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Abstract

In this paper, the problem of almost sure H∞ filtering is studied for a class of nonlinear hybrid stochastic systems.

In the system under investigation, Markovian jumping parameters, mode-dependent interval delays, nonzero exogenous

disturbances as well as white noises are simultaneously taken into consideration to better model the real-world systems.

Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the almost surely exponential

stability and the prescribed H∞ performance for the overall filtering error dynamics. Furthermore, the obtained results

are applied to two classes of special hybrid stochastic systems with mode-dependent interval delays, where the desired

filter gain is obtained in terms of the solutions to a set of linear matrix inequalities. Finally, two numerical examples

are provided to show the effectiveness of the proposed filter design scheme.
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I. Introduction

In the past few decades, much research effort has been paid to the H∞ filtering problems since its inception

in the early 1980s and many research results have been reported in the literature, see e.g. [2, 8, 14, 15, 17, 18,

23, 29, 32, 35] and the references therein. Commonly, the H∞ filtering theory aims at designing a filter such

that the H∞ norm of the transfer function from the noise to the filtering error is not larger than a desired

noise attenuation level [3, 7, 11]. Compared with the popular Kalman filtering approach, the H∞ filtering

method can be utilized to effectively improve the insensitivity against parameter uncertainties and external

noises without the knowledge of their statistics. It should be mentioned that the Riccati matrix equation or

linear matrix inequality (LMI) approaches, which can be easily handled by using the Matlab software, have

been frequently exploited in designing H∞ filters [6, 21,27,31].

It is now well known that nonlinear stochastic systems are a kind of complex systems that play an important

role in many branches of science and engineering [1, 20, 22, 26, 28, 34]. As such, the H∞ filtering problem for
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nonlinear stochastic systems has gained a growing research interest. Different from the linear case, the

solution to the nonlinear filtering problem has been given as a non-explicit representation and some common

assumptions on nonlinearities, such as Lipschitz-like, ellipsoid-bounded and sector-bounded nonlinearities,

have been utilized to facilitate the performance analysis and synthesis. For instance, when the worst-case

disturbance is considered in the design procedure, a mixed H2/H∞ suboptimal filtering problem has been

solved in [34] by minimizing the total energy of the filtering error dynamics. Very recently, the H∞ filtering

problem for a class of general discrete-time nonlinear stochastic system with some network-induced phenomena

has been address in [22] and some sufficient conditions have been proposed in the form of Hamilton-Jacobi-

Isaacs (HJI) inequalities.

On the other hand, due to component failures or repairs, changing subsystem interconnections and abrupt

environmental disturbances, the system structures could be subject to randomly changes and should be

modeled as hybrid systems where the typical model is the Markov jumping system. The past few decades have

witnessed a significant progress on various filtering problems (e.g. theH∞ filtering problem for linear/nonlinear

hybrid systems) and a great deal of literature has appeared on such a topic, see, e.g. [5,9,30,33]. Furthermore,

time-delays exist universally in nature, which could be a source of instability, oscillation and poor performance

of systems. Also, for Markov jumping systems, the time-delays for systems governed by different modes may

be different, that is, the time-delays may be mode-dependent. Hence, there is a great need to develop new

filtering approaches for the stochastic system with Markov jumping and time-delays, and some efforts have

recently been made in this regard so far [10,16,19,24,30]. However, when the nonlinearities and the Markov

jumping come together for the systems with time-delays, the filtering problem has become quite involved

due primarily to the degree of mathematical complexity where existing filtering techniques cannot be simply

applied. It is desirable to consider the effect from these phenomena on the stability analysis and filter design,

and this constitutes one of the motivations for the present research.

It should be pointed out that, for systems with guaranteed mean-square stability, the variance of the state

process is asymptotically bounded. This means that the system could be well-behaved on the average but the

sample state trajectories could have a finite probability of being arbitrarily far from the system’s equilibrium

point. Therefore, in some cases, the commonly used mean-square measure might be a bit too crude to quantify

the dynamic performance and even is unacceptable. For instance, certain performance of the controlled rocket

should be guaranteed with the probability 1. Therefore, another type of stability, namely, almost sure stability

that describes the system performance from the viewpoint of system sample paths, has attracted considerable

attention, see [4, 12, 13, 25] and the references therein. For example, a Razumikhin-type theorem on pth

moment input-to-state stability has been developed in [13] for a class of nonlinear stochastic systems with

Markovian switching. In [12], a sufficient condition in the form of linear matrix inequalities has been proposed

for designing a controller to stabilize almost surely a stochastic system which may not be stabilized in mean-

square sense. Unfortunately, to the best of the authors’ knowledge, the H∞ filtering problem in almost sure

sense for nonlinear hybrid stochastic systems has not been properly investigated so far, not to mention the

case where mode-dependent interval delays are also involved. The corresponding challenge we are going to

cope with is how we establish a suitable theoretical framework to analyze the H∞ performance index in the

almost sure sense. It is, therefore, the purpose of this paper to shorten such a gap.

Motivated by the above discussions, it would be interesting to develop an approach to analyzing the pro-

posed almost sure H∞ performance index. For this purpose, we aim to initiate a study on almost sure H∞

filtering problems for nonlinear hybrid stochastic systems with mode-dependent interval delays (NHSSMDID).
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By utilizing the intensive stochastic analysis, we establish some sufficient conditions such that the filtering

error dynamics is almost surely exponentially stable and the H∞ performance constraint is also achieved.

The contribution of this paper is mainly threefold: 1) the H∞ performance combined with the almost surely

exponential stability is first utilized to evaluate the system performance; 2) in the plant under consideration,

Markovian jumping parameters, mode-dependent interval delays, nonzero exogenous disturbances, as well as

white noises are simultaneously taken into consideration to better model the real world systems; and 3) stochas-

tic analysis is carried out to establish a framework to ensure the almost sure H∞ performance.

