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Abstract

Model reference adaptive controllers with Minimal Control Synthesis
are effective control algorithms to guarantee asymptotic convergence ofthe
tracking error to zero not only for disturbance-free uncertain linear systems,
but also for highly nonlinear plants with unknown parameters, unmodeled
dynamics and subject to perturbations. However, an apparent drift in adap-
tive gains may occasionally arise, which can eventually lead to closed-loop
instability. In this article, we address this key issue for discrete-time systems
underL2 disturbances using a parameter projection algorithm. A consistent
proof of stability of all the closed-loop signals is provided, while tracking
error is shown to asymptotically converge to zero. We also show the ap-
plicability of the adaptive algorithm for digitally controlled continuous-time
plants. The proposed algorithm is numerically validated taking into account
a discrete-time LTI system subject to parameter uncertainty, parameter vari-
ations andL2 disturbances. Finally, as a possible engineering application
of this novel adaptive strategy, the control of a highly nonlinear electrome-
chanical actuator is considered.

1 Introduction

Adaptive control algorithms are particularly useful in a wide range of applications,
specifically those affected by noise and uncertainties. Hence, both researchers
and practitioners have been interested in expanding adaptive control theory and
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using the best adaptive schemes available in literature. The reader is referred to
the classical textbooks [23, 41] for an overview of adaptivecontrol techniques.
Notwithstanding, this is also an active field of research: for example, and just to
name a few recent works, in [29] a modular output based variable structure adap-
tive backstepping strategy for systems with arbitrary relative degrees has been
designed, while in [43] an adaptive control approach for a class of uncertain non-
linear systems with unknown time-varying delays in the pure-feedback form has
been proposed. In addition, in [6] an adaptive compensationcontrol design is
developed via disturbance observer and quantum information technology for a
four-rotor helicopter.

The Model Reference Adaptive Control (MRAC) algorithm with Minimal
Controller Synthesis (MCS) [35, 36] is an adaptive control scheme that belongs to
the family of passivity-based MRAC controllers introduced in [24]. The main fea-
ture of the MCS approach, which demands the system to be linearand in control
canonical form, is the minimal amount of a-priori information needed from the
plant in order to devise the controller, as it just requires knowledge of the sign of
the non-null matrix element of the input vector. Indeed, theMCS algorithm is ef-
fective in the control of plants with unknown parameters, and provides robustness
to parameter variations.

Since its appearance, MCS controllers have been used in a number of appli-
cations as, for example, synchronization of chaotic systems [39], shaking tables
in civil engineering [40], active engine mounts [22], hydraulic test rigs [21], can-
tilever beams [31], electronic throttle valves [11, 9], common rail systems [26, 25]
and electromechanical valve actuators for future camless engines [17]. Moreover,
the theoretical body of the MCS has been enhanced with severalextensions to the
original algorithms for continuous-time and discrete-time systems. Among the
first ones are the decentralized MCS [4], the extended MCS [38] -which includes a
switching action to cope with rapidly varying disturbances-, and the Integral MCS
(MCSI) [37] -with an explicit integral action to make the control effort indepen-
dent of the operation set point and to prevent possible gain wind-up due to plant
disturbances and signal offsets-. More recently, novel MCS strategies have been
proposed also for controlling Piecewise Affine (PWA) systems [14, 15], which
have been experimentally validated in [16].

A Discrete-Time counterpart of the MCS (DTMCS), including a formal sta-
bility proof, was proposed in [12], experimentally validated in [8], and extended
to piecewise linear systems in [13]. Recently, discrete-time MCS algorithms in-
cluding integral action (DTMCSI) and integral plus switching action have been
proposed in [26, 27], respectively.
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Despite its proved effectiveness in imposing the dynamics of a preassigned
reference model to a given plant, the MCS algorithm suffers from a severe draw-
back which is common to similar MRAC controllers. Indeed, although theoretical
results guarantee global asymptotic stability of the tracking error to zero, bound-
edness of all closed-loop signals is only ensured for uncertain Linear Time Invari-
ant (LTI) systems. In more detail, an unbounded drift of adaptive gains may arise
when the plant is affected by unmodeled dynamics or disturbances even though
they are matched (see, for example, [2, 41] and references therein). Such a be-
havior is occasionally encountered by MCS practitioners, asfor example in two
relevant plants in the context of the automotive engineering, i.e., the Electronic
Throttle Body and the Common Rail [8, 26]. However, neither the MCSI algo-
rithm nor the method proposed in [34] solve the gain locking problem systemati-
cally, and only slower gain drifting can be achieved.

Among the different methods available in the MRAC literatureto ensure ro-
bustness in the face of unmodeled dynamics or disturbances (see, for example,
[41], and references therein), parameter projection has been often adopted. For
example, a full state parameter projection-based adaptivelaw has been used in
[32, 33] to address the MRAC adaptive control problem in continuous-time piece-
wise linear systems. Inspired by the continuous-time case,in this paper we pro-
pose an analytical solution to cope with the possible onset of adaptive gains insta-
bility for discrete-time MCS strategies.

Specifically, we enhance the Discrete-Time MCS strategy withIntegral ac-
tion (DTMCSI) proposed in [26] by including a Parameter Projection (PP)-based
gain locking method. The control aim is to solve the MRAC control problem
for discrete-time LTI systems when plant parameters are affected by uncertain-
ties and plant dynamics are subjected to an additive, square-integrable unknown
disturbance, while ensuring boundedness of adaptive gainsin a given set.

The novel control action, termed with the acronym DTMCSI-PP,can be ap-
plied also to Linear Time-Varying (LTV) systems provided that the plant param-
eters variation is slower than that of the adaptive gains. This assumption is often
made in the MCS literature when deriving MCS laws for both continuous-time and
discrete-time LTV systems [36, 12]. Moreover, as happens with the discrete-time
MCS [12], the DTMCSI-PP here derived can be used to control continuous-time
systems when the forward Euler method is used for their discretization.

