppose that(A1) and (A2)
hold. Then the zero dynamicsZ D [E,A,B,C] are asymptotically stable if, and only if,

a) Z D [E,A,B,C] are autonomous and
b) all invariant zeros of[E,A,B,C] are contained inC−.

Furthermore, suppose that at least one of the following two assertions holds:

(i) The circuit neither containsI L -loops, norVCL -cutsets except forVL -cutsets with
at least one inductor.

(ii) The circuit neither containsVC -cutsets, norI CL -loops except forI C -loops with
at least one capacitor.

Then the zero dynamicsZ D [E,A,B,C] are asymptotically stable.

Proof. Step 1: We show that asymptotically stable zero dynamics implya) andb). a)
follows from [2, Rem. 4.3] andb) from [2, Lem. 4.2].

Step 2: We show thata) andb) imply asymptotically stable zero dynamics. Bya) and
Proposition 5.2 we find that rkR(s)

[
sE−A −B
−C 0

]
= n+m. Thenb) implies that

∀λ ∈ C+ : rkC


λE−A −B

−C 0


= rkR(s)


sE−A −B

−C 0


= n+m,

and therefore [2, Lem. 4.2] gives asymptotic stability of the zero dynamics.
Step 3: We show that (i) or (ii) implies asymptotically stable zero dynamics. In particular,

we have “The circuit neither containsI -loops norV -cutsets” and hence Proposition 5.2
implies a). Furthermore, (i) or (ii) from Corollary 5.4 holds true and thereforeb) is valid.
This yields the assertion of the theorem.

6. High-gain stabilization. In this section we consider high-gain output feedback for
a system[E,A,B,C] ∈ Σn,m, i.e., system (1.1) together with the feedback equationu(t) =
−k ·y(t), wherek> 0. This gives rise to a differential-algebraic equation

d
dt Ex(t) = (A− kBC)x(t). (6.1)

Usually (see e.g. [4, Def. 5.5]) a system is calledhigh-gain stabilizableif the feedback inter-
connection leads to an asymptotically stable closed-loop system (6.1) (i.e., any solution tends
to zero) fork large enough. In other words, there existsκ > 0 such that for allk ≥ κ the
pencilsE− (A− kBC) is regular and all of its generalized eigenvalues are contained inC−.

We will show that for electrical circuits, i.e.,[E,A,B,C] with (1.3), (1.5), the high-gain
need not be high; any positivek is sufficient. In order to achieve this note that we have

sE− (A− kBC) =




sAC CA⊤
C +AR GA⊤

R + kAI A⊤
I

AL AV

−A⊤
L sL 0

−A⊤
V

0 kInV


 . (6.2)
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Then, for

W =




Ine 0 −k−1AV

0 InL 0

0 0 k−1InV


 , T =




Ine 0 0

0 InL 0

k−1A⊤
V

0 InV


 ,

we find that

W(sE− (A− kBC))T =




sAC CA⊤
C +AR GA⊤

R + kAI A⊤
I
+ k−1AV A⊤

V
AL 0

−A⊤
L sL 0

0 0 InV


 . (6.3)

The upper left part is a matrix pencil which is the MNA model of a circuit in which all current
and voltage sources are replaced with resistances of valuesk−1 andk, resp. We may therefore
conclude the following from Corollary 4.3.

COROLLARY 6.1 (Closed-loop pencil is regular).Let [E,A,B,C] ∈ Σn,m with (1.3), (1.5)
be given and suppose that(A1) and(A2) hold true. Then, for all k> 0, the pencil sE− (A−
kBC) is regular.

As a consequence of Theorem 4.4, we can furthermore analyze the asymptotic stability
of the closed-loop system.

THEOREM 6.2 (Asymptotic stability of closed-loop pencil).Let [E,A,B,C] ∈ Σn,m

with (1.3), (1.5) be the MNA model of an electrical circuit and suppose that(A1) and (A2)
hold. Furthermore, suppose that at least one of the following two assertions holds true:

(i) The circuit neither containsL -loops, norCL -cutsets except forL -cutsets.
(ii) The circuit neither containsC -cutsets, norCL -loops except forC -loops.

