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Abstract

Model reference adaptive controllers with Minimal Control Synthesis
are effective control algorithms to guarantee asymptotic convergenbe of
tracking error to zero not only for disturbance-free uncertain lingstesns,
but also for highly nonlinear plants with unknown parameters, unmodeled
dynamics and subject to perturbations. However, an apparent drifajo-a
tive gains may occasionally arise, which can eventually lead to closed-loop
instability. In this article, we address this key issue for discrete-time systems
underLs disturbances using a parameter projection algorithm. A consistent
proof of stability of all the closed-loop signals is provided, while tracking
error is shown to asymptotically converge to zero. We also show the ap-
plicability of the adaptive algorithm for digitally controlled continuous-time
plants. The proposed algorithm is numerically validated taking into account
a discrete-time LTI system subject to parameter uncertainty, parameter vari-
ations andL, disturbances. Finally, as a possible engineering application
of this novel adaptive strategy, the control of a highly nonlinear electrome
chanical actuator is considered.

1 Introduction

Adaptive control algorithms are particularly useful in alerange of applications,
specifically those affected by noise and uncertainties. celeboth researchers
and practitioners have been interested in expanding agaptintrol theory and
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using the best adaptive schemes available in literature. ré&ader is referred to
the classical textbooks [23, 41] for an overview of adaptweatrol techniques.
Notwithstanding, this is also an active field of research:efcample, and just to
name a few recent works, in [29] a modular output based Varsthucture adap-
tive backstepping strategy for systems with arbitrarytinedadegrees has been
designed, while in [43] an adaptive control approach foragslof uncertain non-
linear systems with unknown time-varying delays in the pieexlback form has
been proposed. In addition, in [6] an adaptive compensatgorirol design is
developed via disturbance observer and quantum informaé&ohnology for a
four-rotor helicopter.

The Model Reference Adaptive Control (MRAC) algorithm with Miral
Controller Synthesis (MCS) [35, 36] is an adaptive controbsah that belongs to
the family of passivity-based MRAC controllers introduced24]. The main fea-
ture of the MCS approach, which demands the system to be lamehin control
canonical form, is the minimal amount of a-priori inforntatineeded from the
plant in order to devise the controller, as it just requiresdedge of the sign of
the non-null matrix element of the input vector. Indeed,M@S algorithm is ef-
fective in the control of plants with unknown parameters provides robustness
to parameter variations.

Since its appearance, MCS controllers have been used in aemwhbppli-
cations as, for example, synchronization of chaotic systg], shaking tables
in civil engineering [40], active engine mounts [22], hydlfe test rigs [21], can-
tilever beams [31], electronic throttle valves [11, 9], coon rail systems [26, 25]
and electromechanical valve actuators for future camlegmes [17]. Moreover,
the theoretical body of the MCS has been enhanced with sexdmaisions to the
original algorithms for continuous-time and discretedigystems. Among the
first ones are the decentralized MCS [4], the extended MCS y@&8Lth includes a
switching action to cope with rapidly varying disturbancesd the Integral MCS
(MCSI) [37] -with an explicit integral action to make the cooiteffort indepen-
dent of the operation set point and to prevent possible gaid-wp due to plant
disturbances and signal offsets-. More recently, novel MZ&egjies have been
proposed also for controlling Piecewise Affine (PWA) sysseiiv, 15], which
have been experimentally validated in [16].

A Discrete-Time counterpart of the MCS (DTMCS), including anfial sta-
bility proof, was proposed in [12], experimentally validdtin [8], and extended
to piecewise linear systems in [13]. Recently, discreteetMCS algorithms in-
cluding integral action (DTMCSI) and integral plus switohiaction have been
proposed in [26, 27], respectively.



Despite its proved effectiveness in imposing the dynamfca preassigned
reference model to a given plant, the MCS algorithm suffessifa severe draw-
back which is common to similar MRAC controllers. Indeedhaiigh theoretical
results guarantee global asymptotic stability of the tireglerror to zero, bound-
edness of all closed-loop signals is only ensured for uaettinear Time Invari-
ant (LTI) systems. In more detail, an unbounded drift of dsdamains may arise
when the plant is affected by unmodeled dynamics or dishabs even though
they are matched (see, for example, [2, 41] and referenegsitt). Such a be-
havior is occasionally encountered by MCS practitionerdpagxample in two
relevant plants in the context of the automotive enginegrie., the Electronic
Throttle Body and the Common Rail [8, 26]. However, neither thé 3 algo-
rithm nor the method proposed in [34] solve the gain lockingbtem systemati-
cally, and only slower gain drifting can be achieved.

Among the different methods available in the MRAC literattoeensure ro-
bustness in the face of unmodeled dynamics or disturbamsees for example,
[41], and references therein), parameter projection has bé&en adopted. For
example, a full state parameter projection-based adafagwéehas been used in
[32, 33] to address the MRAC adaptive control problem in gardgus-time piece-
wise linear systems. Inspired by the continuous-time casthjs paper we pro-
pose an analytical solution to cope with the possible orfssdaptive gains insta-
bility for discrete-time MCS strategies.