The effectiveness of the DTMCSI-PP strategy is shown on a set of repre-
sentative numerical examples. In particular, we first consider the control of a
discrete-time LTI system affected by uncertain plant parameters,L2-disturbances,
and plant parameter variations. Then, as a realistic case study, we consider the
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control of a highly nonlinear actuator, namely an Electronic Throttle Body. The
obtained results confirm the theoretical findings, and excellent tracking perfor-
mances are achieved. Indeed, it is shown that the DTMCSI-PP performs better
than the continuous-time MCSI [37] discretized with a Tustinmethod. Moreover,
the novel algorithm yields residual errors that are comparable to the DTMCSI
strategy [26], but with the adaptive gains always evolving in a bounded preas-
signed set.

2 Discrete-time integral MCS with parameter pro-
jection

Consider a plant of the form

x(k + 1) = Ax(k) + Bpu(k) + Bd(k), x(0) ∈ R
n, (1)

wherex ∈ R
n andu ∈ R are the state and the input of the system, respectively,

andd ∈ L2 is a possible disturbance acting on the plant dynamics, withn ∈ N

being the dimension of the state space, while the system matricesA ∈ R
n×n,

Bp ∈ R
n×1 andB ∈ R

n×1 are in control canonical form, i.e.

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. ..
...

0 0 0 . . . 1
−a1 −a2 . . . . . . −an



, (2a)

Bp =
[
0 0 . . . 0 b

]T
= bB, (2b)

B =
[
0 0 . . . 0 1

]T
. (2c)

The following hypotheses are assumed for the plant parameters.

Assumption A

(i) Upper and lower bounds are known for the plant parametersai, i.e., ai ∈[
ali, a

u
i

]
, with ali ≤ aui known constants,∀i = 1, . . . , n.

(ii) The gain parameterb has definite sign, and upper and lower bounds are known
for it as well, i.e.b ∈

[
bli, b

u
i

]
, with bli ≤ bui known, and eitherbli > 0 or bui < 0.

The target is to devise a control law to impose to system (1) the dynamics of
a certain asymptotically stable reference model while keeping all the closed-loop
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signals bounded. The reference model is assumed to be a linear time-invariant
system of the form

xm(k + 1) = Amxm(k) + Bmr(k), xm(0) ∈ R
n, (3)

wherexm ∈ R
n andr(k) ∈ R are the state and the input of the reference model,

respectively, andAm, Bm have the same dimensions and canonical form as those
of the plant matricesA, B, respectively, i.e.

Am =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−am1

−am2
. . . . . . −amn



, (4a)

Bm =
[
0 0 . . . 0 bm

]T
= bmB. (4b)

Moreover, the following design assumptions are made for thereference model.

Assumption B

(i) Am is a discrete-time Hurwitz matrix.
(ii) The reference input is bounded, i.e.r ∈ L∞.
(iii) Let I denote the unit matrix inRn×n. ThenQ = QT is a symmetric matrix so
thatQ − I > 0, while P = P T > 0 is a solution of the discrete-time Lyapunov
equation

AT
mPAm − P = −Q. (5)

The DTMCSI-PP algorithm to solve the MRAC problem, i.e.x → xm as
k → +∞, is:

u(k) = uMCS(k) + uE(k), (6)

with

uMCS(k) = LX(k)x(k) + LR(k)r(k), (7a)

uE(k) = LE(k)xE(k), (7b)

where

xE(k) =
k∑

i=0

xe(i), xe(k) = xm(k)− x(k), (8)
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while the adaptive control gains are computed as

LX(k) = LXI(k) + βye(k + 1)xT (k), (9a)

LR(k) = LRI(k) + βye(k + 1)r(k), (9b)

LE(k) = LEI(k) + βEye(k + 1)xT
E(k), (9c)

with ye being an auxiliary output selected as

ye(k) = BTPxe(k) ∈ R. (10)

The integral parts of the gains in (9) are computed as

LXI(k) = L̃XI(k) + fX(k), (11a)

LRI(k) = L̃RI(k) + fR(k), (11b)

LEI(k) = L̃EI(k) + fE(k), (11c)

where the functions̃LXI , L̃RI , L̃EI are defined as

L̃XI(k) = LXI(k − 1) + αye(k)x
T (k − 1), (12a)

L̃RI(k) = LRI(k − 1) + αye(k)r(k − 1), (12b)

L̃EI(k) = LEI(k − 1) + αEye(k)x
T
I (k − 1), (12c)

while fX(k) ∈ R
n, fR(k) ∈ R andfE(k) ∈ R

n are defined componentwise as

fXj
=





0 if L̃XIj (k) ∈
[
Ll
XIj

, Lu
XIj

]

Lu
XIj

− L̃XIj (k) if L̃XIj (k) > Lu
XIj

Ll
XIj

− L̃XIj (k) if L̃XIj (k) < Ll
XIj

,

(13a)

fR =





0 if L̃RI (k) ∈
[
Ll
RI , L

u
RIj

]

Lu
RI − L̃RI (k) if L̃RI (k) > Lu

RI

Ll
RI − L̃RI (k) if L̃RI (k) < Ll

RI ,

(13b)

fEj
=





0 if L̃EIj (k) ∈
[
Ll
EIj

, Lu
EIj

]

Lu
EIj

− L̃EIj (k) if L̃EIj (k) > Lu
EIj

Ll
EIj

− L̃EIj (k) if L̃EIj (k) < Ll
EIj

.