The rest of this paper is organized as follows. In Section II, a class of nonlinear hybrid stochastic systems

with mode-dependent interval delays (NHSSMDID) are presented, and some preliminaries are briefly outlined.

In Section III, the main results are established in the form of coupled HJI inequalities. These sufficient

conditions are then extended to two classes of special hybrid stochastic systems with mode-dependent interval

delays in Section IV. Furthermore, two examples are proposed to demonstrate the effectiveness of the obtained

results in Section V. Finally, conclusions are drawn in Section VI.

Notation The notation used here is fairly standard unless otherwise specified. R
n and R

n×m denote,

respectively, the n dimensional Euclidean space and the set of all n × m real matrices, and R+ = [0,+∞).

(Ω,F , {Ft}t≥0,P) is a complete probability space with a natural filtration {L }t≥0 satisfying the usual con-

ditions (i.e. it is right continuous and F0 contains all P-null sets). MT represents the transpose of the

matrix M . | · | denotes the Euclidean norm. E{·} stands for the mathematical expectation. P{·} means

the probability. C([−τ, 0];Rn) denotes the family of all continuous R
n-valued function ϕ on [−τ, 0] with

the norm |ϕ| = sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}. Cb
F0
([−τ, 0);Rn) is the family of all F0-measurable bounded

C([−τ, 0);Rn)-value random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. L1(R+;R+) denotes the family of functions

λ : R+ → R+ such that
∫∞

0 λ(t)dt < ∞. K denotes a class of continuous (strictly) increasing functions µ

from R+ to R+ with µ(0) = 0. K∞ denotes a class of functions µ in K with µ(r) → ∞ as r → ∞. L2(R+,R
p)

denotes the space of non-anticipative stochastic process y(t) ∈ R
p with respect to the filtration Ft satisfying

|y(t)|2L2
:= E

∫∞

0 |y(t)|2dt < ∞.

II. Problem formulation

In this paper, let r(t) (t ≥ 0) be a right-continuous Markov chain taking values in a finite state space

S = {1, 2, . . . , N} with generator Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =







γij∆+ o(∆) if i 6= j,

1 + γii∆+ o(∆) if i = j,

where △ > 0 and γij ≥ 0 is the transition rate from mode i to mode j if i 6= j while γii = −∑j 6=i γij. It is

known that almost all sample paths of r(·) are right-continuous step functions with a finite number of simple

jumps in any finite subinterval of R+ := [0,∞).

Let us consider the nonlinear hybrid stochastic systems with mode-dependent interval delays of the form


























dx(t) = (f(x(t), x(t− τ(t, r(t))), t, r(t)) + g(x(t), x(t − τ(t, r(t))), t, r(t))v(t))dt

+ (h(x(t), x(t − τ(t, r(t))), t, r(t)) + s(x(t), x(t− τ(t, r(t))), t, r(t))v(t))dw(t),

y(t) = l(x(t), x(t− τ(t, r(t))), t, r(t)) + k(x(t), x(t − τ(t, r(t))), t, r(t))v(t),

z(t) = m(x(t), x(t− τ(t, r(t))), t, r(t)),

(2.1)

with initial data x(0) = x0 ∈ Cb
F0
([−τ, 0);Rn) and r(0) = r0 ∈ S, where x(t) ∈ R

n, y(t) ∈ R
p, z(t) ∈ R

q and
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v(t) ∈ L2([0 ∞); R
m) are the state vector, the measured output, the state combination to be estimated and

the exogenous disturbance, respectively. ω(t), which is independent on the Markov chain r(·), is a zero-mean

one-dimensional Wiener process (Brownian Motion) satisfying E[dω(t)] = 0 and E[dω2(t)] = t. The mode-

dependent interval delays τ(t, r(t)) : R+ × S → R+, also written as τ(t) or τ if there is no ambiguity, are

known nonnegative differential functions and satisfy the following assumption.

Assumption 1: There are nonnegative numbers li, τi, δi, δ̄i and δ̄ such that

li ≤ τ(t, i) ≤ τi, l ≤ τ(t, i) ≤ τ,

τt(t, i) =
∂τ(t, i)

∂t
≤ δi, δ̄i = δi + γiili +

∑

j 6=i

γijτj ≤ δ̄ < 1 (2.2)

for all t ≥ 0 and i ∈ S, where l = mini∈S li and τ = maxi∈S τi.

The measurable nonlinear functions f, g, h, s : Rn × R
n × R+ × S → R

n, l, k : Rn × R
n × R+ × S → R

p

and m : Rn × R
n × R+ × S → R

q are assumed to satisfy f(0, 0, t, i) = 0, g(0, 0, t, i) = 0, h(0, 0, t, i) = 0,

s(0, 0, t, i) = 0, l(0, 0, t, i) = 0, k(0, 0, t, i) = 0, m(0, 0, t, i) = 0 and the global Lipschitz condition, that is,

there is a L > 0 such that

|φ(x, y, t, i) − φ(x̄, ȳ, t, i)| ≤ L(|x− x̄|+ |y − ȳ|) (2.3)

for all x, y, x̄, ȳ ∈ R
n, t ≥ −τ , where the function φ could be f , g, h, s, l, k or m.

Remark 1: Under the above assumption, it is easy to verify that the functions f and h satisfy the local

Lipschitz condition and the linear growth condition. Therefore, in terms of the well-known existence-and-

unique theorem, the system (2.1) with v(t) = 0 has a unique solution which can be denoted by x(t;x0, r0) for

any initial condition x0 ∈ Cb
F0
([−τ, 0);Rn) and t ≥ −τ .