Specifically, we enhance the Discrete-Time MCS strategy Witegral ac-
tion (DTMCSI) proposed in [26] by including a Parameter Pcogn (PP)-based
gain locking method. The control aim is to solve the MRAC cohproblem
for discrete-time LTI systems when plant parameters amctdtl by uncertain-
ties and plant dynamics are subjected to an additive, squeagrable unknown
disturbance, while ensuring boundedness of adaptive gasgiven set.

The novel control action, termed with the acronym DTMCSI-&4) be ap-
plied also to Linear Time-Varying (LTV) systems provideétlthe plant param-
eters variation is slower than that of the adaptive gainss absumption is often
made in the MCS literature when deriving MCS laws for both ganius-time and
discrete-time LTV systems [36, 12]. Moreover, as happeiis thie discrete-time
MCS [12], the DTMCSI-PP here derived can be used to controlicootis-time
systems when the forward Euler method is used for their elization.

The effectiveness of the DTMCSI-PP strategy is shown on a fsetpre-
sentative numerical examples. In particular, we first adersthe control of a
discrete-time LTI system affected by uncertain plant patans,L,-disturbances,
and plant parameter variations. Then, as a realistic casly,stve consider the
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control of a highly nonlinear actuator, namely an Electcofinrottle Body. The
obtained results confirm the theoretical findings, and éswetracking perfor-
mances are achieved. Indeed, it is shown that the DTMCSI-FBrpes better
than the continuous-time MCSI [37] discretized with a Tustiethod. Moreover,
the novel algorithm yields residual errors that are conipgaréo the DTMCSI
strategy [26], but with the adaptive gains always evolvingaibounded preas-
signed set.

2 Discrete-time integral MCS with parameter pro-
jection
Consider a plant of the form
z(k + 1) = Az(k) + Byu(k) + Bd(k), x(0) € R", (1)

wherex € R andu € R are the state and the input of the system, respectively,
andd € L, is a possible disturbance acting on the plant dynamics, with N
being the dimension of the state space, while the systemaastt < R"*",

B, € R™! andB € R"*! are in control canonical form, i.e.

0 1 0 ... 0
0 0 1 ... 0
A= 0 0 (2a)
0 0 0 .. 1
i —ay —az ... ... —Qp ]
B,=[00 ... 0 0] =bB, (2b)
B=[00 ..0 1] (2c)

The following hypotheses are assumed for the plant paramete
Assumption A

(i) Upper and lower bounds are known for the plant parametgrse., a; €

[al, a¥], with a! < a¥ known constantsyi = 1,...,n.

(i) The gain parametérhas definite sign, and upper and lower bounds are known
foritas well, i.e.b € [b},b¥], with b} < b known, and eitheb! > 0 or b* < 0.

17 71

The target is to devise a control law to impose to system @ xgmamics of
a certain asymptotically stable reference model while kegall the closed-loop
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signals bounded. The reference model is assumed to be a timeainvariant
system of the form

Tm(k+1) = Apzm(k) + Byr(k), z,(0) € R, 3)

wherez,, € R" andr(k) € R are the state and the input of the reference model,
respectively, and!,,, B,, have the same dimensions and canonical form as those
of the plant matrices!, B, respectively, i.e.

[0 1 0 0 |
0 0 1 ... 0
0 0o 0 ... 1
—Qmy —Qmy oee e — Oy,
Bn=[00 ... 0 b,] =b,B. (4b)

Moreover, the following design assumptions are made foreference model.
Assumption B

(i) A,, is a discrete-time Hurwitz matrix.
(ii) The reference input is bounded, i€ L.
(iii) Let I denote the unit matrix ilR™*". Then@ = Q* is a symmetric matrix so
thatQ) — I > 0, while P = PT > 0 is a solution of the discrete-time Lyapunov
equation

AT PA,, — P =—Q. (5)

The DTMCSI-PP algorithm to solve the MRAC problem, i.e. —» x,, as
k — 400, IS:

with
uncs(k) = Lx (k)x(k) + Lr(k)r(k), (7a)
up(k) = Lp(k)rp(k), (7b)
where .
vp(k) = Z Te(i),  Te(k) = zm(k) — z(k), (8)



while the adaptive control gains are computed as

Lx(k) = Lxi(k) + Bye(k + 1)z" (), (9a)
Lr(k) = Lpr(k) + Bye(k + 1)r(k), (9b)
Lp(k) = Lgi(k) 4+ Bpye(k + 1)ag(k), (9¢)

with y. being an auxiliary output selected as
y.(k) = B' Pz (k) € R. (10)
The integral parts of the gains in (9) are computed as

LX[(IC) = LX](/{?) + f)((lf), (11&)

Lpi(k) = Lpi (k) + fr(k), (11b)
Lpi(k) = Lpi(k) + fu(k), (11c)
where the functiong v, Lzs, Lz are defined as
ZXl(k) = LXI(k - 1) + aye(k>xT(k - 1>7 (12&)
Lri(k) = Lar(k = 1) + age(k)r(k — 1), (12b)
= Lpr(k — 1) + agy.(k)z] (k — 1), (12c)

(k) =
LE[<I€)
(k) €

while fx (k) € R", fr(k) € Randfg(k) € R" are defined componentwise as

) -
0 if Ly, (k) € [L{XIJ., LS‘aj]
fx; =9 Ly, - EXIJ- (k) if L1, (F) > Ly, (132)
\ L%X'Ij — LXIj (k’) if LX[] (k) < Lé(] )

( 0 if ZR[ E [LSDL T
Jr=4 LY, — ERI (k) if LRI (k) > LRI (13b)
\ Ly — Lar (k) if  Lpr(k) < L,
.
0 if LE[ ) < [ EI;» L%I
foi =) L= Lo ) i Loy (> L, (139)
LZE'IJ' — LEIj (k') if LE'I (k)

\

The control weights and the bounds of the integral parts @fctntrol gains
are chosen as follows.