(13c)

The control weights and the bounds of the integral parts of the control gains
are chosen as follows.
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Assumption C

(i) The control weightsα, αE, β, βE are so that:

sign (α) = sign(β) = sign (b) , (14a)

sign (αE) , sign (βE) ∈ {0, sign (b)} , (14b)

|β| ≥
|α|

2
, |βE| ≥

|αE|

2
. (14c)

(ii) The integral parts of the control gainsLl
XIj

, Lu
XIj

, Ll
EIj

, Lu
EIj

, j = 1, . . . , n,
andLl

RI , L
u
RI , are chosen so as to verify:

amj
− aj

b
∈
[
Ll
XIj

, Lu
XIj

]
, 0 ∈

[
Ll
EIj

, Lu
EIj

]
,

bm

b
∈
[
Ll
RI , L

u
RI

]
.

Remark 1. Assumption C.i can be fulfilled when A.ii is verified. In addition, as
the model reference parametersamj

andbm are known by design, the parameters
Ll
XIj

,Lu
XIj

,Ll
RI ,L

u
RI in Assumption C.ii can be readily obtained fromalj, a

u
j , b

l
j , b

u
j

when Assumption A is verified.

The control goal, namely, convergence of the tracking errorto zero and bound-
edness of all the closed-loop signals under square-summable disturbances, is guar-
anteed by the following result:

Theorem 1. Consider system(1) and the reference model(3). If Assumptions A,
B and C are fulfilled, for allj = 1 . . . n, then

LXIj(0) ∈
[
Ll
XIj

, Lu
XIj

]
, LRI(0) ∈

[
Ll
RI , L

u
RI

]
, LEIj(0) ∈

[
Ll
EIj

, Lu
EIj

]
.

(15)
Furthermore ifd ∈ L2, then the adaptive control law(6)-(13)guaranteesxe(k) →
0 ask → ∞, andx, xE, LX , LR, LE, u ∈ L∞.

Remark 2.

i) The parameter projection method consists of using the parameter projec-
tion functions(13) for the computation of the integral part of the adaptive
gains(11).
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ii) In case fX , fR and fE are set to zero, the control action(6)-(13) boils
down to the DTMCSI presented in [26]. However, the DTMCSI algorithm
gainsL̃XI(k), L̃RI(k), L̃EI(k) can then grow unbounded in the face of dis-
turbances or unmodelled dynamics even thoughx(k), xE(k) and the input
r(k) are bounded. Hence, the novel algorithm improves and extends those
available in the literature by guaranteeing an evolution ofthe control gains
in a bounded and preassigned set. Furthermore, differentlyfrom [26], it is
analytically shown here that unknownL2 disturbances do not alter closed-
loop stability.

iii) In the disturbance-free case, i.e.d(k) = 0, ∀k ≥ 0, the requirementQ−I >

0 in (5) can be replaced byQ > 0 as usually assumed for the DTMCS
[12] and the DTMCSI [26] strategies. However, using aQ-matrix that
satisfies assumption B.iii does not entail any limitation because it is selected
by designers.

iv) The adaptive mechanism(9) at the discrete-time instantt = k requires
knowledge of the output signal at timek+1, namelyye(k+1). This problem,
known as the one-delay problem in MRAC literature [24], can bepractically
solved by means of an estimate of the sampleye(k + 1) such as the one
proposed in [24, 12].

v) It is worth noticing that in discrete-time MCS algorithms proposed in the
literature so far, the summation for the integral part of thecontrol gains is
up to the current time instantk, thus including part of the one-delay term,
while the rest is in the proportional gain. However, in(9), (11), (12) the in-
tegral gain is not affected by the one-delay problem, as the one-delay term
is entirely included in the proportional part of the adaptive gains. Hence,
the one-delay issue has to be considered only when manipulating the pro-
portional adaptive terms, thus simplifying the proof of Theorem 1 using a
Lyapunov approach.

vi) From the definition of the updating mechanism(11), it is evident that the in-

tegral parts of the control gains are bounded. Specifically,LXIj ∈
[
Ll
XIj

, Lu
XIj

]
,

LEIj ∈
[
Ll
EIj

, Lu
EIj

]
, j = 1, 2, . . . , n, andLRI ∈

[
Ll
RI , Lu

RI

]
.

vii) The only extra assumption that is required with respect to the MCS strategy
presented in [26] is that some bounds for the plant parameters are known.
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This is not a limitation, because nominal values for the plant parameters,
as well as their range of variations, are often available in engineering prob-
lems.

The result of Theorem 1 still holds for LTV plants under the assumption of
slow variation of the plant parameters with respect to the integral part of the adap-
tation gains according to the following corollary. It is worth stressing that this is a
standard assumption in the MCS literature both for continuous-time and discrete-
time systems [36, 12].

Corollary 1. Let the plant defined in(2a) be time-varying, i.e.A = A(k) with
ai = ai(k) in the last row ofA(k). If, for all i = 1, . . . , n,

ai(k − 1)− ai(k)− αbye(k)xi(k − 1) ≈ −αbye(k)xi(k − 1), (16)

then the adaptive control law(6) yields convergence of the tracking error to zero,
and boundedness of all closed-loop signals.

Finally, as happens with the discrete-time MCS in [12, 26], also the DTMCSI-
PP algorithm can be applied to control continuous-time plants in control canonical
form when both the plant dynamics and that of the reference model are discretized
by using a forward Euler discretization method. Indeed, consider the continuous-
time linear system and reference model

ẋ = Ax+ Bpu+ Bd(t), (17)

ẋm = Amxm + Bmr(t), (18)

wherex, xm,∈ R
n, u, d, r ∈ R, A,Am ∈ R

n×n, Bp, Bm, B ∈ R
n×1, n ∈ N

andA, Bp, B, Am, Bm are defined in (2), (4). A forward Euler discretization of
(17)-(18) with sampling periodTs ∈ R

+, yields:

x(k + 1) = (I+ TsA) x(k) + TsBpu(k) + TsBd(k), (19)

xm(k + 1) = (I+ TsAm) xm(k) + TsBmr(k), (20)

and the following corollary holds.