Then, for any k> 0, all generalized eigenvalues of sE− (A− kBC) are contained inC−.
REMARK 6.3 (Asymptotically stable zero dynamics and high-gain).Let [E,A,B,C] ∈

Σn,m with (1.3), (1.5) be the MNA model of an electrical circuit and suppose that(A1)
and (A2) hold. Then, under one of the assumptions (i) or (ii) from Theorem 5.5, the respec-
tive assumption from Theorem 6.2 holds true, but not vice versa. Therefore, the (topological
condition for) asymptotic stability of the zero dynamics implies high-gain stabilizability, but
in general not the other way round; this has already been observed for two important classes
of DAEs in [3, Sec. 4].

7. Funnel control. In this section we consider funnel control for systems[E,A,B,C] ∈
Σn,m with (1.3), (1.5). The aim is to achieve tracking of a reference trajectory by the output
signal with prescribed transient behavior. The funnel controller resolves several problems of
other control strategies such as the classical adaptive high-gain controller; see the survey [8].

For any functionϕ belonging to

Φ :=



 ϕ ∈ C ∞(R≥0;R)∩B

1(R≥0;R)

∣∣∣∣∣∣
ϕ(0) = 0, ϕ(s)> 0 for all s> 0

and liminfs→∞ ϕ(s)> 0





we associate theperformance funnel

Fϕ :=
{
(t,e) ∈ R≥0×R

m
∣∣ ϕ(t)‖e‖< 1

}
, (7.1)

see Figure 7.1. The control objective is feedback control so that the tracking errore(·) =
y(·)− yref(·), whereyref(·) is the reference signal, evolves withinFϕ and all variables are
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t

1
ϕ(t)

‖e(t)‖

Fig. 7.1: Error evolution in a funnelFϕ with boundary 1/ϕ(t) for t > 0.

bounded. More specific, the transient behaviour is supposed to satisfy

∀ t > 0 : ‖e(t)‖< 1/ϕ(t),

and, moreover, ifϕ is chosen so thatϕ(t)≥ 1/λ for all t sufficiently large, then the tracking
error remains smaller thanλ .

By choosingϕ(0) = 0 we ensure that the width of the funnel is infinity att = 0, see
Figure 7.1. In the following we only treat “infinite” funnels for technical reasons, since if the
funnel is finite, that isϕ(0) > 0, then we need to assume that the initial error is within the
funnel boundaries att = 0, i.e.,ϕ(0)‖Cx0− yref(0)‖< 1, and this assumption suffices.

As indicated in Figure 7.1, we do not assume that the funnel boundary decreases mono-
tonically. Certainly, in most situations it is convenient to choose a monotone funnel, however
there are situations where widening the funnel at some later time might be beneficial, e.g.,
when it is known that the reference signal varies strongly.

To ensure error evolution within the funnel, we introduce thefunnel controller:

u(t) =−k(t)e(t), where e(t) = y(t)− yref(t)

k(t) =
1

1−ϕ(t)2‖e(t)‖2 .
(7.2)

If we assume asymptotically stable zero dynamics, we see intuitively that, in order to maintain
the error evolution within the funnel, high gain values may only be required if the norm
‖e(t)‖ of the error is close to the funnel boundaryϕ(t)−1: k(·) increases if necessary to
exploit the high-gain property of the system and decreases if a high gain is not necessary.
This intuition underpins the choice of the gaink(t) in (7.2). The control design (7.2) has
two advantages:k(·) is non-monotone and (7.2) is a static time-varying proportional output
feedback of striking simplicity.

Before we state and prove feasibility of funnel control for electrical circuits, we need to
define consistency of the initial value of the closed-loop system and solutions of the latter.
We also define what “feasibility of funnel control” will mean.

DEFINITION 7.1 (Consistent initial value).Let [E,A,B,C] ∈ Σn,m, ϕ ∈ Φ and yref ∈
B∞(R≥0;Rm). An initial value x0 ∈ R

n is called consistent for the closed-loop
system(1.1), (7.2)if, and only if, there exists a solution of the initial value problem(1.1), (7.2),
x(0) = x0, i.e., a function x∈ C 1([0,ω);Rn) for someω ∈ (0,∞], such that x(0) = x0 and x
satisfies(1.1), (7.2) for all t ∈ [0,ω).

Note that, in practice, consistency of the initial state of the “unknown” system should be
satisfied as far as the DAE[E,A,B,C] is the correct model.