In this paper, we are interested in constructing a filter of the following form for system (2.1):
{

dx̂(t) = f(x̂(t), x̂(t− τ(t, r(t))), t, r(t))dt +K(r(t))y(t)dt,

ẑ(t) = m(x̂(t), x̂(t− τ(t, r(t))), t, r(t)), x̂(0) = 0,
(2.4)

where x̂(t) ∈ R
n is the state, ẑ(t) ∈ R

q is the output of the filter, and Ki is the filter parameter to be designed.

Denoting η(t) = [xT (t) x̂T (t)]T and the filtering error z̃(t) = z(t)− ẑ(t), we obtain the following augmented

system














dη(t) = (fe(η(t), η(t − τ(t, r(t))), t, r(t)) + ge(η(t), η(t − τ(t, r(t))), t, r(t))v(t))dt,

+ (he(η(t), η(t − τ(t, r(t))), t, r(t)) + se(η(t), η(t − τ(t, r(t))), t, r(t))v(t))dw(t),

z̃(t) = m(x(t), x(t− τ(t, r(t))), t, r(t)) − m̂(x̂(t), x̂(t− τ(t, r(t))), t, r(t)), x̂(0) = 0,

(2.5)

where
fe (η(t), η(t − τ(t, r(t))), t, r(t))

=

[

f(x(t), x(t− τ(t, r(t))), t, r(t))

f(x̂(t), x̂(t− τ(t, r(t))), t, r(t)) +K(r(t))l(x(t), x(t − τ(t, r(t))), t, r(t))

]

,

ge (η(t), η(t − τ(t, r(t))), t, r(t)) =

[

g(x(t), x(t − τ(t, r(t))), t, r(t))

K(r(t))k(x(t), x(t − τ(t, r(t))), t, r(t))

]

,

he (η(t), η(t − τ(t, r(t))), t, r(t)) =

[

h(x(t), x(t − τ(t, r(t))), t, r(t))

0

]

,

se (η(t), η(t − τ(t, r(t))), t, r(t)) =

[

s(x(t), x(t − τ(t, r(t))), t, r(t))

0

]

.
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It can be verified that fe, ge, he and se satisfy the global Lipschitz condition and therefore the system (2.5)

has a unique solution denoted by η(t) = η(t; η0, r0) on t ≥ −τ . In the following, for the sake of notation

simplification, denote K(i) = Ki for i ∈ S and the function ϕ := ϕ(η, ξ, t, i) if there is no ambiguity where ϕ

could be fe, ge, he, se, f , g, h, s, l, k or m.

For each i ∈ S, let C2,1(R2n × R+ × S;R+) denote the family of all nonnegative functions V (η, t, i) on

R
2n × R+ × S that are twice continuously differentiable in η and once in t. If V ∈ C2,1(R2n × R+ × S;R+),

define an infinitesimal generator L of (2.5) from R
2n × R

2n × R+ × S to R by

LV(η, ξ, t, i) = Vt(η, t, i) + Vη(η, t, i)[fe + gev(t)]

+
1

2
[he + sev(t)]

TVηη(η, t, i)[he + sev(t)] +

N
∑

j=1

γijV (η, t, j),
(2.6)

where

Vt(η, t, i) =
∂V (η, t, i)

∂t
, Vηη(η, t, i) =

(

∂2V (η, t, i)

∂ηi∂ηj

)

2n×2n

,

Vη(η, t, i) =

(

∂V (η, t, 1)

∂ηi
, · · · , ∂V (η, t, i)

∂η2n

)

.

Before formulating the problem to be dealt with in this paper, the following definition is considered.

Definition 1: For the augmented system (2.5) with v(t) = 0, r0 ∈ S and initial condition η0 = [xT0 , 0]
T ∈

Cb
F0
([−τ, 0);R2n), the trivial solution η(t; η0, r0) is almost surely exponentially stable if there exists a real

constant scalar λ > 0 such that

lim
t→∞

sup
1

t
log(|η(t; η0, r0)|) ≤ −λ. (2.7)

The purpose of this paper is to design an almost sure H∞ filter of the form (2.4) for the nonlinear hybrid

stochastic systems (2.1) with mode-dependent interval delays. More specifically, we are interested in looking

for the parameters Ki (i ∈ S) such that the following requirements are met simultaneously:

a) the augmented system (2.5) with v(t) ≡ 0 is almost surely exponentially stable;

b) under the zero initial condition, for a given disturbance attenuation level γ > 0 and all nonzero v ∈
L2(R+; R

q), the output error z̃(t) satisfies

|z̃|2L2
≤ γ2|v|2L2

. (2.8)

III. Main Results

In this section, the almost surely exponential stability and the H∞ performance are analyzed for the

augmented system (2.5). A sufficient condition is given to guarantee that the augmented system (2.5) is

almost surely exponentially stable and the H∞ performance is achieved.

Theorem 3.1: For each i ∈ S, let the filter parameterKi be given. The augmented system (2.5) with v(t) ≡ 0

is almost surely exponentially stable if there exist positive scalars c1, c2, λ1, λ2 and a function V (η, t, i) ∈
C2,1(R2n × [−τ,∞)× S;R+) such that

c1|η|2 ≤ V (η, t, i) ≤ c2|η|2, (3.1)

LV(η, ξ, t, i) ≤ −λ1|η|2 + λ2|ξ|2, (3.2)
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hold for all (η, t, i) ∈ R
2n × [−τ,∞)× S, and the equation

λc2 − λ1 +
λ2e

λτ

1− δ̄
= 0 (3.3)

has a unique root λ > 0.