Corollary 2. Consider system(19)and the reference model(20). Let Assumptions
A, B, and C be met, withI + TsAm replacingAm in Assumption B.i and(5),
andTsb

−1
(
amj

− aj
)
, Tsb

−1bm replacingb−1
(
amj

− aj
)
, b−1bm, respectively, in

Assumption C.ii. Let also the integral part of the control gains be initialized as in
(15). If d ∈ L2, then the adaptive control law(6)-(13) yieldsx(k) → xm(k) as
k → ∞, andx, xE, LX , LR, LE, u ∈ L∞.
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We note that, even though the forward Euler method does not guarantee sta-
bility of the discretized plant, this is not restrictive since the DTMCSI-PP strategy
can be applied also to unstable plants, and the stability of the discretized reference
model can always be assured as it is chosen by the designer. Moreover, the use of
such a digital strategy prevents the onset of unwanted phenomena -instability and
undesirable overshoots- that can arise when implementing continuous-time MCS
algorithms via standard discretization methods [5].

3 Proof of the main results

The proof of is derived by using Lyapunov theory for discrete-time systems. In-
deed, while passivity/hyperstability theory is often usedto prove tracking error
convergence in Landau’s schemes-based discrete time MRAC strategies, the Lya-
punov approach simplifies proofs when parameter projectionmethods are used to
ensure boundedness of adaptive gains.

3.1 Proof of Theorem 1

As in [24], the control law (6)-(13) can be written as an integral-like term plus a
proportional-like term. Namely,

u(k) = L(k)w(k) = (LI(k) + LP (k))w(k), (21)

with

LI(k) = LI(k − 1) + ye(k)w
T (k − 1)Γα + f(k), (22a)

LP (k) = ye(k + 1)wT (k)Γβ, (22b)

LT
I (k) =




LXI(k)
LRI(k)
LEI(k)


 , w(k) =




x(k)
r(k)
xE(k)


 , fT (k) =




fX(k)
fR(k)
fE(k)


 , (23)

and
Γα,β = diag

(
γ
α,β
1 , . . . , γ

α,β
2n+1

)
,

where
(
γα
i , γ

β
i

)
= (α, β), i = 1, . . . , n + 1, and

(
γα
i , γ

β
i

)
= (αE, βE), i =

n+ 2, . . . , 2n+ 1.
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Let us define

Φ(k + 1) = φ(k)w(k)− bLP (k)w(k) (24a)

φ(k) = b (L∗
I − LI(k)) (24b)

L∗
I = b−1 (am,1 − a1, . . . , am,n − an,O1,n, bm) , (24c)

which allows to obtain

∆φ(k − 1) = φ(k)− φ(k − 1) = −bye(k)w
T (k − 1)Γα − bf(k). (25)

With the above settings, and recalling from (8) thatxe(k) = xm(k) − x(k),
the closed-loop error dynamics associated to (2), (3), (21)-(24) can be written as

xe(k + 1) = Amxe(k) + BΦ(k + 1)− Bd(k), (26a)

ye(k) = BTPxe(k). (26b)

Now, recalling Assumption C.ii, let us define

L
l,u
Ii

=





L
l,u
XIi

, i = 1, . . . , n,

L
l,u
RIi

, i = n+ 1,

L
l,u
EIi

, i = n+ 2, . . . , 2n+ 1,

(27)

Λ = Λ1 × · · ·Λn =
[
Ll
I1
, Lu

I1

]
× · · · ×

[
Ll
I2n+1

, Lu
I2n+1

]
. (28)

Lemma 1. LetLI(k) be updated as in(22a).

i) If LI(0) ∈ Λ, thenLI(k) ∈ Λ, ∀k ≥ 0.

ii) Let L∗
I ∈ Λ; then,

(
LI,i(k)− L∗

I,i

)
fi(k) ≤ 0, ∀i = 1, . . . , 2n+ 1, ∀k ≥ 0.

Proof. Straightforward.

Consider the auxiliary function

V (k) = V1(k) + V2(k), (29)

with

V1(k) = (xe(k)−BΦ(k))T P (xe(k)−BΦ(k)) ,

V2(k) =
1

b
φ(k − 1)Γ−1

α φT (k − 1).
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The time variation of the first component ofV (k) is given by:

∆V1(k) = V1(k + 1)− V1(k) =

= (xe(k + 1)−BΦ(k + 1))T P (xe(k + 1)− BΦ(k + 1))+

− (xe(k)−BΦ(k))T P (xe(k)− BΦ(k)) ;

taking into account (26), after some algebraic manipulations, we have

∆V1(k) = (Amxe(k)−Bd(k))T P (Amxe(k)−Bd(k))− xT
e (k)Pxe(k)+

− BTPBΦ2(k) + 2BTPxe(k)Φ(k) =

= xT
e (k)

(
AT

mPAm − P
)
xe(k)− 2BTPAmxe(k)d(k) + BTPBd2(k)+

− BTPBΦ2(k) + 2ye(k)Φ(k).