Assumption C
(i) The control weightsy, ag, 5, B are so that:

sign (a) = sign(5) = sign (b) , (14a)
sign (ag) ,sign (Be) € {0, sign (b)}, (14b)
8] = %‘, Be| > %- (14c)

(i) The integral parts of the control gaifsy , L%, Ly, Ly, 7 = 1,...,n,
andLk;, L%,, are chosen so as to verify:

&m]. — a4 U u bm u
TJ € [LlejaLX[j] , 0€ [LIE]J-vLEIj:| ) 7 € [LZRDLRI] :

Remark 1. Assumption C.i can be fulfilled when A.ii is verified. In additias
the model reference parameters, andb,, are known by design, the parameters
Lr, L1, Lap, Ly in Assumption C.ii can be readily obtained framay, b/, by
when Assumption A is verified.

The control goal, namely, convergence of the tracking éaaero and bound-
edness of all the closed-loop signals under square-sunerdaddlirbances, is guar-
anteed by the following result:

Theorem 1. Consider syster(il) and the reference mod€3). If Assumptions A,
B and C are fulfilled, forallj = 1...n, then

Lx,(0) € [LZXIJ-7L§1]~] . Lgi(0) € [Lyp, L], Lir(0) € [LZEI]-aL%IJ :
(15)
Furthermore ifd € Lo, then the adaptive control la{®)-(13)guarantees.. (k) —
0ask — oo, andx, xg, Lx, Lg, Lg,u € L.

Remark 2.

i) The parameter projection method consists of using theumater projec-
tion functions(13) for the computation of the integral part of the adaptive
gains(11).



i) In case fx, fr and fr are set to zero, the control actiof®)-(13) boils
down to the DTMCSI presented in [26]. However, the DTMCSI albanrit
gainsLx;(k), Lrr(k), Lg;(k) can then grow unbounded in the face of dis-
turbances or unmodelled dynamics even thou@h), zz(k) and the input
r(k) are bounded. Hence, the novel algorithm improves and estdrate
available in the literature by guaranteeing an evolutiortteé control gains
in a bounded and preassigned set. Furthermore, differdrdip [26], it is
analytically shown here that unknown disturbances do not alter closed-
loop stability.

i) Inthe disturbance-free case, i.é(k) = 0, vk > 0, the requiremen) —1 >
0 in (5) can be replaced by > 0 as usually assumed for the DTMCS
[12] and the DTMCSI [26] strategies. However, using(amatrix that
satisfies assumption B.iii does not entail any limitationdaese it is selected
by designers.

iv) The adaptive mechanis(®) at the discrete-time instant = k£ requires
knowledge of the output signal at tirhe-1, namelyy.(k+1). This problem,
known as the one-delay problem in MRAC literature [24], captaetically
solved by means of an estimate of the samp{& + 1) such as the one
proposed in [24, 12].

v) It is worth noticing that in discrete-time MCS algorithmsposed in the
literature so far, the summation for the integral part of tt@ntrol gains is
up to the current time instarit, thus including part of the one-delay term,
while the rest is in the proportional gain. However,(®), (11), (12) the in-
tegral gain is not affected by the one-delay problem, as tiedelay term
is entirely included in the proportional part of the adagigains. Hence,
the one-delay issue has to be considered only when manipgldte pro-
portional adaptive terms, thus simplifying the proof of dfeen 1 using a
Lyapunov approach.

vi) From the definition of the updating mechani€li), it is evident that the in-
tegral parts of the control gains are bounded. Specificdlly;, € [L{X o Lk 1]} ,

Ly, € [LlElj, L%[j],j =1,2,...,mandLg € [LY,, Ly,

vii) The only extra assumption that is required with respedhe MCS strategy
presented in [26] is that some bounds for the plant paransedee known.



This is not a limitation, because nominal values for the plaarameters,
as well as their range of variations, are often available igem®ering prob-
lems.

The result of Theorem 1 still holds for LTV plants under thewmsption of
slow variation of the plant parameters with respect to thegral part of the adap-
tation gains according to the following corollary. It is Wlostressing that this is a
standard assumption in the MCS literature both for contistioue and discrete-
time systems [36, 12].

Corollary 1. Let the plant defined if2a) be time-varying, i.e.A = A(k) with
a; = a;(k) in the last row ofA(k). If, foralli = 1,...,n,

ailk — 1) — a;(k) — aby.(k)as(k — 1) ~ —aby. (F)ri(k = 1), (16)

then the adaptive control lagb) yields convergence of the tracking error to zero,
and boundedness of all closed-loop signals.