Proof: For η0 ∈ R
2n and i ∈ S, denoting η(t; η0, r0) = η(t) and using Itô’ formula, we can obtain

E
[

eλtV (η(t), t, i)
]

= EV (η0, 0, i) + E

∫ t

0
eλs
[

λV (η(s), s, i) + LV(η(s), η(s − τ(s, i)), s, i)
]

ds. (3.4)

Note the fact that

dτ(s, i) =



τs(s, i) +
N
∑

j=1

γijτ(s, j)



 ds

≤



δi + γiili +
∑

j 6=i

γijτj



 ds ≤ δ̄ds. (3.5)

Taking the above inequality and (3.4) into consideration, we can get that

E

∫ t

0
eλs|η(s − τ(s, i))|2ds

≤ eλτ

1− δ̄
E[

∫ 0

−τ
|η(s)|2ds+

∫ t

0
eλs|η(s)|2ds]

≤ τ |η0|2eλτ
1− δ̄

+
eλτ

1− δ̄
E

∫ t

0
eλs|η(s)|2ds.

(3.6)

Furthermore, it follows from (3.1)-(3.3) and (3.6) that

E

(

eλtV (η(t), t, i)
)

≤ c2|η0|2 + E

∫ t

0
eλs
(

λc2|η(s)|2 − λ1|η(s)|2 + λ2|η(s − τ(s, i))|2
)

ds

≤ c2|η0|2 +
λ2τe

λτ

1− δ̄
|η0|2 + E

∫ t

0
eλs[λc2|η(s)|2 − λ1|η(s)|2 +

λ2e
λτ

1− δ̄
|η(s)|2]ds

≤ c2|η0|2 +
λ2τe

λτ |η0|2
1− δ̄

(3.7)

which results in

E|η(t)|2 ≤ Me−λt, t ≥ 0 (3.8)

where M = c2+λ2τeλτ/(1−δ̄)
c1

|η0|2. Moreover, letting ε ∈ (0, λ/2) be arbitrary, one has

E|η(t)|2 ≤ Me−(λ−ε)t. (3.9)

On the other hand, there exists a sufficiently small positive scalar δ > 0 satisfying

(3L)2(δ2 + Cpδ) <
1

4
(3.10)

where Cp is a constant given by the well-known Burkholder-Davis-Gundy inequality. For such a scalar δ, there

exists an integer k0 such that (k0 − 1)δ ≥ τ .
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In what follows, denoting the sequence k = k0, k0 + 1, · · · , we have

E

[

sup
(k−1)δ≤t≤kδ

|η(t)|2
]

≤ 32E|η((k − 1)δ)|2 + 32E

(

∫ kδ

(k−1)δ

∣

∣fe(η(s), η(s − τ(s)), s, r(s))
∣

∣ds

)2

+ 32E



 sup
(k−1)δ≤t≤kδ

∣

∣

∣

∣

∣

∫ t

(k−1)δ
he(η(s), η(s − τ(s)), s, r(s))dw(s)

∣

∣

∣

∣

∣

2


 .

(3.11)

For the above inequality, noting the local Lipschitz condition and the linear growth condition, one has

E

(

∫ kδ

(k−1)δ
|fe(η(s), η(s − τ(s)), s, r(s))|ds

)2

≤ E

(

δ sup
(k−1)δ≤s≤kδ

|fe(η(s), η(s − τ(s)), s, r(s))|
)2

≤ 2(Lδ)2E

(

sup
(k−1)δ≤s≤kδ

(|η(s)|2 + |η(s − τ(s))|2)
)

.

(3.12)

Furthermore, by using the Burkholder-Davis-Gundy inequality, we can obtain

E

[

sup
(k−1)δ≤s≤kδ

∣

∣

∣

∫ t

(k−1)δ
|he(η(s), η(s − τ(s)), s, r(s))dw(s)

∣

∣

∣

2
]

≤ CpE

(

∫ kδ

(k−1)δ
|he(η(s), η(s − τ(s)), s, r(s))|2ds

)

≤ CpE

(

δ sup
(k−1)δ≤s≤kδ

|he(η(s), η(s − τ(s)), s, r(s))|2
)

≤ 2CpL
2δE

[

sup
(k−1)δ≤s≤kδ

(|η(s)|2 + |η(s − τ(s))|2)
]

.

(3.13)

Substituting (3.12) and (3.13) into (3.11) yields

E

[

sup
(k−1)δ≤t≤kδ

|η(t)|2
]

≤ 32Me−(λ−ε)(k−1)δ + (3L)2(2δ2 + 2Cpδ)E

[

sup
(k−1)δ≤s≤kδ

(|η(s)|2 + |η(s− τ(s))|2)
]

. (3.14)

In light of the fact (k − 1)δ ≥ τ , it follows from (3.9) that

E

[

sup
(k−1)δ≤s≤kδ

|η(s − τ(s))|2
]

≤ Me−(λ−ε)((k−1)δ−τ). (3.15)

Furthermore, it follows from (3.10), (3.14) and (3.15) that

E

[

sup
(k−1)δ≤t≤kδ

|η(t)|2
]

≤ 19Me−(λ−ε)((k−1)δ−τ) . (3.16)

Obviously, by using the well-known Chebyshev’s inequality, we have

P

{

ω : sup
(k−1)δ≤t≤kδ

|η(t)| > e−(λ−2ε)((k−1)δ−τ)/2

}



REVISED 8

≤
E

[

sup(k−1)δ≤t≤kδ |η(t)|2
]

e−(λ−2ε)((k−1)δ−τ)

≤ 19Me−ε((k−1)δ−τ). (3.17)

In what follows, by utilizing the well-known Borel-Cantelli lemma, we can get that for almost all ω ∈ Ω,

sup
(k−1)δ≤t≤kδ

|η(t)| ≤ e−(λ−2ε)((k−1)δ−τ)/2 (3.18)

holds for all but finitely many k. Therefore, there exists a k1(ω), for all ω ∈ Ω excluding a P -null set, such

that (3.18) holds whenever k ≥ max{k0, k1}. Consequently, for almost all ω ∈ Ω, when (k− 1)δ ≤ t ≤ kδ and

k ≥ max{k0, k1}, one has

1

t
log(|η(t)|) ≤ −(λ− 2ε)((k − 1)δ − τ)

2t
≤ −(λ− 2ε)((k − 1)δ − τ)

2kδ

which implies

lim
t→∞

sup
1

t
log(|η(t)|) ≤ −λ− 2ε

2
. (3.19)

It is not difficult to see that the condition (2.7) follows by letting ε → 0. The proof is complete.