Now, by using the hypothesis (5) and proceeding to square−2BTPAmxe(k)d(k)
one gets

∆V1(k) = −xe(k)
TQxe(k)−

(
xe(k) + AT

mPBd(k)
)T (

xe(k) + AT
mPBd(k)

)
+

+ xT
e (k)xe(k) + BT

(
PAmA

T
mP + P

)
Bd2(k)− BTPBΦ2(k)+

+ 2BTPye(k)Φ(k) =

= −xe(k)
T (Q− I) xe(k)−

∥∥xe(k) + AT
mPBd(k)

∥∥2
−BTPBΦ2(k)+

+ BT
(
PAmA

T
mP + P

)
Bd2(k) + 2ye(k)Φ(k), (30)

with ‖·‖ denoting the Euclidean norm of a vector.
Considering nowV2(k), from (25) it is possible to compute its variation as

∆V2(k) = V2(k + 1)− V2(k) =
1

b
φ(k)Γ−1

α φT (k)−
1

b
φ(k − 1)Γ−1

α φT (k − 1) =

=
1

b
(φ(k − 1) + ∆φ(k − 1)) Γ−1

α

(
φ(k − 1) +

1

b
∆φ(k − 1)

)T

+

−
1

b
φ(k − 1)Γ−1

α φT (k − 1) =

=
2

b
∆φ(k − 1)Γ−1

α φT (k − 1) +
1

b
∆φ(k − 1)Γ−1

α ∆φ(k − 1)T .
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Then, (25), (24a) and (22b) yield

∆V2(k) = −2
(
ye(k)w

T (k − 1)Γα + f(k)
)
Γ−1

α φT (k − 1)+

+ b
(
ye(k)w

T (k − 1)Γα + f(k)
)
Γ−1

α

(
ye(k)w

T (k − 1)Γα + f(k)
)T

=

= −2ye(k) (Φ(k) + bLP (k − 1)w(k − 1))+

+ by2e(k)w
T (k − 1)Γαw(k − 1)+

+ 2
(
bye(k)w

T (k − 1)− φ(k − 1)Γ−1

α

)
fT (k) + bf(k)Γ−1

α fT (k) =

= −2ye(k)Φ(k)− 2by2e(k)w
T (k − 1)Γβw(k − 1)+

+ by2e(k)w
T (k − 1)Γαw(k − 1)+

− 2 (∆φ(k − 1) + φ(k − 1) + bf(k)) Γ−1

α fT (k) + bf(k)Γ−1

α fT (k).

Finally, taking into account (24b),∆V2(k) becomes

∆V2(k) = −2ye(k)Φ(k)− by2e(k)w
T (k − 1) (2Γβ − Γα)w(k − 1)+

+ 2b (LI(k)− L∗
I) Γ

−1

α fT (k)− bf(k)Γ−1

α fT (k). (31)

From (29)-(31), the variation of the functionV (k) in (29) is

∆V (k) = −xe(k)
T (Q− I) xe(k)−

∥∥xe(k) + AT
mPBd(k)

∥∥2
− BTPBΦ2(k)+

− by2e(k)w
T (k − 1) (2Γβ − Γα)w(k − 1) + 2b (LI(k)− L∗

I) Γ
−1

α fT (k)+

− bf(k)Γ−1

α fT (k) + BT
(
PAmA

T
mP + P

)
Bd2(k). (32)

As Q− I andP are symmetric, positive definite matrices (see Assumption B.iii),
b (2Γβ − Γα) andbΓ−1

α are diagonal, positive definite matrices by the inequalities
(14) in Assumption C.i, and

(
LI,i(k)− L∗

I,i

)
fi(k) ≤ 0, ∀i = 1, . . . , 2n + 1 in

accordance with Lemma 1, the function∆V (k) in (32) can be bounded as

∆V (k) ≤ −λmin ‖xe(k)‖
2 + δd2(k), (33)

with λmin > 0 being the lowest eigenvalue ofQ− I and

δ = BT
(
PAmA

T
mP + P

)
B > 0.

Adding up for allk in (33) we get

V (+∞)− V (0) =
∑

k≥0

∆V (k) ≤ −λmin

∑

k≥0

‖xe(k)‖
2 + δ

∑

k≥0

d2(k) =

= −λmin ‖xe‖
2

2
+ δ ‖d‖2

2
, (34)

13



where‖·‖
2

stands for theL2-norm. AsV (0) is bounded (the initial adaptive gains,
plant and reference model state are assumed to be finite),d ∈ L2, V is positive
semidefinite, and‖xe‖ ≥ 0, (34) implies that

0 ≤ V (+∞) + λmin ‖xe‖
2

2
≤ V (0) + δ ‖d‖2

2
< +∞. (35)

Hence,xe ∈ L2 ∩ L∞, and consequentlyxe(k) → 0 for k → +∞. From
Assumptions B.i and B.ii alsoxm ∈ L∞, and taking into account thatxe ∈ L∞,
this implies thatx ∈ L∞. In addition, (35) also implies thatV ∈ L∞. This,
together with Lemma 1.i, immediately yields boundedness ofall the closed-loop
signals.

Remark 3. If αE = βE = 0, thenw, Γα andΓβ have to be redefined as

w(k) =

[
x(k)
r(k)

]
, Γα = αIn+1, Γβ = βIn+1,

with In+1 standing for the(n+ 1)× (n+ 1) identity matrix.

3.2 Proof of Corollary 1

WhenA = A(k), thenL∗
I andφ(k) in (24c) and (24b), respectively, become

L∗
I = L∗

I(k) = b−1 (am,1 − a1(k), . . . , am,n − an(k), bm,O1,n) ,

φ(k) = b (L∗
I(k)− LI(k)) .

However, (16) allows the corresponding∆φ(k − 1) defined in (25) to remain
invariant:

∆φ(k − 1) = φ(k)− φ(k − 1) =

= b (L∗
I(k)− L∗

I(k − 1))− bye(k)w
T (k − 1)Γα − bf(k) =

= (a1(k − 1)− a1(k), . . . , an(k − 1)− an(k),O1,n+1)+

− bye(k)w
T (k − 1)Γα − bf(k) =

≈ −bye(k)w
T (k − 1)Γα − bf(k).