In the following we define feasibility of funnel control for a system on a set of reference
trajectories. For reference trajectories we allow signals inB∞(R≥0;Rm), whereas in [2]
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signals inBν (R≥0;Rm) are allowed andν ∈ N is a number which can be calculated out of a
certain system decomposition. To avoid the details of this calculation we restrict ourselves to
the case ofB∞(R≥0;Rm).

DEFINITION 7.2 (Feasibility of funnel control). Let [E,A,B,C] ∈ Σn,m and
S ⊆ B∞(R≥0;Rm) be a set of reference trajectories. We say thatfunnel control is feasi-
ble for [E,A,B,C] onS if, and only if, for allϕ ∈ Φ, any reference signal yref ∈ S and any
consistent initial value x0 ∈ Rn the application of the funnel controller(7.2) to (1.1)yields a
closed-loop initial-value problem that has a solution and every solution can be extended to a
global solution. Furthermore, for every global solution x(·),

(i) x(·) is bounded and the corresponding tracking error e(·) = Cx(·)− yref(·) evolves
uniformly within the performance funnelFϕ ; more precisely,

∃ε > 0 ∀ t > 0 : ‖e(t)‖ ≤ ϕ(t)−1− ε . (7.3)

(ii) the corresponding gain function k(·) given by(7.2) is bounded.
REMARK 7.3 (Bound for the gain).If funnel control is feasible as stated in Defini-

tion 7.2, then the gain function k is bounded in a way that

∀ t0 > 0 : sup
t≥t0

|k(t)| ≤ 1
1− (1− ελt0)

2 ,

whereε is given in(7.3) and λt0 := inft≥t0 ϕ(t) > 0 for all t0 > 0. A proof for this can be
found in [2, Thm. 6.3].

In the following we show that funnel control for systems[E,A,B,C] ∈ Σn,m

with (1.3), (1.5) is feasible provided that the invariant zeros have negative real part and the
reference signal is sufficiently smooth and evolves in a certain subspace. The former means
that the autonomous part of the zero dynamics has to be asymptotically stable, but autonomy
of the whole zero dynamics is not required. As a preliminary result we derive that, for posi-
tive real systems[E,A,B,C] ∈ Σn,m with asymptotically stable zero dynamics, funnel control
will be feasible for any sufficiently smooth reference signal.

PROPOSITION 7.4 (Funnel control for systems with stable zero dynamics).Let
[E,A,B,C] ∈ Σn,m be such that E= E⊤ ≥ 0, A+A⊤ ≤ 0, and B=C⊤. Further, assume that
the zero dynamics of[E,A,B,C] are asymptotically stable. Then funnel control is feasible for
[E,A,B,C] onB∞(R≥0;Rm).

Proof. We aim to apply [2, Thm. 6.3] for̂k= 1 and to this end verify its assumptions.
Step 1: The zero dynamics of[E,A,B,C] are asymptotically stable by assumption.
Step 2: We show that for the inverseL(s) of

[
sE−A −B
−C 0

]
overR(s) the matrix

Γ =− lim
s→∞

s−1[0, Im]L(s)



 0

Im



 ∈R
m,m

exists and satisfiesΓ = Γ⊤ ≥ 0. By Lemma 2.5, the pencil


sE−A −B

C 0



=



In 0

0 −Im







sE−A −B

−C 0





is positive real. Then, for the inverseL(s) of
[

sE−A −B
−C 0

]
overR(s), L̃(s) := L(s)

[
In 0
0 −Im

]
is

the inverse of
[

sE−A −B
C 0

]
, and we have

L̃(λ )+ L̃(λ )∗ = L̃(λ )
([λ E−A −B

C 0

]∗
+
[λ E−A −B

C 0

])
L̃(λ )∗ ≥ 0
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for all λ ∈ C+. Furthermore, since
[

sE−A −B
−C 0

]
does not have any invariant zeros inC+, L̃(s)

has no poles inC+. This shows that̃L(s) is positive real. Hence,H(s) := [0, Im]L̃(s)[0, Im]⊤

is positive real as well and from Lemma 2.4 we obtain that

Γ = lim
s→∞

s−1H(s) ∈R
m,m

exists and satisfiesΓ = Γ⊤ ≥ 0.
Step 3: We show that[E,A,B,C] is right-invertible in the sense of [2, Def. 5.1]. Since the

zero dynamics of[E,A,B,C] are in particular autonomous it follows from Proposition 5.2 (ii)
that rkC= m and hence right-invertibility can be concluded from [2, Rem. 5.12].