Finally, as happens with the discrete-time MCS in [12, 2&pdahe DTMCSI-
PP algorithm can be applied to control continuous-timetglancontrol canonical
form when both the plant dynamics and that of the referenadeirare discretized
by using a forward Euler discretization method. Indeedsater the continuous-
time linear system and reference model

& = Ax + Byu + Bd(t), (17)
T = ATy + Bpr(t), (18)
wherex, z,,, € R", u,d,r € R, A, A,, € R™", B,,B,,,B € R"*!, n € N
andA, B,, B, A,,, B,, are defined in (2), (4). A forward Euler discretization of
(17)-(18) with sampling period; € R*, yields:
x(k+1) =1+ T,A) x(k) + TsByu(k) + T, Bd(k), (29)
Tm(k+1) = (14 TsAn) xm (k) + Ts By (k), (20)

and the following corollary holds.

Corollary 2. Consider systerfl9)and the reference mod@0). Let Assumptions
A, B, and C be met, with + T, A,, replacing A,, in Assumption B.i and5),
andT,b™" (am, — a;j) , Tsb~'b,, replacingb™ (a,,, — a;) ,b~'by,, respectively, in
Assumption C.ii. Let also the integral part of the controlggbe initialized as in
(15). If d € Lo, then the adaptive control la¥s)-(13) yieldsz(k) — z,,(k) as
k — oo, andx, xg, Lx, Lgr, Lg,u € L.
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We note that, even though the forward Euler method does ravagtee sta-
bility of the discretized plant, this is not restrictive sathe DTMCSI-PP strategy
can be applied also to unstable plants, and the stabilityeofliscretized reference
model can always be assured as it is chosen by the designezoiw, the use of
such a digital strategy prevents the onset of unwanted phena -instability and
undesirable overshoots- that can arise when implementingnzious-time MCS
algorithms via standard discretization methods [5].

3 Proof of the main results

The proof of is derived by using Lyapunov theory for discriee systems. In-

deed, while passivity/hyperstability theory is often usegrove tracking error

convergence in Landau’s schemes-based discrete time MRAtegiEes, the Lya-

punov approach simplifies proofs when parameter projectietihods are used to
ensure boundedness of adaptive gains.

3.1 Proof of Theorem 1

As in [24], the control law (6)-(13) can be written as an iméddike term plus a
proportional-like term. Namely,

u(k) = L(k)w(k) = (Li(k) + Lp(k)) w(k), (21)
with
Li(k) = Li(k = 1) + ye(k)w" (k — )T'o + f(), (22a)
Lp(k) = ye(k + Dw (k)Ts, (22b)
Lx (k) (k) fx (k)
Lg(k) zp(k) fr(k)

Where(«yf‘,%@) = (a,p),i =1,...,n+ 1, and (72‘?‘,%-5) = (ag,PE), | =
n+2,...,2n+1.
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Let us define

O(k+1) =o(k)w(k) — bLp(k)w(k) (24a)
¢(k) =b (L} — Li(k)) (24b)
L = bt (Ama — 1,y G — Ay Q10,0 (24¢)

which allows to obtain
Ag(k —1) = ¢(k) — ¢k — 1) = —by.(k)w' (k — )Ty — bf (k). (25)

With the above settings, and recalling from (8) thatk) = =,,(k) — x(k),
the closed-loop error dynamics associated to (2), (3)-(24) can be written as

zo(k+1) = Apzo(k) + BO(k + 1) — Bd(k), (26a)
ye(k) = B" Pr.(k). (26b)

Now, recalling Assumption C.ii, let us define

l L%“[i, i=1,....n,
Li* =9 Lgp, i=n+l, 27)
Ly, i=n+2,..2n+1,
A= A1 X An - [Llh’Llle} Ko X [lenﬂ’L?znﬂ} ’ (28)

Lemmal. Let L;(k) be updated as i22a)
i) If L;(0) € A, thenL;(k) € A, VEk > 0.
i) Let L7 € A;then, (Ly (k) — L3 ;) fi(k) <0,Vi=1,...,2n+1,Vk > 0.

Proof. Straightforward. n

Consider the auxiliary function
V(k) = Vi(k) + Va(k), (29)
with
Vi(k) = (ze(k) — BO(K))" P (ze(k) — BE(k)),
Va(k) = S0k~ )TL67(k — 1)
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The time variation of the first componentB{ k) is given by:

AVi(k) = Vi(k +1) = Va(k) =
= (ze(k+1) = BO(k+1))" P (z(k +1) — BO(k+1)) +
— (zo(k) — BO(k))" P (x.(k) — BO(k));
taking into account (26), after some algebraic maniputetjiove have
AVi(k) = (Apnze(k) — Bd(k))" P (Anz.(k) — Bd(k)) — xl (k) Pre(k)+
— BY"PB®*(k) + 2B Pz (k)®(k) =
=al(k) (ALPA,, — P)z.(k) — 2B"PA,,z.(k)d(k) + B" PBd*(k)+
— B"PB®*(k) + 2y.(k)®(k).
Now, by using the hypothesis (5) and proceeding to squa@’ PA,,x.(k)d(k)
one gets
AV (k) = —2(k) Qo (k) — (zo(k) + ALPBA(K))" (w.(k) + AT PBd(k)) +
+ 2! (k)z.(k) + B" (PA, Al P+ P) B&*(k) — B" PB®*(k)+