Hence, the proof follows identically that of Theorem 1.

14



3.3 Proof of Corollary 2

The proof follows identically that of Theorem 1 as well afterreplacingAm by
I + TsAm, andL∗

I by TsL
∗
I . This is because, although the discretized plant and

reference model matrices are no longer in canonical form, its difference is again a
matrix with null elements everywhere but on the last row, exactly as in the original,
pure discrete-time case, i.e.

I+ TsAm − (I+ TsA) = Ts (Am − A) .

Hence, as each column is spanned byB, the mismatch can also be tamed by the
control actionBu(k).

4 Numerical validation

The effectiveness of the proposed discrete-time MCS algorithm is shown in this
section through a representative numerical example. In particular, the approach
will be tested here for a system of the form (1) with

A =




0 1 0
0 0 1

0.612 −2.165 2.55


 , b = 4, x(0) =




0
0.2
−0.3


 . (36)

The reference model is a discrete-time LTI system of the form(3) with

Am =




0 1 0
0 0 1

0.252 −1.2 1.9


 , bm = 1, xm(0) = 0, (37)

and the reference input,r(k), is a sinusoidal wave with amplitude4 and period
2π.

For the design of the control law we assume that the entries ofthe plant ma-
trices are unknown but within the following ranges:−a1 ∈ [−0.148, 0.652],
−a2 ∈ [−2.2, −0.2], −a3 ∈ [1.3, 2.5], b ∈ [3.36, 4.64]. According to this possi-
ble plant parameter variation and in order to satisfy Assumption C.ii, the integral
part of the adaptive gains has been limited as follows:LXI1 ∈ [−0.12 0.12],
LXI2 ∈ [−0.3 0.3], LXI3 ∈ [−0.18 0.18], LEI1 ∈ [−3 · 10−3 3 · 10−3], LEI2 ∈
[−2 · 10−3 2 · 10−3], LEI3 ∈ [−4 · 10−3 4 · 10−3], andLRI ∈ [−0.3 0.3]. More-
over,LXI(0) = 0, LRI(0) = 0 andLEI(0) = 0, thus fulfilling requirement (15)
in Theorem 1.
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Figure 1: Tracking error evolution ofxe3 .

The adaptive weights are selected as a trade-off between convergence time
and reactivity of the control actions. Specifically, we havesetα = 10−1 and
αE = 10−2, while β = 3

4
α andβE = 3

4
αE.

Finally, the one-delay issue has been tackled following Remark 2.iv. Thus,
we have implemented the simple yet effective estimate ofye(k + 1) proposed in
[24, 12].

4.1 Performance of the DTMCSI-PP algorithm

Figure 1 shows the tracking error evolution for the third state variable,xe3 , and its
convergence to zero. Notice that, according to (1) and (36),xe1(k) = xe3(k − 2)
andxe2(k) = xe3(k − 1). Hence, the convergence to zero ofxe3 guarantees that
of the entire tracking error vector.

Figure 2 shows that the integral parts of the adaptive gains,LI in (22a), con-
verge asymptotically to a finite value once the tracking error goes to zero. Notice
that upper or lower gain bounds are plotted in the same figure for those adaptive
gains which are locked. These limits are depicted as solid lines with the color of
the corresponding adaptive gain.

As clearly shown in Figure 2d, the gainLXI3 is locked during the transient but
it enters again the non-locking region as the tracking errorgoes to zero. Notice
that, as shown in Figure 2c, alsoLEI2 andLEI3 are locked in a short time interval,
but a zoom is not reported for the sake of brevity.

Figure 2 also confirms the boundedness of the adaptive gains.Indeed, the
boundedness ofxe(k) (shown in Figure 1) guarantees that of the proportional
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gains,LP in (22b), and consequently the boundedness ofL in (21). In addition,
asxe → 0 thenL → LI ask → +∞.

4.2 Robustness to parameter variations and external L2-disturbances

In order to numerically test the robustness of the control approach, a perturba-
tion in the plant parameters and a square-summable disturbance have also been
introduced in the simulation scenario.

Specifically, the behavior in case of a sudden change of the plant parameters
values with respect to their nominal ones is investigated. Namely, whenk = 1000,
the plant matrixA and the parameterb become

Ã =




0 1 0
0 0 1
0.3 −0.8 1.8


 , b̃ = 3.5, (38)

which fall within the above specified range of variation. Notice also that, dif-
ferently fromA, Ã is not Hurwitz, and therefore the plant becomes suddenly
unstable.

Furthermore, at thek = 1500 sample, theL2 disturbance shown in Figure 3,
which affects the system dynamics as indicated in (1), is activated.

In Figure 4 it is clear that the control algorithm is able to reject such unex-
pected parameter variations and disturbances and, throughadaptation, to achieve
again excellent tracking performance. As in the previous case, adaptive gains con-
verge asymptotically to a finite value while the tracking error goes to zero. (Notice
that upper or lower gain bounds are reported in Figure 4 for those adaptive gains
which are locked. These limits are depicted as solid lines with the color of the
corresponding adaptive gain.) In this case, the gainLXI3 is locked during the first
time instants after the switch of the plant paraments. In addition, the gainsLEI1,
LEI2 andLEI3 are saturated during the entire activation of the disturbance. Never-
theless, when the unknown external excitation disappears,these gains reenter the
non-locking region.