Step 4: It remains to show that̂k in [2, Thm. 6.3] can be chosen ask̂ = 1 and funnel
control is still feasible. A careful inspection of the proof of [2, Thm. 6.3] reveals that, in
general,̂k large enough is needed in order to guarantee invertibility ofÃ− k̃(t)Im, where

Ã= lim
s→∞


[0, Im]L(s)


 0

Im


+ sΓ




andk̃(t) = k̂ ·k(t), t ≥ 0. Calculating

Ã= lim
s→∞

(sΓ−H(s)) =−H0− lim
s→∞

Hsp(s)

where, sinceH(s) is positive real, by Lemma 2.4 the rational functionH0+Hsp(s) is posi-
tive real and lims→∞ Hsp(s) = 0. Hence, it is easy to derive thatH0 ≥ 0 (H0 not necessarily
symmetric) and hence

Ã− kIm =−H0− kIm < 0

for all k > 0 (againÃ− kIm not necessarily symmetric). The negative definiteness however
implies thatÃ− kIm is invertible for allk> 0 and therefore it is sufficient to assumek̂= 1.

Before we prove our main result we need to know how feasibility of funnel control
behaves under transformation of the system.

LEMMA 7.5 (Funnel control under system transformation).Let E,A ∈ Rn,n, B,C⊤ ∈
Rn,m andS ⊆ B∞(R≥0;Rm). Further, let W,T ∈ Gln(R), U ∈ Om(R), and define

[Ẽ, Ã, B̃,C̃] := [WET,WAT,WBU,U⊤CT].

Then funnel control is feasible for[E,A,B,C] on S if, and only if, funnel control is feasible
for [Ẽ, Ã, B̃,C̃] on U⊤S .

Proof. Observe that(x,u,y) ∈ B[E,A,B,C] andyref ∈ S if, and only if,

(x̃, ũ, ỹ) = (T−1x,U⊤u,U⊤y) ∈ B
[Ẽ,Ã,B̃,C̃] ∧ U⊤yref ∈U⊤

S .

Then the assertion follows from the observation that, for anyϕ ∈ Φ, and tracking errors
e= y− yref, ẽ= ỹ− ỹref we have, for allt ≥ 0,

1
1−ϕ(t)2‖e(t)‖2 =

1
1−ϕ(t)2‖ẽ(t)‖2 .

In the following, in order to show that funnel control is feasible for circuits where all
invariant zeros are located inC−, but the zero dynamics are not necessarily autonomous, we
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derive a transformation of the circuit which decouples the “non-autonomous part” of the zero
dynamics. This part, in particular, does not affect the input-output behavior of the system.

PROPOSITION7.6 (Decoupling of circuit pencil).Let [E,A,B,C]∈ Σn,m with (1.3), (1.5)
be the MNA model of an electrical circuit and suppose that(A1) and(A2) hold. Let Z′

CRLI
∈

Rne,k1, ZCRLI ∈ Rne,k2 with full column rank such that

imZCRLI = ker
[
AC AR AL AI

]⊤
, and imZ′

CRLI = im
[
AC AR AL AI

]
.

Further, let ZV −CRLI ∈RnV ,k3, Z′
V −CRLV ∈RnV ,k4, Z̄I ∈RnI ,k5, Z̄′

I
∈RnI ,k6 with orthonor-

mal columns such that

imZV −CRLI = kerZ⊤
CRLI AV , im Z̄I = kerAI ,

imZ′
V −CRLI = imA⊤

V ZCRLI , im Z̄′
I = imA⊤

I .

Then we have

W⊤ := T :=




ZCRLI Z′
CRLI

0 0 0

0 0 InL 0 0

0 0 0 ZV −RCLI Z′
V −RCLI


 ∈ Gln(R) (7.4a)

and

U :=



 0 Z̄I Z̄′
I

0

Z′
V −RCLI 0 0 ZV −RCLI



 ∈ Om(R), (7.4b)

and

W(sE−A)T =



0 0 Z⊤
CRLI

AV Z′
V −CRLI

0 sẼr − Ãr

[
(Z′
CRLI

)⊤AV Z′
V −CRLI

0
0

]