+2BT Py (k)®(k) =
— —2.()"(Q — 1)z (k) — ||z (k) + AT, PBd(k)||* — BT PB®*(k)+
+ B" (PA, AL P+ P) Bd*(k) + 2y.(k)®(k), (30)

with ||-|| denoting the Euclidean norm of a vector.
Considering now/(k), from (25) it is possible to compute its variation as

AVa(k) = Va(h + 1) = Vo(K) = 30(HI3 67 (K) — 3ok — DI, 67 (k — 1) =

(@0~ 1)+ Ao(k— 1) T3 (00— 1)+ Aotk -1)) +

SR RS I S

ok —1)I1o"(k—1) =

Ad(k — D47 (k — 1) + %Aqf)(k: — DI AG(k — 1)7.
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Then, (25), (24a) and (22b) yield
AVa(k) = =2 (ye(ks)w% f(k)) P;1¢T — 1)+
+ b (e (kyw (k — k)) P2 (e (k)w (k = )T + F(k)" =
= —2y.(k) (®(k) + pr(kr Dw(k — ))
+ by (K)w' (k — DT qw(k — 1)+
+2 (bye(F)w' (k — 1) — ¢(k = DI f1(R) +bf ()T F (K) =
= =2y, (k)®(k) — 2by2(k)w” (k — 1) pw(k — 1)+
+ by (k)w” (k — D aw(k — 1)+
—2(Ad(k = 1) + ok — 1) +bf (k) T T (k) + bf (k)T fT (k).
Finally, taking into account (24b}\V5(k) becomes
AVa(k) = =2y (k) (k) — byZ (k)w" (k — 1) (205 — Ta) w(k — 1)+
+2b(Li(k) = L) DM 1 (k) = bf ()OS T (K). (31)
From (29)-(31), the variation of the functidn(k) in (29) is
AV (k) = —2.(K)" (Q = T) (k) — ||ze(k) + AL PBd(K)|”* — BT PB®*(k)+
— by (k)yw' (k — 1) (205 — To)w(k — 1) +2b (L (k) — L)) T 7 (k) +
—bf(k)L,' f1 (k) + B" (PA,ALP + P) Bd*(k). (32)

As Q — I and P are symmetric, positive definite matrices (see Assumptiar),B.
b(2T's — T',) anddbl',! are diagonal, positive definite matrices by the inequalitie
(14) in Assumption C.i, andL;(k) — L;,) fi(k) < 0,Vi = 1,....2n + 1in
accordance with Lemma 1, the functiddd/ (k) in (32) can be bounded as

AV (k) < =Apin [[ze(k)||* + 6d° (K), (33)
with \,,;, > 0 being the lowest eigenvalue ¢f— I and
6 = B" (PA,ALP+ P)B > 0.

Adding up for allk in (33) we get

V(+00) =V(0) = Y AV(k) < —Auin ) llze(R)II* +0)_ d*(k)

k>0 k>0 k>0

— Amin |72+ 6 ]2, (34)
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where||-||, stands for the.,-norm. AsV/(0) is bounded (the initial adaptive gains,
plant and reference model state are assumed to be fidite)L,, V' is positive
semidefinite, andlz.|| > 0, (34) implies that

0 < V(400) + Amin [|ze]|7 < V(0) 4 3 ||d||5 < 4o00. (35)

Hence,z. € L, N L., and consequently.(k) — 0 for & — 4o00. From
Assumptions B.i and B.ii alse,, € L., and taking into account that € L.,
this implies thatr € L. In addition, (35) also implies thdl € L. This,
together with Lemma 1.i, immediately yields boundednesallidhe closed-loop
signals.

Remark 3. If ap = g = 0, thenw, I, andI's have to be redefined as

w<k) = |: ’f’(k’) :| ) Fa = aHnJrlu FB = B]InJrla

with I, standing for thegn + 1) x (n + 1) identity matrix.

3.2 Proof of Corollary 1
WhenA = A(k), thenLj and¢(k) in (24c) and (24b), respectively, become
Ly =Li(k)=0b" (@ma —ar(k), ..., amn — an(k), by, Q1) ,
¢(k) = b(Li(k) — Li(k)) .

However, (16) allows the correspondidyy(k — 1) defined in (25) to remain
invariant:

Ap(k —1) = ¢(k) — p(k —1) =
= b(Li(k) = Li(k = 1)) = bye(k)w" (k — 1)To — bf (k) =
=(a(k—1)—ar(k),...,an(k = 1) — an(k), Q1 pnt1) +
— bye(k)w” (k — )T — bf (k) =
~ —by.(k)w” (k — )Ty, — bf (k).

Hence, the proof follows identically that of Theorem 1.
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3.3 Proof of Corollary 2

The proof follows identically that of Theorem 1 as well afteplacingA,, by

I+ T,A,,, andL; by T, L;. This is because, although the discretized plant and
reference model matrices are no longer in canonical foswifterence is again a
matrix with null elements everywhere but on the last rowg#lyaas in the original,
pure discrete-time case, i.e.

I+ TiA, — I+ TA) =T, (A, — A).

Hence, as each column is spannedihythe mismatch can also be tamed by the
control actionBu(k).