Now, let us consider the H∞ performance of the overall filtering process. In the following theorem, a suffi-

cient condition is obtained to guarantee both the almost surely exponential stability and the H∞ performance

for the augmented system (2.5).

Theorem 3.2: Let the disturbance attenuation level γ > 0 and the filter parameter Ki, i ∈ S be given. If

there exist positive scalars c1, c2, λ1, λ2 with λ1 > λ2/(1− δ̄) and a function V (η, t, i) ∈ C2,1(R2n × [−τ,∞)×
S;R+) satisfying the condition (3.3) and the following inequalities:

c1|η|2 ≤ V (η, t, i) ≤ c2|η|2, (3.20)

Vt + Vηfe +
1

2
hTe Vηηhe +

N
∑

j=1

γijVj +Ξ + λ1η
2 − λ2ξ

2 + |z̃|2 < 0, (3.21)

2γ2I − sTe Vηηse > 0, V (0, t, i) = 0, (3.22)

where

Ξ =
1

2

(

Vηge + hTe Vηηse
) (

2γ2I − sTe Vηηse
)−1 (

gTe V
T
η + sTe Vηηhe

)

, (3.23)

then the augmented system (2.5) with v(t) ≡ 0 is almost surely exponentially stable and the filtering error

z̃ satisfies the H∞ performance constraint (2.8) for all nonzero exogenous disturbances under the zero-initial

condition.
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Proof: In view of the definition of the operator LV, we can get that

LV (η, ξ, t, i)

= Vt + Vη(fe + gev) +
1

2
(he + sev)

TVηη(he + sev) +
N
∑

j=1

γijVj

= − (v − (2γ2I − sTe Vηηse)
−1(gTe Vη + sTe Vηηhe))

T · 1
2
(2γ2I − sTe Vηηse)

× (v − (2γ2I − sTe Vηηse)
−1(gTe Vη + sTe Vηηhe))

+
1

2
(gTe Vη + sTe Vηηhe)

T (2γ2I − sTe Vηηse)
−1(gTe Vη + sTe Vηηhe)

+ Vt + Vηfe +
1

2
hTe Vηηhe +

N
∑

j=1

γijVj + γ2v2.

(3.24)

Then, it follows from (3.21) and (3.22) that

LV + λ1η
2 − λ2ξ

2 ≤ γ2v2 − |z̃|2. (3.25)

In what follows, by integrating from 0 to T of (3.25), we have

EV (η(T ), T, i) − EV (η(0), 0, i) + λ1

∫ T

0
η2ds − λ2

∫ T

0
ξ2ds ≤ γ2E

∫ T

0
|v|2dt− E

∫ T

0
|z̃|2dt. (3.26)

Taking dτ(s, i) ≤ δ̄ and λ1 > λ2/(1− δ̄) into consideration, we can obtain

λ1

∫ T

0
η2ds ≥ λ2

∫ T

0
ξ2ds. (3.27)

Moreover, it follows from V (η(T ), T, i) ≥ 0, V (0, t, i) = 0, (3.26) and (3.27) that

E

∫ T

0
|z̃|2dt ≤ γ2E

∫ T

0
|v|2dt. (3.28)

Letting T → ∞, the H∞ performance constraint in (2.8) is satisfied. Finally, it is not difficult to see that

(3.21) implies

LV ≤ −λ1|η|2 + λ2|ξ|2.

Therefore, it follows from Theorem 3.1 that the augmented system (2.5) with v ≡ 0 is almost surely exponen-

tially stable and the proof of is complete.

Remark 2: The obtained conditions (3.20)-(3.22) in Theorem 3.2, which are a set of coupled Hamilton-

Jacobi-Isaacs (HJI) inequalities, provide the key for the resolution of almost sure H∞ filtering problems.

However, it is well known that there had been no general method to solve such a common second-order

nonlinear inequality until now. In order to reduce the computational complexity, the conditions (3.20)-(3.22)

can be decoupled into two auxiliary ones that can be solved independently and more easily when a special

form of Lyapunov function V (η, t, i) = V1(x, t, i) + V2(x̂, t, i) is taken.

Denote ϕ̂ := ϕ(x̂(t), x̂(t − τ(t, i)), t, i) when there is no ambiguity and the function ϕ could be f or m.

Letting s ≡ 0 and k ≡ 0 in (2.5), we have the following corollary.

Corollary 1: Let the disturbance attenuation level γ > 0 and the filter parameter Ki, i ∈ S be given. If

there exist positive scalars λ1, λ2 with λ1 > λ2/(1 − δ̄) satisfying the condition (3.3) and the inequality:

Ω1 +Ω2 < 0, (3.29)
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where

Ω1 = 2xT f + h2 + l2 + γ−2xT ggTx+ λ1x
2 − λ2x

2(t− τ(t, i)) + 2m2,

Ω2 = x̂2 + 2x̂f̂ + x̂TKiK
T
i x̂+ λ1x̂

2 − λ2x̂
2(t− τ(t, i)) + 2m̂2,

then the augmented system (2.5) with v(t) ≡ 0, s ≡ 0 and k ≡ 0 is almost surely exponentially stable and the

filtering error z̃ satisfies the H∞ performance constraint (2.8) for all nonzero exogenous disturbances under

the zero-initial condition.