−(Z′
V −CRLI )⊤A⊤

V
ZCRLI [−(Z′

V −CRLI )⊤A⊤
V

Z′
CRLI

, 0, 0] 0


 (7.5)

and

WBU=
(
U⊤CT

)⊤
=




0 0

0 B̃r

[−Ik4,0] 0


 , (7.6)

where

sẼr − Ãr =




(Z′
CRLI

)⊤(sAC C A⊤
C +AR GA⊤

R )Z′
CRLI

(Z′
CRLI

)⊤AL Z⊤
CRLI

AV ZV −CRLI
−A⊤
L Z′
CRLI

sL 0

−Z⊤
V −CRLI A⊤

V
Z′
CRLI

0 0


 ,

B̃r = C̃⊤
r =

[
−(Z′
CRLI

)⊤AI Z̄′
I

0
0 0
0 −Ik3

] (7.7)

Furthermore, the following holds true:
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(a) k2 = k4 and Z⊤
CRLI

AV Z′
V −CRLI ∈ Glk2(R).

(b) The zero dynamics of the system[Ẽr , Ãr , B̃r ,C̃r ] are autonomous.
(c) λ ∈ C is an invariant zero of[E,A,B,C] if, and only if, λ is an invariant zero

of [Ẽr , Ãr , B̃r ,C̃r ].
Proof. The invertibility ofW,T andU is a consequence of

imZ′
CRLI ⊕ imZCRLI = im

[
AC AR AL AI

]
⊕ ker

[
AC AR AL AI

]⊤
= R

ne,

imZ′
V −RCLI ⊕ imZV −RCLI = imA⊤

V ZCRLI ⊕ kerZ⊤
CRLI AV = R

nV ,

im Z̄′
I ⊕ im Z̄I = imA⊤

I ⊕ kerAI = R
nI .

Furthermore, by choice ofZV −CRLI , Z′
V −CRLV , Z̄I andZ̄′

I
the matrixU is orthogonal. The

representation of the transformed system in (7.5), (7.6) and (7.7) is then a simple calculation.
We prove assertions (a)–(c).

(a) The assertion will be inferred from the fact that both matricesZ⊤
CRLI

AV Z′
V −CRLI and

(Z⊤
CRLI

AV Z′
V −CRLI )⊤ have trivial kernels. To prove the first assertion, assume letz∈

kerZ⊤
CRLI

AV Z′
V −CRLI . Then

Z′
V −CRLI z∈ kerZ⊤

CRLI AV = (imA⊤
V ZCRLI )⊥ = (imZ′

V −CRLI )⊥.

Therefore,Z′
V −CRLI z= 0, and the full column rank ofZ′

V −CRLI impliesz= 0. Now let

z∈ ker(Z′
V −CRLI )⊤A⊤

V
ZCRLI . Then

A⊤
V ZCRLI z∈ ker(Z′

V −CRLI )⊤ = (imZ′
V −CRLI )⊥ = (imA⊤

V ZCRLI )⊥.

Thus,ZCRLI z∈ kerA⊤
V

and by choice ofZCRLI we have

ZCRLI z∈ ker
[
AC AR AL AI

]⊤
∩kerA⊤

V

(A1)
= {0},

Hence, we obtainz= 0 from the full column rank ofZCRLI .
(b) By Proposition 5.2 it is sufficient to show that the pencil

sE −A :=



sẼr − Ãr B̃r

−C̃r 0



=



sẼr − Ãr −B̃r

−C̃r 0







I 0

0 −I





is regular. Observing thatE = E ⊤ ≥ 0 andA +A ⊤ ≤ 0, we can use Lemma 2.6 to
further reduce the problem to showing that kerE ∩kerA = {0}:
Let z= (z1,z2,z3,z4,z5) ∈ kerE ∩ kerA be suitably partitioned according to the block
structure ofẼr , Ãr , B̃r andC̃r as in (7.7). Then, by(A2), the equationz⊤E z= z⊤(A +
A ⊤)z= 0 gives rise toz2 = 0 and

z1 ∈ ker
[
AC AR

]⊤
Z′
CRLI .

The equationA z= 0 further impliesz3 = 0 and

z1 ∈ kerA⊤
L Z′
CRLI ∧ z1 ∈ ker(Z̄′

I )⊤A⊤
I Z′
CRLI .

The latter implies

A⊤
I Z′
CRLI z1 ∈ ker(Z̄′

I )⊤ = (im Z̄′
I )⊥ = (imA⊤

I )⊥,
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whence

z1 ∈ kerA⊤
I Z′
CRLI .