4 Numerical validation

The effectiveness of the proposed discrete-time MCS alyaris shown in this
section through a representative numerical example. Ilticpéar, the approach
will be tested here for a system of the form (1) with

0 1 0 0
A= 0 0 1 |, b=4, z(0)=| 02 |. (36)
0.612 —2.165 2.55 —0.3

The reference model is a discrete-time LTI system of the f@hwith

0 1 0
A,=1 0 0 1 |, bp=1, z.(0)=0, (37)
0252 —1.2 1.9

and the reference input(k), is a sinusoidal wave with amplitudeand period
2.

For the design of the control law we assume that the entriéiseoplant ma-
trices are unknown but within the following ranges:a; € [—0.148, 0.652],
—ay € [—2.2, —0.2], —a3 € [1.3, 2.5], b € [3.36, 4.64]. According to this possi-
ble plant parameter variation and in order to satisfy AssiongC.ii, the integral
part of the adaptive gains has been limited as follows;;, € [-0.12 0.12],
LX[2 € [—03 03], LX[3 S [—0.18 0.18], LEll S [—3'10_3 3'10_3], LE[2 €
[—2-107% 2-107%], Lg, € [-4-107% 4-107%], andLg; € [-0.3 0.3]. More-
over, Lx;(0) = 0, Lr;(0) = 0 and Lg;(0) = 0, thus fulfilling requirement (15)
in Theorem 1.
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Figure 1: Tracking error evolution af.,.

The adaptive weights are selected as a trade-off betweereimnce time
and reactivity of the control actions. Specifically, we haeta = 10! and
ap = 1072, while § = 2a andfp = 3ap.

Finally, the one-delay issue has been tackled following Rkriav. Thus,
we have implemented the simple yet effective estimatg. @f + 1) proposed in
[24, 12].

4.1 Performanceof the DTMCSI-PP algorithm

Figure 1 shows the tracking error evolution for the thirdestariablez.,, and its
convergence to zero. Notice that, according to (1) and @6)k) = z.,(k — 2)
andz., (k) = z.,(k — 1). Hence, the convergence to zeroxgf guarantees that
of the entire tracking error vector.

Figure 2 shows that the integral parts of the adaptive gdip# (22a), con-
verge asymptotically to a finite value once the trackingregaes to zero. Notice
that upper or lower gain bounds are plotted in the same figurthbse adaptive
gains which are locked. These limits are depicted as soleklivith the color of
the corresponding adaptive gain.

As clearly shown in Figure 2d, the galny, is locked during the transient but
it enters again the non-locking region as the tracking ego@s to zero. Notice
that, as shown in Figure 2c, alég;;, and L, are locked in a short time interval,
but a zoom is not reported for the sake of brevity.

Figure 2 also confirms the boundedness of the adaptive gamieed, the
boundedness af. (k) (shown in Figure 1) guarantees that of the proportional
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gains,Lp in (22b), and consequently the boundedness of (21). In addition,
asz. — 0thenL — L;ask — +oo.

4.2 Robustnesstoparameter variationsand external Lo-disturbances

In order to numerically test the robustness of the contrgragch, a perturba-
tion in the plant parameters and a square-summable disiceld@ave also been
introduced in the simulation scenario.

Specifically, the behavior in case of a sudden change of dn& plarameters
values with respect to their nominal ones is investigateambly, wherk = 1000,
the plant matrixA and the parametérbecome

N 0o 1 0 N
A= 0 0 1 |, b=35, (38)
03 —0.8 18

which fall within the above specified range of variation. Netalso that, dif-
ferently from A, A is not Hurwitz, and therefore the plant becomes suddenly
unstable.

Furthermore, at thé = 1500 sample, thel, disturbance shown in Figure 3,
which affects the system dynamics as indicated in (1), isatetd.

In Figure 4 it is clear that the control algorithm is able tgeot such unex-
pected parameter variations and disturbances and, thiemggbtation, to achieve
again excellent tracking performance. As in the previosgcadaptive gains con-
verge asymptotically to a finite value while the trackingpeigoes to zero. (Notice
that upper or lower gain bounds are reported in Figure 4 fos¢radaptive gains
which are locked. These limits are depicted as solid lindgk #ie color of the
corresponding adaptive gain.) In this case, the dain, is locked during the first
time instants after the switch of the plant paraments. Inteatg the gainsLg;,,
Lg;, andL g, are saturated during the entire activation of the disturbaNever-
theless, when the unknown external excitation disapp#dase gains reenter the
non-locking region.

5 DTMCSI-PP control of an automotive actuator

A fundamental automotive actuator, the Electronic Thedbdy (ETB), is used
here to assess the performance of the novel DTMCSI-PP adagtiorithm in
control engineering applications.
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Figure 2: Adaptive gains. (&) x;: Lxy, (solid blue line),Lx;, (dashed red line),
Lx, (dashed-dotted black line); (@)r;; (c) Lg;: Ly, (solid blue line),Lg;,
(dashed red line), z;, (dashed-dotted black line); (d) Detail of the transientef t
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color of the corresponding adaptive gain.
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Figure 4: Tracking error evolution af,, under parameter variations and external
disturbances.
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The ETB is a mechatronic device that regulates the air flowicgrmto an
internal combustion engine. Hence, controlling precigsiyplate position is fun-
damental to improve performance of higher level enginerocbistrategies, e.g.,
idle speed control [19] and air-to-fuel ratio control [2fi]st to name a few. On
the other hand, the ETB system is affected by many nonlitieavhich can dra-
matically alter its dynamics such as a piecewise lineaoregsgj torque, friction,
impacts and backlash and nonlinear aerodynamic torquesedver, manufac-
turing tolerances, variable operating conditions and raeial wear often cause
uncertainty in system parameter values. The reader isreefféo [30, 11] for
further detalils.