Proof: Define the following Lyapunov function

V (η, t, i) = x2 + x̂2.

Under the assumption s ≡ 0 and k ≡ 0, the condition (3.21) associated with the system (2.5) becomes

2xT f+2x̂T f̂+2x̂TKi(y−l)+h2+γ−2xT ggTx+λ1(x
2+x̂2)−λ2(x

2(t−τ(t, i))−λ2x̂
2(t−τ(t, i)))+|z̃|2 < 0. (3.30)

Applying the inequality

XTY + Y TX ≤ εXTX + ε−1Y TY, ∀ε > 0, (3.31)

we can obtain

2x̂TKil ≤ x̂TKiK
T
i x̂+ l2, |z̃|2 = |m− m̂|2 ≤ 2m2 + 2m̂2.

Obviously, we can find that (3.29) is satisfied. Therefore, the proof of Corollary 1 can been accomplished

from Theorem 3.2.

Remark 3: In this paper, our main idea is to first establish a theoretical framework which is as general as

possible in order not to introduce unnecessary conservatism, and then to apply the general results to special

class of nonlinearities and/or special class of Lyapunov functions in order to have tractable criteria. In fact,

in this paper, all the system parameters and filter parameters are general nonlinear functions without any

restrictions/assumptions. This is actually the main contribution of this paper, which can be regarded as a

theoretical basis on which some numerically appealing results could be expected when the nonlinearities and

Lyapunov functions take special forms.

Remark 4: In this section, the analysis results in Theorem 3.2 and Corollary 1 offer sufficient conditions

under which the augmented system (2.5) with v(t) ≡ 0 is almost surely exponentially stable and the filtering

error satisfies the desired H∞ performance constraint for all nonzero exogenous disturbances under the zero-

initial condition. It should be pointed out that, for the purpose of practical applications, one is more interested

in designing a linear filters due to the easy implementation. Therefore, in the next section, the almost sure

H∞ filtering problem with linear filters is discussed for two classes of special hybrid stochastic systems.

IV. Some special cases

To demonstrate that Theorem 3.2 serves as a theoretic basis for the almost sure H∞ filtering problem of

nonlinear hybrid stochastic systems, in this section, we aim to show that Theorem 3.2 can be specialized

to the following two special cases: 1) the systems with Lipschitz-type nonlinearities, and 2) linear hybrid

systems. The specialized results are described in terms of LMIs, which can be solved by utilizing the Matlab

LMI toolbox.

Firstly, denote the matrix associated with the ith mode by Γi , Γ(r(t) = i) where the matrix Γ could be

A, Ad, B, Bd, C, Cd, D1, D2, L, F , Fd, H, Hd, Af or Bf .
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Case 1: We first consider a class of special nonlinear stochastic hybrid systems where nonlinearities is

described by Lipschitz conditions. The system is of the following form







































dx(t) =
[

Aix(t) + f(x(t), r(t)) +Adix(t− τ(t, r(t))) + fd(x(t− τ(t, r(t))), r(t))

+D1iv(t)
]

dt+
[

Bix(t) +Bdix(t− τ(t, r(t)))
]

dw(t),

y(t) = Cix(t) + φ(x(t), r(t)) + Cdix(t− τ(t, r(t)))

+ φd(x(t− τ(t, r(t))), r(t)) +D2iv(t),

z(t) = Lix(t),

(4.1)

with initial data x0 ∈ Cb
F0
([−τ, 0);Rn) and r0 ∈ S, where x(t), y(t), z(t), v(t), ω(t) and τ(t, r(t)) are defined

similar to those in (2.1); f(·, ·), fd(·, ·), φ(·, ·) and φd(·, ·) are nonlinear functions which are assumed to satisfy

the following conditions:

|f(x(t), i)|2 ≤ xTFix, |fd(x(t− τ(t, r(t))), i)|2 ≤ xT (t− τ(t, r(t)))Fdix(t− τ(t, r(t))),

|φ(x(t), i)|2 ≤ xTHix, |φd(x(t− τ(t, r(t))), i)|2 ≤ xT (t− τ(t, r(t)))Hdix(t− τ(t, r(t))),

where Fi, Fdi, Hi and Hdi are known positive definite matrices with appropriate dimensions for all i ∈ S.

We are interested in constructing a full-order linear filter of the following form for system (4.1):

{

dx̂(t) = Af (r(t))x̂(t)dt+Bf (r(t))y(t)dt

ẑ(t) = Lf (r(t))x̂(t)
(4.2)

where x̂(t) ∈ R
n is the state, ẑ(t) ∈ R

q is the output of the filter, and Afi, Bfi and Lfi are the filter parameters

to be determined. Moreover, the initial values of filters are assume to be x̂(0) = 0.