Altogether, we have

Z′
CRLI z1 ∈ ker

[
AC AR AL AI

]⊤

=
(

im
[
AC AR AL AI

])⊥
= (imZ′

CRLI )⊥.

The full column rank ofZ′
CRLI

now implies thatz1 = 0. Now using thatz1 = 0, z2 = 0
andz3 = 0, we can infer fromA z= 0 thatz5 = 0 and

(Z′
CRLI )⊤AI Z̄′

I z4 = 0.

Thus,

AI Z̄′
I z4 ∈ ker(Z′

CRLI )⊤ = (imZ′
CRLI )⊥ =

(
im

[
AC AR AL AI

])⊥
⊆ (imAI )⊥.

Therefore, AI Z̄′
I

z4 = 0 or, equivalently,

Z̄′
I z4 ∈ kerAI = (imA⊤

I )⊥ = (im Z̄′
I )⊥.

This impliesZ̄′
I

z4 = 0, and sincēZ′
I

has full column rank, we have thatz4 = 0.
(c) It can be obtained from simple row and column operations that for allλ ∈C we have

rkC


λE−A −B

−C 0


= rkC


λWET−WAT −WBU

−UTCT 0


= rkC


λ Ẽr − Ãr −B̃r

−C̃r 0


+2k4

and, similarly,

rkR(s)


sE−A −B

−C 0


= rkR(s)


sẼr − Ãr −B̃r

−C̃r 0


+2k4.

This implies that the generalized eigenvalues of
[

sE−A −B
−C 0

]
coincide with those

of
[

sẼ−Ãr −B̃r

−C̃r 0

]
and hence the assertion is proved.

This concludes the proof of the proposition.
We are now in the position to prove the main result of this section.
THEOREM 7.7 (Funnel control for circuits).Let [E,A,B,C] ∈ Σn,m with (1.3), (1.5) be

the MNA model of an electrical circuit and suppose that(A1) and (A2) hold. Assume that
the system[E,A,B,C] does not have any invariant zeros on the imaginary axis. Let ZCRLI be
a matrix with full column rank such that

imZCRLI = ker
[
AC AR AL AI

]⊤
.

Then funnel control is feasible for[E,A,B,C] on

B
∞
(
R≥0; imA⊤

I × kerZ⊤
CRLI AV

)
.
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Proof. Step 1: Use the notation from Proposition 7.6 and define

[Ẽ, Ã, B̃,C̃] := [WET,WAT,WBU,U⊤CT].

Then, by Lemma 7.5, it suffices to prove that funnel control is feasible for[Ẽ, Ã, B̃,C̃] on

S :=U⊤
B

∞
(
R≥0; imA⊤

I × kerZ⊤
CRLI AV

)
.

Step 2: We show that[Ẽr , Ãr , B̃r ,C̃r ] has asymptotically stable zero dynamics. By Propo-
sition 7.6 (c), the zero dynamics of[Ẽr , Ãr , B̃r ,C̃r ] are autonomous. Furthermore, by Proposi-
tion 7.6 (d) and the fact that the invariant zeros of[E,A,B,C] all have negative real part, we
obtain from Theorem 5.5 that the zero dynamics of[Ẽr , Ãr , B̃r ,C̃r ] are asymptotically stable.

Step 3: We reduce the feasibility problem of funnel control to that of the
system[Ẽr , Ãr , B̃r ,C̃r ]. Let

(x̃, ũ, ỹ) ∈B
[Ẽ,Ã,B̃,C̃]

and ỹref =U⊤


yref,1

yref,2


 ∈ S .

Since

yref,1 ∈ imA⊤
I = im Z̄′

I = (im Z̄I )
⊥
= kerZ̄⊤

I

and

yref,2 ∈ kerZ⊤
CRLI AV = imZV −CRLI =

(
imZ′
V −CRLI

)⊥
= ker

(
Z′
V −CRLI

)⊤

we obtain that

ỹref =
[
0, 0, ỹref,1, ỹref,2

]⊤
,

whereỹref,1 =
(
Z̄′

I

)⊤
yref,1 andỹref,2 = Z⊤

V −CRLI yref,2. By suitably partitioning

x̃(t) =




x1(t)

x2(t)

x3(t)

x4(t)

x5(t)




, ũ(t) =




u1(t)

u2(t)

u3(t)

u4(t)