Due to its challenging control features, the ETB has ofteenbghosen as an
ideal case study to investigate the performance and robsstof adaptive con-
trol schemes in the face of model uncertainties and dishwdsas discussed, for
example, in [11], [1], [3], [28], [7], [18]. Furthermore, vein MRAC algorithms
are used to tame the ETB dynamics, the presence of unmodefed tan induce
an unbounded drift of the adaptive gains [2], which are umdbBke for safety
reasons.

From a modeling viewpoint, it has been show in [11, 27] thgtchoosing
as state variables the position and velocity of the valve asdontrol input the
armature voltage to the DC motor embedded in the system, tBedlgnamics can
be approximated as a second order LTI system in control éealdorm subjected
to nonlinear disturbances, which is required by the DTMCBIlaRyorithm. For
all those reasons, the ETB is an excellent device to testdaptae law presented
in Section 2. The reader is referred to [8] for further detaih the ETB.

51 DTMCSI-PP implementation details

As reference model for the adaptive controller we have ssdea second order,
continuous-time LTI system in control canonical form witbedtling time of about
135 ms, unitary gain, and step response without oscillatiohg. réference model
has been then discretized using a forward Euler's method sampling period
T = 1073 s. This value is in agreement with automotive hardware étitihs and
yields a stable reference model (3).

The tracking error during tip-in/tip-out conditions hasebelimited with a
Smooth Trajectory Reference (STR) implemented as a first-ditter as in [11,
27].

The one-delay problem has been addressed as in [24]. Thigagtpfor solv-
ing the one-delay problem has also been validated expetathem [8, 27] for
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the discrete-time MCS control of an ETB. The numerical regelp®rted in next
subsection confirm again the effectiveness of this choice.

It is worth remarking that the velocity of the plate is not iéadale to the con-
troller. In accordance with [11, 8, 27], in order to not coroate the control
architecture with the use of observer [42] or to introducs@and delays in the
control system with the implementation of a derivative fijlteere we implement
the DTMCSI-PP algorithm using only position measurementssd doing, we
provide an additional evidence of the robustness and easeptémentation of
MCS-based control strategies.

The bounds of the integral part of the adaptive gains have belected in ac-
cordance with the expected variation of the ETB plant pataragnamely:L x,
€ [—0.250.25], Lgr, € [-0.150.15], Lgr € [—0.25 0.25]. The adaptive weights
have been selected heuristically as usual, i.e., as a tfhtetween convergence
time and control reactivity. Here we chose=8-107%, ap =8-107%, 3 = 3
andgp = 2z,

Finally, we point out that the numerical analysis has beenethout using an
accurate model of the ETB, which was experimentally validatg10].

5.2 Numerical results

In this subsection we assess the performance of the novptiaglalgorithm in
taming the ETB dynamics. We first consider as reference kagsiausoidal wave
with amplitude35 deg, bias0 deg, and period s. In order to test the controller
in a more realistic scenario, we have introduced an additiexternal sinusoidal
torque with amplitud®.1 Nm and period! s in the ETB dynamics to emulate the
aerodynamic torque. Furthermore, aiming at simulatingihise of the resistive
potentiometers used to measure the valve opening, a whge with variance).4
has been added to the plate position available to the ctetrol

The integral part of the adaptive control gains evolve withet as depicted
in Figure 6c¢, causing an increasingly better tracking ofreéference trajectory.
This is evident by analyzing the tracking performance iruFég 6a and 6b, while
the feasibility of the control action is shown in Figure 6d.eWote that for the
ETB control the persistent disturbance acting on the plgnachics is bounded
but it may induce instability due to the drifting on the adepticontrol gains [2].
However, the parameter projection-based gain lockingegiygprevents the onset
of such an undesirable phenomenon, with some adaptivectaatins being pe-
riodically locked over the manoeuvre. Precisdly;; is locked at its lower value,
while Lg; is saturated periodically to its upper bound. Notice thesgnds are
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Figure 6: ETB control performance. (a) Tracking performeanplate position
(blue solid line), reference model position (dashed ree)lib) Residual tracking
error in steady state. (c) Control gainx;, (solid blue line),Lg; (dashed red
line), Lz, (dashed-dotted black line). (d) Control action in steadiesta
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also reported in Figure 6¢ as solid lines with the color ofdbeesponding adap-
tive gain.

As in the case of the numerical example in Section 4, the bedmekss of the
integral gains 6¢ imply the boundedness of the adaptiveraloggins.
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Figure 7: Adaptive control gains. (a) DTMCSI algorithibx ;, (solid blue line),
Lg; (dashed red line), z;, (dashed-dotted black line). (b) MCSI algorithify
(solid blue line),Lg; (dashed red line), z;, (dashed-dotted black line).