In what follows, we can obtain the augmented system















dη(t) = (fe(η(t), η(t − τ(t, r(t))), r(t)) + ge(η(t), η(t − τ(t, r(t))), r(t))v(t))dt

+ he(η(t), η(t − τ(t, r(t))), r(t))dw(t)

z̃(t) = L(r(t))x(t)− Lf (r(t))x̂(t)

(4.3)

where

fe (η(t), η(t − τ(t, r(t))), r(t))

=

[

A(r(t))x(t) + f(x(t), r(t)) +Ad(r(t))x(t− τ(t, r(t))) + fd(x(t− τ(t, r(t))), r(t))

Af (r(t))x̂(t) +Bf (r(t))l(x(t), x(t − τ(t, r(t))), r(t))

]

,

ge (η(t), η(t − τ(t, r(t))), r(t)) =
[

DT
1 (r(t))) DT

2 (r(t))B
T
f (r(t))

]

,

he (η(t), η(t − τ(t, r(t))), r(t)) =
[

xT (t)BT (r(t)) + xT (t− τ(t, r(t)))BT
d (r(t)) 0

]T
,

l (x(t), x(t− τ(t, r(t))), r(t))

= C(r(t))x(t) + φ(x(t), r(t)) + Cd(r(t))x(t− τ(t, r(t))) + φd(x(t− τ(t, r(t))), r(t)).

Theorem 4.1: Let the disturbance attenuation level γ > 0 be given. If there exist positive scalars ε1i, ε2i, ε3i,
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ε4i, λ1 and λ2, and matrices Afi, Bfi and Lfi satisfying the following LMIs:

































Ωi BfiCi Adi 0 0 0 L2i Bi

∗ Afi +AT
fi + λ1I BfiCdi 0 0 L1i 0 0

∗ ∗ ε4iHdi − λ2I 0 Fdi 0 0 Bdi

∗ ∗ ∗ −λ2I 0 0 0 0

∗ ∗ ∗ ∗ −ε2i 0 0 0

∗ ∗ ∗ ∗ ∗ Λ1i 0 0

∗ ∗ ∗ ∗ ∗ ∗ Λ2i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

































< 0, ∀ i ∈ S, (4.4)

where

Ωi = Ai +AT
i + ε1iI + ε2iI + ε3iHi + λ1I,

L1i = [Bfi Bfi Lfi],

Λ1i = diag{−ε3iI, − ε4iI, −
√
2I},

L2i = [Fi Li D1i],

Λ2i = diag{−ε1iFi, −
√
2, − γ2I},

then the augmented system (4.3) with v(t) ≡ 0 is almost surely exponentially stable and the filtering error

z̃ satisfies the H∞ performance constraint (2.8) for all nonzero exogenous disturbances under the zero-initial

condition.

Proof: Define the Lyapunov function candidate for system (4.3) as follows

V (η(t), t, i) = ηT (t)η(t) = xT (t)x(t) + x̂T (t)x̂(t) ∀, i ∈ S. (4.5)

Then, we can obtain that

Vt + Vηfe +
1

2
hTe Vηηhe +

N
∑

j=1

γijVj + Ξ + λ1η
2 − λ2ξ

2 + |z̃|2

= 2xTAix+ 2xT f(x, i) + 2xTAdix(t− τ) + 2xT fd(x(t− τ), i) + 2x̂TAfix̂

+ 2x̂TBfi(Cix+ φ(x, i) + Cdix(t− τ) + φd(x(t− τ), i)) + γ−2xTD1iD
T
1ix

+ [Bix+Bdix(t− τ)]T [Bix+Bdix(t− τ)] + λ1x
Tx+ λ1x̂

T x̂

− λ2x
T (t− τ)x(t− τ)− λ2x̂

T (t− τ)x̂(t− τ) + 2xTLT
i Lix+ 2x̂TLT

fiLfix̂

≤ xT [Ai +AT
i + ε1iI + ε−1

1i Fi + ε2iI + ε3iHi + λ1I + 2LT
i Li + γ−2D1iD

T
1i]x

+ x̂T (BfiCi + CT
i B

T
fi)x+ x̂T [Afi +AT

fi + λ1I + ε−1
3i BfiB

T
fi + ε−1

4i BfiB
T
fi + 2LT

fiLfi]x̂

+ 2xTAdix(t− τ) + xT (BfiCdi + CT
diB

T
fi)x(t− τ) + xT (t− τ)[ε−1

2i Fdi + ε4iHdi − λ2I]x(t− τ)

+ [Bix+Bdix(t− τ)]T [Bix+Bdix(t− τ)]− λ2x̂
T (t− τ)x̂(t− τ).

According to the Schur Complement Lemma, it follows directly from (4.4) that the right side of the inequality

in (4.6) is less than zero for any [xT (t) x̂T (t) xT (t− τ) x̂T (t− τ)] 6= 0. Furthermore, it is easy to verify that

(3.20) and (3.22) are true. As such, we can conclude from Theorem 3.2 that the augmented system (4.3) is

almost surely exponentially stable and the filtering error z̃ satisfies the H∞ performance requirement, which

completes the proof.
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Case 2: When the system (4.1) reduces to linear case of the form



























dx(t) = [A(r(t))x(t) +Ad(r(t))x(t− τ(t, r(t))) +D1(r(t))v(t)]dt

+ [B(r(t))x(t) +Bd(r(t))x(t− τ(t, r(t)))]dw(t),

y(t) = C(r(t))x(t) + Cd(r(t))x(t− τ(t, r(t))) +D2(r(t))v(t),

z(t) = L(r(t))x(t),

(4.6)

by applying the same filter (4.2) and Theorem 4.1, we have the following corollary.

Corollary 2: Let the disturbance attenuation level γ > 0 be given. If there exist positive scalars λ1, λ2, and

matrices Afi, Bfi, Lfi satisfying the following LMIs:



























Ai +AT
i + λ1I BfiCi Adi 0 0 L2 Bi

∗ Afi +AT
fi + λ1I BfiCdi 0 Lfi 0 0

∗ ∗ −λ2I 0 0 0 Bdi

∗ ∗ ∗ −λ2I 0 0 0

∗ ∗ ∗ ∗ −
√
2I 0 0

∗ ∗ ∗ ∗ ∗ Λ2 0

∗ ∗ ∗ ∗ ∗ ∗ −I



























< 0, ∀ i ∈ S, (4.7)

where L2 = [Li D1i] and Λ2 = diag{−
√
2, − γ2I}, then the augmented system (4.6) with v(t) ≡ 0 is

almost surely exponentially stable and the filtering error z̃ satisfies the H∞ performance constraint (2.8) for

all nonzero exogenous disturbances under the zero-initial condition.