, ỹ(t) =




y1(t)

y2(t)

y3(t)

y4(t)




according to the block structure ofsẼ − Ã as in (7.5), andB̃, C̃ as in (7.6), we obtain
Z⊤
CRLI

AV Z′
V −CRLI x5 = 0, whence, by Proposition 7.6 (b), we havex5 = 0, and thus also

y1 = 0. Moreover,y2 = 0 and

x1 =−(Z⊤
CRLI AV Z′

V −CRLI )−1(Z′
V −CRLI )⊤A⊤

V Z′
CRLI x2−u1,

and, further

x̃r(t) =




x2(t)

x3(t)

x4(t)


 , ũr(t) =



u3(t)

u4(t)



 , ỹr(t) =



y3(t)

y4(t)




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satisfy

(x̃r , ũr , ỹr) ∈B[Ẽr ,Ãr ,B̃r ,C̃r ]
.

Application of the funnel controller (7.2) then yields̃u= −k(ỹ− ỹref) and henceu1 = 0 and
u2 = 0. Therefore, funnel control is feasible for[Ẽ, Ã, B̃,C̃] on S if, and only if, funnel
control is feasible for[Ẽr , Ãr , B̃r ,C̃r ] on B∞(R≥0;Rk3+k6). The latter however follows from
Step 2 and Proposition 7.4. This concludes the proof of the theorem.

REMARK 7.8 (Topological criteria for funnel control).We analyze the constraints on
the reference trajectories in Theorem 7.7.
(a) The subspace restriction

yref(t) ∈ imA⊤
I × kerZ⊤

CRLI AV ∀ t ≥ 0 (7.8)

on the reference signal can be interpreted as follows: If the circuit contains aV -cutset,
then, by Kirchhoff ’s current law, the currents of the voltage sources in theV -cutset sum
up to zero. Likewise, if the circuit contains anI -loop, then Kirchhoff ’s voltage law
implies that the voltages of the current sources in theI -loop sum up to zero. Condi-
tion (7.8) therefore means that, in a sense, the reference signal has to satisfy Kirchhoff ’s
laws pointwise, see also Figure 7.2.

iV 1(t) iV 2(t)

⇒ iV 1(t) = iV 2(t)

uI 1(t) uI 2(t) ⇒ uI 1(t) = uI 2(t)

Fig. 7.2: Interpretation of condition (7.8) in terms of Kirchhoff’s laws

(b) Invoking that

kerZ⊤
CRLI = (imZCRLI )⊥ =

(
ker

[
AC AR AL AI

]⊤)⊥

= im
[
AC AR AL AI

]
,

we find

kerZT
CRLI AV =

{
x∈ R

nV
∣∣∣ AV x∈ im

[
AC AR AL AI

] }
.

In particular, this space is independent of the choice of the matrix ZCRLI with imZCRLI =

ker
[
AC AR AL AI

]⊤
.

(c) We have thatkerZ⊤
CRLI

AV =R
nV if, and only if,

imAV ⊆ kerZ⊤
CRLI = (imZCRLI )⊥ =

(
ker

[
AC AR AL AI

]⊤)⊥

= im
[
AC AR AL AI

]
.
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Hence, by(A1), kerZ⊤
CRLI

AV = RnV is equivalent to

im
[
AC AR AL AI

]
= R

ne.

The latter is, by Lemma 3.4, equivalent to the absence ofV -cutsets in the given electrical
circuit.
Furthermore,imA⊤

I
= RnI if, and only if,{0} =

(
imA⊤

I

)⊥
= kerAI . By Lemma 3.4

the latter is equivalent to the absence ofI -loops in the given electrical circuit.
(d) By virtue of Theorem 7.7 and Corollary 5.4, we see that funnel control is feasible for pas-

sive and connected electrical circuits (on a suitable set of reference trajectories) provided
that at least one of the following two properties is satisfied:

(i) The circuit neither containsI L -loops except forI -loops, norVCL -cutsets except
for VL -cutsets.

(ii) The circuit neither containsVC -cutsets except forV -cutsets, norI CL -loops except
for I C -loops.

(e) By virtue of Proposition 7.4 and Theorem 5.5, we see that funnel control is feasible for
passive and connected electrical circuits (on the set ofall sufficiently smooth reference
trajectories) provided that at least one of the following two properties is satisfied:

(i) The circuit neither containsI L -loops, norVCL -cutsets except forVL -cutsets with
at least one inductor.