We stress that boundedness of the control gains is not asbuICS algo-
rithms available in the literature when unmodelled dynanaied persistent distur-
bances affect plant dynamics. To better appreciate thigrieaf the novel control
scheme, we have implemented for the ETB system the MCSI -alized via
Tustin method - and DTMCSI algorithms, which have been piteskin [37, 11]
and [26], respectively. We point out that, under the samekimngrconditions,
these controllers provide a residual error which is comiglaren that in Figure 6b,
but Figure 7 clearly shows that the integral part of theirtoargains diverges.

In order to confirm that the DTMCSI-PP strategy provides tiaghkperfor-
mances similar or better than those achievable by other M@&gtes, namely
MCSI and DTMCSI algorithms, the control performances prodidg these three
controllers are compared when the reference input is thg leference manoeu-
vre composed by the signals listed in Table 1, which is sinmathat used in
[26]. The reference signal has been split into six relevabssts so as to better
guantify the tracking capabilities. The first four of thene afready indicated in
Table 1: learning (S1), after learning (S2), miscellane@8), and sequence of
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Table 1: Reference model input

[ Signal set [ Signal Type [ Amplitude (deg) | Bias (deg) [ Period (s) [ Duration (s) |
1 Constant 20 10
S1: Learning 2 Square wave 25 45 6 60
3 Sinusoidal wave 25 45 6 60
4 Square wave 25 55 6 30
5 Sinusoidal wave 25 45 6 30
6 Square wave 10 50 6 30
7 Sinusoidal wave 10 50 6 30
8 Constant 40 - - 10
S2: After learning 9 Square wave 25 45 6 60
10 Sinusoidal wave 25 45 6 60
11 Square wave 25 55 6 30
12 Sinusoidal wave 25 55 6 30
13 Square wave 10 50 6 30
14 Sinusoidal wave 10 50 6 30
15 Constant 40 - - 10
S3: Miscellaneous 16 Square wave 25 55 3 30
17 Square wave 25 55 2 10
18 Sinusoidal wave 25 55 3 30
19 Sinusoidal wave 25 55 1 5
20 Square wave 35 55 5 30
21 Square wave 35 55 3 10
22 Sinusoidal wave 35 55 5 30
23 Sinusoidal wave 35 55 1 5
24 Square wave 7.5 525 5 20
25 Sinusoidal wave 10 50 4 20
S4: Sequence of step: 26 Sequence of stepg 15 (step amplitude)| 15 (initial value) - 120
27 Sequence of stepg 5 (step amplitude) | 10 (initial value) - 380

steps (S4). The remaining two are: square waves (S5), ll.theasquare waves
of the manoeuvre, and sinusoidal waves (S6), i.e., all tnessidal waves of the
manoeuvre.

The tracking performance of each controller is evaluatedmding the max-
imum absolute percentage tracking error over each setré-Bm shows that the
novel approach always provides better tracking when coedp@arthe MCSI algo-
rithm, while the presence of the locking strategy makes trrol performance
of the DTMCSI-PP algorithm slightly worse than that providgdthe DTMCSI
controller on sets S1, S2, S5 and S6. This slight loss of pedace is acceptable
taking into account that, for a similar manoeuvre, both tAi&X Sl and the MCSI
algorithm show diverging control gains, while the adapgaes of the DTMCSI-
PP algorithm remain bounded over the entire manoeuvre {geesR8b). For this
case, each adaptive gain is saturated in some time inteBgacifically, L x; is
locked at its lower value at certain time instants, wiiilg and L z; at their upper
bounds. Notice these bounds are also reported in Figure Stiliddines with the
color of the corresponding adaptive gain.
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Figure 8: Adaptive control gains. (a) Maximum absolute patage tracking

error. (b) Integral adaptive gains of the novel controllérew the reference input
is composed by the signals listed in Tablelly,, (solid blue line),Lg; (dashed

red line),Lg;, (dashed-dotted black line).

6 Conclusions

In this paper the problem of diverging adaptive gains focidite-time MCS algo-
rithms has been tackled with a parameter projection methbid.locking strategy
has been here exploited to prevent critical closed-loo@beh i.e., possible in-
stability of discrete-time MCS controlled plants caused lyitiing of the control
gains when nonlinear perturbations and disturbancestdffelant dynamics.

The parameter projection method has been added to a ptergMCS algo-
rithm. A consistent proof of stability of the overall closkbp system with con-
vergence to zero of the tracking error has been carried ong @sdiscrete-time
Lyapunov approach. The only extra assumption with respecther adaptive
algorithms belonging to the same family is that the novel MG&&tegy requires
knowledge of the range of variation of each plant parameidris assumption
is not as restrictive as it might appear at first, as for margirezering problems
some knowledge of the plant parameters is often available.

Furthermore, it has been explicitly proven that the resglélgorithm is robust
with respect ta., disturbances and, under further assumptions that areatyfpic
MCS control schemes, the control action can be successioilyeal to discrete-
time LTV plants and continuous-time LTI systems.
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The effectiveness of the novel control scheme has been matigtested on a
set of relevant examples including the control of a nonlireeeomotive actuator.
Comparison with pre-existing MCS algorithms have proven ffeceveness of
the novel strategy to keep the adaptive gains bounded fpthctical case study.
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