V. Numerical Examples

In this section, two numerical examples are employed to demonstrate the theory presented in this paper.

For this purpose, let ω(t) be a scalar Wiener process, γ(t) be a right-continuous Markov chain which is

independent on ω(t) and takes values in S = {1, 2}, the step size be △ = 0.001.

Example 1: Almost sure H∞ filtering with filter form (2.4)

Let the generator Γ be

Γ = (γij)2×2 =

(

−0.8 0.8

0.5 −0.5

)

.

Consider NHSSMDID in the form of (2.1) with parameters

f(x(t), x(t− τ(t, 1)), t, 1) = −3x(t) +
1

2
sin(x(t)) +

1

3
sin(x(t− τ(t, 1))),

g(x(t), x(t − τ(t, 1)), t, 1) = 1, h(x(t), x(t − τ(t, 1)), t, 1) =
1

2
x(t), s(x(t), x(t− τ(t, 1)), t, 1) = 0,

l(x(t), x(t − τ(t, 1)), t, 1) = 2x(t), m(x(t), x(t − τ(t, 1)), t, 1) =
1

2
x(t);

f(x(t), x(t− τ(t, 2)), t, 2) = −5

2
x(t) +

1

3
sin(x(t)) +

1

3
sin(x(t− τ(t, 2))),

g(x(t), x(t − τ(t, 2)), t, 2) =
1

2
, h(x(t), x(t − τ(t, 2)), t, 2) =

1

3
x(t), s(x(t), x(t− τ(t, 2)), t, 2) = 0,

l(x(t), x(t − τ(t, 2)), t, 2) =
3

2
x(t), m(x(t), x(t− τ(t, 2)), t, 2) =

1

2
x(t).

The disturbance attenuation level is γ =
√
1.24. We choose the filter parameters as K1 = 1 and K2 =

3
2 . It

is not difficult to verify that the conditions in Corollary 1 are satisfied.
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Example 2: Almost sure H∞ filtering with filter form (4.2)

Let the generator Γ be

Γ = (γij)2×2 =

(

−0.7 0.7

0.3 −0.3

)

.

Consider NHSSMDID in the form of (2.1) with

f(x(t), x(t− τ(t, 1)), t, 1) = −2x(t) +
1

3
sin(x(t)) +

1

3
x(t− τ(t, 1)),

g(x(t), x(t − τ(t, 1)), t, 1) =
1

5
x(t)− sin(x(t)), h(x(t), x(t − τ(t, 1)), t, 1) = −1

2
x(t),

s(x(t), x(t− τ(t, 1)), t, 1) = 0;

l(x(t), x(t− τ(t, 1)), t, 1) =
1

2
x(t), m(x(t), x(t− τ(t, 1)), t, 1) = x(t);

f(x(t), x(t− τ(t, 2)), t, 2) = −3

2
x(t) + sin(x(t)) +

1

3
sin(x(t− τ(t, 2))),

g(x(t), x(t − τ(t, 2)), t, 2) = 1, h(x(t), x(t − τ(t, 2)), t, 2) =
2

3
x(t), s(x(t), x(t− τ(t, 2)), t, 2) = 0,

l(x(t), x(t− τ(t, 2)), t, 2) =
3

4
x(t), m(x(t), x(t− τ(t, 2)), t, 2) =

1

2
x(t).

Letting the disturbance attenuation level be γ =
√
0.74, we can construct a filter in the form of (2.4) with

, Af1 =
2

5
, Bf1 = 2, Af2 =

1

2
, Bf2 = 3.

It is not difficult to verify that Afi andBfi (i = 1, 2) satisfy the conditions of Theorem 4.1 with V (η, t, r(t)) =

x2(t) + x̂2(t). Therefore, it follows from Theorem 4.1 that the filter of the form (4.2) is an almost sure H∞

filter.

In simulation, the time-varying delays are assume to be v(t) = exp(−t/4), τ(t, 1) = 1 + sin(t)/3 and

τ(t, 2) = 1 + cos(t)/6. The simulation results are presented in Fig. 1∼Fig. 4, where Fig. 1 and Fig. 3 display

the real state x and its estimation x̂, and Fig. 2 and Fig. 4 plot the filtering error ẑ, which confirm that the

H∞ performance constraint (2.8) is well achieved.

VI. Conclusions

In this paper, the almost sure H∞ filtering problem has been investigated for nonlinear hybrid stochastic

systems with mode-dependent interval delays. In the plant under discussion, Markovian jumping parameters,

mode-dependent interval delays, nonzero exogenous disturbances, as well as white noises are simultaneously

taken into consideration to better model the real world systems. By utilizing the stopping time method

combined with martingale inequalities, some sufficient conditions have been proposed to guarantee that the

resulting augmented system is almost surely exponentially stable and the prescribed H∞ performance is

satisfied. Furthermore, the obtained results have been applied to two classes of special hybrid stochastic

systems, where the desired filter gains have been obtained by solving a set of LMIs. Finally, numerical

examples have been provided to show the effectiveness of the proposed filter design scheme.
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Fig. 1. x (solid) and x̂ (dashed) of Example 1.
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Fig. 2. Filtering error z̃ of Example 1.
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Fig. 3. x (solid) and x̂ (dashed) of Example 2.
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Fig. 4. Filtering error z̃ of Example 2.