5 DTMCSI-PP control of an automotive actuator

A fundamental automotive actuator, the Electronic Throttle Body (ETB), is used
here to assess the performance of the novel DTMCSI-PP adaptive algorithm in
control engineering applications.
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Figure 2: Adaptive gains. (a)LXI : LXI1 (solid blue line),LXI2 (dashed red line),
LXI3 (dashed-dotted black line); (b)LRI ; (c) LEI : LEI1 (solid blue line),LEI2

(dashed red line),LEI3 (dashed-dotted black line); (d) Detail of the transient of the
adaptive gainLXI3. Upper or lower gain bounds are reported for those adaptive
gains which are locked. These limits are depicted as solid lines with the same
color of the corresponding adaptive gain.
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Figure 4: Tracking error evolution ofxe3 under parameter variations and external
disturbances.
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Figure 5: Adaptive gains under perturbing conditions. (a)LXI : LXI1 (solid blue
line), LXI2 (dashed red line),LXI3 (dashed-dotted black line); (b)LRI ; (c) LEI :
LEI1 (solid blue line),LEI2 (dashed red line),LEI3 (dashed-dotted black line).
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The ETB is a mechatronic device that regulates the air flow coming into an
internal combustion engine. Hence, controlling preciselyits plate position is fun-
damental to improve performance of higher level engine control strategies, e.g.,
idle speed control [19] and air-to-fuel ratio control [20],just to name a few. On
the other hand, the ETB system is affected by many nonlinearities which can dra-
matically alter its dynamics such as a piecewise linear restoring torque, friction,
impacts and backlash and nonlinear aerodynamic torques. Moreover, manufac-
turing tolerances, variable operating conditions and mechanical wear often cause
uncertainty in system parameter values. The reader is referred to [30, 11] for
further details.

Due to its challenging control features, the ETB has often been chosen as an
ideal case study to investigate the performance and robustness of adaptive con-
trol schemes in the face of model uncertainties and disturbances as discussed, for
example, in [11], [1], [3], [28], [7], [18]. Furthermore, when MRAC algorithms
are used to tame the ETB dynamics, the presence of unmodeled terms can induce
an unbounded drift of the adaptive gains [2], which are undesirable for safety
reasons.

From a modeling viewpoint, it has been show in [11, 27] that, by choosing
as state variables the position and velocity of the valve andas control input the
armature voltage to the DC motor embedded in the system, the ETB dynamics can
be approximated as a second order LTI system in control canonical form subjected
to nonlinear disturbances, which is required by the DTMCSI-PP algorithm. For
all those reasons, the ETB is an excellent device to test the adaptive law presented
in Section 2. The reader is referred to [8] for further details on the ETB.

5.1 DTMCSI-PP implementation details

As reference model for the adaptive controller we have selected a second order,
continuous-time LTI system in control canonical form with asettling time of about
135 ms, unitary gain, and step response without oscillations. The reference model
has been then discretized using a forward Euler’s method with sampling period
T = 10−3 s. This value is in agreement with automotive hardware limitations and
yields a stable reference model (3).

The tracking error during tip-in/tip-out conditions has been limited with a
Smooth Trajectory Reference (STR) implemented as a first-order filter as in [11,
27].

The one-delay problem has been addressed as in [24]. This approach for solv-
ing the one-delay problem has also been validated experimentally in [8, 27] for
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the discrete-time MCS control of an ETB. The numerical resultsreported in next
subsection confirm again the effectiveness of this choice.

It is worth remarking that the velocity of the plate is not available to the con-
troller. In accordance with [11, 8, 27], in order to not complicate the control
architecture with the use of observer [42] or to introduce noise and delays in the
control system with the implementation of a derivative filter, here we implement
the DTMCSI-PP algorithm using only position measurements. In so doing, we
provide an additional evidence of the robustness and ease ofimplementation of
MCS-based control strategies.

The bounds of the integral part of the adaptive gains have been selected in ac-
cordance with the expected variation of the ETB plant parameters, namely:LXI1

∈ [−0.25 0.25], LEI1 ∈ [−0.15 0.15], LRI ∈ [−0.25 0.25]. The adaptive weights
have been selected heuristically as usual, i.e., as a trade-off between convergence
time and control reactivity. Here we choseα = 8 · 10−5, αE = 8 · 10−6, β = 3α

4

andβE = 3αE

4
.

Finally, we point out that the numerical analysis has been carried out using an
accurate model of the ETB, which was experimentally validated in [10].

5.2 Numerical results

In this subsection we assess the performance of the novel adaptive algorithm in
taming the ETB dynamics. We first consider as reference signal a sinusoidal wave
with amplitude35 deg, bias50 deg, and period4 s. In order to test the controller
in a more realistic scenario, we have introduced an additional external sinusoidal
torque with amplitude0.1 Nm and period4 s in the ETB dynamics to emulate the
aerodynamic torque. Furthermore, aiming at simulating thenoise of the resistive
potentiometers used to measure the valve opening, a white noise with variance0.4
has been added to the plate position available to the controller.

The integral part of the adaptive control gains evolve with time as depicted
in Figure 6c, causing an increasingly better tracking of thereference trajectory.
This is evident by analyzing the tracking performance in Figures 6a and 6b, while
the feasibility of the control action is shown in Figure 6d. We note that for the
ETB control the persistent disturbance acting on the plant dynamics is bounded
but it may induce instability due to the drifting on the adaptive control gains [2].
However, the parameter projection-based gain locking strategy prevents the onset
of such an undesirable phenomenon, with some adaptive control gains being pe-
riodically locked over the manoeuvre. Precisely,LXI is locked at its lower value,
while LEI is saturated periodically to its upper bound. Notice these bounds are
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Figure 6: ETB control performance. (a) Tracking performance: plate position
(blue solid line), reference model position (dashed red line). (b) Residual tracking
error in steady state. (c) Control gains:LXI1 (solid blue line),LRI (dashed red
line),LEI1 (dashed-dotted black line). (d) Control action in steady state.
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also reported in Figure 6c as solid lines with the color of thecorresponding adap-
tive gain.