(ii) The circuit neither containsVC -cutsets, norI CL -loops except forI C -loops with
at least one capacitor.

8. Simulation. For purposes of illustration we consider an example of a discretized
transmission line. We derive the MNA model (1.3), (1.5) and show that the funnel con-
troller (7.2) achievs tracking of a sinusoidal reference signal with prescribed transient behav-
ior of the tracking error.

We consider a discretized transmission line as depicted in Figure 8.1, wheren is the
number of spacial discretization points.

RT/n LT/n RT/n LT/n RT/n LT/n

GT/nCT/nGT/nCT/nGT/nCT/n

Fig. 8.1: Discretized transmission line

The element related incidence matrices of this circuit can be calculated as

AC = diag







0

0

1


 ,


0

1


 , . . . ,


0

1





 ∈ R2n+1,n,

AR =


diag






 1

−1



 , . . . ,



 1

−1



 ,




1

−1

0





 , AC


 ∈R2n+1,2n,
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AL = diag







0

1

−1


 ,


 1

−1


 , . . . ,


 1

−1





 ∈ R2n+1,n,

AV = [1,0, . . . ,0]⊤ ∈R2n+1,1,

AI = [0, . . . ,0,1]⊤ ∈R2n+1,1.

The matrices expressing the consecutive relations of capacitances, resistances (and conduc-
tances, resp.) and inductances are given by

C =
CT

n
In, G = diag

(
n
RT

In,
GT

n
In

)
, L =

LT

n
In.

The differential-algebraic system (1.1) describing the discretized transmission line is then
given by[E,A,B,C] for the matrices in (1.3).

The circuit in Fig. 8.1 does not contain anyI L -loops. Further, the onlyVCL -cutset of
the circuit is formed by the voltage source and the inductance of the left branch. We can
therefore conclude from Theorem 5.5 that[E,A,B,C] has asymptotically stable zero dynam-
ics. Then, by Proposition 7.4, funnel control is feasible for[E,A,B,C] onB∞(R≥0;R2).
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Fig. a: Solution componentsy1 andy2
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Fig. b: Gaink
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Fig. c: Input componentsu1 andu2
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Fig. d: Norm of error‖e(·)‖ and funnel boundary
ϕ(·)−1

Fig. 8.2: Simulation of the funnel controller (7.2) with funnel boundary specified in (8.2) and
reference signalyref = (sin,cos)⊤ applied to system[E,A,B,C] with initial data (8.1).
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For the simulation we chose the parameters

n= 50, CT = RT = GT = LT = 1,

and the (consistent) initial value for the closed-loop system[E,A,B,C], (7.2) by

x0 = (−1,−1.04,2,1.96, . . .,2,1.96︸ ︷︷ ︸
(n−1)-times

, 2, . . . ,2︸ ︷︷ ︸
(n+1)-times

,−2) ∈ R
3n+2. (8.1)

As reference signal we takeyref = (sin,cos)⊤ ∈ B∞(R≥0;R2). The funnelFϕ is determined
by the function

ϕ : R≥0 →R≥0, t 7→ 0.5 te−t +2 arctant . (8.2)

Note that this prescribes an exponentially (exponent 1) decaying funnel in the transient
phase[0,T], whereT ≈ 3, and a tracking accuracy quantified byλ = 1/π thereafter, see
Fig. 8.2d.

Note further that the asymptotic stability of the zero dynamics can also be verified by
a numerical test which shows that all invariant zeros of[E,A,B,C] have real part−1.

The simulation has been performed in MATLAB. In Figure 8.2 the simulation, over the
time interval[0,10], of the funnel controller (7.2) with funnel boundary specified in (8.2)
and reference signalyref = (sin,cos)⊤, applied to system[E,A,B,C] with initial data (8.1)
is depicted. Fig. 8.2a shows the output componentsy1 andy2 tracking the reference signal
yref within the funnel shown in Fig. 8.2d. Note that an action of the input componentsu1

andu2 in Fig. 8.2c and the gain functionk in Fig. 8.2b is required only if the error‖e(t)‖ is
close to the funnel boundaryϕ(t)−1. It can be seen that initially the error is very close to the
funnel boundary and hence the gain rises sharply. Then, at approximatelyt = 1, the distance
between error and funnel boundary gets larger and the gain drops accordingly. In particular
we see that the gain functionk is non-monotone.
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