As in the case of the numerical example in Section 4, the boundedness of the
integral gains 6c imply the boundedness of the adaptive control gains.
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Figure 7: Adaptive control gains. (a) DTMCSI algorithm.LXI1 (solid blue line),
LRI (dashed red line),LEI1 (dashed-dotted black line). (b) MCSI algorithm.LXI1

(solid blue line),LRI (dashed red line),LEI1 (dashed-dotted black line).

We stress that boundedness of the control gains is not assured by MCS algo-
rithms available in the literature when unmodelled dynamics and persistent distur-
bances affect plant dynamics. To better appreciate this feature of the novel control
scheme, we have implemented for the ETB system the MCSI - discretized via
Tustin method - and DTMCSI algorithms, which have been presented in [37, 11]
and [26], respectively. We point out that, under the same working conditions,
these controllers provide a residual error which is comparable to that in Figure 6b,
but Figure 7 clearly shows that the integral part of their control gains diverges.

In order to confirm that the DTMCSI-PP strategy provides tracking perfor-
mances similar or better than those achievable by other MCS strategies, namely
MCSI and DTMCSI algorithms, the control performances provided by these three
controllers are compared when the reference input is the long reference manoeu-
vre composed by the signals listed in Table 1, which is similar to that used in
[26]. The reference signal has been split into six relevant subsets so as to better
quantify the tracking capabilities. The first four of them are already indicated in
Table 1: learning (S1), after learning (S2), miscellaneous(S3), and sequence of

24



Table 1: Reference model input

Signal set Signal Type Amplitude (deg) Bias (deg) Period (s) Duration (s)

1 Constant 20 10
S1: Learning 2 Square wave 25 45 6 60

3 Sinusoidal wave 25 45 6 60
4 Square wave 25 55 6 30
5 Sinusoidal wave 25 45 6 30
6 Square wave 10 50 6 30
7 Sinusoidal wave 10 50 6 30
8 Constant 40 - - 10

S2: After learning 9 Square wave 25 45 6 60
10 Sinusoidal wave 25 45 6 60
11 Square wave 25 55 6 30
12 Sinusoidal wave 25 55 6 30
13 Square wave 10 50 6 30
14 Sinusoidal wave 10 50 6 30
15 Constant 40 - - 10

S3: Miscellaneous 16 Square wave 25 55 3 30
17 Square wave 25 55 2 10
18 Sinusoidal wave 25 55 3 30
19 Sinusoidal wave 25 55 1 5
20 Square wave 35 55 5 30
21 Square wave 35 55 3 10
22 Sinusoidal wave 35 55 5 30
23 Sinusoidal wave 35 55 1 5
24 Square wave 7.5 52.5 5 20
25 Sinusoidal wave 10 50 4 20

S4: Sequence of steps 26 Sequence of steps 15 (step amplitude) 15 (initial value) - 120
27 Sequence of steps 5 (step amplitude) 10 (initial value) - 380

steps (S4). The remaining two are: square waves (S5), i.e., all the square waves
of the manoeuvre, and sinusoidal waves (S6), i.e., all the sinusoidal waves of the
manoeuvre.

The tracking performance of each controller is evaluated computing the max-
imum absolute percentage tracking error over each set. Figure 8a shows that the
novel approach always provides better tracking when compared to the MCSI algo-
rithm, while the presence of the locking strategy makes the control performance
of the DTMCSI-PP algorithm slightly worse than that providedby the DTMCSI
controller on sets S1, S2, S5 and S6. This slight loss of performance is acceptable
taking into account that, for a similar manoeuvre, both the DTMCSI and the MCSI
algorithm show diverging control gains, while the adaptivegains of the DTMCSI-
PP algorithm remain bounded over the entire manoeuvre (see Figure 8b). For this
case, each adaptive gain is saturated in some time interval.Specifically,LXI is
locked at its lower value at certain time instants, whileLEI andLEI at their upper
bounds. Notice these bounds are also reported in Figure 8b assolid lines with the
color of the corresponding adaptive gain.
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Figure 8: Adaptive control gains. (a) Maximum absolute percentage tracking
error. (b) Integral adaptive gains of the novel controller when the reference input
is composed by the signals listed in Table 1.LXI1 (solid blue line),LRI (dashed
red line),LEI1 (dashed-dotted black line).

6 Conclusions

In this paper the problem of diverging adaptive gains for discrete-time MCS algo-
rithms has been tackled with a parameter projection method.This locking strategy
has been here exploited to prevent critical closed-loop behavior, i.e., possible in-
stability of discrete-time MCS controlled plants caused by adrifting of the control
gains when nonlinear perturbations and disturbances affect the plant dynamics.

The parameter projection method has been added to a pre-existing MCS algo-
rithm. A consistent proof of stability of the overall closed-loop system with con-
vergence to zero of the tracking error has been carried out using a discrete-time
Lyapunov approach. The only extra assumption with respect to other adaptive
algorithms belonging to the same family is that the novel MCS strategy requires
knowledge of the range of variation of each plant parameter.This assumption
is not as restrictive as it might appear at first, as for many engineering problems
some knowledge of the plant parameters is often available.

Furthermore, it has been explicitly proven that the resulting algorithm is robust
with respect toL2 disturbances and, under further assumptions that are typical for
MCS control schemes, the control action can be successfully applied to discrete-
time LTV plants and continuous-time LTI systems.
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The effectiveness of the novel control scheme has been numerically tested on a
set of relevant examples including the control of a nonlinear automotive actuator.
Comparison with pre-existing MCS algorithms have proven the effectiveness of
the novel strategy to keep the adaptive gains bounded for this practical case study.
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